I-93 EXIT 4A

SUPPLEMENTAL DRAFT

 ENVIRONMENTAL IMPACT STATEMENT/SECTION 4(F) EVALUATION
VOLUME III: APPENDICES

Federal Highway Administration (FHWA)
New Hampshire Department of Transportation (NHDOT)
Town of Londonderry Town of Derry

I-93 EXIT 4A
 PRELIMINARY ADMINISTRATIVE SUPPLEMENTAL DRAFT ENVIRONMENTAL IMPACT STATEMENT / SECTION 4(F) EVALUATION

VOLUME III: APPENDICES

Prepared for:

Town of Derry
Town of Londonderry
New Hampshire Department of Transportation

Prepared by:

CLD, Louis Berger, and Normandeau

August 2017

NHDOT Project Number: 13065
Federal Project Number: IM-0931(201)
CLD/Towns Project Number 05-0244

TABLE OF CONTENTS

Appendix A: Traffic Technical Report
Appendix B: Land Use Scenarios Technical Report
Appendix C: Interchange Justification Report
Appendix D: Farmland Conversion Impact Rating Form AD 1006
Appendix E: Noise Technical Report
Appendix F: NHDOT Environmental Justice Analysis
Appendix G: Known and Potential Petroleum and Hazardous Materials Sites
Appendix H: Chloride Technical Report
Appendix I: 2014-2015 Vernal Pool Assessment Report
Appendix J: Wetlands and Vernal Pools Functions and Values
Appendix K: Agency Correspondence
Appendix L: Wildlife Species List
Appendix M: 2016 Northern Long-eared Bat Acoustic Survey
Appendix N: Cultural Resources

Appendix A: Traffic Technical Report

EXIT 4A - Traffic and Transportation Technical Report

I-93 Exit 4A Supplemental Draft Environmental Impact Statement

Prepared for:
Town of Derry
Town of Londonderry
New Hampshire Department of Transportation

Prepared by:
CLD | Fuss and O’Neill, Inc.

Version 2.1
January 30, 2018
Revised April 27, 2018

Table of Contents

1.0 Introduction
2.0 Purpose and Need for the Project
3.0 Traffic Data Collection

3.1 Traffic Counts

3.2 Existing Signal Information - Timing and Phasing
3.3 Crash Data - 2010-2014 - Data Reduction and Summary
4.0 Development of Base Traffic Networks
5.0 Model Calibration
6.0 Capacity Analyses - 2015 Base Conditions
6.1 Mainline Interstate Operations
6.1.1 Mainline Freeway Segments
6.1.2 Merge/Diverge Operations
6.1.3 Weaving Operations
7.0 Signalized Intersection Operations - 2015 Base Condition
8.0 Unsignalized Intersection Operations
9.0 Summary of SNHPC Model Assignments - 2015, 2040
9.1 AAWDT Comparisons - 2040
9.1.1 No-Build Conditions
9.1.2 Alternative A
9.1.3 Alternative B
9.1.4 Alternative C
9.1.5 Alternative D
9.1.6 Alternative F
9.2 Composition of Through Traffic in Downtown Derry
9.3 Comparison to I-93 SEIS 2030 Mainline Projections
10.0 Derivation of 2040 Volumes for Analysis Purposes
10.1 Mainline Interstate Volumes
10.2 Local Intersection Volumes

Table of Contents (Continued)

11.0 Analysis of Interstate Operations
11.1 Mainline Freeway Segments
11.2 Merge/Diverge Operations
11.3 Weaving Operations
12.0 Estimated Contribution of Woodmont Commons Traffic to Interstate Ramp Volumes
13.0 Exit 4A and Connecting Roadways
14.0 Analysis of Local Intersection Operations
15.0 Signalized Intersections
15.1 AWDT Comparisons - 2040
15.1.1 No-Build Conditions
15.1.2 Alternative A
15.1.3 Alternative B
15.1.4 Alternative C
15.1.5 Alternative D
15.1.6 Alternative F
15.2 Composition of Through Traffic in Downtown Derry
15.3 Comparison to I-93 SDEIS 2030 Mainline Projections
15.4 Derivation of 2040 Mainline Volumes for Analysis Purposes
16.0 Unsignalized Intersections
17.0 Findings and Conclusions
18.0 References

Tables

1. ATR Count Summary - Adjusted 2015 AAWDT and Peak Hour Volumes
2. Exit 4A Study Area Crash Data Summary - 2010-2014
3. HCS 2010 - Freeway Facilities Analysis - 2015 Base AM and PM Peak Hours
4. Summary of 2015 Signalized Intersection Capacity Analyses
5. 2015 Signalized Intersection Capacity and Queuing Analyses
6. Unsignalized Intersection Capacity and Queuing Analyses
7. Adjusted 2040 AAWDT Volume Comparison - All Alternatives
8. Select Link Analysis - NH102, East of Griffin Road, Derry, NH
9. Comparison of I-93 SEIS and Exit 4A SDEIS Traffic Projections 2020, 2030 and 2040 Design Years, Including Exit 4A
10. HCS 2010 - Freeway Facilities Analysis - 2040 No-Build and Build (South Interchange) Cases - AM and PM Peak Hours
11. Summary of 2040 Capacity Analyses by Alternatives
12. Summary of 2040 Capacity Analyses by Alternative

Figures

1 I-93 Exit 4A Supplemental Draft EIS - Alternatives
2 Traffic Count Locations
3 I-93 Exit 4A Supplemental Draft EIS - Zones 1-6 Locus Map
42015 No-Build AM Peak Hour Base Volumes - Locations 1-4
52015 No-Build PM Peak Hour Base Volumes - Locations 1-4
62015 No-Build AM Peak Hour Base Volumes - Locations 5-19 and 26-27
72015 No-Build PM Peak Hour Base Volumes - Locations 5-19 and 26-27
8 Volume Comparisons - Exit 4 Ramps
9 Volume Comparisons - Exit 5 Ramps
10 Volume Comparisons - Exit 4A Ramps
11 Volume Comparisons - NH Route 102 Corridor
12 Volume Comparisons - Other Local Streets
13 SNHPC Traffic Analysis Zones - Derry, NH
14 SNHPC Traffic Analysis Zones - Region Wide
152040 No-Build AM Peak Hour Base Volumes - Locations 1-4
162040 No-Build PM Peak Hour Base Volumes - Locations 1-4
172040 Alternative A AM Peak Hour Base Volumes - Locations 1-4 and 20-21
182040 Alternative A PM Peak Hour Base Volumes - Locations 1-4 and 20-21
192040 Alternative B AM Peak Hour Base Volumes - Locations 1-4 and 20-21
202040 Alternative B PM Peak Hour Base Volumes - Locations 1-4 and 20-21
212040 Alternative C AM Peak Hour Base Volumes - Locations 1-4, 20-21, and 25
222040 Alternative C PM Peak Hour Base Volumes - Locations 1-4, 20-21, and 25
232040 Alternative D AM Peak Hour Base Volumes - Locations 1-4, 20-21, and 25
242040 Alternative D PM Peak Hour Base Volumes - Locations 1-4, 20-21, and 25
252040 Alternative F AM Peak Hour Base Volumes - Locations 1-4
262040 Alternative F PM Peak Hour Base Volumes - Locations 1-4
272040 No-Build AM Peak Hour Base Volumes - Locations 5-19 and 26-27
282040 No-Build PM Peak Hour Base Volumes - Locations 5-19 and 26-27
292040 Alternative A AM Peak Hour Base Volumes - Locations 5-19 and 26-27
302040 Alternative A PM Peak Hour Base Volumes - Locations 5-19 and 26-27
312040 Alternative B AM Peak Hour Base Volumes - Locations 5-19, 22-24, and 26-27
322040 Alternative B PM Peak Hour Base Volumes - Locations 5-19, 22-24, and 26-27
332040 Alternative C AM Peak Hour Base Volumes - Locations 5-19 and 22-27

342040 Alternative C PM Peak Hour Base Volumes - Locations 5-19 and 22-27
352040 Alternative D AM Peak Hour Base Volumes - Locations 5-19 and 25-27
362040 Alternative D PM Peak Hour Base Volumes - Locations 5-19 and 25-27
372040 Alternative F AM Peak Hour Base Volumes - Locations 5-19 and 26-27
382040 Alternative F PM Peak Hour Base Volumes - Locations 5-19 and 26-27

Appendices

Appendix A: Traffic Count Data
Appendix B: Seasonal, Annual and Axle Correction Factors
Appendix C: Interstate Counts and Balancing Calculations at Ramp Terminals
Appendix D: Travel Demand Forecast Model Development and Calibration Report Southern NH Planning Commission, January 2018

Appendix E: HCM 2010 LOS Criteria
Appendix F: HCS 2010 Freeway Facility Analyses - 2015 Base
Appendix G-1: HCM and SYNCHRO Printouts - Signalized Intersection Capacity Analyses - 2015 AM Peak Hours - SYNCHRO Printouts

Appendix G-2: HCM and SYNCHRO Printouts - Signalized Intersection Capacity Analyses - 2015 PM Peak Hours - SYNCHRO Printouts

Appendix G-3: HCM Printouts - Signalized Intersection Capacity Analyses - 2015 AM and PM Peak Hours

Appendix H: Google Maps Printout of Traffic Conditions - Derry area - January 2018
Appendix I: HCM Printouts - Unsignalized Intersection Capacity Analyses - 2015 AM and PM Peak HCM Printouts
Appendix J: 2040 AWDT Peak Hour Volumes
Appendix K: Procedure to Estimate TMC from AWDT
Appendix L: HCS Freeway Facility Appendix
Appendix M: Estimate of Contribution of Woodmont Commons Traffic to Exits 4 and 4A
Appendix N-1: 2040 No-Build Intersection Capacity Analyses - HCM 2000 Printouts - AM Peak Hour
Appendix N-2: 2040 No-Build Intersection Capacity Analyses - HCM 2000 Printouts - PM Peak Hour

Appendix N-3: 2040 No-Build Intersection Capacity Analyses - SYNCHRO Printouts - AM Peak Hour
Appendix N-4: 2040 No-Build Intersection Capacity Analyses - SYNCHRO Printouts - PM Peak Hour

Appendix O-1: 2040 Alternative A Intersection Capacity Analyses - HCM 2000 Printouts AM Peak Hour

Appendix O-2: 2040 Alternative A Intersection Capacity Analyses - HCM 2000 Printouts PM Peak Hour

Appendix O-3: 2040 Alternative A Intersection Capacity Analyses - SYNCHRO Printouts AM Peak Hour
\(\left.\begin{array}{ll}Appendix O-4: \& 2040 Alternative A Intersection Capacity Analyses - SYNCHRO Printouts -

\& PM Peak Hour

Appendix P-1: \& 2040 Alternative B Intersection Capacity Analyses - HCM 2000 Printouts -

\& AM Peak Hour

Appendix P-2: \& 2040 Alternative B Intersection Capacity Analyses - HCM 2000 Printouts -

\& PM Peak Hour\end{array}\right]\)| 2040 Alternative B Intersection Capacity Analyses - SYNCHRO Printouts - |
| :--- |
| Appendix P-3: |
| |
| AM Peak Hour |

1.0 Introduction

The Interstate 93 (I-93) Exit 4A Project (the "Project") involves a new diamond interchange between Interstate 93 Exits 4 and 5 in the Town of Londonderry, approximately one mile north of Exit 4. The new diamond interchange would provide access to the east side of I-93 only. A 1-mile connector roadway would be built on new alignment from the interchange to Folsom Road, near the intersection of North High Street and Madden Road, in the Town of Derry. Folsom Road, and subsequently Tsienneto Road, would be upgraded, and the intersections would be improved.

The Project was the subject of a Draft Environmental Impact Statement (DEIS) in 2007 (FHWA, 2007). Due to the amount of time that has elapsed since the 2007 DEIS, the FHWA has requested the preparation of updated studies that will be documented in a Supplemental Draft Environmental Impact Statement (SDEIS) in accordance with the National Environmental Policy Act (NEPA). The SDEIS will provide an up-to-date assessment of the environmental effects of the Project and the evaluation of reasonable alternatives that will consider updated information including, but not limited to, traffic, socioeconomic projections, land development proposals in the project area, and changes in environmental resources and regulatory requirements.

The purpose of this report is to document the development of traffic projections and operational analyses for the Project as part of the SDEIS. This report is a compilation of previous memoranda issued as the project proceeded as well as to present the findings of the analyses of the various alternatives.

The traffic analysis tasks described in this report includes the following:

- Collection of traffic count data at various roadways and intersections in the Exit 4A study area to develop 2015 Average Weekday Traffic (AWDT) volumes.
- Use of these 2015 counts to calibrate the Southern New Hampshire Planning Commission (SNHPC)'s regional traffic model to be viable to project future traffic volumes in the 2040 design year with and without the proposed Exit 4A.
- Preparation of land use and socioeconomic projections (conducted concurrently by the Land Use Working Group) for the SNHPC model area and allocated to the Traffic Analysis Zone (TAZ) level for each alternative scenario to be used as the basis for traffic generation and trip assignments to the regional roadway network.
- Development of 2040 No-Build (without Exit 4A) and Build (with Exit 4A) traffic volume assignments on key roadway segments and intersections in the study area network.
- Derivation of AM and PM peak hour traffic volumes on the mainline I-93 and interchange ramps as well as key segments and intersections in the study area for the various Exit 4A alternative layouts for analysis purposes (see Figure 1).
- Analysis of interstate operations using the 2010 Highway Capacity Manual (TRB, 2010) Freeway Facilities methodologies for the existing 2015 and all 2040 NoBuild and Build scenarios. Analysis of signalized and unsignalized intersection operations of the existing 2015 and all 2040 scenarios using HCM methodologies and emulated in the SYNCHRO/Sim-Traffic (Trafficware, 2016)software for
derivation of Level of Service and estimated queue lengths for conceptual design purposes.

In addition to the traffic data collection, Project Team specialists and the Land Use Working Group conducted interviews and compiled socioeconomic (e.g., population and employment) projections that were used by the SNHPC to allocate these trip-generation characteristics to their traffic zone system to generate traffic assignments to the roadway network under both No-Build (without 4A) and the Build alternatives that were included in the DEIS from 2007. A separate Land Use Scenario Technical Report was prepared that documents the land use and socioeconomic forecasting efforts that were used in conjunction with the traffic modeling. (Louis Berger, 2017).

2.0 Purpose and Need for the Project

The Purpose and Need for the Project, as described in the 2007 DEIS, is as follows:

- Providing for transportation improvements that will promote the safe and efficient movement of people, goods, and services between I-93 and the towns served by NH Route 102, specifically Derry and Londonderry, that are immediately adjacent to I-93 Exit 4;
- Providing an alternative route to the Interstate system for traffic using NH Route 102 to and from the east, thus removing a large volume of through traffic from the heavily congested downtown Derry street network;
- Providing improved Interstate access for commercially and industrially zoned lands near NH Routes 28 and 102 in both Derry and Londonderry, thus allowing for the planned and orderly development of such lands to further locally-defined economic development goals and tax base diversification; and
- Enhancing and promoting the economic vitality of the downtown Derry area, presently characterized by traffic congestion and decreasing vehicular and pedestrian safety, by separating local destination-oriented traffic from throughtraffic destined for the Interstate system.

3.0 Traffic Data Collection

The study area for the Project was established and agreed upon as part of the 2007 DEIS document, and encompasses the expected extent of the roadway network that would likely be influenced by the introduction of a new I-93 interchange and associated connector roadways. An updated inventory of the key area roadways and intersections was conducted to ensure that the traffic modeling and subsequent analyses reflect existing conditions.

The various contracts for the I-93 widening project affecting the study area also needed to be considered. The Exit 5 improvements are already in place, and the Exit 4 interchange is being reconstructed now as part of Contract 14633-D. The widening of the mainline I93 to four lanes between Exits 4 and 5 under Contracts 'D' and ' I ' is also underway.

3.1 Traffic Counts

The traffic counting program was developed for the project, based on the key roadway segments and intersections in the study area, to assist in the development of 2015 base Average Annual Weekday Traffic (AAWDT) volumes for use in the traffic model calibration. Most of these locations were counted in 2005 as part of the preparation of the original 2007 DEIS document. This effort was coordinated with the annual traffic counting programs conducted by both the NHDOT and SNHPC within the study area, and the new data collected in May and June of 2016 while school was still in session. Some of these locations had already been counted in 2014 or 2015 (NHDOT, 2016a, 2016b, 2016c), so all data was evaluated and subsequently adjusted to reflect 2015 AAWDT conditions.

The Automatic Traffic Recorder (ATR) counts were taken for a 3-5 day period. A listing of the locations is included below and shown in Figure 2.

Interstate Locations (15)
I-93 NB and SB, south of Exit 4 (NHDOT permanent recorder)
I-93 Exit 4 - NB and SB on- and off-ramps (5)
I-93 Exit 5 - NB and SB on- and off-ramps (4)
I-93 NB and SB between Exits 4 and 5 (2)
I-93 NB and SB north of Exit 5 (2)
State Highways/Local Streets (22)
Crystal Avenue (NH Route 28), south of Tsienneto Road
Folsom Road, west of NH Route 28
Pinkerton Street, east of Tsienneto Road
Tsienneto Road, east of Pinkerton Street
Chester Road (NH Route 102), east of NH Route 28 Bypass (Sylvestri Circle)
North Main Street (NH Route 28 Bypass), north of Pinkerton Street (Academy Drive)
North Main Street (NH Route 28 Bypass), north of Tsienneto Road
South Main Street (NH Route 28 Bypass), south of Thornton Street
Tsienneto Road, west of NH Route 102
NH Route 102, at Derry Town line
NH Route 28, at Derry/Londonderry Town line
Gilcreast Road, north of NH Route 102
NH Route 102, west of Abbot Street
NH Route 102, east of Griffin Street
Fordway, over Beaver Brook
Franklin Street, north of Folsom Road
Ash Street at Londonderry Town line
Ash Street, east of Londonderry Road
NH Route 28, east of Perkins Road
NH Route 28, south of Rollins Street

NH Route 28, north of Liberty Drive
NH Route 102, east of Hampton Drive
Intersection Turning Movement Counts (TMCs) - AM and PM Peak Periods (19)
The intersection counts were taken in groups of intersections within five general groups or 'zones' in close proximity to each other to facilitate ease of data collection and to minimize significant differences between locations, even if there were intervening roadways or driveways that would not allow balancing between sites. These groups of intersections were numbered as follows and shown in Figure 3:

Zone 1

\#3 Exit 5 SB ramps
\#4 Exit 5 NB ramps

Zone 2
\#1 Exit 4 SB ramps
\#2 Exit 4 NB ramps

Zone 3

\#5 NH Route 102/Londonderry Road/St. Charles Street
\#6 NH Route 102 (Broadway)/Fordway/Madden Hill Road
\#7 NH Routes 102/28 (Crystal Avenue/Broadway/Birch Street)
\#8 North High Street/Ash Street Extension
\#9 North High Street/Madden Road
\#10 North High Street/Folsom Road/Franklin Street/Franklin Street Extension
Zone 4
\#11 NH Route 28/Folsom Road/Tsienneto Road (Ross’ Corner)
\#12 Tsienneto Road/Pinkerton Street
\#13 NH Route 28/Linlew Drive
\#14 NH Route 28/Ashleigh Drive
\#15 NH Route 28/Scobie Pond Road

Zone 5
\#16 NH Routes 102/28 Bypass/East Derry Road (traffic circle)
\#17 NH Route 28 Bypass/Pinkerton Street/Nesmith Street
\#18 NH Route 28 Bypass/Tsienneto Road
\#19 NH Route 102/Tsienneto Road
Copies of the relevant raw traffic count data are included in Appendix A.
Other new intersections that would be created by some of the Exit 4A alternatives will also need to be evaluated and analyzed. In addition, it was determined as the study progressed that additional intersections at the east end of the study area should be collected, since they will be influenced by any improvements at the NH Route 102/Tsienneto Road intersection. These intersections were at NH Route 102/North Shore Road (\#26) and at NH Route 102/English Range Road (\#27). This data is also included in Appendix A.

Adjustment Factors used for Data Reduction

Because of the nature of the regional roadway network, there are several different adjustment factors that need to be applied to the raw counts to derive AWDT. In general, there are seasonal factors, annual growth factors, and axle correction factors, based on the type of roadway being considered. NHDOT develops these factors for various roadway types based on their evaluation of permanent traffic recorder stations across the state. NHDOT differentiates between Rural and Urban Interstates (called Groups 1 and 3, respectively), as well as Rural and Urban Highways (Groups 2 and 4, respectively), for which there is a wealth of short-term and long-term factors that are developed annually by NHDOT as part of their normal practice (NHDOT, 2016d). Appendix B includes the tables showing the various seasonal, annual and axle correction factors applied to the raw traffic counts in this report.

Seasonal Factors

In this study area, there are Interstate roadways (I-93) as well as state highways and local streets in an urbanized area, so the Group 3 and 4 seasonal factors in Appendix B were applied here. Since counts were taken on specific dates in May, the 2015 seasonal adjustment factors were applied to each count separately based on the date of the count and the type of roadway.

Annual Growth Factors

Annual growth factors are also applied because of the different years that the counts were taken. There is an NHDOT permanent traffic recorder in the immediate study area on I93 just south of Exit 4 at the Derry/Windham town line, but it may not be indicative of growth on the local street network because the interstate is more prone to fluctuations in regional traffic. A comparison of May 2015 to May 2016 traffic counts on I-93 indicates a 1.1% growth rate on the Interstate system. It should be noted that this counter is located north of the current construction area, so it should not have been influenced by drivers trying to avoid construction-related delays. This 1.1% annual growth rate was applied to the 2016 mainline I-93 traffic data only to adjust the data downward to the 2015 base year AWDT.

Another permanent recorder is located on NH Route 28 in Windham south of the study area that should be more representative of the urbanized roadways within the Derry/Londonderry area. A comparison of May 2015 to May 2016 traffic counts at the NH Route 28 location indicates a 2.5% growth rate, which was then applied to the rest of the study area roadway system to derive the 2015 AWDT.

There are also ramp volume counts at Exits 4 and 5 that need to be seasonally adjusted. In discussions with the NHDOT Bureau of Traffic (NHDOT, 2016e), it was agreed that these ramp volumes would exhibit characteristics more in line with the local street network as opposed to seasonal variations in Interstate traffic. As such, the 2.5% growth rate was also applied to the ramp volumes to derive the 2015 AWDT.

Axle Correction Factors

Axle correction factors are also applied to adjust for differences in vehicle classification on various types of roadways to derive a total number of actual vehicles. It is essentially a correction for the assumed number of two-axle vehicles gathered by the field-counting apparatus (such as road tubes) to account for multi-axle vehicles in the traffic stream, based on the FHWA 13-tiered classification system. These factors are developed by NHDOT based on vehicle classification information collected on the various functional classifications of roadways in the state.

Each of the major roadways in the study area has already been functionally classified based on its overall role in the regional roadway network. Since this is an urbanized area, the classifications that are applied here are urban interstate (FC 11), urban principle arterials (FC 14), urban minor arterials (FC 16), collector roadways (FC 17), and local streets (FC 19). The 2015 axle correction factors table is also provided in Appendix B.

Development of 2015 AAWDT Base Volumes

Table 1 shows a summary of the adjusted 2015 AAWDT volumes derived from applying the various adjustment factors to the 2015 and 2016 raw traffic counts. In some cases, such as for the 2014 counts, the NHDOT has already developed the AAWDT for locations of interest in the study area, which only need to be annually adjusted upward to 2015. This adjustment factor has also been applied to the AM and PM peak hour volumes and ' k ' factors (the percentage of AAWDT during each peak hour for each movement) calculated for comparison to the intersection TMCs for future analysis purposes.

TABLE 1
ATR Count Summary - Adjusted 2015 AAWDT and Peak Hour Volumes

Note - Exit 5 SB off-ramp AM peak volume does not include one count that appears anomalous when compared to other counts in same hour Red counts are from NHDOT Town summary data - 2014-2015

3.2 Existing Signal Information - Timing and Phasing

Information about the current signal timing and phasing plans at each of the signalized intersections was compiled from records available from the entity with current maintenance responsibility, which is either the NHDOT Bureau of Traffic or the Town of Derry (none of the signals in Londonderry are under their jurisdiction). Current records for one of the locations (NH Route 102/Fordway) were not readily available, so the required information was gathered in the field by observation. This information, combined with the current lane use at each location, was compiled into a data file in the SYNCHRO signal analysis program, which emulates the procedures in Volume 3 (Interrupted Flow) of the Highway Capacity Manual 2000 (HCM) (TRB, 2000) analysis procedures, for use in future analysis. The HCM 2000 procedures are being used for signalized intersections because these procedures can analyze non-standard timing and phasing parameters, since as leading pedestrian start times, which were found in the field, and to be consistent with the analyses in the Interstate Justification Report (Louis Berger, 2018).

3.3 Crash Data - 2010-2014 - Data Reduction and Summary

Data compiled by the NH Department of Safety for the last five full calendar years was made available by the NHDOT for the two study area towns. Since the crash records are identified by State Plane coordinates, this data search was narrowed further to include only those crashes located within the limits of the study area, roughly bounded by I-93 to the west, NH Route 102 to the south, NH Routes 28 and 28 Bypass north of Tsienneto Road to the north, and the Tsienneto Road/NH Route 102 intersection to the east. The records were assigned to specific roadway segments or individual intersections if sufficient locational information was available. In some cases these identifiers overlapped, so the sum of the segment and intersection crashes is more than the total.

The findings are summarized in Table 2 below. A total of 716 crashes were identified within the project area within the five-year time span, with only one fatality (a single-car incident in 2014 on NH Route 102 in Londonderry). About 24% of the crashes were injury or fatality, with almost 87% of these being on the major roadways in the study area. NH Routes 102 and 28 combined accounted for about $2 / 3$ of the total reported crashes, averaging 48 per year, with the Interstate only accounting for 19%, or 25 per year. The traffic circle at NH Route 28 Bypass and NH Route 102 had the most reported crashes of any intersection during this period, averaging almost 5 per year.

Although there was a consistent number of crashes during three of the five years that data was compiled (between 182 and 185 per year), the other two years show wide fluctuations within this period (115 and 52 crashes). Almost 80% of the crashes involved another motor vehicle, with another 13% involving a crash with a fixed object. Seven of the crashes involved a bicyclist or pedestrian, while another six involved a crash with an animal.

TABLE 2
EXIT 4A STUDY AREA CRASH SUMMARY 2010-2014

4.0 Development of Base Traffic Networks

The time periods to be analyzed will be the 2015 AM and PM peak hours as determined by the traffic counts. The analysis will focus on operations of both the Interstate system (freeway facilities, ramp terminals, ramp merge/diverge, weaving sections) as well as local intersection Levels of Service, using the methodologies in the current version of the HCM.

There are two different approaches that need to be considered for the Interstate system versus the local roadways. The Interstate section within the study area from south of Exit 4 to north of Exit 5 is a closed system - traffic enters and exits at specific locations, so the entire system needs to balance in both directions. The local roadways are not a closed system; counts between the local intersections may not necessarily balance in most locations because there are other intervening driveways for adjacent land uses and other minor streets where traffic is able to enter or exit the network.

Interstate Volume Balancing

Within the closed Interstate system, there are two adjustments that need to be made. One is for the overall mainline/ramp system, where a starting point was chosen (in this case, at the NHDOT permanent traffic recorder location south of Exit 4) and add or subtract the on- and off-ramp volumes both northbound and southbound to develop the base AM and PM peak hour networks along I-93.

The second adjustment is to balance volumes between the ramp terminals at both Exits 4 and 5, based on the peak hour volume counts and the recent TMCs that were collected in May 2016. This second process will be discussed later in the report.

Directional counts from the I-93 permanent recorder station during May 2015 were reviewed and compiled to determine the AWDT during that period (taking the Memorial Day holiday count out of consideration). These were adjusted seasonally to develop the 2015 AWDT for both northbound and southbound traffic as the starting point. The ramp counts taken in May 2016 were also seasonally and annually adjusted to the 2015 AWDT and then added and subtracted accordingly going north and south on the Interstate. The resulting mainline 2015 AWDT volumes for the AM and PM peak hours are shown in Figures 4 and 5, respectively. The counts and calculations are provided in Appendix C.

Ramp Terminal Balancing - Exits 4 and 5

The turning movement volumes at the ramp terminals at Exits 4 and 5 must also balance between the intersections while agreeing with the overall ramp volumes. While the ramp volumes were collected with automatic traffic recorders, which only summarized data on an hourly basis, the turning movements were collected at 15 -minute intervals. Furthermore, the individual intersections also have their own peak hours, which may not necessarily match the adjacent ramp or the hourly ramp volume. Therefore, an overall peak for each interchange was developed from a summary of the turning movement
counts at each location and the turning percentages applied to the balanced interstate ramp volumes derived above. The AM peak period was determined to be from 7:30-8:30, while the PM peak was from 4:45-5:45. The balanced 2015 AM and PM peak hour volumes at the two interchanges are also shown in Figures 4 and 5, respectively. The calculations are also provided in Appendix C.

Other Intersection Counts

As noted above, the local intersection turning movement counts were collected in groups of intersections in close proximity to each other to minimize significant differences between locations, even if there were intervening roadways or driveways that would not allow balancing between sites. There are only four intersections on the local network where traffic should essentially balance between adjacent intersections:

- Between Ross’ Corner (NH Route 28/Folsom/Tsienneto) and at Pinkerton Street;
- Between North High Street/Madden Road and the North High Street/Folsom/ Franklin/Franklin Street Extension intersection;
- Between the NH Route 28 Bypass/NH Route 102 traffic circle and the intersection at NH Route 28 Bypass/Pinkerton Street/Perkins Street to the north; and
- Between NH Route 102/Tsienneto Road easterly to include the North Shore Road and English Range Road intersections.

Counts at these locations were balanced and all counts were adjusted to the 2015 AWDT using the NHDOT seasonal and annual factors for Group 4 Urban Highways noted above. The 2015 AM and PM peak hour volumes at the local intersections are shown in Figures 6 and 7, respectively.

5.0 Model Calibration

The SNHPC regional traffic model is an Average Annual Weekday Traffic (AAWDT) model for the greater Manchester, NH area that includes Derry and Londonderry as well as other surrounding towns. The model area has expanded since its use in the 2007 DEIS project to include towns to the south, east and west of the Exit 4A area with added roadway links and TAZs to provide traffic generation capabilities for the SNHPC's planning horizon of 2040.

However, to be a useful travel forecasting tool, the model needs to be able to replicate actual traffic volumes throughout its network within certain reasonable margins of error established by the Federal Highway Administration (FHWA) for regional traffic models. As such, the various 2015 traffic volume counts provided in Table 1 for the Exit 4A study area, among other locations in the SNHPC region, were used as a guide to test the validity of the SNHPC traffic model as a predictive tool of actual 2015 counts found in the region. This was found to be the case, and the findings of the calibration process were presented to the Exi4 4A Working Group in October, 2016. A more detailed memo describing the various calibration procedures undertaken as part of this project is included in Appendix D.

6.0 Capacity Analyses - 2015 Base Conditions

The 2010 Highway Capacity Manual (TRB, 2000) provide the technical procedures to analyze traffic operations of freeway facilities (basic freeways, ramp merge/diverge and weaving sections) used in this report. Chapter 10 of the 2010 HCM defines the methodologies used to analyze typical freeway facility operations for extended lengths of continuously connected basic freeway, weaving, merge and diverge segments, such as those along I-93 in the Exit 4A study area. This methodology allows for the analysis of multiple/continuous 15-minute time periods and is capable of identifying locations where the facility may break down and the impacts of such on the rest of the facility. As such, the analysis determines where the 'weakest link' in the facility may control overall operations along a freeway network in either direction.

The 2000 Highway Capacity Manual (TRB, 2000) provided methodologies for signalized and unsignalized intersections, including roundabouts, that will be used to analyze the NH Route 102/NH Route Bypass 28 traffic circle. Because of the phasing and timing limitations of the existing intersections, the HCM 2000 procedures were used for the signalized intersection analyses, as well as to be consistent with the IJR. Chapters 18 and 19 of the 2000 HCM define the methodologies for signalized and two-way stop controlled intersections.

The Highway Capacity Software (McTrans, 2018) as well as the SYNCHRO/Sim-Traffic programs (Trafficware, 2016) are common software packages used by traffic engineers to evaluate how traffic volumes react under interrupted and uninterrupted flow conditions under various volume, speed, traffic composition, lane use and signal timing conditions. The Level of Service (LOS) criteria for freeway facilities and intersection operations defined in the HCM are provided in Appendix E. In general, a LOS C is considered desirable for freeway facilities operations; however, LOS D is considered acceptable for both freeways and intersection operations in urbanized areas.

6.1 Mainline Interstate Operations

The 2015 base weekday AM and PM peak hour volumes along I-93 from just south of Exit 4 to north of Exit 5 are shown in Figures 4 and 5.

The existing two-lane I-93 freeway facility was segmented along its length both northbound and southbound, based on the spacing of on- and off-ramps connecting the basic two-lane freeway segments on either side. Northbound, there were five basic freeway segments, two diverge (i.e., off-ramp) and two merge (i.e. on-ramp) segments under existing conditions. Southbound, there is one additional freeway and one more merge segment to account for the SB loop on-ramp at Exit 4 from the east and the segment between the SB on-ramps. Because of the distance between the existing interchanges, there are currently no weaving sections along I-93 in the Exit 4A study area network.

6.1.1 Mainline Freeway Segments

Five freeway segments are contained in the I-93 project study area going northbound, with a sixth one added in the southbound direction because of the additional on-ramp at Exit 4. There will be additional segments created when the Exit 4A alternatives are analyzed.

The demand and geometric factors input for segments and facility analyses include:
Demand

- Vehicles/hour
- Percent trucks and RVs
- Driver population factor

Geometry

- Number of lanes
- Average lane width
- Right-side lateral clearance
- Terrain
- Free-flow speed
- Location of/distance to merge/diverge segments, with number of lanes, length of acceleration/deceleration lanes

A description of the existing facility segments and the detailed reports are summarized in Table 3 and included in Appendix F.

TABLE 3
HCS 2010 - FREEWAY FACILITIES ANALYSIS - 2015 BASE- AM AND PM PEAK HOURS

Note: d/c = Demand-to-capacity ratio

6.1.2 Merge/Diverge Operations

Merge/diverge operations are the result of off-ramp and on-ramp traffic leaving and/or getting onto the freeway and how the ramp traffic interacts with the mainline freeway traffic. Since all traffic on I-93 in the study area is entering or exiting in the rightmost lane, which is also where most heavy vehicles travel, this Lane 1 volume is critical to the determination of operations. The ramp spacing and order of operation (e.g. off-ramp followed by an on-ramp, as opposed to an off-ramp followed by another off-ramp) also plays a role in how and to what degree these movements impede mainline freeway traffic flow.

There are currently four merge (on-ramp) and diverge (off-ramp) arrangements in the Exit 4A study area in the northbound direction and a fifth in the southbound direction (the second SB on-ramp at Exit 4). The introduction of a new interchange between Exits 4 and 5 will add another merge and diverge in each direction. The differences between the northerly and southerly interchange alternatives and their relative proximity to Exits 4 and 5 will ultimately determine how these new ramps will affect mainline operations. Table 3 provides the analysis results for the merge/diverge operations along I-93 in the study area under 2015 AM and PM peak hour conditions.

6.1.3 Weaving Operations

Weaving operations occur on highway segments between on- and off-ramps where merging and diverging traffic conflict while completing their respective movements. This analysis is mostly governed by the distance between these ramps, the number of lanes available to make such a movement, the volumes making their respective merge and/or diverge movements, and the ability of these movements to occur independently without influencing each other. This is more of an issue in areas where there are closely spaced interchange ramps.

In the current condition, Exits 4 and 5 are more than two miles apart, so there is essentially no weaving that occurs between the ramps. With the introduction of Exit 4A to the I-93 network, weaving between the Exit 4 NB on-ramp and the Exit 4A NB off-ramp may need to be considered for the southerly interchange alternatives. However, the HCS Freeway Facilities calculations allow for an overlap of the 1500foot 'influence areas' between adjacent ramps, which was included in the analyses. At this point, it does not appear that a weaving section will be created between Exit 4A and Exit 5 because of the greater spacing between them.

7.0 Signalized Intersection Operations - 2015 Base Condition

The existing signal timing/phasing information gathered earlier, combined with the current lane use at each location along with the 2015 AM and PM peak hour volumes, was compiled into a data file in the SYNCHRO (Trafficware, 2016) signal analysis program, which emulates the procedures in Volume 3 (Interrupted Flow) of the Highway Capacity Manual 2000 (HCM) analysis procedures (TRB, 2000). Because of the phasing and timing limitations of the existing intersections, the HCM 2000 procedures were used for the signalized intersection analyses. The overall delay and LOS was determined by using the HCM module in SYNCHRO, while the queuing calculation results came directly from five runs of the Sim-Traffic module within SYNCHRO per NHDOT guidance (NHDOT, 2017a). The volume-to-capacity (v/c) ratios, average delays and LOS for the signalized intersections are shown in Table 4 below. The peak queues by approach are shown in Table 5 later in this report.

Table 4 Summary of 2015 Signalized Intersection Capacity Analyses							
Signalized Intersections							
		AM Peak Hour			PM Peak Hour		
Intersection	Existing Lane Use	v/c	Delay	LOS	v/c	Delay	LOS
\#1 - Exit 4 SB Off-Ramp/NH Route 102	$\begin{aligned} & \text { EB- T, T; WB- T, T } \\ & \text { SB- L, R } \end{aligned}$	0.55	17.7	B	0.67	40.2	D
\#2 - Exit 4 NB Off-Ramp/NH Route 102	$\begin{aligned} & \text { EB- L, T, T; WB- T, T, R } \\ & \text { NB- L, L, R } \end{aligned}$	0.86	34.6	C	0.71	29.8	C
\#3 - Exit 5 SB Off-Ramp/NH Route 28	$\begin{aligned} & \text { EB- T, T, R; WB- L, T, T } \\ & \text { SB- L, L, R } \end{aligned}$	0.74	21.0	C	0.63	21.8	C
\#4 - Exit 5 NB Off-Ramp/NH Route 28	$\begin{aligned} & \text { EB- L, T, T; WB- T, T, R } \\ & \text { NB- L, R } \end{aligned}$	0.78	15.9	B	0.66	20.3	C
\#6 - NH Route 102/Fordway	EB- T, R; WB- L/T; NB- L/R; SB- L/T/R	0.89	25.7	C	0.94	34.1	C
\#7- NH Routes 102/28	EB- L,T/R; WB- L,T/R; NB- L,T/R; SB- L, T, R	0.84	39.9	D	0.83	39.9	D
\#11- Ross' Corner (Folsom/NH Route 28)	$\begin{aligned} & \text { EB- L,T,R; WB- L,T,R; } \\ & \text { NB- L, T, T, R; SB- L, T, T, R } \end{aligned}$	0.61	37.1	D	0.78	47.2	D
\#13-NH Route 28/Linlew Drive	$\begin{aligned} & \text { EB- L/T, R; WB- L/T, R; } \\ & \text { NB- L, T, T/R; SB- L, T, T/R } \end{aligned}$	0.41	13.3	B	0.61	18.9	B
\#14- NH Route 28/Ashleigh Drive	$\begin{aligned} & \text { EB- L,T/R; WB- L, L/T, R; } \\ & \text { NB- L, T, T/R; SB- L, L, T, } \\ & \text { T,/R } \end{aligned}$	0.48	16.9	B	0.72	24.0	C
\#18 - NH Route 28 Bypass/ Tsienneto Road	$\begin{aligned} & \text { EB- L,T/R; WB- L,T/R; } \\ & \text { NB- L,T/R; SB- L, T, R } \end{aligned}$	0.80	36.5	D	0.83	35.4	D

The HCM and SYNCHRO printouts are provided in Appendices G 1-3.
The results of these analyses show which movements at the various intersections exhibit some current capacity constraints (LOS E or worse). Some of these, such as at the Exit 4 ramp terminals, will be addressed by the ongoing I-93 widening project, while issues at other local intersections may need to be addressed in some form, either through added lanes and/or optimized signal timings, by the 2040 design year. These existing deficiencies are discussed briefly below:

- Exit 4 SB Off-Ramp

The turns from the off-ramp are the most constrained movements, with the higher-volume right turn from a single lane showing the most delay and queuing. A second right-turn lane is proposed as part of the ongoing improvements to Exit 4.

- Exit 4 NB Ramps

The westbound thru traffic is under duress during the AM peak, while the eastbound left turn to the on-ramp is at LOS E in the PM peak. While the right turn from the off-ramp operates at a good LOS because it is not controlled by the signal, field observations show it is often impeded by either the eastbound traffic through the intersection and/or the downstream queuing of traffic on NH Route 102 east of the interchange.

- NH Route 102/NH Route 28 (Crystal Avenue/Broadway/Birch Street)

This major crossroads in the heart of downtown Derry has several movements that exhibit substantial delays during AM and/or PM peak hours, and results in queuing along Broadway. The level of parking and pedestrian activity also affects overall traffic operations as the mix of local and through traffic results in significant congestion, even if not directly reflected in the overall capacity/LOS calculations.

Because the reduction in this through traffic in downtown Derry is one of the primary purposes for the proposed Exit 4A project, it was necessary to find a more qualitative assessment of downtown congestion that may not be reflected in the capacity calculations. To do this, we looked at Google Maps snapshots during the course of typical weekday AM and PM peak hours (Google, 2018). These are based on real-time on-the-ground observations of travel times in the study area. The snapshots for AM and PM peak hours between Monday, January 22, 2018 and Friday, January 26, 2018 are provided in Appendix H. It should be noted that Exit 4 is currently under construction, although there should be minimal work going on during the winter when these snapshots were taken.
These figures show regular congestion at the NH Route 102/28 intersection as well as other key intersections in the study area during any given weekday peak
hour. Congestion in and around Exit 4 is oriented westbound in the AM peak and eastbound in the PM peak, and is shown to affect other segments along Broadway in both directions to varying degrees. Key intersections along the north-south corridors of NH Route 28 and NH Route 28 Bypass, such as at Ross’ Corner, Tsienneto Road, and the traffic circle at NH Route 102, appear to exhibit regular levels of delay and congestion based on this sample of peak hour travel times.

- Ross' Corner (NH Route 28/Tsienneto Road/Folsom Road)

This intersection leads to the major commercial corridor in north Derry as well as serving as a commuter route. Traffic currently uses the Ash Street Extension and Folsom Road as an alternative route to NH Route 102 to avoid the aforementioned downtown congestion. Several turning movements experience significant delays, even with recent improvements that provided a second SB leftturn lane onto Tsienneto Road. The proximity of the Pinkerton Street unsignalized intersection just east of this location also affects overall traffic flow in this area.

- NH Route28/Ashleigh Drive

This intersection serves as the primary access drive to the new Wal-Mart supercenter as well as other commercial establishments on the east side of NH Route 28. The heavy turning movements into and out of this town road, combined with significant commuter volumes along the NH Route 28 corridor, result in less than desirable levels of delay for several movements, particularly in the PM peak, even though the overall LOS is at LOS C.

- NH Route 28 Bypass/Tsienneto Road

The Tsienneto Road corridor west of NH Route 28 Bypass as well as the lands adjacent to this intersection has seen a fair share of new development over the years, as well as increased use by east-west commuter traffic avoiding NH Route 102 and the downtown area. With only a single east-west lane through the intersection, calculated delays now exceed acceptable LOS thresholds for some movements during both peaks.

8.0 Unsignalized Intersection Operations

Similarly, the unsignalized intersections in the study area network were analyzed for the 2015 AM and PM peak hours using the standard 2010 HCM procedures. These results are provided in Table 6, with the printouts in Appendix I. It should be noted that the traffic circle at the intersection of NH Route 28 Bypass, NH Route 102, and East Derry Road was analyzed as a roundabout, since all turns at this location are right turns in the counterclockwise direction. The circle was evaluated using updated roundabout analysis procedures from HCM 6, published in 2016 (TRB, 2016), because it incorporates updated data from actual field operations of the growing number of roundabouts in the USA and, as such, should be more representative of local driver behavior.

As observed in the field and confirmed by the SYNCHRO analyses, left turns from the minor side streets experience significant delays due to the high volumes on the major streets, either on the State highway system or local streets such as Tsienneto Road. Of particular concern is the heavy left-turn volume exiting from Pinkerton Street onto Tsienneto Road in close proximity to the signalized intersection at Ross’ Corner. Special attention will be needed to address this condition under future No-Build and Build conditions.

The table also shows the peak design queue by approach for both the signalized and unsignalized intersections, based on the 2015 capacity analysis of base conditions. This will be an important component of evaluating the future 2040 Build condition layouts under the various alternatives.

Intersection	gnalized Inte	sectio ignaliz	able 5 Сара Inter	y and ions		nalys			
	Lane Groups	95\% queue (ft)	$\begin{gathered} \hline \mathrm{AM} \\ \text { v/c } \\ \text { ratio } \\ \hline \end{gathered}$	ak Hour Average Delay	LOS	95\% queue (ft)	PM v/c ratio	k Hour Average Delay	LOS
\#1 - Exit 4 SB Off-Ramp/NH Route 102	EB Thru	212	0.46	11.5	B	230	0.44	11.0	B
	WB Thru	18	0.31	1.9	A	18	0.41	1.8	A
	SB LT	251	0.64	39.5	D	317	0.69	50.4	D
	SB RT	176	0.75	13.6	B	630	1.08	80.9	F
\#2 - Exit 4 NB Off-Ramp/NH Route 102	NB LT	107	0.57	46.2	D	281	0.50	33.3	C
	NB RT	0	0.15	0.2	A	0	0.41	0.8	A
	EB LT	610	0.88	43.8	D	548	0.91	62.3	E
	EB Thru	83	0.24	4.3	A	242	0.40	19.5	B
	WB Thru	448	0.97	58.7	E	250	0.76	51.5	D
\#3 - Exit 5 SB Off-Ramp/NH Route 28	EB Thru	212	0.68	32.7	C	197	0.56	27.8	C
	EB RT	0	0.21	0.3	A	0	0.21	0.3	A
	WB LT	211	0.81	40.0	D	151	0.62	45.3	D
	WB Thru	59	0.43	7.0	A	52	0.28	4.8	A
	SB LT	138	0.68	29.2	C	254	0.73	36.5	D
	SB RT	148	0.78	28.7	C	63	0.45	6.2	A
\#4 - Exit 5 NB Off-Ramp/NH Route 28	EB LT	251	0.86	55.0	D	223	0.72	48.4	D
	EB Thru	5	0.44	2.2	A	308	0.53	12.7	B
	WB Thru	189	0.56	26.1	C	192	0.37	27.4	C
	WB RT	0	0.53	1.3	A	0	0.38	0.7	A
	NB LT	233	0.87	49.4	D	180	0.75	44.1	D
	NB RT	0	0.10	0.1	A	143	0.77	35.2	D
\#6 - NH Route 102/Fordway	EB all	247	0.12	17.7	B	591	1.00	47.1	D
	WB all	368	0.94	26.4	C	306	0.81	26.8	C
	NB all	304	0.72	51.7	D	215	0.84	36.6	D
	SB all	22	0.86	12.4	B	90	0.18	15.9	B
\#7-NH Routes 102/28	EB L	148	0.83	83.0	F	155	0.70	55.8	E
	EB T/R	170	0.42	20.1	C	393	0.73	34.2	C
	WB L	47	0.28	40.6	D	119	0.68	69.5	E
	WB T/R	385	0.88	42.7	D	272	0.67	35.1	D
	NB L	101	0.79	90.6	F	80	0.43	42.5	D
	NB T/R	274	0.85	48.3	D	316	0.86	51.3	D
	SBL	121	0.86	103.4	F	174	0.79	67.9	E
	SB Thru	188	0.61	33.9	C	346	0.77	43.3	D
	SB RT	2	0.23	1.1	A	35	0.21	3.5	A

Intersection	Existing Lane Use	Table 5 (Cont’d) alized Intersections (cont.)							
		95\% queue (ft)	AM v/c ratio	ak Hour Average Delay	LOS	95\% queue (ft)	PM v/c ratio	ak Hour Average Delay	LOS
\#11- Ross' Corner (Folsom/NH Route 28)	EB L	191	0.16	88.0	F	324	0.89	78.7	E
	EB Thru	169	0.27	45.1	D	310	0.73	49.0	D
	EB R	0	0.25	0.0	A	0	0.17	0.7	A
	WB L	157	0.70	66.1	E	273	1.14	165.5	F
	WB Thru	323	0.21	80.3	F	241	0.75	60.7	E
	WB R	108	0.26	8.0	A	190	0.52	16.4	B
	NB L	35	0.90	40.5	D	134	0.58	66.6	E
	NB Thru	90	0.63	25.5	C	198	0.43	40.0	D
	NB R	0	0.01	1.2	A	0	0.27	1.1	A
	SB L	131	0.74	42.0	D	248	0.76	49.7	D
	SB Thru	72	0.95	19.5	B	419	0.64	35.6	D
	SB RT	27	0.48	4.1	A	51	0.28	4.8	A
\#13 -NH Route 28/Linlew Drive	EB L/T	10	0.06	33.0	C	40	0.18	39.4	D
	EB R	0	0.04	0.2	A	0	0.05	0.3	A
	WB L/T	61	0.35	40.6	D	69	0.46	48.8	D
	WB R	93	0.71	18.9	B	43	0.66	13.0	B
	NB L	0	0.00	0.0	A	36	0.19	46.3	D
	NB T/R	675	0.35	12.9	B	296	0.50	15.5	B
	SB L	63	0.35	42.8	D	125	0.64	37.4	D
	SB T/R	134	0.38	4.9	A	437	0.57	14.3	B
\#14-NH Route 28/Ashleigh Drive	EB L	20	0.12	40.8	D	60	0.54	65.2	E
	EB T/R	16	0.11	30.0	C	29	0.25	34.5	C
	WB L	110	0.52	46.5	D	232	0.84	69.2	E
	WB L/T	111	0.53	46.7	D	227	0.83	67.0	E
	WB R	38	0.22	6.0	A	63	0.29	10.9	B
	NB L	56	0.05	61.6	D	3	0.06	65.0	E
	NB T/R	183	0.50	10.1	B	311	0.69	14.8	B
	SB L	8	0.41	42.9	E	39	0.47	47.4	D
	SB T/R	285	0.35	10.3	B	234	0.60	14.0	B
\#18 - NH Route 28 Bypass/ Tsienneto Road	EB L	126	0.88	77.5	E	278	0.86	54.0	D
	EB T/R	114	0.49	24.2	C	394	0.69	30.0	C
	WB L	82	0.50	41.9	D	36	0.15	35.1	D
	WB T/R	309	0.95	59.4	E	248	0.86	58.0	E
	NB L	119	0.70	57.5	E	97	0.53	44.2	D
	NB T/R	193	0.48	26.8	C	307	0.69	37.0	D
	SB L	36	0.18	35.8	D	80	0.44	42.4	D
	SB Thru	171	0.63	35.7	D	149	0.39	29.4	C
	SB R	71	0.41	7.9	A	30	0.20	2.3	A

Table 6 2015 Unsignalized Intersection Capacity and Queuing Analyses									
Intersection	isting Lane Use	95\% queue (ft)	AM v/c ratio	k Hour Average Delay	LOS	95\% queue (ft)	PM v/c ratio	k Hour Average Delay	LOS
\#5 - NH Route 102/Londonderry Road	EB L WB L NB all SB L/T SB R	$\begin{array}{r} 13 \\ 0 \\ 0 \\ 20 \\ 65 \end{array}$	$\begin{aligned} & \hline 0.142 \\ & 0.005 \\ & 0.008 \\ & 0.253 \\ & 0.505 \end{aligned}$	$\begin{array}{r} \hline 12.3 \\ 8.6 \\ 11.9 \\ 115.0 \\ 36.1 \end{array}$	$\begin{aligned} & \hline \mathrm{B} \\ & \mathrm{~A} \\ & \mathrm{~B} \\ & \mathrm{~F} \\ & \mathrm{E} \end{aligned}$	$\begin{array}{r} 40 \\ 0 \\ 65 \\ 68 \\ 45 \end{array}$	$\begin{aligned} & \hline 0.354 \\ & 0.008 \\ & 1.078 \\ & 1.130 \\ & 0.395 \end{aligned}$	$\begin{array}{r} 11.7 \\ 10.7 \\ * \\ * \\ 19.9 \end{array}$	$\begin{aligned} & \hline \text { B } \\ & \text { B } \\ & \text { F } \\ & \text { F } \\ & \text { C } \end{aligned}$
\#8 - North High Street/Ash Street Extension	EB all NB LT	$\begin{array}{r} 45 \\ 0 \end{array}$	$\begin{aligned} & 0.383 \\ & 0.005 \end{aligned}$	15.4 8.2	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~A} \end{aligned}$	$\begin{array}{r} 445 \\ 0 \end{array}$	$\begin{aligned} & 1.152 \\ & 0.005 \end{aligned}$	$\begin{array}{r} 123.5 \\ 8.4 \end{array}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~A} \end{aligned}$
\#9 - North High Street/Madden Road	$\begin{gathered} \hline \text { EB all } \\ \text { NB LT } \end{gathered}$	$\begin{aligned} & \hline 8 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0.079 \\ & 0.000 \end{aligned}$	$\begin{array}{r} \hline 18.7 \\ 0.0 \end{array}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{~A} \end{aligned}$	$\begin{array}{r} 10 \\ 0 \end{array}$	$\begin{aligned} & 0.11 \\ & 0.00 \end{aligned}$	$\begin{array}{r} 27.2 \\ 0.0 \end{array}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~A} \end{aligned}$
\#10 - North High/Folsom/Franklin Streets	EB all WB all NB all SB all	$\begin{array}{r} 3 \\ 3 \\ 15 \\ 8 \end{array}$	$\begin{aligned} & 0.035 \\ & 0.025 \\ & 0.160 \\ & 0.096 \end{aligned}$	$\begin{array}{r} 8.3 \\ 8.0 \\ 14.2 \\ 10.5 \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{array}{r} 3 \\ 3 \\ 30 \\ 50 \end{array}$	$\begin{aligned} & 0.043 \\ & 0.038 \\ & 0.293 \\ & 0.424 \end{aligned}$	$\begin{array}{r} 8.4 \\ 9.2 \\ 23.7 \\ 22.5 \end{array}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$
\#12-Tsienneto Road/Pinkerton Street	$\begin{array}{r} \text { WB L } \\ \text { WB L/T } \\ \text { NB L } \\ \text { NB R } \end{array}$	$\begin{array}{r} 8 \\ 0 \\ 309 \\ 13 \end{array}$	$\begin{aligned} & \hline 0.088 \\ & 0.000 \\ & 1.156 \\ & 0.154 \end{aligned}$	$\begin{array}{r} \hline 8.5 \\ 0.0 \\ 154.3 \\ 11.8 \end{array}$	$\begin{gathered} \text { A } \\ \text { A } \\ \text { F } \\ \text { B } \end{gathered}$	$\begin{array}{r} 13 \\ 0 \\ 340 \\ 28 \end{array}$	$\begin{aligned} & \hline 0.138 \\ & 0.000 \\ & 1.424 \\ & 0.279 \end{aligned}$	$\begin{array}{r} 9.3 \\ 0.7 \\ 282.3 \\ 15.0 \end{array}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~F} \\ & \mathrm{C} \end{aligned}$
\#15 - NH Route 28/Scobie Pond Road	$\begin{gathered} \text { EB L } \\ \text { SB all } \end{gathered}$	$\begin{array}{r} 3 \\ 183 \end{array}$	$\begin{aligned} & 0.022 \\ & 1.011 \end{aligned}$	$\begin{array}{r} 9.5 \\ 143.2 \end{array}$	$\begin{gathered} \mathrm{A} \\ \mathrm{~F} \end{gathered}$	$\begin{array}{r} 5 \\ 318 \end{array}$	$\begin{aligned} & 0.061 \\ & 2.116 \end{aligned}$	$\begin{array}{r} 10.3 \\ * \end{array}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~F} \end{aligned}$
\#16 - NH Route 102/NH Route 28 Bypass/East Derry Road (Traffic Circle-RT only)	$\begin{array}{r} \text { EDR WB } \\ 28 \text { Byp NB } \\ 28 \text { Byp SB } \\ 102 \mathrm{~EB} \\ 102 \mathrm{WB} \end{array}$	$\begin{aligned} & 375 \\ & 175 \\ & 400 \\ & 475 \\ & 325 \end{aligned}$	$\begin{aligned} & 1.031 \\ & 0.781 \\ & 1.058 \\ & 1.106 \\ & 1.026 \end{aligned}$	77.5 29.5 83.5 96.6 86.1	$\begin{gathered} \mathrm{F} \\ \mathrm{D} \\ \mathrm{~F} \\ \mathrm{~F} \\ \mathrm{~F} \end{gathered}$	$\begin{aligned} & 450 \\ & 525 \\ & 750 \\ & 850 \\ & 100 \end{aligned}$	$\begin{aligned} & 1.112 \\ & 1.268 \\ & 1.250 \\ & 1.456 \\ & 0.622 \end{aligned}$	$\begin{array}{r} 103.3 \\ 169.4 \\ 146.4 \\ 240.0 \\ 24.6 \end{array}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{D} \\ & \mathrm{~F} \\ & \mathrm{~F} \\ & \mathrm{C} \end{aligned}$
\#17 - NH Route 28Bypass/ Pinkerton/Nesmith	EB L/T EB R WB all NB all SB all	$\begin{array}{r} 125 \\ 40 \\ 245 \\ 30 \\ 0 \end{array}$	$\begin{aligned} & 3.388 \\ & 0.350 \\ & 1.371 \\ & 0.289 \\ & 0.014 \end{aligned}$	$\begin{array}{r} 13.6 \\ 296.3 \\ 9.5 \\ 8.5 \end{array}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~B} \\ & \mathrm{~F} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{array}{r} 60 \\ 140 \\ 73 \\ 15 \\ 3 \end{array}$	$\begin{aligned} & 0.521 \\ & 0.692 \\ & 0.599 \\ & 0.175 \\ & 0.025 \end{aligned}$	$\begin{array}{r} 69.4 \\ 20.6 \\ 76.5 \\ 8.5 \\ 8.4 \end{array}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{C} \\ & \mathrm{~F} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$
\#19-NH Route 102/Tsienneto Road	$\begin{array}{r} \text { EB L } \\ \text { SB L/R } \end{array}$	$\begin{array}{r} 3 \\ 30 \end{array}$	$\begin{aligned} & 0.020 \\ & 0.287 \end{aligned}$	$\begin{array}{r} 9.5 \\ 19.3 \end{array}$	$\begin{aligned} & \text { A } \\ & \text { C } \end{aligned}$	$\begin{array}{r} 0 \\ 218 \\ \hline \end{array}$	$\begin{aligned} & 0.016 \\ & 0.869 \end{aligned}$	$\begin{array}{r} 8.4 \\ 60.9 \end{array}$	$\begin{gathered} \mathrm{A} \\ \mathrm{~F} \end{gathered}$

Note- Assumes 25 ft per queued vehicle

* - calculated delay exceeds 300s

9.0 Summary of SNHPC Model Assignments - 2015, 2040

The SNHPC calibration of their regional traffic forecasting model was discussed with the Traffic Working Group (TWG) in October 2016. This calibration process was based on the least-mean squared comparison of the 2015 assignments (based on the various socioeconomic characteristics of each Traffic Analysis Zone (TAZ) used by the model to generate origins and destinations to be assigned to the network) to the calculated 2015 Average Annual Weekday Traffic (AAWDT) on the key links in the study area network that were derived from the extensive traffic counting program initiated at the start of this SDEIS project. This comparison was found to fall within the FHWA's acceptable margin of error for traffic modeling as summarized in Appendix D. As such, it was agreed by the TWG at this meeting that the model was in compliance with FHWA standards for model accuracy and could be used as a tool to reasonably project future volumes for this project.

It was further agreed by the TWG that the relative differences between the model AAWDT assignments for 2015 and 2040 would be applied to the calculated 2015 AAWDT volumes. AM and PM peak hour volumes were to be derived as a percentage of the AAWDT as determined in both the roadway and intersection turning movement count data. AAWDT assignments at individual intersections would be used to develop any adjustments to peak hour existing turning movements, based on both the increase/decrease in traffic volume as well as any changes in turning movement percentages of any particular movement. The derivation of these future intersection volumes was completed only after consensus was reached with the TWG on the reasonableness of the 2040 AAWDT traffic assignments for each alternative.

The future model includes known/programmed roadway improvements in the SNHPC's Regional Transportation Plan - 2015-2040 (SNHPC, 2017) that includes Exit 4A; however, this interchange was not included in any of the No-Build networks. While it was recognized that there may be locations where existing/projected capacity deficiencies may exist, only those projects either programmed in the State’s Ten-Year Highway Plan (NHDOT, 2018) or the Regional Transportation Plan were included in the 2040 No-Build network.

The 2040 SNHPC model assignments were developed by including the population and employment projections for each community in the SNHPC model area, as outlined in the Lane Use Scenarios report (Louis Berger, 2017) and disaggregated to the TAZ level. This report also included alternative development scenarios without and with the proposed Exit 4A interchange, notably for the Woodmont Commons development on the east side of I-93, since the development of that parcel would be directly impacted by the location of the proposed interchange. In general, the Woodmont Commons-East development was assumed to reach its build-out potential under only the southerly interchange options (A and B), and would have a lesser development scenario under the 2040 No-Build C, D, and F alternatives.

It should also be noted that the Woodmont Commons traffic impact study for the full development project submitted to the Town of Londonderry (TEC, 2013) assumed that, because of the 'live-work-play' design intent of the proposed mixed-use development, a certain percentage of site-generated trips would remain 'internally captured' within the site itself and would not be assigned to the adjacent street network outside of the development. An adjustment factor of 23% was applied to the total site traffic generation for the various proposed land uses assumed in the Woodmont Commons traffic impact study to account for this estimated internal capture rate.

However, it should be noted that the methodologies used to develop trip generation, distribution and assignments for an individual traffic impact study versus a regional model are quite different. The model applies its trip distribution and assignment algorithms directly to the trip productions and attractions generated by each TAZ, based on their socioeconomic characteristics, which does not differentiate between trips that should or should not be assigned to other TAZs. In addition, the Woodmont Commons development is included as part of several TAZs, so correcting for only some trips from a particular TAZ and not others may appear to be arbitrary and jeopardize the validity of the model.

After consultation with the NHDOT Bureau of Traffic, it was agreed, as the initial step, all the model-generated traffic from all TAZs, including Woodmont Commons, was assigned to the SNHPC model network without regard to the internal capture rate assumptions noted in their site-specific traffic impact study. (NHDOT, 2017b) This should provide a conservatively worst-case estimate of traffic being assigned to the study area roadway network. Should the design intent of Woodmont Commons be realized and less traffic is actually generated as the project evolves, overall operations would be better than projected and the design life of any proposed improvements would be extended.

Individual spreadsheets were created for the key links in the network under each 2040 alternative for purposes of calculating the projected 2040 AAWDT and AM and PM peak hour volumes, based on the relative increase/decrease between 2015 and 2040 model assignments.

9.1 AAWDT Comparisons - 2040

Table 7 presents a summary of the projected 2040 AAWDT on key links in the study area roadway network, including the I-93 mainline and all interchange ramps. As noted above, these were derived by applying the growth rate between SNHPC's 2015 and 2040 model assignments to the calculated 2015 AAWDT derived from the updated traffic counting program created for this project. These assignments also provide projected volumes for newly created road segments, including the Exit 4A on- and off-ramps as well as the connector roadway between the new proposed interchange and the existing roadway network.

9.1.1 No-Build Conditions

A review of the table indicates that there is a reduction in trips on north-south roadways such as NH Route 28 Bypass, NH Route 28 and Fordway under No-Build conditions. This appears to be as a result of the additional capacity provided by the widening of I-93 to four lanes each way which allows through traffic to use the interstate for these north-south trips as opposed to the local roadways through Derry. Mainline volumes on I-93 increase by between 64-68\% from 2015 and 2040, which is about a 2.5% annual growth rate. Volumes on the Exit 4 ramps increase between 95$125 \%$ from 2015 to 2040, while ramp volumes at Exit 5 only grow between 45-50\% during the same period. This would appear to indicate the influence of the Woodmont Commons development in Londonderry on both sides of the Interstate being accessed from either side of Exit 4, and is also reflected in volume increase on NH Route 102 west of the interchange. Local roads in the Woodmont area, such as Gilcreast Road and Ash Street, also experience marked increases in traffic volumes under 2040 NoBuild conditions.

9.1.2 Alternative A

Mainline volumes on I-93 show slightly higher growth rates under 2040 conditions with Exit 4A -Alternative A in place than in the No-Build condition. This is driven in part by Woodmont Commons because this development is assumed to reach its maximum potential with Alternative A in place, as opposed to either No-Build or most other Exit 4A options.

Exit 4 ramp volumes are affected to differing degrees with Alternative A in place. Growth rates for the NB on-ramp and SB off-ramp are about half what they are under the No-Build case, since this traffic is diverted to Exit 4A. The projected NB off-ramp volume of 17,385 vehicles per day (vpd), shows a 10\% reduction over 2040 No-Build volumes. The development of Woodmont Commons to the west is reflected in the 10% increase in SB on-ramp volumes from the west side of the interchange, whereas the SB on-ramp volume from the east shows a 48% reduction in traffic that is now presumably using Exit 4A.

Exit 5 ramp volumes show greater increases on the NB off-ramp and SB on-ramp under Alternative A compared to the No-Build case. This would indicate increased interaction between Exit 4A and 5 to and from the north more than between Exits 4 and 4 A , which is consistent with the findings in the previous DEIS for this project. (FHWA, 2007) The Exit 5 SB off-ramp actually shows a 43.5% reduction in traffic compared to No-Build, indicating that this traffic is likely continuing on the mainline down to Exit 4A. The NB on-ramp traffic volume is also about 20% lower than under No-Build conditions, indicating redistribution of some NB trips to Exit 4A and away from NH Route 28.

Exit 4A volumes range between 8,700-10,700 vehicles per day (vpd) on the NB offramp and SB on-ramp, and from 15,200 to 19,000 vpd on the NB on-ramp and SB off-ramp, respectively. The two northerly-oriented ramps have the higher volumes, consistent with the increased interaction between the new interchange and Exit 5 . The projected volume on the connector road east of the Alternative A interchange is 53,700 vpd.

The local roadways are also affected by the introduction of a new interchange to the regional network. Volumes on NH Route 102 just east of Exit 4 are about half of the projected 2040 No-Build condition, while volumes closer to the downtown area show reductions of around 19%. Folsom Road shows significant increases, since it is now the primary connection between the new interchange and the local street network. Some of this increase continues easterly along the Tsienneto Road corridor (+3000 vpd over No-Build) and NH Route 102 east at the Chester town line (+1000 vpd over No-Build).

9.1.3 Alternative B

Mainline volumes on I-93 under this scenario show similar growth rates as Alternative A as compared to 2040 No-Build conditions. This is consistent with the earlier DEIS when comparing southerly versus northerly interchange locations.

Exit 4 ramp volumes show some differences as compared to Alternative A. Projected volumes on the NB on-ramp and SB off-ramp are slightly higher under Alternative B than A, but still $17-19 \%$ less than what they are under the No-Build case. This may be because Alternative B provides a section of new roadway onto the Derry street network, which may attract more traffic. The NB off-ramp shows a 10% volume reduction under Alternative B than under No-Build, similar to Alternative A. This development of Woodmont Commons to the west is reflected in an 8% increase in SB on-ramp volumes from the west side of the interchange, whereas the SB on-ramp volume from the east shows about a 44% reduction in projected traffic, similar to Alternative A.

Exit 5 ramp volumes show smaller increases on the NB off-ramp and SB on-ramp than under Alternative A. This continues to indicate the increased interaction between Exit 4A and 5 to and from the north more than between Exits 4 and 4A, which is consistent with the previous DEIS for this project. The Exit 5 SB off-ramp actually shows a greater reduction in traffic under Alternative B than under A , and this is reflected in a similarly higher volume at the Exit 4A SB off-ramp as compared to Alternative A. The Exit 5 NB on-ramp traffic is also lower than under No-Build conditions or Alternative A, indicating redistribution of some NB trips to Exit 4A and away from NH Route 28. These results appear to show that this alternative supports more of a north-south trip pattern than the east-west pattern exhibited under Alternative A.

Exit 4A volumes with Alternative B range between 9,500-12,400 vpd on the NB offramp and SB on-ramp, and from 13,200 to 19,400 vpd on the NB on-ramp and SB off-ramp, respectively. The SB on- and off-ramp volumes are higher than under Alternative A, but the NB on-ramp traffic is slightly lower than under Alternative A. The projected connector road volume east of the Alternative B interchange are about $54,500 \mathrm{vpd}$, and decrease to 16,200 vpd east of NH Route 28 along the Ashleigh Drive alignment.

The projected volumes on the local roadways under Alternative B have similar but generally slightly lower volumes than Alternative A. Volumes on NH Route 102 just east of Exit 4 are about 48% of the projected 2040 No-Build condition, while volumes closer to the downtown area show reductions around 19\%. Folsom and Tsienneto Roads do not see the same increases as under Alternative A, since the new main connection road goes north of this area to intersect with Franklin Street Extension and Ashleigh Drive on the new alignment. The existing Tsienneto Road corridor sees minimal change since Alternative B creates a new roadway for the eastwest traffic that currently uses this roadway to access the Interstate, but traffic volumes at the east end of the study area are higher than under Alternative A.

9.1.4 Alternative C

Mainline volumes on I-93 south of Exit 5 under this scenario show slightly higher growth rates than the southerly interchange alternatives (A and B) when compared to 2040 No-Build conditions. Projected volumes north of Exit 5 are consistent across all interchange alternatives, being slightly higher than No-Build.

Exit 4 ramp volumes under this alternative are slightly lower than the southerly interchange options, notably on the NB on-ramp and SB off-ramp, but higher for the SB on-ramp from the east than either Alternative A or B. This is likely indicative of the increased distance of the northerly interchange from the NH Route 102 corridor and the expectation of less effectiveness in reducing east-west traffic through the downtown area.

Impacts on Exit 5 ramp volumes show larger reductions in both the NB on-ramp and SB off-ramp volumes than the southerly interchange options. This makes sense, given the greater proximity of Alternatives C (and D) to Exit 5, which further emphasizes the increased interaction between Exit 4A and 5 to and from the north more than between Exits 4 and 4A, which is consistent with the previous DEIS for this project.

Exit 4A ramp volumes for trips to/from the south with Alternative C are noticeably lower than with the southerly interchange options, ranging between 2,800-5,000 vpd on the NB off-ramp and SB on-ramp. Trips on the NB on-ramp are similar to Alternative B but are lower on the SB off-ramp, respectively. The projected connector road volume east of the C interchange is less than under A or B (about 38,500 vpd), and decrease to 13,900 vpd west of NH Route 28 along the Ashleigh Drive alignment.

The projected volumes on the local roadways under Alternative C have similar but slightly larger volume reductions than Alternatives A or B. Volumes on NH Route 102 just east of Exit 4 are slightly lower than 2040 No-Build volumes but slightly higher than 2015 base conditions. Volumes further east on NH Route 102 show slightly larger reductions than under A or B . With the main connection road going north to NH Route 28 near the town line, volumes on this section of NH Route 28 more than double than under existing conditions. The existing Tsienneto Road corridor sees similar volume levels as Alternative B since C follows the new roadway to serve this east-west traffic demand.

9.1.5 Alternative D

Mainline volumes on I-93 under this scenario show similar growth rates as Alternative C as compared to 2040 No-Build conditions. This is consistent with the earlier DEIS where comparing southerly versus northerly interchange locations. Exits 4 and 5 ramp volumes under this option are also quite similar to Alternative C.

Exit 4A volumes with Alternative D are similar to Alternative C - the NB off-ramp and SB on-ramp volumes are lower than Alternative C but the SB off-ramp traffic is slightly higher. The projected connector road volume east of the Alternative D interchange is about $36,700 \mathrm{vpd}$.

The projected volumes on the local roadways under Alternative D have similarly but generally slightly lower reductions than Alternatives A or B. Volumes on NH Route 102 just east of Exit 4 are about the same as under 2015 base conditions, even if slightly lower than 2040 No-Build volumes. Volumes further east on NH Route 102 show smaller traffic reductions than any of the other interchange options. With the main connection road going north to NH Route 28 near the town line, volumes along this part of the NH Route 28 corridor more than double over existing conditions. The existing Tsienneto Road corridor also sees marked growth over existing volumes with this option since it follows the present roadway for east-west traffic.

9.1.6 Alternative F

Alternative F is essentially the Transportation Systems Management (TSM) option, which from the traffic model's perspective is essentially a third lane along NH Route 102 to provide some additional capacity at intersections east of Exit 4 into downtown Derry.

Mainline volumes on I-93 under this scenario show similar growth rates compared to 2040 No-Build conditions and lower than with an interchange alternative. This is consistent with the lower growth scenario as compared to those with a new interchange. Exits 4 and 5 ramp volumes under this option are also quite similar to 2040 No-Build conditions. With the provision of some additional capacity along the existing NH Route 102 corridor easterly into downtown Derry, traffic volumes are
higher than under No-Build conditions or with any of the interchange alternatives, so it does not meet the Purpose and Need for the project.

Figures 8 through 12 graphically show these volume comparisons by alternative for key areas of interest as part of this study: the Exit 4 ramps, Exit 5 ramps, Exit 4A ramps, points along the NH Route 102 corridor, and other local streets of interest, respectively.

9.2 Composition of Through Traffic in Downtown Derry

While the volume reductions may not be as profound on the surface as one might expect, it is the composition of the trips in the downtown area that are of interest, since one of the Purposes and Needs of the project is to reduce through traffic in downtown Derry that had neither an origin nor destination there. Existing travel patterns suggest that a good deal of existing traffic is already finding alternative routes to avoid the downtown area.

To test the sensitivity of the hypothesis of a reduction in 'through' traffic as a result of a new interchange, a link on NH Route 102 just west of the main downtown area, which is the location east of Griffin Street near the Beaver Brook bridge, was chosen as a representative location of downtown traffic. The SNHPC model can generate trip tables that will provide the origin and destination zone for trips on any link in the network in either direction. This traffic pattern was evaluated by comparing the number of trips from zones and external stations from the east and northeast that are currently assigned to that link under existing (2015) base, 2040 No-Build and 2040 -Alternative A conditions, which was the Preferred Alternative in the previous DEIS for this project, that might be diverted to another route/path under any Build scenario.

A series of TAZs from the SNHPC traffic model area to the east and northeast were aggregated to see how many trips remained on this link under the different scenarios, as shown in Figures 13 and 14. The ones of primary interest were noted as follows:

- North Derry - TAZs 121-124, 126, 127
- East Derry - TAZs 128-130, 145-147, 221, 225
- Chester - TAZs 148-155
- Raymond/Deerfield/Candia - TAZs 156-191
- External Stations east and northeast - Stations 308-324

Table 8 shows a summary of the assigned trips to this link in each direction as well as combined under the three scenarios. In summary, the table shows that, in general, the trips to and from these zones to the east that now pass through the downtown area are lower with an interchange alternative (in this case, Alternative A) in place than under the 2040 No-Build scenario. However, since the overall link volume is reduced as well, these trips make up a slightly higher percentage of the total trips on that link than under NoBuild conditions. This appears logical, because this link is likely the shortest path from these easterly zones to destinations in downtown Derry. Nevertheless, this analysis
appears to show that an interchange alternative will reduce the amount of through traffic in downtown Derry for trips to and from the east and northeast.

TABLE 8

NH ROUTE 102, EAST OF GRIFFIN ROAD, DERRY, NH

Eastbound (To)	N Derry	E Derry	Chester	Raymond/Candia/ Deerfield	N/NE/SE External					
Stations										

9.3 Comparison to I-93 SEIS 2030 Mainline Projections

An additional comparison was made to the projected 2030 mainline volumes on I-93 as shown in the SEIS for the I-93 project (NHDOT, 2009). This document utilized the statewide traffic model that was available at the time, and also included the proposed Exit 4A Preferred Alternative as part of the network.

However, there are some major differences between the two scenarios. First, there are two different design years: the I-93 SEIS went out only to 2030 while this Exit 4A SDEIS extends out to 2040, so there are ten more years of overall growth that contributes additional traffic onto the network. Secondly, the I-93 SEIS did not account for the full Woodmont Commons development scenario included in the Exit 4A project for the Preferred Alternative, which adds a substantial number of trips to the area in and around Exit 4 and the proposed Exit 4A. Given these factors, it is expected that design hourly volumes would be higher under the 2040 case.

Table 9 shows excerpts from Tables 4-12 and 4-13 from the 2009 I-93 SEIS, which includes the projected ADT and DDHV for 2020 and 2030 from that document. The current table includes a projection of these volumes to 2040 using the same growth rates, including Exit 4A which was included in the I-93 SEIS Build condition, and the projected AAWDT and DDHV from the latest SNHPC modeling to the 2040 design year, and a comparison between the two modelling efforts.

These comparisons show that the more recent SNHPC AAWDT traffic projections are consistent with the growth trend line from the I-93 SEIS if it were extended to the same 2040 design year within less than 4%. Similarly, the differences calculated DDHV extended to 2040 are within 3% when using the same methodology. The last two points on the graphs compare the 2040 projections for both the I-93 numbers and the latest SNHPC projections. Therefore, it would appear that the two modelling efforts are reasonably close to each other when extending the original I-93 design horizon out to 2040.

The original I-93 SEIS also noted that the congested flow capacity for I-93 would be $1,800 \mathrm{vph}$ per lane, which would be $7,200 \mathrm{vph}$ for the projected four-lane Interstate project. Should this volume be exceeded, the volumes would have to be adjusted to account for the effect of peak spreading that would likely occur into the adjacent hours before and after this demand was projected. At first glance, it appears that this scenario may also occur between Exits 4A and 5 and north of Exit 5 when using the SNHPC 2040 model projections, using the same DDHV calculation assumptions as in the I-93 SEIS. However, a more detailed review of the projected 2040 mainline volumes, which are discussed below, indicates that this 7,200 vph threshold will not likely be reached under any Exit 4A scenario.

TABLE 9
COMPARISON OF I-93 SEIS AND EXIT 4A SDEIS TRAFFIC PROJECTIONS 2020, 2030 AND 2040 DESIGN YEARS, INCLUDING EXIT 4A

Average Annual Weekday Traffic (AAWDT) Projections

	I-93 SEIS					SNHPC 2040 Model Projections
I-93 Segment	2020	2030	Growth	Projected	Alternative A	\% Difference
Exild 3 to Exit 4	Build	Rate/Year	To 2040			
Exit 4 to Exit 4A	94,800	109,000	1.014	125,330	120,860	-3.6%
Exit 4A to Exit 5	88,200	101,500	1.014	116,810	118,015	1.0%
North of Exit 5	100,600	116,100	1.014	133,990	132,734	-0.9%
	97,600	113,100	1.015	131,060	128,466	-2.0%

Notes:
DDHV calculated as 9.4% of ADT with a 60/40 directional split, consistent with I-93 SEIS, using Scenario 2 (OEP Projections)

Source: NHDOT, Supplemental Environmental Impact Statement and Reevaluation/Section4(f)
Evaluation, August 2009, Tables 4-12 and 4-13

TABLE 9 (Cont'd)

COMPARISON OF I-93 SEIS AND EXIT 4A SDEIS TRAFFIC PROJECTIONS 2020, 2030 AND 2040 DESIGN YEARS, INCLUDING EXIT 4A

Directional Design Hourly Volume (DDHV) Projections

I-93 Segment	I-93 SEIS				SNHPC 2040 Calculated DDHV Alternative A	\% Difference
	2020	2030	Growth	Projected		
	Build	Build	Rate/Year	To 2040		
Exit 3 to Exit 4	5,300	6,100	1.014	7,020	6,820	-2.8\%
Exit 4 to Exit 4A	5,000	5,700	1.013	6,500	6,660	2.5\%
Exit 4A to Exit 5	5,700	6,500	1.013	7,410	7,490	1.1\%
North of Exit 5	5,500	6,400	1.015	7,450	7,250	-2.7\%

Notes:
DDHV calculated as 9.4% of ADT with a 60/40 directional split, consistent with I-93 SEIS, using Scenario 2 (OEP Projections)

Source: NHDOT, Supplemental Environmental Impact Statement and Reevaluation/Section4(f)
Evaluation, August 2009, Tables 4-12 and 4-13

10.0 Derivation of 2040 Volumes for Analysis Purposes

Now that the projected 2040 AAWDT volumes have been provided by the SNHPC model and appear to be reasonable, these need to be reduced to AM and PM peak volumes for analysis purposes. Since the SNHPC model provides only daily volumes, these must be reduced to peak hours on both the I-93 mainline and interchange ramp terminals as well as at the various study area intersections that may be directly or indirectly affected by any alternative. Different procedures were used to develop these volumes to be used for analysis purposes.

As noted earlier, the full development potential of Woodmont Commons was assigned to the study area traffic model network as a worse-case scenario, but if much of the sitegenerated traffic is captured internally to the site - as is the design intent of this mixeduse development - operations would be better than projected and the design life of any roadway and intersection improvements would be extended.

10.1 Mainline Interstate Volumes

A different procedure was used to generate the 2040 No-Build interstate networks as was done for deriving the 2015 base network for calibration. The projected 2040 AAWDT was calculated based on the projected growth (positive or negative) reflected in the model assignments on that segment between 2015 and 2040, then this growth rate was applied to the adjusted 2015 AAWDT. Then, the 2040 projected AM and PM peak hour volumes were derived based on the percentage that the existing (2015) AM and/or PM peak hour volume was as a percentage of the adjusted 2015 AAWDT, since these percentages should not change substantially over time. These peak hour percentages generally fell in the range of $6-9 \%$ of AAWDT. Tables J-1 through J-6 in Appendix J show summary tables of the projected 2040 peak hour volumes for each alternative on the key links on the interstate and local roadway networks.

As in the 2015 base case, the most logical starting point for developing the balanced interstate networks is south of Exit 4, where NHDOT permanent recorder data should provide more reliability. The various interchange ramp volumes were then taken directly from the appropriate tables in Appendix J, and the mainline volumes were balanced through the network to the point north of Exit 5. This process was followed to develop 2040 AM and PM peak hour volumes along the Interstate for each alternative, which are shown graphically in Figures 15 through 26.

10.2 Local Intersection Volumes

A more detailed procedure was needed to derive peak hour intersection volumes for each alternative from the regional traffic model to be used for design purposes. Since the SNHPC model only provides daily volumes, a relationship needs to be established between the peak hour volumes from the actual turning movement count at any intersection and the model output that can be made available. The SNHPC model can provide daily volumes between any two nodes through one central node that would
simulate movements at an intersection. As such, information was requested from SNHPC for the daily model assignments for each study area intersection for each alternative to assist in developing turning movements at each location. Then a procedure was developed to estimate intersection turning movements at each study area location based on the existing turning movement volumes for both the AM and PM peak hours and how the total and individual turn volumes change as a result of the reassignment of traffic under any scenario. This process had to be usable regardless of alternative or the magnitude of change in traffic assignments for any movement at a specific intersection from one alternative to another. The procedure is discussed in greater detail in the memorandum dated September 29, 2017, which is attached in Appendix K. The memo was reviewed and approved by the NHDOT before the procedure was applied to the rest of the alternatives (NHDOT, 2017c).

The resulting AM and PM peak hour volumes for each study area intersection for each of the 2040 alternatives are provided in Figures 27 through 38.

11.0 Analysis of Interstate Operations

As in the existing case, the Freeway Facilities procedure from the 2010 HCM and replicated in the HCS was used to evaluate the mainline interstate operations under all 2040 conditions. A free flow speed of 70 mph and a Peak Hour Factor of 0.94 were agreed upon by NHDOT (NHDOT, 2017d) to be used in the HCM analysis. With the introduction of a northerly or southerly interchanges, certain design parameters consistent with the I-93 layout were agreed upon with the NHDOT to ensure that the appropriate distances would be used in the analyses. A conceptual layout for the southerly interchange for Alternatives A and B had already been provided in the 2007 DEIS as well as part of the I-93 design between Exits 4 and 5, and was used to determine ramps spacing for analysis purposes. The previous conceptual layout for the northerly interchange for Alternatives C and D from the 2007 DEIS was used as the starting point for this study.

The HCM procedure accounts for a 1,500 foot 'influence area' in the ramp merge or diverge areas. With the southerly interchange, there is overlap between the influence areas of the Exit 4 NB on-ramp and the Exit 4A NB off-ramp, as well as the Exit 4A SB on-ramp and the Exit 4 SB off-ramp. As such, the HCS analysis software allows for this overlap to be considered, and is reflected in the results.

The Freeway Facilities criteria in the HCS were provided in Appendix E when the 2015 operations were discussed for the existing two-lane facility. The 2040 results for the proposed four-lane facility are summarized in Table 10 with the HCM printouts provided in Appendix L. By definition, if the demand/ capacity (d / c) ratio is greater than 1.00 , ramp merge/diverge or mainline operations will be constrained, either by traffic unable to merge onto the interstate and subsequently affecting 'topside' operations at the ramp terminals, or by the off-ramp being unable to process the demand for exiting traffic, which may affect mainline traffic free flow speeds.

The 2040 cases where d/c ratios are 0.98 or greater, indicating potential capacity constraints to I-93 operations with a single-lane ramp, are noted below:

- Alternative A - Exit 4A SB off-ramp diverge - AM peak
- Alternative B - Exit 4A SB off-ramp diverge - AM peak
- Alternative B - Exit 4 NB on-ramp merge - AM peak
- Alternative B - Exit 4 SB off-ramp diverge - PM peak
- Alternative F - Exit 4 NB on-ramp merge - AM and PM peaks
- Alternative F - Exit 4 SB off-ramp diverge - PM peak

These results appear to reflect the increased demands from the higher development scenarios from the Woodmont Commons development under Alternatives A and B, as well as the projected limitations at the Exit 4 interchange with Alternative F in place, even with a lesser development scenario for Woodmont Commons.

If the projected Exit 4 NB on-ramp volumes reach levels where the merge with the mainline I-93 is affected as shown, it would likely result in backups of traffic back to the ramp terminal itself, affecting the topside intersections along NH Route 102. Both the Exit 4 and Exit 4A SB off-ramp diverge constraints could be ameliorated by providing a two-lane off-ramp to service the projected traffic should actual volumes meet projections in the future.

However, given the aforementioned discussion about the possible realization of the Woodmont Commons internal capture rate and the subsequent reduction in traffic assignments onto the study area network, a sensitivity analysis was conducted at the Exit 4A SB off-ramp to determine what kind of volume reduction would be needed to provide an acceptable LOS for a single-lane off-ramp at this location. If the projected off-ramp AM peak volume was reduced by only 200 vph , this ramp would function at a LOS D with a demand/capacity ratio of 0.94 , which would be acceptable. Therefore, should the full impact of the traffic projections from Woodmont Commons or the overall study area development scenario not be realized, the ramps that are projected to be capacityconstrained may operate better than these analyses would indicate.

12.0 Estimated Contribution of Woodmont Commons Traffic to Interstate Ramp Volumes

During the review of the traffic projections, the NHDOT inquired as to the potential impact that traffic from the Woodmont Commons development may have on the Exit 4 ramps under the various alternatives, since the southerly interchange alternatives (A and B) assume a higher intensity of development that under all other alternatives, including the No-Build.

As noted earlier, the 2040 projections from the SNHPC regional traffic model do not account for the same level of 'internally captured' trips within the development itself in the traffic assignments used for the Exit 4A project, as opposed to the site-specific traffic study prepared for the Woodmont project that assumed as much as a 23% internal captured trip rate in their projections and traffic assignments (TEC, 2013). Nevertheless, the model assignments should be able to present an 'order of magnitude' assessment of the relative contribution of traffic to the Exit 4 and 4 A ramps from the three traffic analysis zones that Woodmont Commons would eventually occupy.

To accomplish this, SNHPC was tasked with providing 'select link' assignments to the Exit 4 and 4A ramps for trips from the three Woodmont Common zones (Zone 277 to the west, and Zones 69 and 375 to the east) under different scenarios: 2015 No-Build; 2040 No-Build; and 2040 Build with either Alternative A (southern interchange) and Alternative C (northern interchange). This information was summarized in a technical memo provided to the NHDOT for their review and concurrence (CLD, 2018), which is attached in Appendix M.

The results show that under the 2015 No-Build case, the three Woodmont zones only account for about 13% of the total traffic volume on all Exit 4 ramps, almost exclusively from the existing development in Zone 277 on the west side of I-93 in the Garden Lane area. Under the 2040 No-Build condition, the total volumes on the Exit 4 ramps would more than double, even with a lesser Woodmont development scenario, and these three zones now comprise almost 27% of this total Exit 4 ramp traffic and almost 40% of the projected increase in traffic.

With Exit 4A in place under Alternative A, which also assumes the most intense Woodmont development scenario, traffic assignments from the three subject zones account for 36% of the total Exit 4 ramp volume, most of which comes from Zone 277 on the west side. At Exit 4A, the two easterly Woodmont zones also account for 36% of total Exit 4A ramp traffic with no traffic assigned to these ramps from the west side.

With Alternative C in place, which assumes the same development scenario for Woodmont as in the 2040 No-Build case, the total traffic on the Exit 4 ramps is roughly the same as under Alternative A, but the Woodmont contribution is a slightly lower percentage (32\%) of the total. At Exit 4A, Woodmont traffic would comprise only about 1% of the total ramp assignments, given that it is further removed from the traffic zones in question.

This analysis is only intended to show the relative potential contribution of Woodmont Commons traffic to both Exits 4 and 4A based on the full assignment of this traffic to the network as reflected in the SNHPC regional traffic model. As the Woodmont Commons development progresses and traffic is added to the adjacent road network, this situation should be monitored to determine how the actual additional traffic impacts affect overall traffic operations. Should the magnitude of the 'internal capture' trip rate be closer to what the TEC study anticipated, operations on the ramps, their intersections with the local road system, and the overall Interstate system would be better than by using the more conservative SNHPC model projections.

13.0 Exit 4A and Connecting Roadways

The Exit 4A interchange is currently proposed as a diamond configuration with access only to and from the east. As such, it creates two new ramp terminal intersections that will be provided with sufficient lanes to operate at an acceptable LOS. The connector road to the existing roadway network was assumed to be a four-lane limited access arterial roadway between the interchange and NH Route 28 to the east, with future breaks in access reserved for the proposed Woodmont Commons-East parcel based on their future development layout. New intersections would be created under all Build alternatives and existing intersections that would be affected by each of the respective layouts would need to be upgraded, which will be discussed in the next section.

The following is a listing of new intersections created by the connector roadway under the various interchange alternatives:

- Alternative A - Connector Road with North High Street.
- Alternative B - Connector Road with Franklin Street Extension, NH Route 28 Bypass, and relocated Tsienneto Road. In addition, the existing intersection with Ashleigh Drive will be reconfigured.
- Alternative C- Connector Road with NH Route 28 near the Londonderry town line, as well as NH Route 28 Bypass and relocated Tsienneto Road.
- Alternative D - Connector Road with NH Route 28 near Londonderry town line.

14.0 Analysis of Local Intersection Operations

Only those known programmed projects in the SNHPC 2040 Long-Range Transportation Plan (SNHPC, 2017) were included as foreseeable projects in the traffic modeling for this study. However, it is also assumed that ongoing State and Town traffic maintenance projects, such as signal retiming and optimization, will occur during the duration of the design horizon. Therefore, any intersection analyses assumes the optimization of signal timing and phasing at a specific location as a base condition, with any additional lane improvements evaluated as an impact associated with a specific alternative.

In addition, the Woodmont Commons development has also developed conceptual plans along the NH Route 102 corridor, as well as other intersections in Londonderry and Derry, to accommodate their projected traffic as that project moves forward (TEC, 2013). The NHDOT has agreed that these projects should be considered as part of the 2040

No-Build condition (NHDOT, 2016f). While most of these future improvements on NH Route 102 are west of Exit 4, including the Garden Lane and Gilcreast Road intersections, there are other improvements in the Exit 4A study area east of I-93 that will be considered as part of this No-Build condition for analysis purposes. These include:

- \# 5 - NH Route 102/Londonderry Road intersection - signalization and lane additions, including a second east-west through lane on NH Route 102.
- \# 8- North High Street/Ash Street Extension - providing a four-way stop controlled intersection, as well as separate left- and right-turn lanes exiting Ash Street, and adding an exclusive SB right-turn lane from North High Street onto Ash Street Extension.

It also should be noted that not all of the study area intersections are directly affected by the Exit 4A alternatives, even though the redistribution of traffic will have an indirect effect. Only those intersections that a specific alternative passes through were considered for any additional improvements as part of the project to maintain an acceptable LOS D or better for the overall intersection as well as on any individual approach. Analyses were conducted for all of the study area intersections, either with or without any required improvements.

It was also assumed that signalization would be required at many of the existing unsignalized locations where an alternative passes through it or where new intersections were being created at major State or local roadways. No formal signal warrants study was performed, but engineering judgment was applied to treat each of these locations the same if they were part of the layout of an alternative. Conversely, if the alternative did not go through that location, the existing traffic control was assumed to remain in place, regardless of operational efficiency, since these locations have not yet been programmed for further improvements.

15. Signalized Intersections

A summary table for the comparison of lane use and operations at each existing or proposed signalized intersection is provided in Table 11. No additional improvements to the lane use at the Exits 4 and 5 ramp terminals were investigated as part of any Build alternative, since these are being reconstructed as part of the ongoing I-93 project. The results are provided using the HCM 2000 procedures, since these procedures can address many non-standard timing and phasing parameters that later versions of the HCM cannot, as well as to be consistent with the Interstate Justification Report being conducted separately. (Louis Berger, 2018). The actual HCM and Synchro printouts for all the 2040 alternatives are provided in Appendices N through S.

Table 11 Summary of 2040 Capacity Analyses by Alternative Signalized Intersections								
Intersection	2040 Alternative	AM Peak Hour			PM Peak Hour			Comments/ Lane Use Revisions
		$\begin{gathered} \text { v/c } \\ \text { ratio } \end{gathered}$	Average Delay	LOS	$\begin{gathered} \mathrm{v} / \mathrm{c} \\ \text { ratio } \end{gathered}$	Average Delay	LOS	
\#1-Exit 4 SB Off Ramp/NH 102	No-Build	1.08	44.5	D	1.22	106.4	f	Current lane use per I93 project
	Alternative A	0.92	25.9	C	1.09	50.9	D	Current lane use per I93 project
	Alternative B	0.93	26.8	C	1.09	53.9	D	Current lane use per I93 project
	Alternative C	1.00	36.1	D	1.09	57.2	E	Current lane use per I93 project
	Alternative D	0.99	35.1	D	1.11	59.6	E	Current lane use per I93 project
	Alternative F	1.09	51.0	D	1.14	61.5	E	Current lane use per I93 project
\#2 - Exit 4 NB Off Ramp/NH 102	No-Build	1.10	61.4	E	1.12	92.8	F	Current lane use per I93 project
	Alternative A	1.04	71.2	E	1.11	115.1	F	Current lane use per I93 project
	Alternative B	0.99	54.8	D	1.06	88.0	F	Current lane use per I93 project
	Alternative C	1.02	62.1	E	1.05	82.0	F	Current lane use per I93 project
	Alternative D	1.04	67.3	E	1.06	81.8	F	Current lane use per I93 project
	Alternative F	1.06	57.5	E	1.15	91.8	F	Current lane use per I93 project
\#3-Exit 5 SB Off Ramp/NH 28	No-Build	1.17	77.0	E	0.90	31.2	C	Current lane use per I93 project
	Alternative A	1.06	49.3	D	0.83	20.1	C	Current lane use per I93 project
	Alternative B	0.86	28.0	C	0.70	16.9	B	Current lane use per I93 project
	Alternative C	0.83	22.9	C	0.62	15.0	B	Current lane use per I93 project
	Alternative D	0.82	23.3	C	0.61	15.2	B	Current lane use per I93 project
	Alternative F	1.10	62.1	E	0.87	27.8	C	Current lane use per I93 project
\#4 - Exit 5 NB Off Ramp/NH 28	No-Build	1.10	51.7	D	1.04	37.7	D	Current lane use per I93 project
	Alternative A	1.11	63.0	E	0.99	39.2	D	Current lane use per I93 project
	Alternative B	1.03	50.2	D	0.93	33.9	C	Current lane use per I93 project
	Alternative C	1.02	49.9	D	0.87	27.7	C	Current lane use per I93 project
	Alternative D	1.02	50.5	D	0.89	32.6	C	Current lane use per I93 project
	Alternative F	1.07	44.0	D	0.99	35.1	D	Current lane use per I93 project
\#5 - NH Rte 102/Londonderry Rd/ St. Charles Street	No-Build	0.85	17.7	B	1.16	67.5	E	Add 2nd E-W lane per Woodmont concept
	Alternative A	0.52	11.4	B	0.58	14.8	B	Add 2nd E-W lane per Woodmont concept
	Alternative B	0.48	7.2	A	0.54	14.2	B	Add 2nd E-W lane per Woodmont concept
	Alternative C	0.52	8.2	A	0.53	13.1	B	Add 2nd E-W lane per Woodmont concept
	Alternative D	0.56	8.3	A	0.65	16.3	B	Add 2nd E-W lane per Woodmont concept
	Alternative F	0.75	12.3	B	0.87	27.9	C	Add 2nd E-W lane per Woodmont concept
\#6 - NH Rte 102/Fordway/Madden Hill Road	No-Build	0.92	30.8	C	1.04	47.3	D	Current lane use
	Alternative A	0.79	23.4	C	0.99	42,5	D	Current lane use
	Alternative B	0.80	23.0	C	0.91	29.1	C	Current lane use
	Alternative C	0.78	22.3	C	0.92	30.0	C	Current lane use
	Alternative D	0.81	23.2	C	0.94	30.2	C	Current lane use
	Alternative F	0.93	28.7	C	0.96	29.9	C	Add NB LT, EB RT lanes
\#7-NH Rtes 102/28	No-Build	0.88	47.4	D	0.79	37.5	D	Current lane use
	Alternative A	0.89	55.3	E	0.84	47.9	D	Current lane use
	Alternative B	0.87	44.1	D	0.80	40.5	D	Current lane use
	Alternative C	0.77	35.0	C	0.84	40.2	D	Current lane use
	Alternative D	0.89	48.1	D	0.86	46.2	D	Current lane use
	Alternative F	0.63	28.6	C	0.83	34.0	C	Add NB LT, WB Th, EB RT lanes

Table 11 (Cont'd) Summary of $\mathbf{2 0 4 0}$ Capacity Analyses by Alternative Signalized Intersections								
		AM Peak Hour			PM Peak Hour			Comments/ Lane Use Revisions
Intersection	2040 Alternative	$\begin{gathered} \mathrm{v} / \mathrm{c} \\ \text { ratio } \end{gathered}$	Average Delay	LOS	v/c ratio	Average Delay	LOS	
\#9A - Connector Rd/N High St	No-Build Alternative A Alternative B Alternative C Alternative D Alternative F	0.59	$\begin{aligned} & \hline \mathrm{n} / \mathrm{a} / \\ & 25.0 \\ & \mathrm{n} / \mathrm{a} / \\ & \mathrm{n} / \mathrm{a} / \\ & \mathrm{n} / \mathrm{a} / \mathrm{a} \end{aligned}$	C	0.95	n/a/ 37.5 n/a/ n/a/ n/a/ n/a/	D	Does not exist Prop lane use: EB - T,T,R; WB-L,T,T; NB- L,L,R lanes Does not exist Does not exist Does not exist Does not exist
$\begin{aligned} & \text { \#10 - N } \\ & \text { High/Folsom/Franklin Sts. } \end{aligned}$	No-Build Alternative A Alternative B Alternative C Alternative D Alternative F	0.65	n/a/ 17.9 n/a/ n/a/ n/a/ n/a/	B	0.92	$\begin{aligned} & \mathrm{n} / \mathrm{a} / \\ & 32.2 \\ & \mathrm{n} / \mathrm{a} / \end{aligned}$	C	Would remain unsignalized EB - L,T,T,TR; WB-L,T,TR; SB- LT,R; NB- L,TR lanes Would remain unsignalized Would remain unsignalized Would remain unsignalized Would remain unsignalized
\#11- Ross' Corner (Folsom/NH 28)	No-Build Alternative A Alternative B Alternative C Alternative D Alternative F	$\begin{aligned} & \hline 0.72 \\ & 0.56 \\ & \\ & 0.49 \\ & 0.73 \\ & 0.73 \\ & \\ & 0.61 \end{aligned}$	$\begin{aligned} & \hline 91.3 \\ & 22.3 \\ & \\ & 28.4 \\ & 32.5 \\ & 27.0 \\ & \\ & 32.6 \end{aligned}$	F C C C C C	$\begin{aligned} & \hline 0.80 \\ & 0.79 \\ & \\ & 0.66 \\ & 0.83 \\ & 0.80 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 56.4 \\ & 32.9 \\ & \\ & 38.3 \\ & 46.1 \\ & 35.2 \\ & \\ & 42.7 \end{aligned}$		Current lane use Add 2nd EB LT and Th lanes; add 2nd WB Th lane Current lane use Current lane use Add 2nd EB LT lane; add 2nd WB RT lane Current lane use
\#12 - Tsienneto Rd/Pinkerton St	No-Build Alternative A Alternative B Alternative C Alternative D Alternative F	0.61 0.69	$\begin{gathered} \hline \mathrm{n} / \mathrm{a} / \\ 13.7 \\ \mathrm{n} / \mathrm{a} / \\ \mathrm{n} / \mathrm{a} / \\ 20.1 \\ \mathrm{n} / \mathrm{a} / \end{gathered}$	B C	$\begin{aligned} & 0.65 \\ & 0.64 \end{aligned}$	$\begin{gathered} \hline \mathrm{n} / \mathrm{a} / \\ 12.5 \\ \mathrm{n} / \mathrm{a} / \\ \mathrm{n} / \mathrm{a} / \\ 24.2 \\ \mathrm{n} / \mathrm{a} / \end{gathered}$	B	Would remain unsignalized Signalized and coord with Ross' Corner Would remain unsignalized Would remain unsignalized Signalized and coord with Ross' Corner Would remain unsignalized
\#13-NH 28/Linlew Dr	No-Build Alternative A Alternative B Alternative C Alternative D Alternative F	$\begin{aligned} & \hline 0.41 \\ & 0.19 \\ & 0.36 \\ & 0.39 \\ & 0.56 \\ & 0.28 \end{aligned}$	$\begin{gathered} \hline 18.9 \\ 11.7 \\ 6.3 \\ 5.2 \\ 14.9 \\ 11.3 \end{gathered}$	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { A } \\ & \text { A } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \hline 0.48 \\ & 0.46 \\ & 0.49 \\ & 0.49 \\ & 0.78 \\ & 0.40 \end{aligned}$	17.2 25.0 13.8 12.9 20.4 16.1	$\begin{aligned} & \hline \text { B } \\ & \text { C } \\ & \text { B } \\ & \text { B } \\ & \text { C } \\ & \text { B } \end{aligned}$	Current lane use
\#14-NH 28/Ashleigh Dr \#22-B/C Connector/NH 28	No-Build Alternative A Alternative B	$\begin{aligned} & \hline 0.43 \\ & 0.35 \\ & 0.73 \end{aligned}$	$\begin{aligned} & \hline 17.3 \\ & 17.0 \\ & 26.8 \end{aligned}$	$\begin{aligned} & \hline \text { B } \\ & \text { B } \\ & \text { C } \end{aligned}$	$\begin{aligned} & \hline 0.59 \\ & 0.48 \\ & 0.83 \end{aligned}$	$\begin{aligned} & \hline 24.8 \\ & 21.7 \\ & 35.6 \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{D} \end{aligned}$	Current lane use Current lane use Revised Lane Use: EB- L,T,R; WB- L,L,T,TR; NB-L,T,T,R,R; SB-L,T,T,R

Table 11 (Cont’d) Summary of $\mathbf{2 0 4 0}$ Capacity Analyses by Alternative Signalized Intersections								
Intersection	2040 Alternative	AM Peak Hour			PM Peak Hour			Comments/ Lane Use Revisions
		$\begin{gathered} \mathrm{v} / \mathrm{c} \\ \text { ratio } \end{gathered}$	Average Delay	LOS	v/c ratio	Average Delay	LOS	
\#25-C/D Connector	No-Build		n/a/			n/a/		Does not exist
Road/NH 28	Alternative A		$\mathrm{n} / \mathrm{a} /$			n/a/		Does not exist
	Alternative B		n/a/			n/a/		Does not exist
	Alternative C	0.81	10.6	B	0.79	12.2	B	Prop lane use: EB- L,T,T; WB- T TR, SB- L,R
	Alternative D	0.96	13.7	B	0.87	14.1	B	Prop lane use: EB- L,T,T; WB- T TR, SB- L,R
	Alternative F		n /a/			$\mathrm{n} / \mathrm{a} /$		Does not exist

\#1 - Exit 4 SB off-ramp at NH Route 102

The results show that this ramp terminal as presently proposed will still experience capacity constraints into the 2040 design horizon. All 4A Build interchange alternatives appear to function better than No-Build, with Alternatives A and B doing better than the northerly or no interchange alternatives, even though they both have a higher potential development scenario for Woodmont Commons than the others. The heavy SB right turn onto NH Route 102 from the ramp, even with two lanes, combined with heavy WB flow from the NB ramps located to the east, contribute to the decline in LOS. The single left turn lane from the off-ramp also appears insufficient to handle the peak hour demands.

\#2 - Exit 4 NB ramps at NH Route 102

The results show that this ramp terminal as presently proposed will also experience capacity constraints into the 2040 design horizon. All 4A Build interchange alternatives improve 2040 AM peak hour operations, with Alternatives C and D doing slightly better than Alternatives A and B in the PM peak. The heavy EB left-turn onto the on-ramp, even with two lanes, is the dominant volume at this location, as well as the NB left turn from the off-ramp. Alternatives C and D appear to operate at a slightly better LOS, but the Woodmont Commons development scenario is also less intense in these cases than under Alternatives A and B. Alternative F fares worse than any of the alternatives as proposed.

\#3 - Exit 5 SB ramps at NH Route 28

The results show that this ramp terminal as presently proposed will still experience some capacity constraints into the 2040 design horizon. All 4A Build interchange alternatives provide better operations than the No-Build condition. The single WB left turn and SB right-turn lanes appear to be the constraints to better operations across all alternatives. Alternatives C and D appear to function better than No-Build or the southerly or no interchange alternatives, likely because of their proximity to this interchange and the increased likelihood of diverting some of the traffic demand, as opposed to the other alternatives.

\#4 - Exit 5 NB ramps at NH Route 28

The results show that this ramp terminal as presently proposed will also experience capacity constraints into the 2040 design horizon. All 4A Build interchange alternatives provide slightly better operations than under No-Build conditions. The heavy EB left-turn demand onto the on-ramp in a single lane, as well as the single-lane NB left turn from the off-ramp, are the critical movements at this intersection. Alternatives C and D appear to operate at a slightly better LOS than Alternatives A and B, again because of their proximity to this interchange and increased likelihood of diverting some of the traffic demand. Alternative F fares worse than any of the alternatives as proposed.

\#5 - NH Route 102/Londonderry Road/St. Charles Street

With the addition of a second east-west through lane on NH Route 102 as part of the proposed Woodmont Commons improvements, this intersection would operate at acceptable LOS under all alternatives. Alternative F would operate slightly worse than the other alternatives, because of projected increased traffic on NH Route 102, but would still be at an acceptable LOS.

\#6 - NH Route 102/Fordway/ Madden Hill Road

This existing intersection would operate at acceptable LOS under all alternatives except Alternative F. Alternative A appears to draw more traffic to the Madden Hill Road approach that opposes the heavy Fordway volumes on the same permissive phase (where both approaches have a concurrent green light and must wait for gaps in opposing traffic to proceed), so it operates slightly worse than the other interchange alternatives, particularly in the 2040 PM peak. Alternative F would necessitate provision of lane separation out of Fordway as well as an exclusive EB right-turn lane to maintain an acceptable LOS.

\#7 - NH Routes 102/28

Based solely on the capacity calculations, this existing intersection would operate at acceptable LOS under all alternatives except Alternative F. As noted earlier, there are many other unquantifiable factors in the downtown area, such as pedestrian activity and friction from side street and on-street parking maneuvers, that contribute to reduced traffic speeds and the general diversion/avoidance of the area by through traffic to other routes such as Ash Street Extension, North High Street, Folsom Road, and Tsienneto Road.

The traffic model indicates that Alternative A appears to draw more traffic to the eastern part of downtown that then makes a right turn to NH Route 28 in the direction of Exit 4A and the Woodmont Commons development. In reality, much of this traffic may divert to the traffic circle to the east and use the Pinkerton/Tsienneto corridor to complete such a trip. Other Build alternatives show similar operational/LOS characteristics than under No-Build conditions. With additional traffic through the downtown area and no interchange option, Alternative F would necessitate provision of a second NB left-turn lane, an EB exclusive right-turn lane, and a second WB thru lane to maintain an acceptable LOS in the 2040 design horizon.

\#9A - Alternative A Connector Road/North High Street

This new intersection is created by the Alternative A connector road with the local street network. The existing intersection of North High Street with Madden Road would be relocated off the new connector road as a minor roadway serving the small number of residences there. It is envisioned that this new intersection would need to be signalized and widened to provide acceptable operations, given the projected traffic volumes. The Connector Road eastbound approach would consist of two thru lanes and an exclusive right-turn lane to North High Street. The Connector Road westbound approach would consist of an exclusive left-turn lane and two thru lanes. The North High Street northbound approach would
consist of two left-turn lanes and a right-turn lane. Given the projected volumes and this lane use, this intersection would operate at a LOS D in the 2040 PM peak hour.
\#10 - Alternative A Connector Road/Franklin Street/Franklin Street Extension This existing intersection is presently unsignalized and operates at a poor LOS for the north/south side street approaches, which experience difficulty entering the main traffic flow during peak periods. With the increase in development activity nearby, this condition would be exacerbated into the future to the point where there may need to be consideration of additional improvements to provide acceptable operations, even with other interchange alternatives beyond Alternative A.

With the Alternative A connector road in place, this intersection will require significant widening and signalization to provide sufficient lanes to handle the project volumes as a direct result of Exit 4A. The east/west approaches would have at least two thru lanes (the projections suggest a third lane may be needed for the eastbound approach) with exclusive left-turn lanes. The north/south approaches would have two lanes with an exclusive lane oriented to the west to handle the projected traffic. This configuration would operate at a LOS C in the 2040 PM peak hour.

\#11 - Ross' Corner (NH Route 28/Folsom Road/Tsienneto Road)

This intersection was upgraded several years ago to provide a second southbound left-turn lane from NH Route 28 onto Tsienneto Road to serve the predominant southbound-to-eastbound travel demand between I-93 and Derry and points to the east. With the projected growth to 2040, the existing lane geometry will no longer be sufficient to meet the expected traffic demands.

With an Exit 4A interchange in place, and with the Alternative A connector road in particular, the existing north-south traffic orientation now becomes an eastwest flow. As such, improvements to handle the increase east-west travel demand will be required. With Alternative A, a second EB left-turn lane and second EB thru lane will be needed, as well as a second WB thru lane, to provide an acceptable LOS. Alternatives B and C are on a new east-west alignment north of this intersection so no changes to the existing lane use are required. With Alternative D, the interchange is north of this intersection, so movements oriented in that direction will need to be augmented. This means the addition of a second EB left-turn lane and second WB right-turn lane at this location. Alternative F maintains the existing traffic distribution, and the existing lane use can accommodate the projected traffic volumes.

\#12 - Tsienneto Road/Pinkerton Street (Alternatives A and D only)

This intersection is in close proximity (300 feet $+/-$) from the Ross’ Corner signal, but is not currently signalized. As such, left-turn exits experience lengthy delays while waiting for a gap in the Tsienneto Road traffic flow. The eastbound right-
turn movement has been separated from the main traffic stream by a channelizing island to help exiting traffic, but the opposing traffic flow limits the number of available gaps for exiting traffic. At some point in the future, regardless of this project, this intersection may need to be signalized and coordinated with the Ross’ Corner signal, but there are no defined plans to do that at this time. Therefore, except for those alternatives that directly impact this intersection, namely Alternatives A and D, the intersection is assumed to remain unsignalized and is expected to operate at a poor LOS for the minor street approach from Pinkerton Street.

For Alternatives A and D, a second lane for thru traffic would be provided in both the eastbound and westbound directions, as well as an exclusive westbound leftturn lane into Pinkerton Street. With this geometry and coordinated phasing with Ross' Corner as a cluster intersection, this location would operate at an acceptable LOS C or better in the 2040 design year.

\#13 - NH Route 28/Linlew Drive

No changes to the existing lane use at this intersection are required to accommodate traffic volumes under any of the proposed alternatives.

\#14/22 - NH Route 28/Ashleigh Drive/Alternative B-C Connector Road

This intersection would see significant changes depending on which alternative would be in place. For Alternatives B and C, the proposed connector road would create a new east-west roadway that would require reconfiguration of lanes to accommodate the new distribution of traffic for either a southerly or northerly interchange. Under Alternative B, the new roadway would need two thru lanes in the east-west direction, as well as double-turn lanes to and from NH Route 28 to the south, along with other lane use changes. With Alternative C, a double SB left-turn lane into Ashleigh Drive would be needed to serve traffic from the new interchange to the north and the connector road, among other lane use changes. An acceptable LOS C or better can be provided for all alternatives with the appropriate revisions to the lane use.

\#18 - NH Route 28 Bypass/Tsienneto Road

The 2040 No-Build analysis shows that the existing intersection would operate at or over capacity during both peak hours, so some improvements would appear to be needed at some point in the future. Alternatives B and C reduce east-west traffic through this intersection, so the existing lane use can provide an acceptable LOS D or better in 2040. Alternatives A and D will require the addition of a second east-west thru lane to accommodate the increased east-west traffic at an acceptable LOS.
\#19/26- NH Route 102/Tsienneto Road/North Shore Road (Alternatives A-D)
A review of the existing traffic counts at the North Shore Road and English Range Road intersections indicate that existing 2015 left-turn volumes currently satisfy turn-lane warrants at both locations. As such, any improvements at the Tsienneto

Road/NH Route 102 intersection associated with any of the alternatives should take this into consideration in the design.

Because existing PM peak analyses already indicate a poor LOS for exiting traffic, combined with the projected increase in left-turn volumes exiting Tsienneto Road, it has been assumed that this location will need to be signalized as part of any interchange alternative. Because of the proximity of North Shore Road, that intersection would be incorporated into the signalized intersection, similar to Ross’ Corner and Pinkerton Street. An exclusive right-turn lane would be provided for NH Route 102 WB traffic entering Tsienneto Road, as well as a WB left-turn lane into North Shore Road. This left-turn lane would also be carried easterly towards the English Range Road intersection for continuity, where an EB left turn lane would be provided. There would still only be a single lane exiting Tsienneto Road, despite the higher volumes, because of the complexity of accommodating a double left-turn lane onto NH Route 102 and then tapering back to a single lane with North Shore Road being so close.

With signalization of the intersection as proposed, an acceptable LOS C or better can be provided for all interchange alternatives in the 2040 design horizon.

\#20/21 - Exit 4A SB and NB Ramp Terminals (Alternatives A-D)

With either a northerly or southerly interchange, it is envisioned that both ramp terminals would be signalized as part of the diamond configuration. The SB offramp would have two lanes exiting the ramp, while there would be two lanes provided for the left turn onto the SB on-ramp. This ramp would be close to capacity in the 2040 AM peak hour, assuming full realization of the traffic projections on the SB off-ramp.

At the NB ramps, there would be two east-west thru lanes with a single EB leftturn lane and double WB right-turn lanes onto the NB on-ramp. On the off-ramp, there would be a shared left/right lane and an exclusive right-turn lane, since there is no access to the west. An acceptable LOS D or better can be provided at this ramp terminal under all interchange alternatives.

\#23 - NH Route 28 Bypass/B-C Connector Road (Alternatives B and C)

This new intersection is created by the connector road roughly along the alignment of the existing Ashleigh Drive. With Alternative B, two east-west thru lanes need to be provided so that an acceptable LOS C can be achieved. Only one east-west thru lane is required with Alternative C because of less overall traffic volume through the intersection.

\#25 - C-D Connector Road/NH Route 28 (Alternatives C-D)

This new intersection is created by the connector road from the northerly interchange where it would intersect with the existing two-lane section of NH Route 28 just north of the Derry/Londonderry town line. NH Route 28 southbound would become the minor approach to the intersection and would have
separate left- and right-turn lanes. The EB approach would have an exclusive left lane and two thru lanes, while the WB approach would have a thru lane and a shared thru/right lane. This configuration would provide a LOS B during the 2040 peak hours.

16. Unsignalized Intersections

A summary table showing a comparison of operations at each existing or proposed unsignalized intersection is provided in Table 12. In most cases, the existing or projected deficiencies for the minor street approaches are exacerbated, except where traffic diversions may reduce the volume of traffic on the major approach that would conflict with traffic turning from the minor street approach(es).

It is not envisioned that any of these intersections would warrant signals, except those that are directly impacted by a specific alternative, such as Tsienneto Road/Pinkerton Street or NH Route 102/Tsienneto Road/North Shore Road. Delays at the North High Street /Ash Street Extension and the North High Street/Folsom Road/Franklin Streets locations are excessive and should be monitored as the Woodmont Commons development progresses to determine if and when signal warrants may be satisfied.

Table 12 Summary of 2040 Capacity Analyses by Alternative Unsignalized Intersections								Comments/ Lane Use Revisions
Intersection		AM Peak Hour			PM Peak Hour			
	2040 Alternative	v/c ratio	Average Delay	LOS	v/c ratio	Average Delay	LOS	
\#8 - N High St/Ash St Ext (Critical Movement - EB LT)	No-Build	1.04	78.0	F	3.04	>300	F	
	Alternative A	0.53	17.4	C	1.47	228.8	F	
	Alternative B	0.42	14.3	B	0.96	56.5	F	
	Alternative C	0.76	29.3	D	1.09	90.6	F	
	Alternative D	0.74	25.7	D	1.70	>300	F	
	Alternative F	0.74	27.1	D	1.79	>300	F	
\#10-N High/Folsom/Franklin Sts. (Critical Movement varies between NB and SB)	No-Build	0.20	21.8	C	0.55	82.0	F	NB all is critical Signalized NB all is critical SB all is critical NB critical in AM, SB critical in PM
	Alternative A		n/a/			n/a/		
	Alternative B	0.94	96.5	F	3.00+	>300*	F	
	Alternative C	1.35	219.6	F	3.31	>300*	F	
	Alternative D	0.22	10.9	B	1.21	160.2	F	
	Alternative F	0.36	31.7	D	2.31	>300	F	
\#12-Tsienneto Rd/Pinkerton St (Critical Movement - NW LT)	No-Build Alternative A	0.25	$\begin{aligned} & \hline 16.1 \\ & \mathrm{n} / \mathrm{a} / \end{aligned}$	C	0.97	$\begin{gathered} \hline 84.0 \\ \mathrm{n} / \mathrm{a} / \end{gathered}$	F	Signalized Signalized
	Alternative B	0.89	80.0	F	1.00	126.4	F	
	Alternative C	2.04	>300*	F	2.54	>300*	F	
	Alternative D		n/a/			n/a/		
	Alternative F	0.65	66.1	F	4.10	>300	F	
\#15 - NH 28/Scobie Pond Rd (Critical Movement - SB all)	No-Build	1.01	144.7	F	0.58		D	
	Alternative A	0.18	14.4	B	0.19	16.4	C	
	Alternative B	0.18	13.3	B	0.23	16.5	C	
	Alternative C	0.67	>300*	F	4.44	>300*	F	
	Alternative D	1.34	>300*	F	6.67	4259.8*	F	
	Alternative F	0.31	27.4	D	0.47	51.0	F	
\#16 - NH 102/NH Byp 28/E Derry Rd (Traffic Circle-RT only) (HCM 2010) (Critical Movement - E Derry Rd)	No-Build	0.87	31.9	D	1.26	151.2	F	
	Alternative A	1.11	94.0	F	0.92	41.9	E	
	Alternative B	0.77	21.4	C	0.68	16.4	C	
	Alternative C	0.73	18.8	C	0.78	21.7	C	
	Alternative D	0.84	28.3	D	0.89	33.6	D	
	Alternative F	0.91	40.1	E	1.21	128.7	F	
\#17-NH Byp 28/Pinkerton/Nesmith (HCM 2010) (Critical Movement - WB all)	No-Build	.	-	F	-	-	F	Left turns from Nesmith
	Alternative A	1.01	138.9	F	0.52	55.3	F	
	Alternative B	1.13	188.1	F	0.53	57.3	F	
	Alternative C	0.96	127.6	F	0.41	41.7	E	
	Alternative D	1.35	280.7	F	0.63	78.3	F	
	Alternative F	0.45	26.2	D	0.46	49.1	E	
\#24-B/C Connector Rd/Tsienneto Road (Critical Movement - NB LT)	No-Build	$\begin{aligned} & 0.09 \\ & 0.00 \end{aligned}$	n/a/$\mathrm{n} / \mathrm{a} /$		$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	n/a/	-	Does not exist Does not exist
	Alternative A				n/a/	-		
	Alternative B		38.9	E		0.0	A	
	Alternative C		0.0			0.0	A	
	Alternative D		$\mathrm{n} / \mathrm{a} /$			$\mathrm{n} / \mathrm{a} /$	-	Does not exist
	Alternative F					$\mathrm{n} / \mathrm{a} /$		Does not exist

Table 12 (Cont’d) Summary of 2040 Capacity Analyses by Alternative Unsignalized Intersections								Comments/ Lane Use Revisions
Intersection		AM Peak Hour			PM Peak Hour			
	2040 Alternative	v/c ratio	Average Delay	LOS	v/c ratio	Average Delay	LOS	
\#27-NH 102/English Range Road	No-Build		n/a/			n/a/	-	
(Critical Movement - SEB all)	Alternative A	0.17	20.8	C	0.16	28.4	D	
	Alternative B	0.23	24.5	C	0.22	26.1	D	
	Alternative C	0.17	20.8	C	0.23	42.1	E	
	Alternative D	0.17	21.0	C	0.18	32.8	D	
	Alternative F	0.17	20.8	C	0.16	28.4	D	

17. Findings and Conclusions

The results of the traffic modeling for the Project indicates that the provision of a new interchange on I-93 will provide varying levels of traffic relief to NH Route 102 east of Exit 4 and into the downtown Derry area by the 2040 design year, as shown in Table 7.

Examples on key links include:

- NH Route 102 east of Exit 4: In the 2040 No-Build case, there is projected to be 41,725 vpd on this segment. Alternative A provides the most relief on this segment (-51.5%) to a volume of 20,240 vpd, which is the same magnitude as the 2015 base volume. Alternative B shows a 48\% reduction, while Alternatives C and D show lesser reductions. Alternative F shows a slight increase in projected traffic than any interchange alternative.
- NH Route 102 east of Griffin Street (downtown): Alternatives A, B and C show similar reductions, on the order of $19-21 \%$, or $3000-4000$ vpd, over 2040 NoBuild conditions. Alternative D shows a lesser reduction, but still lower volume than the 2015 base. Alternative F projects higher volumes than any interchange alternative and would be higher than either the 2015 or 2040 No-Build case.
- Volumes on the Exit 4 ramps are lower under most interchange alternatives, with Alternative A providing the most overall relief over No-Build conditions, even under the highest potential development scenario for the Woodmont Commons development.
- Volumes on the Exit 5 ramps see the highest traffic reductions under Alternatives C and D (northerly interchange) than under a southerly interchange scenario.

Mainline freeway facilities operational analyses indicates that the four-lane I-93 mainline will function at an acceptable LOS C or better under all scenarios, with a couple of exceptions where two-lane on- or off-ramps may be needed to accommodate all projected volumes. A sensitivity analyses of the Exit 4A SB off-ramp indicated that a 200 -vph reduction in the assigned traffic would allow this ramp to function as a single lane offramp if these traffic projections are not fully realized.

The Exit 4 ramps would have slightly higher volumes under either Alternatives A or B, but this is more reflective of the higher potential development scenario assumed for the Woodmont Commons development than for Alternatives C, D or F, which use the same scenario as the No-Build condition. As noted earlier, should the 23% internal capture rate for Woodmont Commons trips be realized in some form, the number of trips assigned to the study area network may be reduced accordingly, which should result in better traffic operations than the worse-case scenario assumed in this study.

The level of intersection improvements needed to accommodate the alternative and connector road corridors vary greatly depending on alternative. In general, all intersections can provide an acceptable LOS under any alternative with appropriate lane use and signalization/coordination as required. The traffic circle at NH Route 102/NH Route 28 Bypass will continue to function at a poor LOS regardless of alternative.

In summary, from a purely traffic standpoint, Alternatives A appears to best satisfy the Purpose and Need for the Project by providing the greatest reductions in NH Route 102 traffic through downtown Derry than the other alternatives evaluated. Volumes on NH Route 102 just east of Exit 4 would be roughly half of 2040 No-Build levels and similar to existing (2015) conditions. Alternative B provides some relief as well, but primarily serves a north-south trip pattern as opposed to the east-west pattern needed to reduce traffic on NH 102 in downtown Derry. Alternatives C and D would provide some, but not as much, relief to the NH Route 102 corridor, because of the increased distance between these northerly interchange alternatives and the NH Route 102 corridor.

Other natural and cultural resource impact criteria will be used to provide the final assessment of the Preferred Alternative, but the previous finding of Alternative A as the Preferred Alternative from a traffic standpoint is supported by the updated analyses contained herein.

18. References

AASHTO (American Association of State Highway Transportation Officials). 2011. Policy on Geometric Design of Highways and Streets. American Association of State Highway Transportation Officials. Washington DC, 2011.

CLD, 2018, Traffic Technical Memo, Estimate of Contribution of Woodmont Commons Traffic to Exits 4 and 4A, February 5, 2018

FHWA. 2007. I-93 Exit 4A Interchange Study Derry-Londonderry Draft Environmental Impact Statement. July 2007.

Google 2018, Google Inc. Google Maps, Accessed January, 2018
Louis Berger. 2017. Land Use Scenarios Technical Report.
Louis Berger, 2018, Interstate Justification Report, April, 2018
McTrans, 2018. McTrans Center, University of Florida, Highway Capacity Software (HCS), Version 6.90, 2018,

NHDOT, 2009, Supplemental Environmental Impact Statement and Reevaluation/Section 4(f) Evaluation, August 2009, Tables 4-12 and 4-13.

NHDOT. 2016a. Bureau of Traffic, Traffic Reports. https://www.nh.gov/dot/org/operations/traffic/tvr/routes/documents/i-93.pdf.

NHDOT. 2016b. Bureau of Traffic, Traffic Reports. Available at: https://www.nh.gov/dot/org/operations/traffic/tvr/routes/documents/nh-28.pdf.

NHDOT. 2016c. Bureau of Traffic, Traffic Reports. Available at: https://www.nh.gov/dot/org/operations/traffic/tvr/routes/documents/nh-102.pdf.

NHDOT, 2016d. Bureau of Traffic, Seasonal Adjustment Factor report, 2015
NHDOT, 2016e. Email from John Butler (NHDOT) to CLD, dated November 7, 2016
NHDOT, 2016f. Email from John Butler (NHDOT) to CLD, dated July 21, 2016
NHDOT. 2017a. Email from John Butler (NHDOT) to CLD, dated May 25, 2017
NHDOT. 2017b. Email from John Butler (NHDOT) to CLD, dated March 8, 2017
NHDOT. 2017c. Email from Nick Sanders (NHDOT) to CLD, dated October 12, 2017
NHDOT. 2017d. Email from John Butler (NHDOT) to CLD, dated June 20, 2017

NHDOT. 2018. FY 2018 - FY 2028 Ten Year Plan. Available at:
https://www.nh.gov/dot/org/projectdevelopment/planning/typ/documents/20180116-10-year-transportation-recommendations.pdf.

SNHPC. 2017. FY 2017 - FY 2040 Regional Transportation Plan for the Southern New Hampshire Planning Commission. Available at: http://www.snhpc.org/pdf/FinalRegionalTransportationPlan2017-2040.pdf.

TEC, 2013. Woodmont Commons Planned Unit Development, A Master Plan, Section 4.2 Master Plan Traffic Impact Assessment - Supplemental Documents, Sept. 2013.

Trafficware 2016. Trafficware, LLC, Sugarland TX, Synchro plus Sim-Traffic. Version 9, 19982016

Transportation Research Board (TRB), 2000. Highway Capacity Manual, 2000
Transportation Research Board (TRB), 2010. Highway Capacity Manual, 2010
Transportation Research Board (TRB), 2016. Highway Capacity Manual (HCM6), 2016, Chapter 22, Roundabouts

Figure 3 - I-93 Exit 4A Supplemental Draft EIS - Zones 1-6 Locus Map

Figure 4-2015 No-Build AM Peak Hour Base Volumes - Locations 1-4

Figure 5-2015 No-Build PM Peak Hour Base Volumes - Locations 1-4

FIGURE 8 - VOLUME COMPARISONS - EXIT 4 RAMPS

FIGURE 9 - VOLUME COMPARISONS - EXIT 5 RAMPS

FIGURE 10- VOLUME COMPARISONS - EXIT 4A RAMPS

Exit 4A SB Off-Ramp

Exit 4A NB On-Ramp

Exit 4A SB-On-Ramp

FIGURE 11 - VOLUME COMPARISONS - NH ROUTE 102 CORRIDOR

FIGURE 12- VOLUME COMPARISONS- OTHER LOCAL STREETS

Tsienneto Rd, West of NH 102

Figure 15-2040 No-Build AM Peak Hour Base Volumes - Locations 1-4

[^0]

Figure 26-2040 Alternative F PM Peak Hour Base Volumes - Locations 1-4

Figure 31-2040 Alternative B AM Peak Hour Base Volumes - Locations 5-19, 22-24, and 26-27

Figure 32-2040 Alternative B PM Peak Hour Base Volumes - Locations 5-19, 22-24, and 26-27

Figure 34-2040 Alternative C PM Peak Hour Base Volumes - Locations 5-19 and 22-27

APPENDIX A: TRAFFIC COUNT DATA

WINDHAM I-93 NB AT BETWEEN EXITS 3 -4 (02489002)

	MN	DY	D	H1	H2	H3	H4	H5	H6	H7	7-8 AM	H9	H10	H11	H12	H13	H14	H15	H16	H17	5-6 PM	H19	H2O	H21	H22	H23	H 24	txtTotal
	5	1		581	372	205	150	153	tgu	352	837	1271	1368	1826	2164	2335	2287	2153	2245	2267	2067	1912	1485	1104	816	576	465	29083
		8		376	354	162	129	113	*55.	333	516	960	1338	2012	2313	2521	2401	2364	2507	2493	2351	2303	1627	1482	976	641	416	31245
		2		419	209	142	125	262	639	1397	2230	1878	1540	1623	1698	1760	1959	2480	2889	3376	3511	2448	1562	1064	901	610	466	35330
				240	152	111	122	267	689	1476	2230	1979	1600	1529	1588	1911	1840	2459	3260	3542	3628	2578	1714	1314.	982	686	587	36757
		3		270	182	174	141	227	619	1402	2192	1906	1595	1512	1659	7740	1911	2689	3249	3802	3537	2577	1721	1250	1050	682	503	36593
		10		343	181	139	14.	247	653	1456	2292	1923	1705	1724	1684	1795	1971	2615	3315	3768	3599	2737	1851	1364	1068	295	761	3825
		4		268	199	161	151	268	609	1444	2261	1952	1556	1393	1814	1890	1952	2742	3329	3406	3540	2727	1827	1434	1178	627	524	37272
		5		339	209	156	156	223	607	1357	2205	1989	1704	1623	1709	1828	1455	3051	3254	3585	3645	2755	2179	1389	1182	618	622	38048
		6		393	283	173	166	290	625	1408	2230	1941	1669	1821	2177	2282	2564	3228	3665	3833	3546	3004	2252	1573	1413	1066	894	42496
		7		476	295	191	151	146	351	800	1314	1949	2290	2445	2536	2674	2770	28.2	2744	2555	2388	2059	1700	${ }^{3} 393$	1251	1031	759	37060
ADT-sum				3704	2433	1614	1431	2256	5137	11437	18489	17650	16416	17608	19344	20786	21050	26653	30477	32747	32012	25100	18086	13385	10819	7532	5993	362160
ADT				370	243	161	143	226	514	1144	1849	1765	1642	1761	1934	2079	2105	2665	3048	3275	3201	2510	1809	1339	1082	753	599	36215
AWDT-sum				2271	1412	1056	1001	1844	4441	9952	15720	13570	11370	11325	12329	13206	13652	19274	22981	25432	25206	18826	13066	9407	7774	5284	4353	264752
AWDT				324	202	151	143	263	634	1422	2246	1939	1624	1618	1761	1887	1950	2753	3283	3633	3601	2689	1867	1344	1111	755	622	37822
WINDHAM		93 SB	TWE	N EX	$3-410$	489002)																						
	MN	DY	D	H1	H2	H3	H4	H5	H6	H7	7.8 AM	H9	H10	H11	H12	H13	H14	H15	H16	H17	5-6 PM	H19	H2O	H 21	H22	H23	H24	txtTotal
		1		309	243	155	104	172	358	595	930	1240	1692	2299	2623	2726	2805	2662	2645	2747	2206	1895	1479	1077	748	475	260	32524
		8		331	210	131	105	124	325	512	313	1301	1932	2745	3127	3201	2936	2809	2676	2724	2433	2106	1726	1281	929	580	268	35325
	5	2		150	135	187	297	1012	2537	3092	3145	3007	2256	1519	1853	1731	1681	1768	1888	2022	2202	1388	924	734	623	420	254	35072
		9		174	104	155	285	1050	2682	3407	3344	2974	2377	1757	1879	3736	1615	1989	2106	2200	2451	1550	1079	872	688	481	246	37211
	5	3		173	118	171	26.	1018	2533	3245	3358	3249	2213	1753	1752	1730	1551	1930	2090	2178	2449	1621	1104	902	683	437	242	36720
	5	10		166	135	162	271	1043	2756	3373	3456	3130	2350	1731	1785	1760	1732	1994	2263	2410.	2530	1550	1222	899	776	514	277	38288
	5	4.		203	139	158	255	1926	2633	3317	3652	3005	2288	1730	1714	1765	1783	1930	2184	1792	2701	1623	1158	881	731	499	282	37250
	5	5		191	143	171	259	973	2576	3109	3107	3009	2412	1625	1942	1784	1667	2254	2244	2332	2523	1686	1176	933	862	551	321	37664
		6		202	170	213	289	950	2489	3110	3387	2795	2201	1834	2012	2002	2098	2356	2501	2485	2747	2025	1468	1077	984	741	432	41538
	5	1		255	177	133	161	314	713	1044	1426	1877	2178	2739	2615	2582	2480	2555	2756	2780	2553	2109	1667	1283	1002	767	565.	36.361
ADT-sum				2156	1577	1636	2289	7684	19602	24804	26418	25547	21999	19432	21303	21017	20348	22257	23353	23670	24865	17555	13004	9989	8026	5484	3147	367162
ADT				216	158	164	229	768	1960	2480	2642	2555	2200	1943	2130	2102	2035	2226	2335	2367	2487	1756	1300	999	803	548	315	36716
AWDT-sum				1261	947	1217	1919	7074	18206	22653	23249	21129	16197	12049	12938	12508	12127	14231	15276	15419	17583	11445	8133	6348.	5347	3642	2054	262952
AWDT				180	135	174	274	1011	2601	3236	3321	3018	2314	1721	1848	1787	1732	2033	2182	2203	2512	1635	1162	907	764	520	293	37565

AUTOMATIC TRAFFIC RECORDER DATA FOR THE MONTH OF MAY 2013

mn or		H1	H_{2}	H3	H4	H6	н6	H7	7.8 AM	н9	H10	H12	H12	H13	H14	415	H16	H17	5．6 PM	H19	H20	H21	H22	H23	H24	txitotal
$5_{3} 3$		xe	$3{ }^{3}$	161	｜a1	12	ma	519	7 mm	trex	$180 /$	530\％	4401	sts	ramb	730	Water	200m	xsel	27／s	10，	uss	\％91	am	ase	23191
510		827	275	120	\％	（2）	c／	ten	＇i1	（12）	tso	00）	3000	W／2	asso	tam	maty	2004	7／50	276	193，	12082	502	se－	sm	sume
517	1	20	sal	111	16	105	m	sat	380	1201	$1 / 3$	120	2003	Fetc	\％os．	cose	2 cos	क／2	वatu	2014	2 c	Tose	10.	m	N	3720
524	，	20	0	120	35	10.	sel	Ste	ent	315	1421	Note	220	2ask	Ater	um	819	zur	780	200		1560	н24	391	59	310em
531	，	$3+$	270	say	13	wr	200	sear	N02	1051	150／	2ns	2 mm	2035	2500	cold	\％ato	230	232］	wers	102．	T032	sur	潵	21	32 n
52		200	18	時	143	$2 m$	$0 \cdot 1$	920．	184	Isear	150	zese	23s	4 am	2 mon	262	ase	230	need	1480	7850	11 m	1\％	0	sil	Inota
58	＇	302	\％	107	189	304	605	43	1270	1305		213	205	2201	2 sma	mep	1284．	2＊＊	2000	zaw	1003	tom	（19）	30］	＊	3xes
$5{ }_{5}^{5} 18$		33	\％os	甠	$1 / 0$	em	\pm	1003	1200	1541	10 ma	2192	40	sat	ms	204	1ens	231	220．	0	124	ner	＋00\％	10.	sal	Nues
523		2185	国	18	i17	2m	seo	823	nup	120	150	200	zeny	200	\cdots	mar	atm	2789，	zamy	trea	以 0	1601	10000	30	32	12 nc
530		20	\cdots	100	\％er	2 c	me	w	127	155		2100	nom	a／e	230）	\％20	230	zar．	$21 / 4$	1054	9400	19	1905	30	sin	xnent
	2	40	v1	104	3	100．	31	35	mar	m＋	1891	7ac）	con	$32 /$	34	ext	An	234	2002	ma	2 m	1812	138：	505	5	3 coma Moliday
54	${ }^{2}$	18%	m	120	（17）	a	20．4	soof	3501	319010	ars	1000		1／24	Ber	1502	2000	20\％	2020	2081	501	34．	cil	sur	＊4	उsood
5818		153	m	\cdots	$\mathrm{n}=$	ts．	1546	310	3500	329	2m	$1{ }^{\text {and }}$	180	100	＋0．	ter．	m	209\％	244	150．	＊	531	$1 / 4$	57.	210	3 nm
$5{ }_{5} 5$		17%	＋20	121	ar	\％ 13	2 m	3य－	a007	331	38	1900	1920	mex	1201	wern	2 mb	cas．	4es	1／0es	son	50	mo	3 se	309	1／700
5.5		10.	H_{4}	12.	ary	\cdots	zoor	3151	3seo	323	2017	1 me	nop	1051	v／ee	1370	59	（43）	（146）	1sed	1 la	5 2	ond	3 mo	39	30／6）
$5 \quad 12$		10	12.	44		sse	$2 \mathrm{ac}+1$	344	30）	د790	zest	1813	v／20	ten	4041	1300	ned	200e	203	m	1000	970	17.	680	x	1384
5118		\％	13	115	200	ses	vel	302	${ }^{354}$	3360	421	180）	tumo	1939	131	1301	2000	zma		test	1271	ven	ma	say	w	313
526		to	144	ur	20	800	cose	323	3100	3002	cesor	2100	N00	139	13^{2}	N070	noor	2180	4421	1／00\％	200	41	139	35	28	3 Ba
		104	191	131	za	sin	xim	seof	301	seon	100	2000	Heas	17 co	vaxo	Tsed	ata	7ma	205	1729	1205	1004	30	En	$n 3$	uts）
$5{ }_{5} 13$		w		H2	230	80	may	3120	3me		280	ten	rese	1／30	13,0	ase	2084	zma	2460	$1 / 6$	128	wav	4	3×3	30	3 smem
≤ 20	4	18）	\％ $1 / 3$	${ }^{176}$	2	6 m	200	3176	359	32ss	24.	n94	1000	18 c）	1880	T394	200	20e	\％	1 1／ay	1206	1004	64	Sen	32	3 Pan
${ }_{5}^{5} 27$	4	194	151	133	a	St	1 sem	3198	socs	324	24xa	200	ta／c	1e50	1814	1984．	2084	244	2452	1700	1280	1004	sem	53	320	18＞9
${ }_{5}{ }^{*}$		20）	\％	18．	22	63	830	305	m	3350	200	（3）	173．	seco	1rab	2721	zow	750	3 St	183	vas	vom	as	16.	30．	5
${ }_{5}^{5}$ 14，		10／	12	16	200	5090	7 m	103	seon	xac	mom	1380	5	\％es	ser	2014	man	250	ses	10，	reor	wa	\％／4	\％	40%	39040
521		ws	13／	\％	205	a／	230	3109	2016	3389	205	20s	130）	m－1	＊an	2704	20．4	230	29a4	184	（6）	102	31.	m	15	39504
5 5 5 1	5	at	150	153	2e	48	200	3132	3600	$\mathrm{m} /$	nuy		tses	130	182\％	ท9\％	7 yse	1700	142e－	1／51	${ }^{120}$	190	ma	exa	304	3846
5 5	5	201	$1 / 3$	10	ar	sery	ved	227	3 com	234	20\％	2420	（19）	N／1	24＊	veno	2005	2 com	Sean	win	1 mo	431	56	06	＊＊	1201
$5{ }_{5}^{5}$	5	w	274	4	241	$3{ }^{3}$		men	12 c	sued	2 mb	200	ave．	15000	य19	2en	Dees	209	an1	200\％	1500	1380	1000	10	＊ 41	20011
$5{ }_{5}^{5} 15$	6	40	\％ 9	10	250	\％15	2001	3850	332	3095	1200	200	2tiv	x St	atea	us	2430	4＊201	mal	（0）	1555	2，${ }^{5}$	02	m	54.	＊ornil
$\begin{array}{llllllllllllll}5 & 22 & 6 \\ 5 & 29 & 6\end{array}$	\％	1	11	102	cas_{4}	smy	203\％	zese	3145	so0	atry	2080	tur	19931	2000	211	230	1035	mem	$154 /$	1532	1×0	w	wr	any	
		5	139	105	149	$s \mathrm{~A}-1$	203）	（20）	5403	sond	2 mm	$\times 000$	TYest	1980\％	\％／u	2 va	zuse．	289］	20］d	1944	1010	H94	4×1	102	5000	5 mof

STATE OF NEW HAMPSHIRE, DEPARTMENT OF TRANSPORTATION - BUREAU OF TRAFFIC
IN COOPERATION WITH U.S DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION
AUTOMATIC TRAFFIC RECORDER DATA FOR THE MONTH OF MAY 2016

81269107

LONDONDERRY-I-93 NB OFF RAMP EXIT 4

12 AM	1 AM	2 AM	3 AM	4 AM	5 AM	6 AM	7 AM	8 AM	9 AM	10 AM	11 AM	12 PM	1 PM	2 PM	3 PM	4 PM	5 PM	6 PM	7 PM	8 PM	9 PM	10 PM	11 PM	
101	137	54	35	26	25	97	199	232	339	480	585	707	705	631	676	660	672	653	509	405	272	148	123	8471
70	45	44	36	45	110	242	422	467	423	408	471	492	534	816	1042	1300	1478	1056	615	460	324	210	178	11288
91	59	49	34	41	106	269	442	475	391	453	502	559	572	837	1108	1201	1178	1040	672	480	387	190	194	11330
122	52	50	43	54	90	236	435	494	483	454	398	560	419	911	1076	1152	1128	1024	735	474	359	244	188	11181
122	91	46	41	63	109	254	441	458	405	450	562	587	667	900	1080	1113	1106	913	658	431	392	304	290	11483
150	97	60	42	31	61)	138	295	451	644	593	666	754	816	857	791	795	666	627	521	461	365	291	246	10418

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr}\text { Sum AWDT } & 405 & 247 & 189 & 154 & 203 & 415 & 1001 & 1740 & 1894 & 1702 & 1765 & 1933 & 2198 & 2192 & 3464 & 4306 & 4766 & 4890 & 4033 & 2680 & 1845 & 1462 & 948 & 850 & 45282 \\ \text { AWDT } & 101 & 62 & 47 & 39 & 51 & 104 & 250 & 435 & 474 & 426 & 441 & 483 & 550 & 548 & 866 & 1077 & 1192 & 1223 & 1008 & 670 & 461 & 386 & 237 & 213 & 11321\end{array}$ $\begin{array}{llllllllllllllllllllllllllllllllllll}\text { AWDT } & 101 & 62 & 47 & 39 & 51 & 104 & 250 & 435 & 474 & 426 & 441 & 483 & 550 & 548 & 866 & 1077 & 1192 & 1223 & 1008 & 670 & 461 & 366 & 237 & 213 & 11321\end{array}$

STATE OF NEW HAMPSHIRE, DEPARTMENT OF TRANSPORTATION - BUREAU OF TRAFFIC
IN COOPERATION WITH U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION
LONTOMATIC TRAFFIC RECORDER DATA FOR THE MONTH OF MAY 2016

```
M O
```


81269106 LONDONDERRY-1-93 NB ON RAMP EXIT 4

12 Am	1 AM	2 AM	3 AM	4 AM	5 AM	6 AM	7 AM	8 AM	9 AM	10 AM	11 AM	12 PM	1 PM	2 PM	3 PM	4 PM	5 PM	6 PM	7 PM	$8 . \mathrm{PM}$	9 PM	10 PM	11 PM	
72	51	35	30	25	58	107	194	274	438	603	609	657	599	639	569	546	439	421	377)	303	238	116	76	7476
17	30	31	36	88	224	690	1091	856	610	559	542	591	596	680	830	886	729	619	401	305	223	132	68	10834
42	26	19.	42	75	235	718	1115	877.	608	568	605	619	617	692	798	782	773	572	438	329	206	146	74	10976
39	26	31	35	78	238	697	1068	865	691	591	618	759	654	753	871	930	886	633	433	332	252	167	85	11732
49	37	40	48	62	237	669	1043	899	650	618	625	703	688	806	945	878	859	627	465	377	296	223	134	11978
80	51	43	40	48	87	209	341	500	569	641	733	773	740	715	712	644	556	502	413)	338	279	225	153	9392

$\begin{array}{lllllllllllllllllllllllllllllllllllll}\text { Surt AWDT } & 147 & 119 & 121 & 161 & 303 & 934 & 2774 & 4317 & 3497 & 2559 & 2336 & 2390 & 2672 & 2555 & 2931 & 3444 & 3476 & 3247 & 2451 & 1737 & 1343 & 977 & 668 & 361 & 45520\end{array}$ $\begin{array}{llllllllllllllllllllllllllllllllllll}\text { AWDT } & 37 & 30 & 30 & 40 & 76 & 234 & 694 & 1079 & 874 & 640 & 584 & 598 & 668 & 639 & 733 & 861 & 869 & 812 & 613 & 434 & 336 & 244 & 167 & 90 & 11380\end{array}$

STATE OF NEW HAMPSHIRE, DEPARTMENT OF TRANSPORTATION - BUREAU OF TRAFFIC
N COOPERATION WITH U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION AUTOMATIC TRAFFIC RECORDER DATA FOR THE MONTH OF MAY 2016

	E		12 AM	1 AM	2 AM	3 AM	4 AM	5 Am	6 AM	7 AM	8 AM	9 AM	10 AM	11 AM	12 PM	1 PM	2 PM	3 PM	4 PM	5 PM	6 PM	7 PM	8 PM	9 PM	10 PM	11 PM	
5	8	\dagger	112	68	45	20	30	68	85	192	318	424	523	629	636	686	554	632	550	496	458	340	300	187	118	63	7534
5	3	3	72	25	27	41	103	265	537	776	784	518	561	528	543	693	674	852	917	949	629	442	347	258	143	101	10785
5	4	4	58	34	28	48	104	277	544	773	770	537	545	598	615	570	689	804	621	953	647	435	318	251	165	88	10472
5	5	5	63	23	26	37	104	270	522	745	752	545	578	577	564	677	656	833	957	948	630	430	340	320	202	110	10911
5	6	6	76	53	45	38	112	263	511	717	734	553	619	604	665	694	724	896	950	956	674	502	357	286	218	155	11402
5	7	7	95	59	43	27)	54	92	174	344	444	523	528	626	607	638	623	693	615	636	520	405	325	289	223	155	8738

STATE OF NEW HAMPSHIRE, DEPARTMENT OF TRANSPORTATION - BUREAU OF TRAFFIC
IN COOPERATION WITH U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION
AUTOMATIC TRAFFIC RECORDER DATA FOR THE MONTH OF MAY 2016

STATE OF NEW HAMPSHIRE, DEPARTMENT OF TRANSPORTATION - BUREAU OF TRAFFIC
IN COOPERATION WITH U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION

STATE OF NEW HAMPSHIRE, DEPARTMENT OF TRANSPORTATION - BUREAU OF TRAFFIC
IN COOPERATION WITH U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION

- D 81269103 LONDONDERRYTOMATIC TRAFFIC RECORDER DATA FOR THE MONTH OF MAY 2016
$\begin{array}{lll}\circ \\ \text { N } & \text { A } & \text { A } \\ \text { E }\end{array}$

5	8		27	49	28	19	26	17	40	72	106	161	247	269	277	270	282	260	276	234	231	191	173	116	83	53	3507
5	29	1	48	34	25	17	29	18	48	84	129	135	185	231	224	256	234	234	184	193	193	172	120	103	98	71	3065
5	30	2	41	29	19	12	18	17	40	53	85	111	142	173	201	223	218	203	185	176	200	163	125	108	88	49	2679
5	3	3	36	43	41	42	81	165	299	387	327	292	266	299	322	365	418	478	503	356	412	287	187	144	112	88	5950
5	24	3	48	36	34	45	74	178	320	422	321	253	240	319	290	305	391	491	555	479	389	308	207	149	132	88	6074
5	31	3	18	23	19	41	60	193	294	375	366	295	310	315	352	318	404	536	553	515	362	292	199	199	126	102	6267
5	25	4	51	39	48	36	88	172	319	443	336	294	273	323	320	311	415	511	507	505	425	289	240	157	140	110	6452
5	26	5	64	40	38	42	93	159	300	371	345	315	256	311	311	258	547	470	491	502	391	304	223	192	142	116	6281
5	6	6	54	53	39	43	67	183	260	386	341	244	305	349	377	379	584	507	525	441	352	254	217	181	153	127	6421
5	27	6	70	37	36	39	91	180	285	419	379	306	321	365	416	405	481	438	450	409	288	253	218	163	136	124	6309
5	7	7	82	60	28	29	38	34	97	118	174	236	246	317	306	301	338	340	303	276	287	220	181	144	139	92	4386
5	28	7	53	49	23	29	22	42	88	131	186	240	277	509	299)	259	264	221	205	220	185)	178	136	141	120	102	3979

$\begin{array}{lllllllllllllllllllllllllllllllllllll}\text { Sum AWDT } & 341 & 271 & 255 & 288 & 554 & 1230 & 2077 & 2803 & 2415 & 1999 & 1971 & 2281 & 2388 & 2341 & 3240 & 3431 & 3584 & 3307 & 2619 & 1987 & 1491 & 1185 & 941 & 755 & 43754\end{array}$
excl $5 / 30$ - Holiday

STATE OF NEW HAMPSHIRE, DEPARTMENT OF TRANSPORTATION - BUREAU OF TRAFFIC
IN COOPERATION WITH U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION
AUTOMATIC TRAFFIC RECORDER DATA FOR THE MONTH OF MAY 2016

$\begin{array}{lllll}n & 0 & \text { D } \\ 0 & \text { A } & \text { A } \\ 0 & 69102 \\ \text { LONDONDERRY-I-93 NB ON RAMP EXIT } 5\end{array}$

	E		12 AM	1 AM	2 AM	3 AM	4 AM	5 AM	6 AM	7 AM	B AM	9 AM	10 AM	11 AM	12 PM	1 PM	2 PM	3 PM	4 PM	5 PM	6 PM	7 PM	8 PM	9 PM	10 PM	11 PM	otal
5	8	1	75	31	27	17	261	53	86	147	256	417	451	530	526	525	541	445	463	397	391	326	254	159	138	53	633
5	29	1	58	45	30	17	21	60	116	186	237	356	456	485	507	440	475	426	356	333	267	230	216	152	120	94	568
5	30	2	38	28	23	23	26.	58	123	136	182	283	364	451	447	426	418	386	360	305	307	248	241	163	108	78	522
5	3	3	61	34	26	66	79	597	593	1083	796	512	447	460	491	507	675	825	858	857	555	381	294	192	139	71	1019
5	24	3	82	36	32	75	99	222	615	1008	736	513	472	518	454	494	716	806	813	792	544	423	305	205	733	95	1018
5	31	3	42	21	25	54	75	231	624	1007	830	566	557	516	513	481	751	823	799	768	525	458	305	225	151	86	10433
5	4	4	85	35	51	46	70.	216	619	986	823	520	511	497	535	528	688	778	820	744	488	384	299	174	144	78	10119
5	25	4	105	69	45	63	80	246	633	965	834	569	478	547	534	553	708	863	823	821	636	436	352	250	166	98	1087
5	5	5	93	30	25	47	89	199	595	990	853	574	510	528	566	529	722	919	859	819	526	484	284	237	135	95	1070
5	26	5	115	68	33	56	108	247	604	1013	884	615	550	578	511	517	738	876	796	841	568	456	360	235	213	117	1110
5	6	6	112	48	39	63	80	220	600	939	800	585	548	591	635	620	733	901	861	821	615	505	380	244	224	136	1130
5	27	6	100	58	38	57	100	242	575	938	797	632	584	610	650	611	780	862	697	674	599	464	324.	292	207	140	1103
5	7	7	111	42	32	37	45	96	197	350	443	516	578	634	594	613	647	527	522	502	437	374	301	230	190	126	8146
5	28	7	89	45	32	57	46	94	195	356	442	536	559	493	542	486	586	534	478	431	350	319	264	207	150	104	739

 AWDT $59 \quad 8$ 6069

STATE OF NEW HAMPSHIRE, DEPARTMENT OF TRANSPORTATION - BUREAU OF TRAFFIC
N COOPERATION WITH U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION

$\stackrel{3}{0}$	0	0	81269099		ONDO		AUTOMATIC TRAFFIC RECORD RY-1-93 SB OFF RAMP EXIT 5																				
	E		12 AM	1 AM	2 AM	3 AM	4 AM	5 AM	6 AM	7 AM	8 AM	9 AM	10 AM	11 AM	12 PM	1 PM	2 PM	3 PM	4 PM	5 PM	6 PM	7 PM	8 PM	9 PM	10 PM	11 PM	tal
5	8	1	90	63	53.	30	35	39	67	141	228	332	447	559	561	562	556	527	472	452	362	346	269	189	131	61	6572
5	29	1	97	62	36	20	18	25	109	152	219	283	345	408	427	444	449	420	422	401	388	304	249	236	150	112	5776
5	30	2	75	38	33	16	26	40	72	129	152	223	305	415	458	441	497	472	419	360	342	340	274	223	161	75	5586
5	3	3	47	37	34.	47	149	321	739	737	629	450	394	433	494	513	601	780	905	943	584	436	329	279	150	103	10134
5	24	3	47	35	33	40	157	301	666	647	902	465	446	512	495	447	564	752	899	962	584	435	344.	283	143	121	10280
5	31	3	56	28	23	40	160	295	741	821	706	502	472	493	547	548	677	820	893	908	544	444	327	291	198	118	10651
5	4	4	56	45	27	42	146	306	704	746	633	442	418	482	496	516	586	793	1127	1090	708	378	337	270	147	99	10594
5	25	4	71	71	33	41	171	323	738	754	610	483	448	510	527	571	622	848	923	977	614	437	433	351	168	126	10850
5	5	5	72	38	35	41	163	305	690	866	414	252	457	499	526	520	674	798	977	890	653	434	369	324	161	139	10297
5	26	5	113	60	34.	61	142	313	687	791	674	484	472	535	523	578	639	831	889	971	620	485	374	347	227	158	11008
5	6	6	75	59	44	45	173	273	714	763	649	500	459	512	584	582	644	871	940	996	618	464	356	329	216	169	11035
5	27	6	81	42	28	57	122	256	707	768	601	514	461	539	577	581	669	837	822	718	482	432	336	292	223	169	10314
5	7	7	91	64	37	38	30	100	167	311	399	443	488	523	542	561	620	621	598	547	435	335	307	297	197	159	7910
5	28	7	110	61	53	42	27	60	177	276	391	428	426	457	473	469	463	450	438	456	393	348	309	319	207	159	6992

$\begin{array}{lllllllllllllllllllllllllllllllll}\text { Sum AWDT } & 618 & 415 & 291 & 414 & 1383 & 2693 & 6386 & 6893 & 5818 & 4091 & 4027 & 4515 & 4769 & 4856 & 5676 & 7330 & 8375 & 8455 & 5407 & 3945 & 3205 & 2766 & 1633 & 1202 & 95163\end{array}$

exct 5-24
6246

STATE OF NEW HAMPSHIRE, DEPARTMENT OF TRANSPORTATION - BUREAU OF TRAFFIC
IN COOPERATION WITH U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION
AUTOMATIC TRAFFIC RECORDER DATA FOR THE MONTH OF MAY 2016
LONDONDERRY- I-93 SB ON RAMP EXIT 5
$\stackrel{A}{A}$

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr}\text { Surn AWDT } & 521 & 295 & 375 & 579 & 1874 & 4065 & 5255 & 5186 & 4425 & 3686 & 3119 & 2869 & 3093 & 2900 & 3436 & 4244 & 4171 & 4271 & 2587 & 1784 & 1337 & 986 & 739 & 537 & 62334 \\ \text { AWDT } & 52 & 30 & 38 & 58 & 187 & 407 & 526 & 519 & 443 & 369 & 312 & 287 & 309 & 290 & 344 & 424 & 417 & 427 & 259 & 178 & 134 & 99 & 74 & 54 & 6233\end{array}$ AWDT -

DERRY
CRYSTAL AVE SO OF TSIENNETO RD STATE COUNT

438 Dubuque Street, Manchester, NH 03102
Tel: 603-669-4664 Fax:603-669-4350
Web: www.snhpc.org

Latitude: $0^{\prime} 0.0000$ Undefined

DERRY FOLSOM RD WEST OF NH 28 STATE COUNT

DERRY
PINKERTON ST
EAST OF TSIENNETO RD
STATE COUNT

438 Dubuque Street, Manchester, NH 03102
Tel: 603-669-4664 Fax:603-669-4350
Web: www.snhpc.org

Latitude: $0^{\prime} 0.0000$ Undefined

438 Dubuque Street, Manchester, NH 03102
Tel: 603-669-4664 Fax:603-669-4350
Web: www.snhpc.org

DERRY
CHESTER RD EAST OF SILVESTRI CIR
STATE COUNT

Tel: 603-669-4664 Fax:603-669-4350
Web: www.snhpc.org

Latitude: $0^{\prime} 0.0000$ Undefined

DERRY
NO. MAIN ST
NO OF ACADEMY DR
STATE COUNT

438 Dubuque Street, Manchester, NH 03102
Tel: 603-669-4664 Fax:603-669-4350
Web: www.snhpc.org
Site Code: 82119052 Station ID:

Latitude: $0^{\prime} 0.0000$ Undefined

DERRY
NO. MAIN ST
NO OF TSIENNETO RD
STATE COUNT

438 Dubuque Street, Manchester, NH 03102
Tel: 603-669-4664 Fax:603-669-4350
Web: www.snhpc.org
Site Code: 82119062 Station ID:

Latitude: $0^{\prime} 0.0000$ Undefined

DERRY
SO. MAIN ST SO OF THORTON ST STATE COUNT

DERRY
TSIENNETO RD
WEST OF CHESTER RD
STATE COUNT

438 Dubuque Street, Manchester, NH 03102
Tel: 603-669-4664 Fax:603-669-4350
Web: www.snhpc.org

Latitude: $0^{\prime} 0.0000$ Undefined

Southern New Hampshire Planning Commission

LONDERRY
NH 102 (NASHUA RD)
@ DERRY T/L
STAATE COUNT

38 Dubuque Street, Manchester, NH 03102
Tel: 603-669-4664 Fax:603-669-4350
Web: www.snhpc.org

Latitude: $0^{\prime} 0.0000$ Undefined

LONDONDERRY NH 28 (ROCKINGHAM RD) @ DERRY T/L STATE COUNT

Tel: 603-669-4664 Fax:603-669-4350
Web: www.snhpc.org

LONDONDERRY GILCREST RD NO OF NH 102 STATE COUNT

438 Dubuque Street, Manchester, NH 03102
Tel: 603-669-4664 Fax:603-669-4350
Web: www.snhpc.org

AUTOMATIC TRAFFIC RECORDER DATA FOR THE MONTH OF APRIL 2014
 82119071 DERRY- NH 102 (EAST BROADWAY) WEST OF ABBOT ST
r
12 AM 1 AM 2 AM 3 AM 4 AM 5 AM 6 AM 7 AM 8 AM 9 AM 10 AM 11 AM 12 PM
1
3
4
TYPE STATION YEAR MONTH
NO.
$82 \quad 119071 \quad 2014$ April
DAYS
AVERAGE
SUNDAY
11422

PEAK HOUR VOLUMES: AVERAGE AM: AVERAGE MIDDAY: AVERAGE PM:

SUNDAY	AVERAGE AM:	AVERAGE MIDDAY: AVERAGE PM:		
WEEKDAY	641	1073	878	AM - 6 AM TO 10 AM
SATURDAY	1020	876	1148	MIDDAY - 10 AM TO 2 PM
	1060	1136	1153	PM - 2 PM TO 8 PM

STATE OF NEW HAMPSHIRE, DEPARTMENT OF TRANSPORTATION - BUREAU OF TRAFFIC
IN COOPERATION WITH U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION
AUTOMATIC TRAFFIC RECORDER DATA FOR THE MONTH OF APRIL 2014

M	D
O	A
N	T
	E
4	20
4	15
4	16
4	17
4	18
4	19

AUTOMATIC TRAFFIC RECORDER DATA FOR THE MONTH OF APRIL 2014

M	D
O	A
N	T
	E
4	2
4	1
4	1
4	1
4	1
4	1

82119091 DERRY-FORDWAY ST OVER BEAVER BROOK

$\begin{array}{lc}\mathbf{M} & \mathbf{D} \\ \mathbf{O} & \mathbf{A} \\ \mathbf{N} & \mathbf{T} \\ & \mathrm{E} \\ \mathbf{4} & 20 \\ 4 & 15 \\ 4 & 16 \\ 4 & 17 \\ 4 & 18 \\ 4 & 19\end{array}$

20	1
15	3
16	4
17	5
18	6
19	7

TYPE	Station	YEAR	MONTH	NO. DAYS
82	119091	2014	April	6

AVERAGE	AVERAGE
SUNDAY	WEEKDAY
3703	5856

PEAK HOUR VOLUMES:
AVERAGE AM: AVERAGE MIDDAY: AVERAGE PM:

SUNDAY	215	335	295	AM - 6 AM TO 10 AM
WEEKDAY	410	372	481	MIDDAY - 10 AM TO 2 PM
SATURDAY	492	570	589	PM - 2 PM TO 8 PM

AUTOMATIC TRAFFIC RECORDER DATA FOR THE MONTH OF APRIL 2014

$\begin{array}{lll}\text { O } & \text { A } & \text { A } \\ \mathrm{N} & \mathrm{T} & \mathrm{Y}\end{array}$
 N T E

| TYPE | STATION | YEAR | MONTH |
| ---: | :---: | :---: | :---: | :---: | :---: |
| 82 | 119060 | 2014 | April |
| | | | PEAK HOUR VOLUMES: |

NO.	AVERAGE
DAYS	SUNDAY
5	1288

AVERAGE SATURDAY

14391767
1767
COMPUTE
VOLUME
53023

AVERAGE AM:
76
99 101

AVERAGE MIDDAY: AVERAGE PM:
SUNDAY
WEEKDAY
SATURDAY

128
144
129

107
171
138

AM - 6 AM TO 10 AM MIDDAY - 10 AM TO 2 PM PM - 2 PM TO 8 PM

62269054 LONDONDERRY- NH 28 (ROCKINGHAM RD) EAST OF PERKINS RD

| 182 | 77 | 44 | 58 | 65 | 98 | 143 | 281 | 576 | 631 | 811 | 975 | 896 | 1014 | 994 | 931 | 1054 | 1034 | 853 | 769 | 576 | 392 | 249 | 151 | 12854 |
| ---: |
| 163 | 96 | 116 | 114 | 233 | 663 | 1009 | 1361 | 1432 | 1071 | 958 | 1031 | 1005 | 1072 | 1094 | 1457 | 1593 | 1607 | 1139 | 818 | 729 | 462 | 334 | 223 | |
| 171 | 105 | 98 | 118 | 257 | 640 | 1065 | 1409 | 1401 | 1107 | 1004 | 1022 | 1108 | 1134 | 1198 | 1504 | 1623 | 1757 | 1253 | 909 | 752 | 527 | 387 | 240 | 20789 |
| 206 | 132 | 103 | 117 | 196 | 564 | 1003 | 1289 | 1376 | 1141 | 1060 | 1006 | 1143 | 1147 | 1455 | 1605 | 1758 | 1721 | 1312 | 1090 | 723 | 493 | 452 | 339 | |
| 257 | 132 | 101 | 104 | 117 | 202 | 277 | 435 | 598 | 751 | 902 | 951 | 1078 | 993 | 1056 | 975 | 933 | 790 | 686 | 599 | 494 | 453 | 322 | 258 | 13464 |

TYPE	STATION	YEAR	MONTH	NO.
62	269054	2014	July	DAY
				5

PEAK HOUR VOLUMES:

AVERAGE AM: AVERAGE MIDDAY: AVERAGE PM:

SUNDAY
WEEKDAY
SATURDAY
631
1406
751

1014	1054
1118	1707
1078	1056

AM - 6 AM TO 10 AM
MIDDAY - 10 AM TO 2 PM PM - 2 PM TO 8 PM

STATE OF NEW HAMPSHIRE, DEPARTMENT OF TRANSPORTATION - BUREAU OF TRAFFIC
IN COOPERATION WITH U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION
AUTOMATIC TRAFFIC RECORDER DATA FOR THE MONTH OF JUNE 2015

M	D
O	A
N	T
	E
6	28
6	24
6	25
6	26
6	27

82119070 DERRY-NH 28 (CRYSTAL AVE) SOUTH OF ROLLINS ST

$\begin{array}{lll}\text { O } & \text { A } & \text { A } \\ \mathrm{N} & \mathrm{T} & \mathrm{Y}\end{array}$
.
$12 \mathrm{AM} 1 \mathrm{AM} 2 \mathrm{AM} 3 \mathrm{AM} 4 \mathrm{AM} 5 \mathrm{AM} 6 \mathrm{AM} 7 \mathrm{AM} 8 \mathrm{AM} 9 \mathrm{AM} 10 \mathrm{AM} 11 \mathrm{AM} 12 \mathrm{PM} 1 \mathrm{PM} 2 \mathrm{PM} \quad 3 \mathrm{PM} \quad 4 \mathrm{PM} 5 \mathrm{PM} 6 \mathrm{PM} 7 \mathrm{PM} 8 \mathrm{PM} 9 \mathrm{PM} 10 \mathrm{PM} 11 \mathrm{PM}$ Total

28	1	135	69	39	24	31	52	105	249	313	556	693	809	932	952	875	861	808	789	741	678	456	342	217	101	827
24	4	118	62	26	31	80	185	374	627	771	804	905	973	1040	1028	1040	1011	1137	1161	1012	892	810	576	336	203	15202
25	5	117	54	38	29	74	181	392	642	823	816	862	1068	1110	1071	1079	1050	1094	1130	966	854	773	572	394	205	15394
26	6	119	59	39	28	75	194	370	620	727	829	867	1036	1125	1144	1127	1081	1139	1230	1137	955	779	694	436	297	16107
27	7	178	90	55	41	56	110	207	402	574!	842	1051	1061	1128	1054	1018	1003	882	894	815	759	618	529	331	163	13861

TYPE	STATION	YEAR	MONTH
82	119070	2015	June

NO.	AVERAGE	AVERAGE	AVERAGE	AVERAGE	COMPUTED	PERCENT	PERCENT
DAYS	SUNDAY	WEEKDAY	SATURDAY	DAILY	VOLUME	GAIN	LOSS
5	10827	15568	13861	14708	441241		

PEAK HOUR VOLUMES:

> AVERAGE AM: AVERAGE MIDDAY: AVERAGE PM:
SUNDAY
WEEKDAY
SATURDAY
556
819
842

952	875
1098	1174
1128	1018

AM - 6 AM TO 10 AM
MIDDAY - 10 AM TO 2 PM

MIDDAY - 10 AM TO 2 PM
PM - 2 PM TO 8 PM

AUTOMATIC TRAFFIC RECORDER DATA FOR THE MONTH OF APRIL 2014

M
\mathbf{O}
N

$\begin{array}{lll}\text { O } & \text { A } & \text { A } \\ \text { N } & \text { T } & \text { Y }\end{array}$
E
12 AM 1 AM 2 AM 3 AM 4 AM 5 AM 6 AM 7 AM 8 AM 9 AM 10 AM 11 AM 12PM 1PM 2 PM 3 PM 4PM 5 PM 6 PM 7 PM 8 PM 9 PM 10 PM 11 PM Total

20	1	25	16	7	10	11	39	51	102	154	224	292	324	404	284	226	235	205	271	249	207	139	68	43	23	3609
15	3	12	5	8	5	39	100	306	405	382	331	354	411	488	417	454	551	665	608	461	314	203	107	54	43	6723
16	4	15	14	9	4	29	106	281	386	357	369	404	471	483	428	496	603	619	678	561	366	218	108	61	34	7100
17	5	18	11	9	8	34	125	327	419	424	345	408	456	548	483	576	613	768	753	556	382	254	182	71	60	7830
18	6	21.	17	6	6	31.	98	255	380	419	427	438	568	559	512	651	724	777	707	574	419	257	196	94	67	8203
19	7	24	14	13	,	17	40	89	226	345	457	563	636	662	599	629	613	516	468	449	290	259	146	95	53	7212

TYPE STATION YEAR MONTH NO.
$82119059 \quad 2014 \quad$ April
NO.
DAYS

AVERAGE	AVERAGE
SUNDAY	WEEKDAY
3609	7464

AVERAGE
SATURDAY SATURDAY
AVERAGE
DAILY
COMPUTED
VOLUME
PERCENT PERCENT GAIN LOSS

PEAK HOUR VOLUMES:
AVERAGE MIDDAY: AVERAGE PM:

SUNDAY	224
WEEKDAY	410
SATURDAY	457

404	271
522	722
662	629

AM - 6 AM TO 10 AM MIDDAY - 10 AM TO 2 PM PM - 2 PM TO 8 PM

STATE OF NEW HAMPSHIRE, DEPARTMENT OF TRANSPORTATION - BUREAU OF TRAFFIC
IN COOPERATION WITH U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION
AUTOMATIC TRAFFIC RECORDER DATA FOR THE MONTH OF JUNE 2015

M	D
O	A
N	T
	E
6	28
6	24
6	25
6	26
6	27

82269015 LONDONDERRY-ASH ST EAST OF LONDONDERRY RD

12 AM 1 AM 2 AM 3 AM 4 AM 5 AM 6 AM 7 AM 8 AM 9 AM 10 AM 11 AM 12 PM 1 PM 2 PM 3 PM 4 PM 5 PM 6PM 7PM 8PM 9 PM 10 PM 11 PM Total

40	22	11	12	15	23
28	12	13	15	50	107
29	16	20	18	43	103
37	13	14	11	36	104
25	40	18	13	29	49

TYPE	STATION	YEAR	MONTH
82	269015	2015	June

NO.	AVERAGE
DAYS	SUNDAY
5	4958

AVERAGE
WEEKDAY
7812

AVERAGE	AVERAGE	COMPUTED
SATURDAY	DAILY	VOLUME
6782	7294	218824

PERCENT PERCENT
GAIN LOSS

PEAK HOUR VOLUMES:

AVERAGE AM:
AVERAGE MIDDAY: AVERAGE PM:

SUNDAY	273	490	471	AM - 6 AM TO 10 AM
WEEKDAY	427	529	723	MIDDAY - 10 AM TO 2 PM
SATURDAY	524	630	566	PM - 2 PM TO 8 PM

STATE OF NEW HAMPSHIRE, DEPARTMENT OF TRANSPORTATION - BUREAU OF TRAFFIC
AUTOMATIC TRAFFIC RECORDER DATA FOR THE MONTH OF SEPTEMBER 2015

STATE OF NEW HAMPSHIRE, DEPARTMENT OF TRANSPORTATION - BUREAU OF TRAFFIC

AUTOMATIC TRAFFIC RECORDER DATA FOR THE MONTH OF JULY 2015

M	D	D	82	269048
O	A	A	LONDONDERRY- NH 102 (NASHUA RD) EAST OF HAMPTON DR	
N	T	Y		

12 AM 1 AM 2 AM 3 AM 4 AM 5 AM 6 AM 7 AM 8 AM 9 AM 10 AM 11 AM 12 PM 1 PM 2 PM $\quad 3$ PM 4 PM 5 PM 6 PM 7 PM 8 PM 9 PM 10 PM 11 PM \quad Total

	WB	NB				EB	
	RT	TH	RT	LT	TH	LT	Total
$700-800$	518	813	188	187	505	527	2738
$715-815$	520	803	199	207	534	562	2825
$730-830$	455	836	210	219	568	562	2850
$745-845$	399	856	217	231	577	540	2820
$800-900$	346	847	202	223	573	514	2705

Growth rates:			
Annual	2014>2015	1.025	
-	2016-2015	0.975	
Seasonal			
		AM Peak	PMPeak
	Adj Factor=	0.96	0.9

	Total Adjustments:			$\begin{aligned} & 2014->2015 \\ & 2016->2015 \end{aligned}$	AM Peak 0.984 0.936	PM Peak 1.0045 0.9555									
		2016-Raw		\|2016-AADT				\|2015-AAD				\|2015-AW	DT- Balance	ed from TMC	C and ATRs
		AM Peak (730-830)	PM Peak (445-545)	AM Peak (730-830)	Approach Totals	PM Peak (445-545)	Apgroach Totals	AM Peak (730-830)	Approach	$\begin{aligned} & \text { PM Peak } \\ & \text { (445-545) } \end{aligned}$	Approach Totals	AM Peak (730-830)	Approach	PM Peak (445-545)	Approach
EB	IT	0	0	0	1475	0	1336	0	1439	0	1302	0	1580	,	1235
	Thru	849	1052	815		1031		795		1005		915		935	
	RT	687	311	660		305		644		297		665		300	
WB	LT	0	0	0	1078	0	1138	0	1051	0	1110	0	1085	0	1065
	Thru	589	917	565		899		551		877		565		850	
	RT	534	244	513		239		500		233		520		215	
NB	LT	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Thru	0	0	0		0		0		0		0		0	
	RT	0	0	0		0		0		0				0	
SB	IT	246	300	235	777	294	963	230	757	287	939	260	755	280	925
	Thru	0	-	0		0		0		0		0		0	
	RT	564	683	541		659		527		652		495		645	
	rotal	3469	3507	3330	3330	3437	3437	3247	3247	3351	3351	3420	3420	3225	3225
				Use Seasonal Factor				Use Annual	Factor						

				SB		WB		EB		
		tota		BT	LT	TH	LT	RT	TH	Tota)
0.41	0.59	595	700-800	242	353	660	235	225	325	2150
0.4	0.6	726	715-815	287	439	673	211	223	359	2298
0.39	0.61	815	730-830	319	496	638	192	226	351	2334
0.38	0.62	885	745-845	333	552	504	155	206	463	2288
0.38	0.62	870	800.900	329	541	534.	126	198	438	2167

	Southbound (Ex 5 5B Off-Ramp)					Westbound ($\mathrm{NH}^{\text {28) }}$						und	Fastbound (NH 28)					
Time Period Class.	R	T	t	1	0	T	1	u	1	0	1	0	R	τ	u	1	0	Total
Peak 1 Ughts	301	0	467	768	0	589	179	D	768	863	0	37	198	396	0	594	890	2130
Specified Period *	948	∞	Ss\%	sax	0	520\%	938	os	93 K	90\%	ar	\$n	sas	8ex	a	3_{50}	93 x	9
7.00 AM. 9.15 Arther Veficles	18	0	29	47	0	49	13	0	62	96	0	41	28	67	0	95	67	204
One Hour Peak	6	∞	¢	$6 \times$	as	${ }^{\text {ex }}$	7	as	78	108	0	20x	12\%	198	o*	${ }^{24 *}$	π	\%
7:30 AM-8:30 At Total	319	0	496	815	0	638	192	0	830	959	0	418	226	463	0	689	957	2334
PHF	0.72	0	0.76	074	0	0.72	0.76	a	0.73	0.89	0	-84	0.9	093	0	0.92	082	0.89
Apersach \%				35\%	on				368	s15	*	ts				$3 \times$	${ }^{118}$	
	SB		wB		ER													
	RT	$1 T$	TH	LT	RT	TH	Total											
400-500	237	579	459	125	248	441	22											
415-515	262	597	424	119	275	458	23											
430-530	284	650	440	116	271	470	24											
445-545	287	690	482	116	247	648	24											
500-500	266	625	499	114	236	641	239											
	Southbound (Ex 5 58 Off-Ramp)					Westbound (NH 28)					Northbound			Eastbound (NH 28)				
Time Period Class.	R	T	1	1	0	T	1	0	1	0	1	0	R	T	\checkmark	1	0	Total
Peak 1 Lghts	267	2	672	941	0	452	115	0	567	1293	0	349	232	621	0	853	719	2351
Specified Period *	93x	200s	20x	se*	\%	905	93	on	\$5\%	T\%	0	950	9**	978	∞	958	934	95s
A:00-PM - 6.15 Prother Vehicle:	20	0	18	38	0	30	1	0	31	38	0	15	15	20	0	35	50	104
One Hour Peak *	*	\%	${ }^{36}$	**	\%	8*	15	5	58	\%	0x	ex	6x	$3{ }^{3}$	∞	4*	\%	4
4.45.PM-3.45 P\% Total	287	2	690	979	0	482	116	0	598	1331	0	365	247	641	0	888	769	2465
PHF	0.91	0.5	091	0.91	6	0.87	0.83	0	0.86	0.9	0	0.81	0.74	0.9	0	0.87	0.9	0.91
Apersaech*				cos	∞				258	sex	\cdots							

Seasonal:

	w			NE			${ }_{\text {eb }}$			58			
	${ }_{\text {ri }}$	TH	IT	R τ	IH	IT	RT	TH	IT	RT	TH	LT	Total
700-800													2738
715-815	28	1167	1	1	0	0	1	556	80	111	0	12	1957
730.830													2850
745-895													2820
800.900													2705

Seasonal:
intersection Turning Movement Counts

$$
\text { May-16 } \quad \text { Adj Factor }=\quad 0.96 \quad 0.98
$$

	SB		NB			EB			
	TH	RT	TH	LT		RT		LT	Total
700-800									0
715-815									0
730-830	184	247	131		3		9	190	764
745.845									0
800-900									0

Southbound (N. High St.)							Northbound (N. High St.)					Eastbound (Ash 5t. Ext.)				
Time Period Class.	R	T	U	1	0	T	1	U	1	0	R	1	U	1	0	Total
Peak 1 Lights	244	177	0	421	307	126	2	0	128	186	9	181	0	190	246	739
Specified Peria *	996	96%	0\%	98\%	95\%	95\%	67\%	as	96\%	965	100\%	95s.	σ	95\%	98\%	975
7:00 AM - 9:15 AOther Vehicles	3	7	0	10	14	5	1	0	6	7	0	9	0	9	4	25
One Hour Peal \%	1\%	4\%	08	2\%	4\%	45	33\%	0\%	45	\%	08\%	5\%	0%	5\%	2\%	3\%
7:30 AM-8:30 A Total	247	184	0	431	321	131	3	0	134	193	9	190	0	199	250	764
PHF	0.76	0.82	0	0.93	0.89	0.89	0.75	0	0.91	0.85	0.38	0.86	0	0.89	0.76	0.92
ADproach \%				56\%	425\%				18\%	25\%				26\%	33\%	

8 Location: North High St at Ash St Ext

	Southbound (N. High St.)					Northbound (N. High St.)						Eastbound (Ash 5t. Ext.)				
Time Period Class.	R	T	U	I	0	T	1	u	1	0	R	1	U	1	0	Total
Peak 1 Lights	273	173	0	446	735	296	2	0	298	179	6	439	0	445	275	1189
Specified Period \%	99\%	993\%	0 0\%	99\%	99\%	95\%	100\%	0\%	98\%	99\%	100%	996\%	0\%	99\%	99\%	59\%\%
4:00 PM - 6:15 PNOther Vehicles	3	2	0	5	9	6	0	0	6	2	0	3	0	3	3	14
One Hour Peak \%	1\%	1%	0%	1\%8	1%	2\%	0%	0%	28	1\%	OS	1\%	0\%	1\%	1\%	1\%
5:00 PM -6:00 PM Total	276	175	0	451	744	302	2	0	304	181	6	492	0	448	278	1203
PHF	0.9	0.74	0	0.87	0.94	0.87	0.5	0	0.87	0.75	0.5	0.9	0	0.9	0.89	0.93
Approsch \%				37\%	62\%				25\%	15\%				37\%	23\%	

Growth rates:		
Annual	2014->2015	1.025
	2016 >2015	0.975
Seasonal:		
Intersection	ning Movem	unts

| | | | AM Peak |
| :--- | :--- | :---: | :---: | PM Peak

	SB			NB			EB				
	TH	RT		TH	LT		RT		LT		Total
700-800											0
715.815											0
730-830	428		18	326		0		2		12	786
745-845											0
800-900											0

Project: Exit 4a SDEIS

Growth rates:		
Annual	2014->2015	1,025
	2016->2015	0.975
Seasonal:		
Intersection T	urning Movem	Counts

Intersection Turning Movement Counts

May-16				Adj Factor $=\quad$AM Peak 0.96		PM Peak.											
				0.98													
	2016-Raw					\|2016-AADT				2015-AADT				2015 - AWDT-Rounded			
		$\begin{aligned} & \text { AM Peak } \\ & (700-800) \end{aligned}$	$\begin{aligned} & \text { PM Peak } \\ & (400-500) \end{aligned}$	$\begin{aligned} & \text { AM Peak } \\ & (700-800) \end{aligned}$	Approach Totals	$\begin{aligned} & \text { PM Peak } \\ & (500-600) \end{aligned}$	Approach Totals	$\begin{aligned} & \text { AM Peak } \\ & (745-845) \end{aligned}$	Approach Totals	$\begin{aligned} & \text { PM Peak } \\ & \text { (445-545) } \end{aligned}$	Approach Totals	$\begin{aligned} & \text { AM Peak } \\ & (745-845) \end{aligned}$	Approach Totals	$\begin{aligned} & \text { PM Peak } \\ & (445-545) \end{aligned}$	Approach Totals		
E	LT	0	0	0	635	0	1151	0	619	0	1122	0	620	0	1125		
	Thru	399	690	383		676		373		659		375		660			
	RT	263	485	252		475		246		463		245		465			
WB	LT	84	118	81	661	116	693	79	645	113	676	80	645	115	680		
	Thru	604	589	580		577		566		563		565		565			
	RT	0	0	0		0		0		0		0		0			
NB	LT	231	189	222	303	185	307	216	295	180	299	215	295	180	300		
	Thru	0	0	0		0		0		0		0		0			
	RT.	84	124	81		122		79		119		80		120			
SB	LT	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	Thru	0	0	0		0		0		0		0		0			
	RT	0	0	0		0		0		0		0		0			
	total	1665	2195	1599	1599	2151	2151	1559	1559	2097	2097	1560	1560	2105	2105		
				Use Seasonal Factor				Use Annual Balance to	Factor NB ramp								

	WB															
	TH	LT	LT	RT	TH	RT	Total									
700-800	578	98	237	105	432	248										
715-815	565	73	235	81	414	231										
730-830	595	79	237	74	417	231										
745-845	604	84	231	84	399	263										
800-900	574	90	243	75	387	254	16									
		Westbound	siennet	Rd.)			North	(Pi	n St.)			Eastb	(Tsi	Rd.)		
Time Period Class.	T	1	U	1	0	R	1	u	1	0	R	T	0	1	0	Total
Peak1 Lights	568	95	0	663	527	104	232	0	336	334	239	423	0	652	800	1661
Specified Period *	96\%	97\%	$0{ }^{0}$	94\%	953	996	98\%	0\%	93\%	978	96\%	SW*	os	97%	98\%	985
7:00 AM - 9:15 ANOther Vehicles	10	3	0	13	10	1	5	0	6	12	9	9	0	18	15	37
One Hour Peak \%	23	${ }^{3}$	Os	2\%	28	\%	23	0\%	2%	38	4*	2\%	0\%	3*	2*	2%
7:00 AM-8:00 As Total	578	98	0	676	537	105	237	0	342	346	248	432	0	680	815	1698
PHF	0.9	0.49	0	0.81	0.88	0.58	0.85	0	0.83	0.71	0.82	0.89	0	0.86	0.94	0.87
Appramet 3				405	528				20\%	20\%				405.	48\%	

$\begin{array}{ll}\text { Project: } & \text { Exit 4a SDEIS } \\ 15 & \text { Location: } \\ & \text { NH } 28 \text {-Scobie Pond Rd }\end{array}$

Intersection Turning Movement Counts

$$
\text { May-16 } \quad \text { Adj Factor }=\begin{array}{cc}
\text { AM Peak PM Peak } \\
0.96 \quad 0.98
\end{array}
$$

Growthrates		
Annual	2014:2015	1.025
	2016->2015	0.975

Seasonal:
intersection Furning Movement Counts

CLD/Fuss \& O'Neill Inc.

540 Commercial Street

Manchester, NH 03101

English Range RD From North						Rt 102 From East					From South				Rt 102 From West						
eak Hour Analy	From	Thru	Right to 08:4	Peds AM - P	App. Total eak 1 of 1	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
eak Hour for En	Inter	ction B	gins at	7:00 A																	
07:00 AM	4	0	23	0	27	0	121	8	0	129	0										
07:15 AM	2	0	17	0	19	0	140	4	0	144	0	0	0	0	0	10	67	0	0	77	233
07:30 AM	3	0	16	0	19	0	137	4	0	144	0	0	0	0	0	20	49	0	0	69	232
07:45 AM	1	0	19	0	20	0	152	3	0	155	0	0	0	0	0	13	56	1	0	70	227
Total Volume	10	0	75	0	85	0	550	16	0	155 566	0	0	0	0	0	11	49	0	0	60	235
\% App. Total	11.8	0	88.2	0	85	0	97.2	2.8	0	566	0	0	0	0	0	54.	221	1	0	276	927
PHF	. 625	. 000	. 815	. 000	. 787	. 000	,905	. 500	. 000	. 913	. 000	000	0	0		19.6	80.1	0.4	0	06	

CLD／Fuss \＆O＇Neill Inc．

540 Commercial Street

Manchester，NH 03101
File Name：EnglishPM
Site Code： 00888877
Start Date ： $6 / 5 / 2017$
Page No ： 1

English range RD．
From North

Rt 102

Fro	
Thru	
87	
82	
91	
129	
389	
84	
81	
115	
103	
383	
772	
97.2	
39.2	
764	
99	
8	
1	

Groups Printed－Cars－Trucks
Rt 102
From East

From South

		MN N N N N	
		NぃんのN゙	
	$\begin{aligned} & \text { 픙 } \\ & \text { 有 } \\ & \frac{0}{4} \end{aligned}$	00000	000000
	$\begin{aligned} & n 00000 \\ & 0 \\ & 0 \end{aligned}$	00000	0000000
$\begin{aligned} & \text { O } \\ & \text { E } \\ & \text { O } \end{aligned}$	$\frac{\bar{N}_{0}}{\frac{\pi}{x}} 00000$	00000	0000000
	$\underset{\mathrm{L}}{2} 00000$	00000	0000000
	± 00000	00000	0000000
	$\overbrace{0}^{2} 0=00-$	00000	$-\frac{\pi}{0}-800$

From West

Right	Peds	App．Total	Int．Total
0	0	146	244
0	0	123	223
0	0	164	273
0	0	139	282
0	0	572	1022
0	0	148	255
0	0	128	226
0	0	117	235
0	0	122	232
0	0	515	948
0	0	1087	1970
0	0		
0	0	55.2	
0	0	1084	1958
0	0	99.7	99.4
0	0	3	12

English range RD
Start Time From North
Start Time Left Thru Right Peds App．Total Peak Hour Analysis From 04：00 PM to 05：45 PM－Peak 1 of
Peak Hour for Entire Intersection Begins at 04：30 PM

04：30 PM	4	0	11	0
$04: 45 \mathrm{PM}$	3	0	10	0
05：00 PM	7	0	14	0
05：15 PM	4	0	8	0
Total Volume	18	0	43	0
\％App．Total	29.5	0	70.5	0
PHF	.643	000	768	000

Rt 102
From East
Right Peds App Total From South

91	3	0
129	1	0
84	2	0
81	5	0
385	11	0
97.2	2.8	0
746	.550	.000

94	0	0	0	0
130	0	0	0	0
86	0	0	0	0
86	0	0	0	0
396	0	0	0	0
	0	0	0	0
762	.000	.000	.000	.000

Rt 102
From West
Right Peds App．Total Int．Total

0	14	150
0	9	130
0	12	136
0	5	123
0	40	539
	6.9	93.1
.000	714	.898

0
0
0
0
0
0
000
$.000 \quad .000$

164	273
139	282
148	255
128	226
579	1036
.883	.918

APPENDIX B: SEASONAL, ANNUAL AND AXLE CORRECTION FACTORS

Group 4 Averages

Year 2015 Monthly Data
Peak Hour Data
Group 4 Averages Urban Highways

	Data					Factors		
Month	AM	Mid	PM	Sat Mid	AM	Mid	PM	Sat Mid
Jan	17267	13564	20154	15524	1.11	1.14	1.11	1.17
Feb	17366	13436	20253	17441	1.10	1.16	1.11	1.05
Mar	19827	14389	22267	16671	0.97	1.08	1.01	1.09
Apr	19924	15214	22733	18484	0.96	1.02	0.99	0,99
May	20046	16198	23476	18916	0.96	0.96	0.96	0.96
Junt	19952	16451	23779	19485	0.96	0.94	0.94	0.94
Jul	18444	17126	23314	18349	1.04	0.91	0.96	0.99
Aug	18720	16672	23360	19436	1.02	0.93	0.96	0.94
Sep	20260	16000	23092	19374	0.95	0.97	0.97	0.94
Oct	20391	15823	23465	18951	0.94	0.98	0.96	0.96
Nov	19208	15635	21905	17902	1.00	0.99	1.02	1.02
Dec	18348	15787	21589	18339	1.04	0.98	1.04	0.99
Average	19146	15525	22449	18239				

Factors are based on Average Month.

NHDOT Seasonal Adjustment Factors by Roadway Group - 2015

		Group I	Group2	Group3	Group 4	Group5	Group6
StartDate	FinDate	Rural Interstate	Rural Highways	Urban Interstate	Urban Highways	Recreational Highways	Other Recr Highways
1/1/2015	1/2/2015	1.18	1.35	1.24	1.32	1.21	1.35
1/1/2015	1/9/2015	1,35	1.16	1.10	1.02	1.31	1.83
1/12/2015	1/16/2015	1.23	1.12	1.05	1.00	1.21	1.82
1/19/2015	1/23/2015	1.15	1.07	1.02	0.99	1.19	1.59
1/26/2015	1/30/2015	1.67	1.34	1.39	1.27	1.59	2.24
2/2/2015	2/6/2015	1.43	1.20	1.21	1.13	1.40	2.18
2/9/2015	2/13/2015	1.37	1.18	1.17	1.09	1.33	2.10
2/16/2015	2/20/2015	1.11	1.09	1.01	1.01	1.15	1.42
2/23/2015	2/27/2015	1.17	1.10	1. 04	1.02	1.17	1.50
3/2/2015	3/6/2015	1.20	1.10	1.04	0.99	1.21	1.50
3/9/2015	3/13/2015	1.14	1.06	0.99	0.96	1.15	1.45
3/16/2015	3/20/2015	1.17	1.09	1.02	0.99	1.20	1.45
3/23/2015	3/27/2015	1.20	1.07	1.02	0.96	1.22	1.55
3/30/2015	4/3/2015	1.15	1.04	0.99	0.94	1.19	1.49
4/6/2015	4/10/2015	1.21	1.07	1.01	0.96	1.25	1.67
4/13/2015	4/17/2015	1.18	1.02	0.99	0.92	1.16	1.52
4/20/2015	4/24/2015	1.11	1.03	0.97	0.93	1.13	1.53
4/27/2015	5/1/2015	1.18	1.01	1.00	0.95	1.15	1.57
5/4/2015	5/8/2015	1.10	0.93	0.95	0.88	1.02	1.32
5/11/2015	5/15/2015	1.07	0.93	0.94	0.89	1.01	1.36
5/18/2015	5/22/2015	0.98	0.91	0.91	0.88	0.93	1.23
5/25/2015	5/29/2015	0.98	0.93	0.96	0.93	0.93	1.08
6/1/2015	6/5/2015	1.07	0.94	0.94	0.89	0.98	1.29
6/8/2015	6/12/2015	1.00	0.90	0.92	0.87	0.92	1.08
6/15/2015	6/19/2015	0.92	0.87	0.89	0.87	0.75	0.85
6/22/2015	6/26/2015	0.90	0.88	0.88	0.88	0.86	0.83
6/29/2015	7/3/2015	0.83	0.86	0.89	0.90	0.77	0.73
7/6/2015	7/10/2015	0.83	0.85	0.87	0.89	0.74	0.73
7/13/2015	7/17/2015	0.83	0.85	0.86	0.88	0.77	0.73
7/20/2015	7/24/2015	0.80	0.84	0.85	0.87	0.73	0.68
7/27/2015	7/31/2015	0.80	0.83	0.85	0.88	0.75	0.66
8/3/2015	8/7/2015	0.78	0.83	0.84	0.88	0.73	0.64
8/10/2015	8/14/2015	0.78	0.86	0.84	0.89	0.75	0.65
$8 / 17 / 2015$	$8 / 21 / 2015$	0.80	0.85	0.85	0.89	0.76	0.67
8/24/2015	8/28/2015	0.85	0.88	0.88	0.89	0.82	0.79
8/31/2015	9/4/2015	0.88	0.87	0.90	0.88	0.86	0.90
9/7/2015	9/11/2015	0.88	0.89	0.92	0.94	0.87	0.92
9/14/2015	9/18/2015	0.96	0.91	0.91	0.90	0,92	0.94
9/21/2015	9/25/2015	0.97	0.91	0.91	0.89	0.94	1.05
9/28/2015	10/2/2015	1.02	0.93	0.93	0.91	0.98	1.08
10/5/2015	10/9/2015	0.92	0.89	0.90	0.90	0.85	0.91
10/12/2015	10/16/2015	0.88	0.89	0.89	0.90	0.87	0.92
10/19/2015	10/23/2015	1.06	0.95	0.94	0.92	1.04	1.29
10/26/2015	10/30/2015	1.12	0.98	0.96	0.92	1.11	1.49
11/2/2015	11/6/2015	1.13	0.97	0.96	0.92	1.11	1.49
11/9/2015	11/13/2015	1.15	1.01	0.98	0.94	1.16	1.68
11/16/2015	11/20/2015	1.16	1.01	0.96	0.93	1.16	1.71
11/23/2015	11/27/2015	1.03	1.05	1.01	1.06	1.15	1.46
11/30/2015	12/4/2015	1.20	1.03	0.97	0.94	1.21	1.79
12/7/2015	12/11/2015	1.18	1.03	0.96	0.93	1.19	1.69
12/14/2015	12/18/2015	1.13	0.99	0.94	0.92	1.17	1.69
12/21/2015	12/25/2015	1.17	1.12	1.05	1.05	1.26	1.56
1/1/2016	1/1/2016	1.10	1.19	1.09	1.14	1.22	1.23

NHDOT Axle Correction Factors

by Functional Classification - 2015

	AcfYear	FC	Description	Factor
Rural	2015	01		0.908
	2015	02		0.962
	2015	06		0.967
2015	07		0.959	
	Urban			0.993
	2015	08		0.997
	2015	09		0.953
	2015	11	Interstate	0.956
	2015	12	Freeways/	Expressways
2015	14	Principle Arterials	0.973	
	2015	16	Minor Arterials	0.981
2015	17	Collectors	0.989	
2015	19	Local Streets	0.987	
2015	00		1.000	

APPENDIX C: INTERSTATE COUNTS AND BALANCING CALCULATIONS AT RAMP TERMINALS

1-93 Interstate Balancing based on ATR and TMC counts - 2015 and 2016

Last revision Oate: \quad 7/29/2016

NOTE: Peak Hr Vol either day of TMC or AWDT from May count

2015 AWDT-Mainline $1-93$

AM Peak

NB

58

2015 AWDT - Mainline 1-93
PM Peak

NB

$\begin{array}{\|c\|} \hline \text { START } \\ 193 ~ S \text { of E4 } \\ \hline \end{array}$	SUBTRACT E4 NB off	$\begin{gathered} \text { ADD } \\ \text { E4 NB on } \end{gathered}$		193 NB N of E4	subtract E5 NB off	$\begin{gathered} \text { ADD } \\ \text { ES NB on } \end{gathered}$	$\begin{aligned} & \hline 193 \mathrm{NB} \\ & \mathrm{~N} \text { of E5 } \end{aligned}$
3410	1187	788		3011	458	769	3322
3410	1185	790		3015	460	770	3325
START	SUBTRACT	SUbTRACT	ADD	19358	SUBTRACT	ADD	19358
1935 of E4	E4, 58 on E:4	45 B on W-	E4 SB off	N ofe4	ES S8 on	E5S8 off	N of $\mathrm{E5}$
2460	302	237	924	2845	414	911	3342
2460	300	215	925	2870	415	910	3355

\qquad villa spear JOB no \qquad

SHEET NO \qquad
\qquad

540 Commercial Street, Manchester, NH 03101
cancurieo or PM
DATE 7-22-16
elc@cldengineers com - ww cldengineers com
New Hampshire - Vermont. Maine
CHECKED BY \qquad DATE \qquad $817 / 4$
subject \qquad scale AND

 J08 \qquad Eart 4a JCE NO \qquad

540 Commercial Street, Manchester, NH 03101 cic@cldengineers com • Fax. (603) 668-8802

New Harr:pshire • Vermont . Maine cort
chetese or $\angle C G$
ㅇN좆․27-16
DATE \qquad $8 / 7 / 16$
svaser 2015 Am Puck- Bulanced scan $730-830$

 JOB NO \qquad $05 \cdot 244$ INSUKTING SHEET NO of \qquad (603) 668-8223 - Fax (603) 668-8802 New Hampshire - Vermont. Maine com subect Balauced I wit Y volower

DATE \qquad 7-27-16

DATE \qquad $8171 / 6$ scale Am Mk

1) Stun $@ N B$ roctep intx

$$
-N B \text { of } 0=410
$$

$$
N B \text { of } \angle t=219 \rightarrow 210 \quad N B \text { on }=1060
$$

$$
\overline{429} \Rightarrow 410 \quad(x, 955)
$$

$A B$ an $\angle T$ on $=562 \rightarrow 585$

$$
A 1 \operatorname{tac} \text { RT m }=\frac{455}{1017} \rightarrow \frac{5875}{1060}(-1.0423)
$$

2) $5 B$ ofl/an-ilares

$$
\begin{aligned}
S B \text { an }(u-5) & =520 \\
S B \text { an }(E-S) & =665 \\
S B \text { off } & =754
\end{aligned}
$$

$5 B$-j $\angle 1=267: 260$

$$
\text { kythc } \quad R T=\frac{503}{770} \rightarrow \frac{495}{755}(+0.5605)
$$

3) EN thaffei - Star b Ma raves - Protottionl grouth

\qquad DATE \qquad 7-27-16
date \qquad 812116
4) Baluke exstt Uónvo betwen radins - cadnob ark dose.

An-959 Ryp © SB, 951 arre NB a54/951 = 1008

WB-842 depter/ Nhs, 830 arre SB $8 \mathrm{k} 2 / 830=1.0145$

MB an lay 4π en $214(24) 240$

生 8 then $\quad(240+740)=980-465=515$ en r a 41

540 Commercial Street, Manchester, NH 03101 (603) 668-8223 - Fax. (603) 668-8802 cid@cldengineers.com - www cldengineers com New Hampshire - Vermont - Maine
445.545 suarer Golaned Erit 4vohne:
\qquad JOB NO \qquad $05-244$ SHEETNO \qquad
\qquad
calculateoby PK
DATE 7.27 .16 date \qquad $817 / 16$ scare Pn Plc

1) Stat 0 p/B Af ...itx

$$
\begin{aligned}
\text { - NG off } & =1185 \\
\text { wB on } & =16 d
\end{aligned}
$$

$$
\begin{array}{l|l|l|l|l|}
\text { NB on } \\
(A / \tan () \\
\hline
\end{array}
$$

2) $\frac{5 \beta \text { anloff ras }}{a / a+1}$

$$
\begin{aligned}
S B \operatorname{con}(w-S) & =215 \\
S B \cos (E-S) & =300 \\
S B+H & =925
\end{aligned}
$$

$$
\begin{aligned}
& \angle A=-536 \rightarrow 475(40.886) \\
& \operatorname{En71}=\frac{-855}{1371} \quad \frac{740}{1215}-280(S B L T N 6)=935
\end{aligned}
$$

$$
\begin{aligned}
& W B \text { th }=542+485+580(N B 4 T)=1065-215(5 \mathrm{BND}) \\
& \left.\begin{array}{rl}
\text { WRER } & =\frac{353}{895} \rightarrow \frac{315}{800}(-0.8424)
\end{array} \quad=850\right) \text { WB the } \\
& \text { e } 53 \mathrm{Vang}
\end{aligned}
$$

540 Commercial Street, Manchester, NH 03101
(603) 668-8223 - Fax. (603) 668-8802
cid@cldengineers.com • www.cldengineers com
New Hampshire - Vermont - Maine

Calculated by \qquad oceas or LCC P的
\qquad

APPENDIX D: TRAVEL DEMAND FORECAST MODEL DEVELOPMENT AND CALIBRATION REPORT - SOUTHERN NH PLANNING COMMISSION, JANUARY 2018

Travel Demand Forecast Model Development and
 Calibration Report for I-93 Exit 4A Supplemental Draft Environmental Impact Statement

Prepared by the Southern NH Planning Commission and CLD/Fuss \& O'Neill

January, 2018

Table of Contents

1. INTRODUCTION 3
2. 2015 BASE YEAR MODEL 3
2.1 Network 3
2.2 Traffic Analysis Zone (TAZ) System 3
2.3 Population and Households 3
2.4 Student Enrollment 5
2.5 Employment 5
2.6. Base Year Model Calibration and Validation 6
3. FUTURE YEAR 2040 NO-BUILD MODEL 7
3.1 Network 7
3.2 Population and Households 7
3.3 Employment 9
4. REFERENCES 12
APPENDIX A STUDY AREA TAZ SPLIT 13
APPENDIX B PROJECT LIST 14
APPENDIX C 2015 BASE YEAR MODEL STUDY AREA CALIBRATION RESULTS 15
APPENDIX D POPULATION PROJECTION ${ }^{[2][5]}$ 16
APPENDIX E 2015 EMPLOYMENT AVERAGE 17

1.INTRODUCTION

The report serves the purpose of documenting the methodology for development and calibration of the travel demand model for the update of I-93 Exit 4A SDEIS. The report includes development and calibration for the 2015 24-hour base year model, and development for 2040 No-Build 24-hour model. This report doesn't include detailed network and land use description for 2040 build scenarios, alternative A, B, C, D, E and F, because this information is included in the traffic and land use reports prepared by CLD|Fuss \& O'Neill and Louis Berger.

2. 2015 BASE YEAR MODEL

2.1 Network

The updated 2015 base year regional travel demand model was built based on the 2010 base year SNHPC regional model. The 2010 Travel Demand Forecast Model Development and Calibration Report ${ }^{[1]}$ detailed development and calibration of the 2010 model. The model covers fifteen communities: Auburn, Bedford, Candia, Chester, Deerfield, Derry, Francestown, Goffstown, Hooksett, Londonderry, Manchester, New Boston, Raymond, Weare, and Windham. The change to the functional classification system for roadway system was incorporated into the 2015 base year model due to changes to the urbanized area from the 2010 U.S. Census. In addition, projects completed between 2010 and 2015, the Manchester Airport Access Road, Pettengill Road in Londonderry, NH 28 Manchester Road improvement in Derry, Hooksett Open Road Tolling, I-93 Exit 5 reconstruction, US 3/NH 28 widening in Hooksett, I93 Exit 3 area reconstruction, were added to the 2015 model.

2.2 Traffic Analysis Zone (TAZ) System

The fifteen communities in the model area were disaggregated into 306 internal TAZs in the 2010 model. To better reflect traffic patterns around the I-93 Exit 4A study area, TAZs 69 in Londonderry, 123, 124, 125 and 133 in Derry were split into additional smaller TAZs indicated in Table 1. Layouts of these TAZs are displayed in Appendix A.

Table 1 TAZ Splits

TAZ 2010	TAZ 2015 for I-93 Exit 4A
69	$69 \mathrm{~A}, 69 \mathrm{~B}$ and 69C
123	123 A and 123B
124	$124 \mathrm{~A}, 124 \mathrm{~B}$, and 124C
125	125 A and 125B
133	133 A and 133B

2.3 Population and Households

Population estimates from 2015 Population Estimates of New Hampshire Cities and Towns prepared by the New Hampshire Office of Strategic Initiatives (NHOSI) ${ }^{[2]}$ were used for the 2015 base year model. A summary table including 2015 population estimates for communities within the model area from the NHOSI estimates is presented in Appendix D. Dwelling units collected by SNHPC annually that were issued Certification of Occupancy between 2010 and 2015 by communities were used in allocating change in population into TAZs, and calculating number of households in a TAZ.

The formula used for calculating dwelling unit increases between April 2010 (Census day on April 1) and December 31, 2015 is shown below.

$$
\left.\Delta D_{T A Z}=\Delta D_{2015 T A Z}+\Delta D_{2014 T A Z}+\Delta D_{2013 T A Z}+\Delta D_{2012 T A Z}+\Delta D_{2011 T A Z}+\frac{3}{4} \Delta D_{2010 T A Z}\right)
$$

Where:
$\Delta D_{T A Z}=$ Increase of dwelling units in a TAZ between April 1, 2010 and December 31, 2015
$\Delta D_{2015 T A Z}=$ Increase of dwelling units in a TAZ in 2015
$\Delta D_{2014 T A Z}=$ Increase of dwelling units in a TAZ in 2014
$\Delta D_{2013 T A Z}=$ Increase of dwelling units in a TAZ in 2013
$\Delta D_{2012 T A Z}=$ Increase of dwelling units in a TAZ in 2012
$\Delta D_{2011 T A Z}=$ Increase of dwelling units in a TAZ in 2011
$\Delta D_{2010 T A Z}=$ Increase of dwelling units in a TAZ in 2010
2015 dwelling units were calculated as follows:

$$
D_{2015 T A Z}=D_{2010 T A Z}+\Delta D_{T A Z}
$$

The 2015 population in TAZs were calculated by allocating the difference in population between 2010 and 2015 in a community. If the population increased during 2010-2015, the following formula was used.

Where:

$$
P_{2015 T A Z}=P_{2010 T A Z}+\left(P_{2015 \text { com }}-P_{2010 \text { com }}\right) * \frac{\Delta D_{T A Z}}{\Delta D_{\text {com }}}
$$

$P_{2015 T A Z}=2015$ population in a TAZ
$P_{2010 T A Z}=2010$ population in a TAZ
$P_{2015 \text { com }}=2015$ population in the community (NHOEP estimates) in which the TAZ located
$P_{2010 \text { com }}=2010$ population in the community (2010 US Census) in which the TAZ located
$\Delta D_{T A Z}=$ Increase of dwelling units in a TAZ between April 1, 2010 and December 31, 2015
$\Delta D_{\text {com }}=$ Increase of dwelling units in the community in which the TAZ located between April 1, 2010 and December 31, 2015

The 2015 population in TAZs were calculated by allocating the difference of population between 2010 and 2015 in a community. If the population decreased during 2010-2015, the following formula was used.

$$
P_{2015 T A Z}=P_{2010 T A Z}+\Delta P_{D W T A Z}+\left(P_{2015 c o m}-P_{2010 c o m}-\Delta P_{D W c o m}\right) * \frac{D_{2015 T A Z}}{D_{2015 c o m}}
$$

Where:
$P_{\text {2015TAZ }}=2015$ population in a TAZ
$P_{2010 T A Z}=2010$ population in a TAZ
$P_{2015 \text { com }}=2015$ population in the community (NHOEP estimates) in which the TAZ located
$\Delta P_{D W T A Z}=\frac{P_{2010 T A Z}}{H H_{2010 T A Z}} * \Delta D_{T A Z}$ - Assume population change in a TAZ due to dwelling units change between 2010 and 2015
$H H_{2010 T A Z}=2010$ number of households in a TAZ
$\Delta P_{D W c o m}=\sum \Delta P_{T A Z}$ - Assume population change in the community in which the TAZ located due to dwelling units change between 2010 and 2015
$P_{2010 \text { com }}=2010$ population in the community (2010 US Census) in which the TAZ located
$D_{2015 T A Z}=2015$ dwelling units in a TAZ
$D_{2015 \text { com }}=2015$ dwelling units in the community in which the TAZ located
Number of households in a TAZ was calculated as follows.

$$
H H_{2015 T A Z}=D_{2015 T A Z} * O R_{2010 T A Z}
$$

Where:

$$
\begin{aligned}
& H H_{2015 T A Z}=2015 \text { number of households in a TAZ } \\
& D_{2015 T A Z}=2015 \text { dwelling units in a TAZ } \\
& O R_{2010 T A Z}=2010 \text { Occupancy rate in a TAZ }
\end{aligned}
$$

2.4 Student Enrollment

School enrollments for 2014-2015 for all elementary, middle and high schools in the region were collected from the New Hampshire Department of Education. College enrollments were collected by contacting colleges in the region.

2.5 Employment

The quarterly employment of 2015 for each community in the region including first, second, third and fourth quarters was downloaded from the New Hampshire Employment Security (NHES) website. A Summary table containing these data is shown in Appendix E.

The average annual employment for communities was calculated by averaging the four quarters of employment. Considering that the 2010 SNHPC employment for model input calculated directly from the employer database is slightly higher than NHES's annual average, the 2015 annual employment was adjusted to reflect the difference between the two data sets. The adjustment was made according to the following equation.

$$
E_{2015 \text { comadjusted }}=E_{2015 \text { comNHES }}+\left(E_{2010 \text { comSNHPC }}-E_{2010 \text { comNHES }}\right)
$$

Where:

$$
\begin{aligned}
& E_{2015 \text { comadjusted }}=\text { Adjusted } 2015 \text { employment in a community } \\
& E_{2015 \text { comNHES }}=2015 \text { employment average in a community based on NHES data } \\
& E_{2010 \text { comNHES }}=2010 \text { employment average in a community based on NHES data } \\
& E_{2010 \text { comSNHP }}=2015 \text { employment average in a community based on SNHPC } \\
& \text { employment database }
\end{aligned}
$$

Building permits issued 2011-2015 were used to identify new businesses in a TAZ. Employment in a new building was estimated based on a similar business type in 2010 employment database obtained from NHES. Employment in businesses we were aware closed during 2011-2015 was estimated based on the 2010 employment database.

To allocate the difference between 2010 and 2015 to TAZs by employment category, the following formula was used.

$$
\begin{aligned}
E_{2015 T A Z-E C}= & E_{2010 T A Z-E C}+\Delta E_{D W T A Z-E C}+\left(E_{A n n 2015}-E_{A n n 2010}-\Delta E_{D W 2011-2015}\right) \\
& *\left(E_{2010 T A Z-E C} / E_{A n n 2010}\right)
\end{aligned}
$$

Where:

$$
E_{2015 T A Z-E C}=2015 \text { Employment in a TAZ by employment category group }
$$

$E_{2010 T A Z-E C}=2010$ Employment in a TAZ by employment category group
$\Delta E_{D W T A Z-E C}=$ Assumed Change of Employment in a TAZ by employment category group due to number of building permits change between 2010 and 2015

$$
E_{\text {Ann } 2015}=2015 \text { Annual employment in the community in which TAZ located }
$$

$E_{\text {Ann2010 }}=2010$ Annual employment in the community in which TAZ located
$\Delta E_{D W 2011-2015}=$ Change of employment in the community due to number building permits change between 2010 and 2015

2.6. Base Year Model Calibration and Validation

Highway assignment is crucial for models to produce traffic volume estimates within acceptable ranges of tolerance compared to actual ground counts. For detailed model calibration and validation methodology information, refer to 2010 Travel Demand Forecast Model Development and Calibration Report for the Southern New Hampshire Planning Commission ${ }^{[1]}$. Model calibration and validation results for the 2015 base year are as follows.

- The difference of Vehicle Mile Traveled (VMT) estimates between the model and the Highway Performance Monitoring System (HPMS) is 1.28%, which is acceptable according to the Model Validation and Reasonableness Checking Manual ${ }^{[3]}$, which is allowed a 3% difference by Environmental Protection Agency (EPA).
- The Coefficient of Determination $\left(\mathrm{R}^{2}\right)$ region wide equals 0.91 which is greater than the Model Validation and Reasonableness Checking Manual ${ }^{[3]}$ recommended, which is 0.88 for all roadways with functional class collector and higher. Percent Root Mean Square of the Error (\% RMSE) equals 27.28 for all roadways with functional class collector and higher which is less than the commonly accepted standard of $30{ }^{[3]}$.
- Absolute percentage differences of total observed versus model estimated volumes at a Merrimack River screen line crossing and external station cordon line crossings are less than 2%.
- Absolute percentage differences of observed versus model estimated volumes at locations within I-93 Exit 4A area shown in Appendix C are within acceptable ranges of tolerance based on FHWA targets ${ }^{[3]}$.

3. FUTURE YEAR 2040 NO-BUILD MODEL

3.1 Network

2040 No-Build model network was built by adding projects documented in Regional Transportation Plan 2017-2040 for the SNHPC Region ${ }^{[6]}$ to the 2015 base year model except I-93 Exit 4A project. The list of the projects is shown in Appendix B.

3.2 Population and Households

Population projections used in the 2040 No-Build model were based on the State of New Hampshire County Population Projections 2015-2040 By Municipality ${ }^{[5]}$ prepared by New Hampshire Office of Strategic Initiatives (NHOSI) in partnership with the state's Regional Planning Commissions and additional adjustments to NHOSI projections were made according to the final numbers in the Land Use Scenarios Report ${ }^{[4]}$ to reflect additional population and households for relevant 2040 No-Build development projects. The population projections from 2015 through 2040 for each community in the region from the NHOSI projections are presented in Appendix D.

Due to the fact that numbers of dwelling units changes in five-year increments was used in distributing population changes to TAZs, and calculating numbers of households in a TAZ, SNHPC dwelling unit projections for 2010 through 2040 (Completed 2012) were adjusted for 2020 through 2040 to reflect number of dwelling units change between 2010 and 2015. An assumption was made that numbers of dwelling unit growth rates 2015-2040 were kept the same as the 2012 Southern NH Planning Commission dwelling unit projection for 2010-2040, which were reviewed by corresponding communities in the region. Two conditions were considered as the population was allocated to TAZs: 1) population increase in a five-year period; 2) Population decrease in a five-year period.

Condition one

When the population increases during a five-year period, the allocation is calculated using the following formula.

$$
\Delta \boldsymbol{P}_{T A Z}=\frac{\Delta \boldsymbol{P}_{\text {com }}}{\Delta \boldsymbol{D}_{\text {com }}} * \Delta \boldsymbol{D}_{T A Z}
$$

Where:
$\Delta P_{T A Z}=$ population change in a TAZ during a five-year period
$\Delta P_{\text {com }}=$ Population change in the community in which the TAZ located during the five-year period
$\Delta D_{T A Z}=$ Number of dwelling units change in a TAZ during the five-year period
$\Delta D_{\text {com }}=$ Number of dwelling units change in the community in which the TAZ located during the five-year period

Condition two

When the population decreases during a five-year period, the allocation is calculated using the following formula.

$$
\Delta \boldsymbol{P}_{T A Z}=\Delta \boldsymbol{P}_{D W T A Z}+\left(\Delta \boldsymbol{P}_{\text {com }}-\Delta \boldsymbol{P}_{D W c o m}\right) * \frac{\boldsymbol{D}_{T A Z}}{\boldsymbol{D}_{\text {com }}}
$$

Where:
$\Delta P_{T A Z}=$ Population change in a TAZ during a five-year period
$\Delta P_{D W T A Z}=H H S_{2015 T A Z} * \Delta D_{T A Z}=$ Assume population change in a TAZ during a five-year period due to number of dwelling units change
$H H S_{2015 T A Z}=2015$ household size within the TAZ
$\Delta P_{\text {com }}=$ Change of population in the community in which the TAZ located during the 5-year period
$\Delta P_{d w c o m}=\sum \Delta P_{d w T A Z}=$ Population change in the community in which the TAZ located during the five-year period due to number of dwelling units change
$D_{T A Z}=$ Number of dwelling units in the TAZ at the end of the five-year period

$$
D_{\text {com }}
$$

= Number of dwelling units in the cummunity in which the TAZ located at end of the five

- year period

Population within a TAZ at end of a five-year period was calculated as follows.

$$
\boldsymbol{P}_{T A Z}=\boldsymbol{P}_{T A Z-1}+\Delta \boldsymbol{P}_{T A Z}
$$

Where:
$\mathrm{P}_{\mathrm{TAZ}}=$ Population in the TAZ at end of the five-year period $\mathrm{P}_{\mathrm{TAZ}-1}=$ Population in the TAZ at end of the prior five-year period

Number of Households Calculation

Numbers of households for TAZs were calculated using the following formula.

$$
\boldsymbol{H H}_{T A Z}=\left(\boldsymbol{P}_{T A Z}-\boldsymbol{P}_{\text {specialTAZ }}\right) / \boldsymbol{H} \boldsymbol{H} S_{2015}
$$

Where:

$$
H H_{T A Z}=\text { Number of households in a TAZ }
$$

$$
P_{\text {specialtaz }}=\text { Special population such population in nursing homes, jails, etc. in the }
$$

TAZ

$$
H H S_{2015 T A Z}=\text { Household size in the TAZ }
$$

3.3 Employment

In order to reflect changes in employment between 2010 and 2015, the original SNHPC employment projection for 2010 through 2040 (completed in 2012) was adjusted for 2020 through 2040. Three steps are followed in calculating the 2015-2040 employment projection. Additional adjustments were made to the final numbers based on the Land Use Scenarios Report ${ }^{[4]}$ to account for additional employment for relevant 2040 No-Build development projects.

Step 1: Growth rates

The study assumes that employment growth rates by employment category group for 2015-2040 were kept the same as the 2012 Southern NH Planning Commission employment projection for 2010-2040, which were reviewed by corresponding communities in the region. The following formula was used in calculating growth rates over a five-year interval.

$$
G R_{\text {Com EC } i}=\left(E_{2012 \text { Com EC } i}-E_{2012 \text { Com EC } i-1}\right) / E_{2012 \text { Com EC } i-1}
$$

Where:

$i=$ projection years $2015,2020,2025,2030,2035$ and 2040
$G R_{C o m E C} i=$ Growth rate by employment category group over i to i-1 five-year interval
$E_{2012 \text { com } E C i}=$ Total employment for an employment category group in a community at
projection year i in 2012 projection
$E_{2012 \text { com } E C \text { i-1 }}=$ Total employment for the employment category group in community at
projection year i-1 in 2012 projection
Step 2: Total employment projection for an employment category group in a community 2020
through 2040

The 2015 total employment estimate for an employment category group in a community was considered as base. Total employment projections for the employment category group in the community 2020 through 2040 were calculated as follows:

$$
E_{2016 \text { Com EC } i}=E_{2016 \text { Com EC } i-1} *\left(1+G R_{\text {Com EC } i}\right)
$$

Where:
$i=$ projection years 2020,2025,2030,2035 and 2040
$E_{2016 \operatorname{comeC} i}=$ Total employment for an employment category group in the community at projection year i in the 2016 projection
$E_{2016 \text { com EC i-1 }}=$ Total employment for the employment category group in the community at projection year i-1 in the 2016 projection

Step 3: Total employment for an employment category group in the community for 2020-2040 projection distributed to TAZs

Two conditions were used as total projected employment for an employment category group in the community was allocated into TAZs.

Condition one

When the data for developable land for a land use category is available and appropriate to use in a community, employment is distributed based on percentage of developable land in a TAZ in total of developable land in the community.

$$
E_{2016 T A Z E C i}=E_{2016 T A Z E C i-1}+\left(E_{2016 \text { Com EC } i}-E_{2016 \text { Com EC } i-1}\right) * \text { Percentage }
$$

Where:
$E_{2016 \text { TAZ EC } i}=2016$ Employment projection in a TAZ for an employment category group at projection year i
 projection year i-1 in the 2016 projection
$E_{2016 \text { com EC } i}=$ Total employment for the employment category group in the community at projection year i in the 2016 projection
$E_{2016 \text { com EC i-1 }}=$ Total employment for the employment category group in the community at projection year i-1 in the 2016 projection

Condition two

When the data for developable land for the land use category is not available or not appropriate to use in a community, employment in a TAZ is calculated using the same growth rate as that of employment of the employment category.

$$
E_{2016 T A Z E C ~} i=E_{2016 \text { TAZ EC } i-1} *\left(1+G R_{2016 \text { Com EC } i}\right)
$$

Where:
$E_{2016 \text { TAZ EC } i}=2016$ Employment projection in a TAZ for an employment category group at projection year i
$E_{2016 \text { TAZ EC i-1 }}=2016$ Employment projection in a TAZ for the employment category group at projection year i-1 in the 2016 projection

4. REFERENCES

1. 2010 Travel Demand Forecast Model Development and Calibration Report, Southern New Hampshire Planning Commission, 2012.
2. 2015 Population Estimates of New Hampshire Cities and Towns, The New Hampshire Office of Strategic Initiatives (NHOSI), 2016.
3. Model Validation and Reasonableness Checking Manual, Travel Model Improvement Program, 2001.
4. I-93 Exit 4A Supplemental Draft Environmental Impact Statement Land Use Scenarios Report, Louis Berger, 2017.
5. State of New Hampshire County Population Projections, By Municipality, The New Hampshire Office of Strategic Initiatives (NHOSI) in Partnership with the State's Regional Planning Commissions, 2016
6. FY 2017 - FY 2040 Regional Transportation Plan for the Southern NH Planning Commission, Southern New Hampshire Planning Commission, 2017.

APPENDIX A STUDY AREA TAZ SPLIT

APPENDIX B PROJECT LIST

Projects Coded in the 2040 No-Build Model

Community ${ }^{1}$	Project	Project \#
BE	NH 101 - Widen NH 101 to 5 Lanes from NH 114 up to Wallace Rd	13953
BE	NH 101 - Widen NH 101 to 5 Lanes from Wallace Rd up to Amherst TL ${ }^{2}$	
BE	US 3 - Widen US 3 to 5 Lanes from Hawthorne Drive North to Manchester Airport Access Road	40664
BE-ME	F.E.E Turnpike - Improvement to Bedford Mainline Toll Plaza to Institute Open Road Tolling	16100
NA-ME-BE	F.E.E.Turnpike - Widen existing 2-Lane Sections of the Turnpike to a 3-Lane Typical From Exit 8 in Nashua to I-293 in Bedford	13761
CH	NH 102 - NH 102/North Pond Road Intersection Improvements.	
DE-LO	I-93-Construction of I-93 Exit 4A	13065
HO	US 3/NH 28 - Widen US 3/NH 28 to 5 Lanes from Martins Ferry Rd to West Alice Ave	29611
HO	US 3/NH 28 - Construct Southern Segment of US 3/NH 28 Alternate Bypass ${ }^{2}$	
HO	US 3/NH 28 - Construct Northern Segment of US3/NH28 Alternate Bypass ${ }^{2}$	
HO	Widen US3/NH28 to 5 Lanes from Legends Dr to Hunt Street ${ }^{2}$	
HO	Hackett Hill Road - Reconstruction intersection of NH 3A/Hackett Hill Road	14950
HO	NH 3A - Reconstruct and Widen from Commerce Road North to Goonan Rd.	24862
LO	NH 28 - Widening NH 28 from NH 128 to Page Rd.	
LO	NH 102 - Widen NH 102 to 4 Lanes from Hudson Town Line to NH $128{ }^{2}$ - Lower Corridor	
LO	NH 102 - Widen NH 102 to 5 Lanes from I-93 East to Londonderry Road ${ }^{2}$ - Upper Corridor	
LO	NH 102 - Widen NH 102 to 6 Lanes from I-93 to NH 128^{2} - Central Corridor	
LO	Intersection Improvements at NH28/NH128 for Safety and Traffic Flow	
MA	I-293 - Reconstruction of Exit 4 on I-293	
MA	I-293-Reconstruct and Widening of Exit 6 (Amoskeag)	16099A
MA	I-293-Reconstruct Exit 7	16099B
SA-MA	I-93- Reconstruct and Widen Mainline, Environmental Impact Study and Final Design From Mass S/L in Salem to I-293 in Manchester. Capacity Improvements, Reconstruction, and Widening from North of Exit 3 to I-293	10418C
SA-MA	I-93 - NB \& SB Mainline Weigh Station to Kendall	14633B
SA-MA	I-93 - Exit 4 Ramps, NB \& SB Mainline, NH 102 Approach Work	14633D
SA-MA	I-93- NB \& SB Mainline, Exit 5 to I-293 Split (Londonderry \& Manchester)	14633H
SA-MA	I-93- NB \& SB Mainline, Exit 4 and 5 (Londonderry)	14633I
SA-MA	I-93-Exit 1 to Exit 5 - Construct 4th Lane Northbound and Southbound	14633J
SA-MA	I-93 - Final Design (PE) and ROW for I-93 Salem to Manchester	10418X
Windham	NH 111 - Corridor Improvements Within Town Center (Construction not in TYP)	40663
Windham	NH 28 - Intersection NH 28/Roulston Road Improvements	40665

Source: FY 2017-2020 Transportation Improvement Program, FY 2017-2026 Ten-Year Transportation Improvement Plan, and 2017-2040 SNHPC Regional Transportation Plan.
${ }^{1}$ BE=Bedford, $\mathrm{CH}=$ Chester, $\mathrm{DE}=$ Derry, $\mathrm{HO}=$ Hooksett, LO=Londonderry, MA=Manchester, NB=New Boston, RA=Raymond, SA=Salem, NA=Nashua
${ }^{2}$ These projects are taken from various studies and are part of the Regional Transportation Plan

APPENDIX C 2015 BASE YEAR MODEL STUDY AREA CALIBRATION RESULTS

2015 Base Year Model Study Area Calibration Results

Location	A	B	Assign	Count	\% Diff
NH 28 N. of Liberty Dr.	589	3645	15,406	13,000	18.51
NH 102 at Derry Town line	594	3556	20,817	22,270	-6.52
NH 28 at Derry Town line	793	1621	19,392	17,454	11.10
Exit 5 SB Off ramp	999	3650	9,234	9,282	-0.52
Exit 4 SB On ramp	1003	1764	8,157	9,615	-15.16
Exit 4 NB Off ramp	1006	6519	10,389	9,843	5.55
Exit 5 NB Off ramp	1010	3652	4,430	5,601	-20.91
Gilcreast Rd. N. of NH 102	1334	3557	9,397	10,000	-6.03
Ash St. E. of Londonderry Rd.	1348	3555	5,950	6,900	-13.77
Ash St. at Londonderry Town line	1349	2125	5,936	6,765	-12.25
Exit 4 SB On ramp EB to SB	1767	1005	4,907	5,010	-2.06
Exit 4 SB On ramp WB to SB	1770	1004	3,637	4,648	-21.75
NH28 Bypass N. of Tsienneto Rd.	1838	1839	9,377	11,943	-21.49
NH28 Bypass N. of Academy Dr.	1839	3532	7,318	7,329	-0.15
NH28 Bypass S. of Thornton Rd.	1840	2143	12,015	13,981	-14.06
NH102 E. of NH 28 Bypass	1841	1878	7,017	7,329	-4.26
Crystal Ave. NH 28 S of Rollins	1860	1861	13,215	13,000	1.65
Crystal Ave. NH 28 S of Tsienneto	1862	1863	13,407	15,193	-11.76
Folsom Rd. W. of NH 28	1863	3483	8,960	11,672	-23.24
NH 102 E. of Griffin St.	1870	1871	18,002	16,400	9.77
NH 102 W. of Abbot St.	1876	1877	11,128	14,350	-22.45
Tsienneto Rd. W. of NH 102	1883	2082	5,666	5,393	5.06
Franklin St. Ext N. of Folsom Rd.	2106	3484	1,255	1,845	-31.98
Tsienneto Rd. E. of Pinkerton	2107	2108	14,200	14,636	-2.98
Pinkerton St. E. of Tsienneto	2107	2109	8,776	11,672	-24.81
Fordway over Beaver Brook	2135	2136	5,114	5,330	-4.05
NH102 E. of Hampton Dr.	3234	1766	30,419	32,000	-4.94
Exit 5 NB On ramp	3651	1011	9,101	9,341	-2.57
Exit 5 SB On ramp	3653	1000	3,919	5,503	-28.78
Exit 4 NB On ramp	6518	1007	9,550	10,045	-4.93

Upper Limit Lower Limit

Upper Limit Lower Limit	
25	-25
25	-25
25	-25
29	-29
29	-29
29	-29
29	-29
25	-25
29	-29
29	-29
29	-29
36	-36
25	-25
29	-29
25	-25
29	-29
25	-25
25	-25
25	-25
25	-25
25	-25
29	-29
47	-47
25	-25
25	-25
29	-29
22	-22
29	-29
29	-29
25	-25
25	

Note: Traffic volumes were taken from NHDOT traffic count program, SNHPC traffic count program, and CLD|Fuss \& O'Neil traffic counts for the project.

APPENDIX D POPULATION PROJECTION ${ }^{[2][5]}$

Population Projection 2015-2040

Town	$\mathbf{2 0 1 5}$	$\mathbf{2 0 2 0}$	$\mathbf{2 0 2 5}$	$\mathbf{2 0 3 0}$	$\mathbf{2 0 3 5}$	$\mathbf{2 0 4 0}$
Auburn	5,315	5,560	5,828	5,959	6,033	6,048
Bedford	22,236	23,451	24,797	25,276	25,576	25,680
Candia	3,909	3,891	3,880	3,967	4,016	4,026
Chester	4,887	5,199	5,536	5,660	5,731	5,744
Deerfield	4,413	4,631	4,869	4,978	5,040	5,052
Derry	32,948	32,459	32,018	32,733	33,144	33,222
Francestown	1,562	1,576	1,597	1,628	1,647	1,654
Goffstown	17,846	18,051	18,335	18,689	18,911	18,988
Hooksett	14,473	15,403	16,508	17,089	17,532	17,823
Londonderry	24,891	25,434	26,057	26,639	26,973	27,036
Manchester	109,419	109,469	109,963	112,087	113,420	113,881
New Boston	5,457	5,818	6,214	6,334	6,409	6,435
Raymond	10,257	10,403	10,577	10,814	10,949	10,975
Weare	8,811	9,051	9,334	9,514	9,627	9,667
Windham	14,301	15,414	16,612	16,983	17,196	17,237
Total	$\mathbf{2 8 0 , 7 2 5}$	$\mathbf{2 8 5 , 8 1 0}$	$\mathbf{2 9 2 , 1 2 5}$	$\mathbf{2 9 8 , 3 5 0}$	$\mathbf{3 0 2 , 2 0 4}$	$\mathbf{3 0 3 , 4 6 8}$

Source: New Hampshire Office of Strategic Initiatives.

APPENDIX E 2015 EMPLOYMENT AVERAGE

2015 Employment Average

Town	Q1	Q2	Q3	Q4	Average
Auburn	1,706	1,766	1,806	1,852	1,783
Bedford	15,223	15,487	15,446	15,617	15,443
Candia	673	820	865	818	794
Chester	364	371	349	376	365
Deerfield	384	454	437	411	422
Derry	8,123	8,240	7,806	8,251	8,105
Francestown	94	125	136	117	118
Goffstown	3,129	3,304	3,159	3,235	3,207
Hooksett	9,275	9,496	9,591	9,700	9,516
Londonderry	12,812	13,345	13,185	13,454	13,199
Manchester	67,548	68,384	68,349	69,812	68,523
New Boston	727	756	732	794	752
Raymond	2,965	3,051	2,902	3,074	2,998
Weare	1,764	1,852	1,762	1,836	1,804
Windham	3,428	3,534	3,463	3,689	3,529

Source: New Hampshire Department of Employment Security.

APPENDIX E: HCM 2010 LOS CRITERIA

HCM2010 HIGHWAY CAPACITY MANUAL

VOLUME 3: INTERRUPTED FLDW

TRIB TRANSPORTATION RESEARCH BOARD
OF THE NATIONAL ACADEMIES

WASHINGTON, DC I WWW.TRE.DRG
leaving basic freeway segments. Thus, the impact on the capacity of the mainline freeway most often is negligible.

Thin does not mean, however, that the capocity of each component segment of a facility is the same. Each segment has itsown demand and demand dharacteristics. Demand flow rate can change at every entry and evit point along the freeway, and the percent of heasy vehicles can change too. Terrain also can change at various points along the freeway.

Changes in heavy vehicle presence con change the capacity of individual segments within a defined facility: Changes in the split of movements in a weaving segment can change its capacity. In the same way, changes in the relative demand flows at on- and off-ramps can change the location of the critical segment within a defined facility and its capacity.

As noted previously, the capacity of a freeway facility is defined as the capacity of its critical segment.

LOS: COMPONENT SEGMENTS AND THE FREEWAY FACILITY

LOS of Component Segments

Chapters 11, 12, and 13 provide methodologies to determine the L.OS in basic, weaving, merge, and diverge segments. In all cases, LOS F is identified when a_{0} / i is greater than 1.00. Such breakdowns are easily identified, and users are referred to this chapter.

This chapter's methodology provides an analysis of breakdown conditions, including the spatial and time impacts of a breakdown. Thus, in the performance of a facility-level analysis, LOS F in a component segment can be identified (a) when the segment v_{d} / c is greater than 1.00 and (b) when a queue from a downstream breakdown extends into an upstream segment. The latter cannot be done by using the individual segment analysis procedures of Chapters 11, 12, and 13 .

Thus, when facility-level analysis is undertaken by using the methodology of this chapter, LOS F for a component segment will be identified in two different ways:

- When v_{i} / c is greater than 1.00 , or
- When the density is greater than $45 \mathrm{pe} / \mathrm{mi} / \mathrm{ln}$ for basic freeway segments or $43 \mathrm{pc} / \mathrm{mi} / \mathrm{In}$ for weaving, merge, or diverge segments.
The latter identifies segments in which queues have formed as a result of downstream breakdowns.

LOS for a Freeway Facility

Because LOS for basic, weaving, merge, and diverge segments on a freeway is defined in terms of density, IOS for a freeway facility is also defined on the basis of density.

A facility analysis will result in a density determination and LOS for each component segment. The facility LOS will be based on the weighted average density for all segments within the defined facility. Weighting is done on the
 1964tion 10.2:

$$
1=\frac{\sum 1 \cdot N}{\sum_{1} 1 \cdot N}
$$

Equation 10-2
where
$1)=$ average density for the faxility (pe/mi/n),
$l)=$ density for segment $i(p$ milm).
$L_{K}=$ length of segment i (it).
$N=$ number of lanes in segment i, and
$n=$ number of segments in the defined factits:
The Los criteria for a freway facility are hown in E whithe 10-7. They are the same criteria used for basic freeway segments.

Level of Service	Density $(\mathrm{pc} / \mathrm{mi} / \mathrm{ln})$
A	≤ 11
B	$>11-18$
C	$>18-26$
D	$>26-35$
E	$>35-45$
F	>45 or
	any component V / c ratio >1.00

Use of a I OS descriptor for the overall freeway facility must be done with care. It is critical that the LOS for individual segments composing the facility also be reported. Because the overall I.OS is an average, it may mask serious problems in individual segments of the facility:

This is particularly important if one or more of the component segments are operating at I.OS I. As described in this chapter's methodology section, the Ireeway facility methodology applien models to estimate the propagation of the effects of a breakedown in time and apace. Where breakdowns exist in one or mome segments of a facility, the average I os is of limited use. The average ios applies to a specific time period, unally 15 min .

While loS A through D are defined by using the same densities that apply tobajic freeway segments, I OSF for a fovility in defined an a case in which any component segment of the freeway exceedsa $\begin{gathered}\text { en ration of } 1.00 \text { or the average }\end{gathered}$ density over the defined facility exeeds $+^{5} \mathrm{pe} / \mathrm{mi} / \mathrm{In}$. In such a case, this chapter's methedologe allows the amalyst to map the impacts of this breakdown in time and space and close attention to the individual lob of component segments is necensary:

Exhibit 10-7

LOS Criteria for Freeway Facilitres

18-3. The symbol Φ shown in this exhibit represents the word "phase," and the number following the symbol represents the phase number.

Exhibit 18-3 shows one way that traffic movements can be assigned to each of the eight phases. These assignments are illustrative, but they are not uncommon. Each left-turn movement is assigned to an exclusive phase. During this phase, the left-turn movement is "protected" so that it receives a green arrow indication. Each through, right-turn, and pedestrian movement combination is also assigned to an exclusive phase. The dashed arrows indicate turn movements that are served in a "permitted" manner so that the turn can be completed only after yielding the right-of-way to conflicting movements. Additional information about traffic signal controller operation is provided in Chapter 31, Signalized Intersections: Supplemental.

LOS CRITERIA

This subsection describes the LOS criteria for the automobile, pedestrian, and bicycle modes. The criteria for the automobile mode are different from those for the nonautomobile modes. Specifically, the automobile-mode criteria are based on performance measures that are field measurable and perceivable by travelers. The criteria for the nonautomobile modes are based on scores reported by travelers indicating their perception of service quality.

Automobile Mode

LOS can be characterized for the entire intersection, each intersection approach, and each lane group. Control delay alone is used to characterize LOS for the entire intersection or an approach. Control delay and volume-to-capacity ratio are used to characterize LOS for a lane group. Delay quantifies the increase in travel time due to traffic signal control. It is also a surrogate measure of driver discomfort and fuel consumption. The volume-to-capacity ratio quantifies the degree to which a phase's capacity is utilized by a lane group. The following paragraphs describe each LOS.

LOS A describes operations with a control delay of $10 \mathrm{~s} / \mathrm{veh}$ or less and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is low and either progression is exceptionally

Exhibit 18-3
Dual-Ring Structure with Illustrative Movement Assignments

All uses of the word "volume" or the phrase "volume-to-capacity ratio" in this chapter refer to demand volume or demand-volume-to-capacity ratio.
howorable or the eyele length is sery bhort. If it is due to lavorable progresemons. most whicles arrive during the green indication and travel through the intersection without stopping.

10S B describes operations with control delay between 10 and 20 s/veh and a solume-to-capacity ratio no greater than 1.0). This level is typically assigned when the volume-to-capacity ratio is low and either progression is highly favorable or the cycle length is short. More vehicles stop than with LOS A.

IOS C describes operations with control delay between 20 and $354 / v e h$ and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when progression is favorable or the cycle length is moderate. Individual cy/de fuilures (i.e., one or more queued vehicles are not able to depart as a result of insufticient capacity during the cycle) may begin to appear at this level. The number of vehicles stopping is significant, altheough many vehiches still pass through the intersection without stopping,

IOS D describes operations with control delay between 35 and $55 \mathrm{~s} /$ veh and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is high and either progression is ineffective or the cycle length is long. Many vehicles stop and individual cycle failures are noticeable.

LOS E describes operations with control delay between 55 and 80 s/veh and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is high, progression is unfavorable, and the eycle length is long. Individual cycle failures are frequent.

LOS F describes operations with control delay exceeding 80 s/veh or a volume-to-capacity ratio greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is very high, progression is very poor, and the cycle length is long. Most cycles fail to clear the queue.

A lane group can incur a delay less than $80 \mathrm{~s} /$ veh when the volume-tocapacity ratio exceeds 1.0. This condition typically occurs when the cycle length is short, the signal progression is favorable, or both. As a result, both the delay and volume-to-capacity ratio are considered when lane group IOS is established. A ratio of 1.0 or more indicates that cycle capacity is fully utilized and represents failure from a capacity perspective (just as delay in excess of 80) s/veh represents failure from a delay perspective).

Exhibit 18-4 lists the LOS thresholds established for the automobile mode at a signalized intersection.

Control Delay (s/veh)	LOS by Volume-to-Capacity Ratio ${ }^{\text {² }}$	
	≤ 1.0	>1.0
≤ 10	A	F
>10-20	B	F
>20-35	C	F
>35-55	D	F
>55-80	E	F
>80	F	F

Note: "For approach-based and intersectionwide assessments, LOS is defined solely by control delay.

1. INTRODUCTION

FWa-mis shor-antrolled (TWSC) intersections are common in the Linited states. One typical configuration is a four-leg intersection, where one street - the muine strat-is uncontrolled, while the other street-the mimen street-is controlled by sher signs. The other typical anfiguration is a three-leg intersection, where the single minor-street approach (i.e., the stem of the I configuration) is controlled by a store sign. Minor street approaches con be public streets or private driveways. Chapter 19, Two-Way Stor-Controlled Intersections, presents concepts and procedures for analy<ing these typers of intersections. Chapter 9 provides a glossary and list of symbols, including those used for TWSC intersections.

Capacity analysis of TWSC intersections requires a clear description and understanding of the interaction between travelers on the minor, or sforcontrolled, approach with travelers on the major street. Both gap acceptance and empirical models have been developed Io describe this interaction. Procedures described in this chapter rely primarily on field measurements of TWSC performance in the United States (1) that have been applied to a gap acceptance model developed and refined in Germany (2).

INTERSECTION ANALYSIS BOUNDARIES AND TRAVEL MODES

The intersection boundaries for a TWSC intersection analysis are assumed to be those of an isolated intersection (i.e., not affected by upstream or downstream intersections), with the exception of TWSC intersections that are located within 0.25 mi of a signalized intersection (for the major-street approaches). This chapter presents methodologies to assess TWSC intersections for both pedestrians and motor vehicles. A discussion of how the procedures for motor vehicles could potentially apply to an analysis of bicycle movements is also provided.

LEVEL-OF-SERVICE CRITERIA

Level of service (LOS) for a TWSC intersection is determined by the computed or measured control delay. For motor vehicles, I.OS is determined for each minor-street movement (or shared movement) as well as major-street left turns by using criteria given in Exhibit 19-1. LOS is not defined for the intersection as a whole or for major-street approaches for three primary reasons: (a) major-street through vehicles are assumed to experience zero delay; (bi) the disproportionate number of major-street through vehicles at a typical TWSC intersection skews the weighted average of all movements, resulting in a very low overall average delay for all vehiches; and (c) the resulting low delay can mask important IOS deficiencies for minor movements. As Exhibit 19-1 notes, LOS F is assigned to the movement if the volume-to-capacity ratio for the movement exceeds 1.0 , regardless of the control delay.

The I.OS criteria for TWSC intersections are somewhat different from the criteria used in Chapter 18 for signalized intersections, primarily because user perceptions differ among transportation facility types. The expectation is that a signalied intersection is designed te carry higher traffic volumes and will
19. TWSC Intersections

Three-leg intersections are considered a standard type of TWSC intersection, when the stem of the T is controlled by a sTop sign.

LOS is not defined for the majorstreet approaches or for the overall intersection, as major-street through vehicles are assumed to experience no delay.

Exhibit 19-1
Level-of-Service Criteria:
Automobile Mode

Exhibit 19-2 Level-of-Service Criteria: Pedestrian Mode
present greater delos than an unsignalized intersection. Unsignalized intersections are alab asociated with more uncertainty for users, as delays are less predictable than they are at signals, which can reduce user delay tolerance.

Control Delay (s/vehicle)	LOS by Volume-to-Capacity Ratio $\boldsymbol{v} / \mathrm{c} \leq 1.0$	
$0-10$	A	F
$>10-15$	B	F
$>15-25$	C	F
$>25-35$	D	F
$>35-50$	E	F
>50	F	F

Note: \quad The LOS criteria apply to each lane on a given approach and to each approach on the minor street. LOS is not calculated for major-street approaches or for the intersection as a whole.

Pedestrian L.OS at TWSC intersections is defined for pedestrians crossing a Iraffic stream not controlled by a siov' sign; it also applies to midblock pedestrian crossings. LOS criteria for pedestrians are given in Exhibit 19-2.

LOS	Control Delay (s/pedestrian)	Comments
A	$0-5$	Usually no conflicting traffic
B	$5-10$	Occasionally some delay due to conflicting traffic
C	$10-20$	Delay noticeable to pedestrians, but not inconveniencing
D	$20-30$	Delay noticeable and irritating, increased likelihood of risk taking
E	$30-45$	Delay approaches tolerance level, risk-taking behavior likely
F	>45	Delay exceeds tolerance level, high likelihood of pedestrian risk taking

Note: Control delay may be interpreted as s /pedestrian group if groups of pedestrians were counted as opposed to individual pedestrians.
I.OS F for pedestrians occurs when there are not enough gaps of suitable size to allow waiting pedestrians to cross through traffic on the major street safely. This situation is typically evident from extremely long control delays. The method is based on a constant critical headway. In the field, however, LOS F may also appear in the form of erossing pedestrians selecting smaller-than-usual gaps. In such cases, safety could be a concern that warrants further study.

REQUIRED INPUT DATA

Analysis of a TWSC intersection requires the following data:

1. Number and configuration of lanes on each approach;
2. Percentage of heavy vehicles for each movement;
3. Either of the following:
a. Demand flow rate for each entering vehicular movement and each pedestrian crossing movement during the peak 15 min , or
b. Demand flow rate for each entering vehicular movement and each pedestrian crossing movement during the peak hour and a peak hour factor for the hour:
4. Special geometric factors such as
a. Unique channelization aspects,
b. Existence of a two-way left-turn lane or rased or striped median storage (or both),

1. INTRODUCTION

Roundabouts are intersections with a generally circular shape, characterized by yield on entry and circulation around a central island (counterdockwise in the United States). Roundabouts have been used successfully throughout the world and are being used increasingly in the United States, especially since 1990.

Chapter 21, Roundabouts, presents concepts and procedures for analyzing these intersections. National Cooperative Highway Research Program Project 365 (1) provided a comprehensive database of roundabout operations for U.S. conditions on the basis of a study of 31 sites. The procedures that follow are largely founded on that study's recommendations. These procedures allow the analyst to assess the operational performance of an existing or planned one-lane or two-lane roundabout given traffic demand levels.

INTERSECTION ANALYSIS BOUNDARIES AND TRAVEL MODES

The analytical procedure presented in this chapter assumes that the analysis boundaries are the roundabout itself, including associated pedestrian crosswalks. Alternative tools discussed in this chapter can, in some cases, expand the analysis boundaries to include adjacent intersections. The methodology presented here includes discussion of motor vehicles, pedestrians, and bicycles.

LEVEL OF SERVICE CRITERIA

The level of service (LOS) criteria for automobiles in roundabouts are given in Exhibit 21-1. As the table notes, LOS F is assigned if the volume-to-capacity ratio of a lane exceeds 1.0 regardless of the control delay. For assessment of LOS at the approach and intersection levels, LOS is based solely on control delay.

The thresholds in Exhibit 21-1 are based on the considered judgment of the Transportation Research Board Committee on Highway Capacity and Quality of Service. As discussed later in this chapter, roundabouts share the same basic control delay formulation with two-way and all-way stor-controlled intersections, adjusting for the effect of YIELD control. However, at the time of publication of this edition of the Highway Capacity Mantual (HCM), no research was available on traveler perception of quality of service at roundabouts. In the absence of such research, the service measure and thresholds have been made consistent with those for other unsignalized intersections, primarily on the basis of this similar control delay formulation.

Control Delay $(\mathbf{s} / \mathbf{v e h})$	LOS by Volume-to-Capacity Ratio v/c $\leq \mathbf{1 . 0}$	
$0-10$	A	$\mathrm{v} / \mathrm{c}>\mathbf{1 . 0}$

Note: \quad "For approaches and intersectionwide assessment, LOS is defined solely by control delay.

21. Roundabouts
1,

Exhibit 21-1
LOS Criteria: Automobile Mode

APPENDIX F: HCS 2010 FREEWAY FACILITY ANALYSES - 2015 BASE

Segment Identification Listing

Northbound Direction

Segment 1 - Basic - I-93 Mainline south of Exit 4
Segment 2 - Diverge - Exit 4 NB off-ramp
Segment 3 - Basic - I-93 Mainline between Exit 4 ramps
Segment 4 - Merge - Exit 4 NB on-ramp
Segment 5 - Basic - I-93 Mainline between Exit 4 NB on- and Exit 5 NB offramps
Segment 6 - Diverge - Exit 5 NB off-ramp
Segment 7 - Basic - I-93 Mainline between Exit 5 ramps
Segment 8 - Merge - Exit 5 NB on-ramp
Segment 9 - Basic - I-93 Mainline north of Exit 5

Southbound Direction

Segment 1 - Basic - I-93 Mainline north of Exit 5
Segment 2 - Diverge - Exit 5 SB off-ramp
Segment 3 - Basic - I-93 Mainline between Exit 5 ramps
Segment 4 - Merge - Exit 5 SB on-ramp
Segment 5 - Basic - I-93 Mainline between Exit 5 SB on- and Exit 4 SB off-ramps
Segment 6 - Diverge - Exit 4 SB off-ramp
Segment 7 - Basic - I-93 Mainline between Exit 4 SB off- and SB on ramp from east
Segment 8 - Merge - Exit 4 SB on-ramp from east
Segment 9 - Basic - I-93 Mainline between Exit 4 SB on-ramps
Segment 10 - Merge - Exit 4 SB on-ramp from west
Segment 11 - Basic - I-93 Mainline south of Exit 4

HCS 2010 Facilities Report

Project Information

Analyst	PK/LCG	Agency	
Jurisdiction		Time Period Analyzed	AM Peak - NB
Analysis Year	2015 Base - AM	Date	$5 / 1 / 2017$
Project Description	I-93 - from S. of Exit 4 to N of Exit 5		

Facility Global Input

Jam Density, pc/mi/ln	190.0	Density at Capacity, pc/mi/ln	45.0
Queue Discharge Capacity Drop, \%	7	Total Segments	9
Total Time Periods	4	Time Period Duration, min	15

Segment Geometric Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	$\mathrm{a}->\mathrm{b}$	5280	2
2	Diverge	Diverge	$\mathrm{b}->\mathrm{c}$	$\mathrm{c}->\mathrm{d}$	1500
3	Basic	Basic	$\mathrm{d}->\mathrm{e}$	2575	2
4	Merge	Merge	$\mathrm{e}->\mathrm{f}$	1500	2
5	Basic	Basic	$\mathrm{f}->\mathrm{g}$	13225	2
6	Diverge	Diverge	$\mathrm{g}->\mathrm{h}$	1500	2
7	Basic	Basic	$\mathrm{h}->\mathrm{i}$	4100	2
8	Merge	Merge	Basic		52800
9	Basic			2	2

Facility Segment Data

Segment 1: Basic

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & \text { (pc/mi/ln) } \end{aligned}$		LOS
1	1.00		0.979		2022		4700		0.43		65.0		15.6		B
2	1.00		0.979		2022		4700		0.43		65.0		15.6		B
3	1.00		0.979		2022		4700		0.43		65.0		15.6		B
4	1.00		0.979		2022		4700		0.43		65.0		15.6		B
Segment 2: Diverge															
Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	1.00	1.00	0.979	0.962	2022	426	4700	1900	0.43	0.22	51.3	51.3	19.7	14.3	B
2	1.00	1.00	0.979	0.962	2022	426	4700	1900	0.43	0.22	51.3	51.3	19.7	14.3	B
3	1.00	1.00	0.979	0.962	2022	426	4700	1900	0.43	0.22	51.3	51.3	19.7	14.3	B
4	1.00	1.00	0.979	0.962	2022	426	4700	1900	0.43	0.22	51.3	51.3	19.7	14.3	B

Segment 3: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	d/c Ratio	$\begin{aligned} & \text { Speed } \\ & (\mathrm{mi} / \mathrm{h}) \end{aligned}$	Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)	LOS
1	1.00	0.984	1596	4700	0.34	65.0	12.3	B
2	1.00	0.984	1596	4700	0.34	65.0	12.3	B
3	1.00	0.984	1596	4700	0.34	65.0	12.3	B
4	1.00	0.984	1596	4700	0.34	65.0	12.3	B

Segment 4: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi / h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	1.00	1.00	0.973	0.984	2691	1077	4700	2100	0.57	0.51	59.2	59.2	22.7	17.2	B
2	1.00	1.00	0.973	0.984	2691	1077	4700	2100	0.57	0.51	59.2	59.2	22.7	17.2	B
3	1.00	1.00	0.973	0.984	2691	1077	4700	2100	0.57	0.51	59.2	59.2	22.7	17.2	B
4	1.00	1.00	0.973	0.984	2691	1077	4700	2100	0.57	0.51	59.2	59.2	22.7	17.2	B

Segment 5: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $(\mathbf{p c / h})$	$\mathbf{d / c}$ Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	1.00	0.973	2703	4700	0.58	65.0	20.8	
2	1.00	0.973	2703	4700	0.58	65.0	C	
3	1.00	0.973	2703	4700	0.58	65.0	20.8	C
4	1.00	0.973	2703	4700	0.58	65.0	20.8	C

Segment 6: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	1.00	1.00	0.973	0.957	2703	428	4700	2000	0.58	0.21	54.3	54.3	24.9	23.2	C
2	1.00	1.00	0.973	0.957	2703	428	4700	2000	0.58	0.21	54.3	54.3	24.9	23.2	C
3	1.00	1.00	0.973	0.957	2703	428	4700	2000	0.58	0.21	54.3	54.3	24.9	23.2	C
4	1.00	1.00	0.973	0.957	2703	428	4700	2000	0.58	0.21	54.3	54.3	24.9	23.2	C

Segment 7: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $(\mathbf{p c / h})$	$\mathbf{d / c}$ Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i} / \mathbf{l n})$	$\mathbf{\text { LOS }}$
1	1.00	0.976	2275	4700	0.48	65.0	17.5	
2	1.00	0.976	2275	4700	0.48	65.0	17.5	B
3	1.00	0.976	2275	4700	0.48	65.0	17.5	B
4	1.00	0.976	2275	4700	0.48	65.0	17.5	B

Segment 8: Merge

Time Period	PHF		fHV		Flow Rate (pc / h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	1.00	1.00	0.983	0.971	3267	1009	4700	2100	0.70	0.48	56.8	56.8	28.8	25.8	C
2	1.00	1.00	0.983	0.971	3267	1009	4700	2100	0.70	0.48	56.8	56.8	28.8	25.8	C

3	1.00	1.00	0.983	0.971	3267	1009	4700	2100	0.70	0.48	56.8	56.8	28.8	25.8	C
4	1.00	1.00	0.983	0.971	3267	1009	4700	2100	0.70	0.48	56.8	56.8	28.8	25.8	C

Segment 9: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity ($\mathbf{p c / h}$)	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i} / \mathbf{l n})$	LOS
1	1.00	0.983	3255	4700	0.69	64.3	25.3	
2	1.00	0.983	3255	4700	0.69	64.3	C	
3	1.00	0.983	3255	4700	0.69	64.3	25.3	C
4	1.00	0.983	3255	4700	0.69	64.3	25.3	C

Facility Time Period Results

\mathbf{T}	Speed, mi/h	Density, pc/mi/ln	Density, veh/mi/ln	Travel Time, min	LOS
1	63.2	20.3	19.8	6.6	C
2	63.2	20.3	19.8	6.6	C
3	63.2	20.3	19.8	6.6	C
4	63.2	20.3	19.8	6.6	C

Facility Overall Results

Space Mean Speed, mi/h	63.2	Density, veh/mi/ln	19.8
Average Travel Time, min	6.6		

HCS 2010 Facilities Report

Project Information

Analyst	PK/LCG	Agency	
Jurisdiction		Time Period Analyzed	AM Peak - SB
Analysis Year	$2015-$ Base AM (3 pgs)	Date	$5 / 1 / 2017$
Project Description	I-93 SB - from N of Exit 5 to S of Exit 4		

Facility Global Input

Jam Density, pc/mi/ln	190.0	Density at Capacity, pc/mi/ln	45.0
Queue Discharge Capacity Drop, \%	7	Total Segments	11
Total Time Periods	4	Time Period Duration, min	15

Segment Geometric Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	$\mathrm{a}->\mathrm{b}$	5280	2
2	Diverge	Diverge	$\mathrm{b}->\mathrm{c}$	1500	2
3	Basic	Basic	$\mathrm{c}->\mathrm{d}$	3920	2
4	Merge	Merge	$\mathrm{d}->\mathrm{e}$	1500	2
5	Basic	Basic	$\mathrm{f}->\mathrm{g}$	11980	2
6	Diverge	Diverge	$\mathrm{g}->\mathrm{h}$	1500	2
7	Basic	Basic	$\mathrm{h}->\mathrm{i}$	1600	2
8	Merge	Merge	$\mathrm{i}>\mathrm{j}$	1500	2
9	Basic	Basic	Merge	$\mathrm{l}->\mathrm{m}$	900
10	Merge	Basic		1500	2
11	Basic		5230	2	

Facility Segment Data

Segment 1: Basic

Time Period	PHF	$\mathbf{f H V}$	Flow Rate $(\mathbf{p c / h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h})$	Density $(\mathbf{p c / m i} / \mathbf{l n})$	LOS
1	1.00	0.980	3321	4700	0.71	64.0	25.9	C
2	1.00	0.980	3321	4700	0.71	64.0	25.9	C
3	1.00	0.980	3321	4700	0.71	64.0	25.9	C
4	1.00	0.980	3321	4700	0.71	64.0	25.9	C

Segment 2: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	1.00	1.00	0.980	0.971	3321	783	4700	2000	0.71	0.39	53.5	53.5	31.0	28.1	D
2	1.00	1.00	0.980	0.971	3321	783	4700	2000	0.71	0.39	53.5	53.5	31.0	28.1	D
3	1.00	1.00	0.980	0.971	3321	783	4700	2000	0.71	0.39	53.5	53.5	31.0	28.1	D

4	1.00 1.00	0.980 0.971	3321 783	4700 2000	0.71 0.39	53.5 53.5	31.0×28.1	D
Segment 3: Basic								
Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	d/c Ratio	Speed (mi / h)	$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$	LOS
1	1.00	0.983	2538	4700	0.54	65.0	19.5	C
2	1.00	0.983	2538	4700	0.54	65.0	19.5	C
3	1.00	0.983	2538	4700	0.54	65.0	19.5	C
4	1.00	0.983	2538	4700	0.54	65.0	19.5	C

Segment 4: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi / h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	1.00	1.00	0.983	0.952	3079	541	4700	2100	0.66	0.26	57.5	57.5	26.8	23.7	C
2	1.00	1.00	0.983	0.952	3079	541	4700	2100	0.66	0.26	57.5	57.5	26.8	23.7	C
3	1.00	1.00	0.983	0.952	3079	541	4700	2100	0.66	0.26	57.5	57.5	26.8	23.7	C
4	1.00	1.00	0.983	0.952	3079	541	4700	2100	0.66	0.26	57.5	57.5	26.8	23.7	C

Segment 5: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $(\mathbf{p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i} / \mathbf{l n})$	LOS
1	1.00	0.983	3062	4700	0.65	64.8	23.6	C
2	1.00	0.983	3062	4700	0.65	64.8	23.6	C
3	1.00	0.983	3062	4700	0.65	64.8	23.6	C
4	1.00	0.983	3062	4700	0.65	64.8	23.6	C

Segment 6: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	1.00	1.00	0.983	0.971	3062	778	4700	1900	0.65	0.41	50.6	50.6	30.3	23.9	C
2	1.00	1.00	0.983	0.971	3062	778	4700	1900	0.65	0.41	50.6	50.6	30.3	23.9	C
3	1.00	1.00	0.983	0.971	3062	778	4700	1900	0.65	0.41	50.6	50.6	30.3	23.9	C
4	1.00	1.00	0.983	0.971	3062	778	4700	1900	0.65	0.41	50.6	50.6	30.3	23.9	C

Segment 7: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i} / \mathbf{l n})$	LOS
1	1.00	0.987	2285	4700	0.49	65.0	17.6	B
2	1.00	0.987	2285	4700	0.49	65.0	17.6	B
3	1.00	0.987	2285	4700	0.49	65.0	17.6	B
4	1.00	0.987	2285	4700	0.49	65.0	17.6	B

Segment 8: Merge

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c} / \mathrm{h})$	Capacity $(\mathbf{p c} / \mathrm{h})$	d/c Ratio	Speed $(\mathbf{m i} / \mathrm{h})$	Density $(\mathrm{pc} / \mathrm{mi} / \mathrm{ln})$	LOS

| | \mathbf{F} | \mathbf{R} | \mathbf{F} | \mathbf{R} | Freeway | Ramp | Freeway | Ramp | \mathbf{F} | \mathbf{R} | \mathbf{F} | \mathbf{R} | Freeway | Ramp | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.00 | 1.00 | 0.985 | 0.980 | 2820 | 531 | 4700 | 2000 | 0.60 | 0.27 | 58.2 | 58.2 | 24.2 | 17.8 | B |
| 2 | 1.00 | 1.00 | 0.985 | 0.980 | 2820 | 531 | 4700 | 2000 | 0.60 | 0.27 | 58.2 | 58.2 | 24.2 | 17.8 | B |
| 3 | 1.00 | 1.00 | 0.985 | 0.980 | 2820 | 531 | 4700 | 2000 | 0.60 | 0.27 | 58.2 | 58.2 | 24.2 | 17.8 | B |
| 4 | 1.00 | 1.00 | 0.985 | 0.980 | 2820 | 531 | 4700 | 2000 | 0.60 | 0.27 | 58.2 | 58.2 | 24.2 | 17.8 | B |

Segment 9: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity (pc/h)	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i} / \mathbf{l n})$	LOS
1	1.00	0.985	2817	4700	0.60	65.0	21.7	C
2	1.00	0.985	2817	4700	0.60	65.0	21.7	C
3	1.00	0.985	2817	4700	0.60	65.0	21.7	C
4	1.00	0.985	2817	4700	0.60	65.0	21.7	C

Segment 10: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	1.00	1.00	0.984	0.980	3499	679	4700	2100	0.74	0.32	57.2	57.2	30.6	23.7	C
2	1.00	1.00	0.984	0.980	3499	679	4700	2100	0.74	0.32	57.2	57.2	30.6	23.7	C
3	1.00	1.00	0.984	0.980	3499	679	4700	2100	0.74	0.32	57.2	57.2	30.6	23.7	C
4	1.00	1.00	0.984	0.980	3499	679	4700	2100	0.74	0.32	57.2	57.2	30.6	23.7	C

Segment 11: Basic

Time Period	PHF	$\mathbf{f H V}$	Flow Rate $(\mathbf{p c / h})$	Capacity $(\mathbf{p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i} / \mathbf{l n})$	$\mathbf{L O S}$
1	1.00	0.984	3496	4700	0.74	63.3	27.6	
2	1.00	0.984	3496	4700	0.74	63.3	D	
3	1.00	0.984	3496	4700	0.74	63.3	27.6	27.6
4	1.00	0.984	3496	4700	0.74	63.3	D	

Facility Time Period Results

\mathbf{T}	Speed, mi/h	Density, pc/mi/ln	Density, veh/mi/ln	Travel Time, min	LOS
1	62.5	24.8	24.4	6.6	C
2	62.5	24.8	24.4	6.6	C
3	62.5	24.8	24.4	6.6	C
4	62.5	24.8	24.4	6.6	C

Facility Overall Results

Space Mean Speed, mi/h	62.5	Density, veh/mi/ln	24.4
Average Travel Time, min	6.6		

Project Information

Analyst	PK/LCG	Agency	
Jurisdiction		Time Period Analyzed	2015 PM Peak - NB
Analysis Year	2015- Base PM (3 pgs)	Date	$5 / 1 / 2017$
Project Description			

Facility Global Input

Jam Density, pc/mi/ln	190.0	Density at Capacity, pc/mi/ln	45.0
Queue Discharge Capacity Drop, \%	7	Total Segments	9
Total Time Periods	4	Time Period Duration, min	15

Segment Geometric Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	$\mathrm{a}->\mathrm{b}$	5280	2
2	Diverge	Diverge	$\mathrm{b}-->\mathrm{c}$	1500	2
3	Basic	Basic	$\mathrm{c}->\mathrm{d}$	2575	2
4	Merge	Merge	$\mathrm{d}->\mathrm{e}$	1500	2
5	Basic	Basic	$\mathrm{f}->\mathrm{f}$	13225	2
6	Diverge	Diverge	$\mathrm{g}->\mathrm{h}$	1500	2
7	Basic	Basic	$\mathrm{h}->\mathrm{i}$	4100	2
8	Merge	Merge	Basic		1500
9	Basic		5280	2	

Facility Segment Data

Segment 1: Basic

Time Period	PHF	$\mathbf{f H V}$	Flow Rate (pc/h)	Capacity (pc/h)	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i} / \mathbf{l n})$	LOS
1	1.00	0.979	3483	4700	0.74	63.3	27.5	D
2	1.00	0.979	3483	4700	0.74	63.3	27.5	D
3	1.00	0.979	3483	4700	0.74	63.3	27.5	D
4	1.00	0.979	3483	4700	0.74	63.3	27.5	D

Segment 2: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi / h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	1.00	1.00	0.979	0.995	3483	1191	4700	1900	0.74	0.63	49.7	49.7	35.0	26.9	C
2	1.00	1.00	0.979	0.995	3483	1191	4700	1900	0.74	0.63	49.7	49.7	35.0	26.9	C
3	1.00	1.00	0.979	0.995	3483	1191	4700	1900	0.74	0.63	49.7	49.7	35.0	26.9	C
4	1.00	1.00	0.979	0.995	3483	1191	4700	1900	0.74	0.63	49.7	49.7	35.0	26.9	C

Segment 3: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	d/c Ratio	Speed (mi/h)	Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)	LOS
1	1.00	0.971	2291	4700	0.49	65.0	17.6	B
2	1.00	0.971	2291	4700	0.49	65.0	17.6	B
3	1.00	0.971	2291	4700	0.49	65.0	17.6	B
4	1.00	0.971	2291	4700	0.49	65.0	17.6	B

Segment 4: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi / h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	1.00	1.00	0.977	0.988	3077	800	4700	2100	0.65	0.38	58.6	58.6	26.3	20.3	C
2	1.00	1.00	0.977	0.988	3077	800	4700	2100	0.65	0.38	58.6	58.6	26.3	20.3	C
3	1.00	1.00	0.977	0.988	3077	800	4700	2100	0.65	0.38	58.6	58.6	26.3	20.3	C
4	1.00	1.00	0.977	0.988	3077	800	4700	2100	0.65	0.38	58.6	58.6	26.3	20.3	C

Segment 5: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $(\mathbf{p c / h})$	$\mathbf{d / c}$ Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i} / \mathbf{l n})$	LOS
1	1.00	0.977	3086	4700	0.66	64.7	23.8	C
2	1.00	0.977	3086	4700	0.66	64.7	23.8	C
3	1.00	0.977	3086	4700	0.66	64.7	23.8	C
4	1.00	0.977	3086	4700	0.66	64.7	23.8	C

Segment 6: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	1.00	1.00	0.977	0.971	3086	474	4700	2000	0.66	0.24	54.2	54.2	28.5	26.5	C
2	1.00	1.00	0.977	0.971	3086	474	4700	2000	0.66	0.24	54.2	54.2	28.5	26.5	C
3	1.00	1.00	0.977	0.971	3086	474	4700	2000	0.66	0.24	54.2	54.2	28.5	26.5	C
4	1.00	1.00	0.977	0.971	3086	474	4700	2000	0.66	0.24	54.2	54.2	28.5	26.5	C

Segment 7: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density (pc/mi/ln)	LOS
1	1.00	0.978	2612	4700	0.56	65.0	20.1	C
2	1.00	0.978	2612	4700	0.56	65.0	20.1	C
3	1.00	0.978	2612	4700	0.56	65.0	20.1	C
4	1.00	0.978	2612	4700	0.56	65.0	20.1	C

Segment 8: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc / h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	1.00	1.00	0.983	0.981	3384	785	4700	2100	0.72	0.37	56.5	56.5	29.9	26.8	C

2	1.00	1.00	0.983	0.981	3384	785	4700	2100	0.72	0.37	56.5	56.5	29.9	26.8	C
3	1.00	1.00	0.983	0.981	3384	785	4700	2100	0.72	0.37	56.5	56.5	29.9	26.8	C
4	1.00	1.00	0.983	0.981	3384	785	4700	2100	0.72	0.37	56.5	56.5	29.9	26.8	C

Segment 9: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $(\mathbf{p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i} / \mathbf{l n})$	$\mathbf{L O S}$
1	1.00	0.983	3383	4700	0.72	63.8	26.5	D
2	1.00	0.983	3383	4700	0.72	63.8	26.5	D
3	1.00	0.983	3383	4700	0.72	63.8	26.5	D
4	1.00	0.983	3383	4700	0.72	63.8	26.5	D

Facility Time Period Results

\mathbf{T}	Speed, mi/h	Density, pc/mi/ln	Density, veh/mi/ln	Travel Time, min	LOS
1	62.7	24.9	24.4	6.6	C
2	62.7	24.9	24.4	6.6	C
3	62.7	24.9	24.4	6.6	C
4	62.7	24.9	24.4	6.6	C

Facility Overall Results

Space Mean Speed, mi/h	62.7	Density, veh/mi/ln	24.4
Average Travel Time, min	6.6		

Project Information

Analyst	PK/LCG	Agency	
Jurisdiction		Time Period Analyzed	2015 PM Peak - SB
Analysis Year	2015 Base - PM (3 pgs)	Date	$5 / 1 / 2017$
Project Description	193 SB - from N of Exit 5 to S of Exit 4		

Facility Global Input

Jam Density, pc/mi/ln	190.0	Density at Capacity, pc/mi/ln	45.0
Queue Discharge Capacity Drop, \%	7	Total Segments	11
Total Time Periods	4	Time Period Duration, min	15

Segment Geometric Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	$\mathrm{a}->\mathrm{b}$	5280	2
2	Diverge	Diverge	$\mathrm{b}->\mathrm{c}$	1500	2
3	Basic	Basic	$\mathrm{c}->\mathrm{d}$	3920	2
4	Merge	Merge	$\mathrm{d}->\mathrm{e}$	1500	2
5	Basic	Basic	$\mathrm{f}->\mathrm{f}$	11980	2
6	Diverge	Diverge	$\mathrm{g}->\mathrm{h}$	1500	2
7	Basic	Basic	$\mathrm{h}->\mathrm{i}$	1600	2
8	Merge	Merge	$\mathrm{i}->\mathrm{j}$	1500	2
9	Basic	Basic	$\mathrm{j}->\mathrm{k}$	900	2
10	Merge	Merge	Basic		52300
11	Basic			2	2

Facility Segment Data

Segment 1: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $(\mathbf{p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i} / \mathbf{l n})$	LOS
1	1.00	0.980	3434	4700	0.73	63.6	27.0	D
2	1.00	0.980	3434	4700	0.73	63.6	27.0	D
3	1.00	0.980	3434	4700	0.73	63.6	27.0	D
4	1.00	0.980	3434	4700	0.73	63.6	27.0	D

Segment 2: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc / h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	1.00	1.00	0.980	0.980	3434	929	4700	2000	0.73	0.46	53.2	53.2	32.3	29.1	D
2	1.00	1.00	0.980	0.980	3434	929	4700	2000	0.73	0.46	53.2	53.2	32.3	29.1	D
3	1.00	1.00	0.980	0.980	3434	929	4700	2000	0.73	0.46	53.2	53.2	32.3	29.1	D

4	1.00 1.00	0.980 0.980	3434929	4700 2000	0.73 0.46	53.2 53.2	32.3 29.1	D
Segment 3: Basic								
Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	d/c Ratio	Speed (mi / h)	Density $(\mathrm{pc} / \mathrm{mi} / \mathrm{In})$	LOS
1	1.00	0.980	2505	4700	0.53	65.0	19.3	C
2	1.00	0.980	2505	4700	0.53	65.0	19.3	C
3	1.00	0.980	2505	4700	0.53	65.0	19.3	C
4	1.00	0.980	2505	4700	0.53	65.0	19.3	C

Segment 4: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	1.00	1.00	0.980	0.977	2930	425	4700	2100	0.62	0.20	57.8	57.8	25.3	22.6	C
2	1.00	1.00	0.980	0.977	2930	425	4700	2100	0.62	0.20	57.8	57.8	25.3	22.6	C
3	1.00	1.00	0.980	0.819	3012	507	4700	2100	0.64	0.24	57.6	57.6	26.1	23.2	C
4	1.00	1.00	0.980	0.977	2930	425	4700	2100	0.62	0.20	57.8	57.8	25.3	22.6	C

Segment 5: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $(\mathbf{p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i} / \mathbf{l n})$	LOS
1	1.00	0.980	2929	4700	0.62	64.9	22.6	
2	1.00	0.980	2929	4700	0.62	64.9	C	
3	1.00	0.980	2929	4700	0.62	64.9	C	
4	1.00	0.980	2929	4700	0.62	64.9	22.6	22.6

Segment 6: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	1.00	1.00	0.980	0.985	2929	939	4700	1900	0.62	0.49	50.2	50.2	29.2	22.8	C
2	1.00	1.00	0.980	0.985	2929	939	4700	1900	0.62	0.49	50.2	50.2	29.2	22.8	C
3	1.00	1.00	0.980	0.985	2929	939	4700	1900	0.62	0.49	50.2	50.2	29.2	22.8	C
4	1.00	1.00	0.980	0.985	2929	939	4700	1900	0.62	0.49	50.2	50.2	29.2	22.8	C

Segment 7: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity (pc/h)	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i} / \mathbf{l n})$	LOS
1	1.00	0.978	1989	4700	0.42	65.0	15.3	B
2	1.00	0.978	1989	4700	0.42	65.0	15.3	B
3	1.00	0.978	1989	4700	0.42	65.0	15.3	B
4	1.00	0.978	1989	4700	0.42	65.0	15.3	B

Segment 8: Merge

Time Period	PHF	fHV	Flow Rate $(\mathrm{pc} / \mathrm{h})$	Capacity $(\mathrm{pc} / \mathrm{h})$	d/c Ratio	Speed $(\mathrm{mi} / \mathrm{h})$	Density $(\mathrm{pc} / \mathrm{mi} / \mathrm{ln})$	LOS

	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	1.00	1.00	0.978	0.980	2208	219	4700	2000	0.47	0.11	58.9	58.9	18.7	13.2	B
2	1.00	1.00	0.978	0.980	2208	219	4700	2000	0.47	0.11	58.9	58.9	18.7	13.2	B
3	1.00	1.00	0.978	0.980	2208	219	4700	2000	0.47	0.11	58.9	58.9	18.7	13.2	B
4	1.00	1.00	0.978	0.980	2208	219	4700	2000	0.47	0.11	58.9	58.9	18.7	13.2	B

Segment 9: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $(\mathbf{p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i} / \mathbf{l n})$	LOS
1	1.00	0.978	2209	4700	0.47	65.0	17.0	B
2	1.00	0.978	2209	4700	0.47	65.0	17.0	B
3	1.00	0.978	2209	4700	0.47	65.0	17.0	B
4	1.00	0.978	2209	4700	0.47	65.0	17.0	B

Segment 10: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	1.00	1.00	0.978	0.980	2515	306	4700	2100	0.54	0.15	59.1	59.1	21.3	16.2	B
2	1.00	1.00	0.978	0.980	2515	306	4700	2100	0.54	0.15	59.1	59.1	21.3	16.2	B
3	1.00	1.00	0.978	0.980	2515	306	4700	2100	0.54	0.15	59.1	59.1	21.3	16.2	B
4	1.00	1.00	0.978	0.980	2515	306	4700	2100	0.54	0.15	59.1	59.1	21.3	16.2	B

Segment 11: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $(\mathbf{p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i} / \mathbf{l n})$	LOS
1	1.00	0.978	2515	4700	0.54	65.0	19.4	
2	1.00	0.978	2515	4700	0.54	65.0	C	
3	1.00	0.978	2515	4700	0.54	65.0	19.4	C
4	1.00	0.978	2515	4700	0.54	65.0	19.4	19.4

Facility Time Period Results

\mathbf{T}	Speed, mi/h	Density, $\mathbf{p c / m i} / \mathbf{n}$	Density, veh/mi/ln	Travel Time, min	LOS
1	62.8	22.5	22.1	6.6	C
2	62.8	22.5	22.1	6.6	C
3	62.8	22.6	22.1	6.6	C
4	62.8	22.5	22.1	6.6	C

Facility Overall Results

APPENDIX G-1: HCM AND SYNCHRO PRINTOUTS SIGNALIZED INTERSECTION CAPACITY ANALYSES - 2015 AM PEAK HOURS - SYNCHRO PRINTOUTS

4A Zone 2 7:30 am 8/3/2016 Existing 2015 AM Peak LC

7: Exit 4 SB Off							12/22/2016
	\rightarrow	\leftarrow	4		\checkmark		
Lane Group	EBT	WBT	WBR	SBL	SBR	$\emptyset 9$	
Approach LOS	B	A		C			
Queue Length 50th (ft)	165	17		164	49		
Queue Length 95th (ft)	212	m18		251	176		
Internal Link Dist (tt)	237	186		672			
Turn Bay Length (ft)							
Base Capacity (vph)	2117	2077		459	745		
Starvation Cap Reductn	0	0		0	0		
Spillback Cap Reductn	0	0		0	0		
Storage Cap Reductn	0	0		0	0		
Reduced v/c Ratio	0.46	0.31		0.64	0.75		

Intersection Summary

Area Type: Other

Cycle Length: 100
Actuated Cycle Length: 100
Offset: $0(0 \%)$, Referenced to phase 2:EBWB, Start of Green
Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.75
Intersection Signal Delay: 12.8
Intersection LOS: B
Intersection Capacity Utilization 58.3\%
ICU Level of Service B
Analysis Period (min) 15
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 7: Exit 4 SB Off

	\dagger	1			Y	\nearrow	\%	$\frac{1}{7}$	4	k	
Lane Group	NBL	NBR	SEL	SER	NEL	NET	NER	SWL	SWT		W 8
Lane Configurations	7\%	\#			\%	个4			44	F	
Traffic Volume (vph)	210	200	0	0	585	590	0	0	875	0	
Future Volume (vph)	210	200	0	0	585	590	0	0	875	0	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Storage Length (ft)	0	0	0	0	350		0	0		0	
Storage Lanes	2	1	0	0	1		0	0		1	
Taper Length (ft)	25		25		25			25			
Lane Utill. Factor	0.97	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Frt		0.850									
Flt Protected	0.950				0.950						
Satd. Flow (prot)	3242	1495	0	0	1719	3438	0	0	3505	1845	
Flt Permitted	0.950				0.950					1845	
Satd. Flow (perm)	3242	1495	0	0	1719	3438	0	0	3505	1845	
Right Turn on Red		Yes					Yes			Yes	
Satd. Flow (RTOR)		227									
Link Speed (mph)	25		30			30			30		
Link Distance (tt)	347		390			494			346		
Travel Time (s)	9.5		8.9			11.2			7.9		
Peak Hour Factor	0.88	0.88	0.92	0.92	0.94	0.94	0.94	0.92	0.92	0.92	
Heavy Vehicles (\%)	8\%	8\%	2\%	2\%	5\%	5\%	5\%	3\%	3\%	3\%	
Adj. Flow (vph)	239	227	0	0	622	628	,	0	951	0	
Shared Lane Traffic (\%)											
Lane Group Flow (vph)	239	227	0	0	622	628	0	0	951	0	
Turn Type	Prot	Free			Prot	NA			NA	Free	
Protected Phases	2				7	4			8		
Permitted Phases		Free								Free	
Detector Phase	2				7	4			8		
Switch Phase											
Minimum Initial (s)	10.0				5.0	10.0			10.0		
Minimum Split (s)	46.0				11.0	46.0			46.0		
Total Split (s)	31.0				35.0	69.0			34.0		
Total Split (\%)	31.0\%				35.0\%	69.0\%			34.0\%		
Maximum Green (s)	25.0				29.0	63.0			28.0		
Yellow Time (s)	4.0				4.0	4.0			4.0		
All-Red Time (s)	2.0				2.0	2.0			2.0		
Lost Time Adjust (s)	0.0				0.0	0.0			0.0		
Total Lost Time (s) Lead/Lag	6.0				6.0	6.0			6.0		
Lead/Lag					Lead				Lag		
Lead-Lag Optimize?											
Vehicle Extension (s)	3.0				3.0	3.0			3.0		
Recall Mode	C-Min				None	Min			Min		
Walk Time (s)	7.0					7.0			7.0		
Flash Dont Walk (s)	11.0					11.0			11.0		
Pedestrian Calls (\#hr)	0					0			0		
Act Effct Green (s)	12.9	100.0			41.1	75.1			28.0		
Actuated g/C Ratio	0.13	1.00			0.41	0.75			0.28		
v/c Ratio	0.57	0.15			0.88	0.24			0.97		
Control Delay	46.2	0.2			43.8	4.3			58.7		
Queue Delay	0.0	0.0			0.0	0.0			0.0		
4A Zone $27: 30$ am 8/3/2016 Existing 2015 AM Peak LC Synchro 9 Report Page 1											

Splits and Phases: 11: Exit 4 NB Off \& NH 102

	$\xlongequal{\prime}$	\rightarrow	7	\checkmark	\square	4	4	\uparrow	p	\checkmark	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢ \uparrow	\%	${ }^{*}$	$\uparrow \uparrow$					${ }^{4 *}$		${ }^{*}$
Traffic Volume (vph)	0	515	280	235	605	0	0	0	0	465	0	295
Future Volume (vph)	0	515	280	235	605	0	0	0	0	465	0	295
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	0.97	1.00	1.00
Fit			0.850									0.850
FIt Protected				0.950						0.950		
Satd. Flow (prot)	0	3167	1417	1687	3374	0	0	0	0	3303	0	1524
Flt Permitted				0.950						0.950		
Satd. Flow (perm)	0	3167	1417	1687	3374	0	0	0	0	3303	0	1524
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			304									123
Link Speed (mph)		30			30			30			35	
Link Distance (ft)		410			242			486			444	
Travel Time (s)		9.3			5.5			11.0			8.6	
Peak Hour Factor	0.92	0.92	0.92	0.73	0.73	0.73	0.92	0.92	0.92	0.74	0.74	0.74
Heavy Vehicles (\%)	14\%	14\%	14\%	7\%	7\%	7\%	2\%	2\%	2\%	6\%	6\%	6\%
Adj. Flow (vph)	0	560	304	322	829	0	0	0	0	628	0	399
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	560	304	322	829	0	0	0	0	628	0	399
Turn Type		NA	Free	Prot	NA					Prot		Prot
Protected Phases		2		1	6					4		4
Permitted Phases			Free									
Detector Phase		2		1	6					4		4
Switch Phase												
Minimum Initial (s)		5.0		4.0	5.0					3.0		3.0
Minimum Split (s)		26.0		24.0	26.0					36.0		36.0
Total Split (s)		24.0		22.0	46.0					34.0		34.0
Total Split (\%)		30.0\%		27.5\%	57.5\%					42.5\%		42.5\%
Maximum Green (s)		18.0		16.0	40.0					28.0		28.0
Yellow Time (s)		4.0		4.0	4.0					4.0		4.0
All-Red Time (s)		2.0		2.0	2.0					2.0		2.0
Lost Time Adjust (s)		0.0		0.0	0.0					0.0		0.0
Total Lost Time (s)		6.0		6.0	6.0					6.0		6.0
Lead/Lag		Lag		Lead								
Lead-Lag Optimize?		Yes		Yes								
Vehicle Extension (s)		3.0		3.0	3.0					3.0		3.0
Recall Mode		C-Max		None	C-Max					None		None
Walk Time (s)		7.0		7.0	7.0					7.0		7.0
Flash Dont Walk (s)		11.0		11.0	11.0					11.0		11.0
Pedestrian Calls (\#/hr)		0		0	0					0		0
Act Effict Green (s)		20.9	80.0	18.8	45.7					22.3		22.3
Actuated g/C Ratio		0.26	1.00	0.24	0.57					0.28		0.28
v/c Ratio		0.68	0.21	0.81	0.43					0.68		0.78
Control Delay		32.7	0.3	40.0	7.0					29.2		28.7
Queue Delay		0.0	0.0	0.0	0.0					0.0		0.0
Total Delay		32.7	0.3	40.0	7.0					29.2		28.7
LOS		C	A	D	A					C		C
Approach Delay		21.3			16.3						29.0	

	\Rightarrow	\rightarrow	7	\checkmark	\longleftarrow	4	4	\dagger	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		C			B						C	
Queue Length 50th (ft)		139	0	87	46					142		127
Queue Length 95th (ft)		\#212	0	\#211	59					138		146
Internal Link Dist (ft)		330			162			406			364	4
Turn Bay Length (ft) 364												
Base Capacity (vph)		828	1417	396	1929					1156		613
Starvation Cap Reductn		0	0	0	0					0		0
Spillback Cap Reductn		0	0	0	0					0		0
Storage Cap Reductn		0	0	0	0					0		0
Reduced v/c Ratio		0.68	0.21	0.81	0.43					0.54		0.65

Intersection Summary	
Area Type:	Other

Cycle Length: 80
Actuated Cycle Length: 80
Offset: $38(48 \%)$, Referenced to phase 2:EBT and $6: W B T$, Start of Green
Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.81
Intersection Signal Delay: 22.0
Intersection LOS: C
Intersection Capacity Utilization 65.7\%
ICU Level of Service C
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: $\quad 3:$ Exit 5 SB On/Exit 5 SB Off \& NH 28

	$\stackrel{ }{ }$	\rightarrow	7	\checkmark	\longleftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	¢4			$\uparrow \uparrow$	「	${ }^{7}$		「			SBR
Traffic Volume (vph)	240	740	0	0	540	740	300	0	110	0	0	0
Future Volume (vph)	240	740	0	0	540	740	300	0	110	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt						0.850			0.850			
FIt Protected	0.950						0.950					
Satd. Flow (prot)	1641	3282	0	0	3438	1538	1656	0	1482	0	0	0
Fit Permitted	0.950						0.950					
Satd. Flow (perm)	1641	3282	0	0	3438	1538	1656	0	1482	0	0	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)						822			205			
Link Speed (mph)		30			30			35			30	
Link Distance (ft)		196			451			450			368	
Travel Time (s)		4.5			10.3			8.8			8.4	
Peak Hour Factor	0.87	0.87	0.87	0.90	0.90	0.90	0.78	0.78	0.78	0.92	0.92	0.92
Heavy Vehicles (\%)	10\%	10\%	10\%	5\%	5\%	5\%	9\%	9\%	9\%	2\%	2\%	2\%
Adj. Flow (vph)	276	851	0	0	600	822	385	0	141	0	0	0
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	276	851	0	0	600	822	385	0	141	0	0	0
Turn Type	Prot	NA			NA	Free	Prot		Free		0	0
Protected Phases	5	2			6		8					
Permitted Phases		2			6	Free			Free			
Detector Phase	5	2			6		8					
Switch Phase												
Minimum Initial (s)	5.0	5.0			5.0		5.0					
Minimum Split (s)	24.0	24.0			24.0		11.0					
Total Split (s)	22.0	51.0			29.0		29.0					
Total Split (\%)	27.5\%	63.8\%			36.3\%		36.3\%					
Maximum Green (s)	16.0	45.0			23.0		23.0					
Yellow Time (s)	4.0	4.0			4.0		4.0					
All-Red Time (s)	2.0	2.0			2.0		2.0					
Lost Time Adjust (s)	0.0	0.0			0.0		0.0					
Total Lost Time (s)	6.0	6.0			6.0		6.0					
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Vehicle Extension (s)	3.0	3.0			3.0		3.0					
Recall Mode	None	C-Max			C-Max		None					
Walk Time (s)	7.0	7.0			7.0							
Flash Dont Walk (s)	11.0	11.0			11.0							
Pedestrian Calls (\#/hr)	0	0			0							
Act Effct Green (s)	15.7	46.6			24.9	80.0	21.4		80.0			
Actuated g/C Ratio	0.20	0.58			0.31	1.00	0.27		1.00			
v / C Ratio	0.86	0.44			0.56	0.53	0.87		0.10			
Control Delay	55.0	2.2			26.1	1.3	49.4		0.1			
Queue Delay	0.0	0.0			0.0	0.0	0.0		0.0			
Total Delay	55.0	2.2			26.1	1.3	49.4		0.1			
LOS	D	A			C	A	D		A			
Approach Delay		15.1			11.8			36.2				

	4	\rightarrow	7	\checkmark	\leftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		B			B			D				
Queue Length 50th (ft)	130	0			135	0	178		0			
Queue Length 95th (ft)	\#251	5			189	0	233		0			
Internal Link Dist (ft)		116			371			370			288	
Turn Bay Length (ft)												
Base Capacity (vph)	333	1913			1071	1538	476		1482			
Starvation Cap Reductn	0	0			0	0	0		0			
Spillback Cap Reductn	0	0			0	0	0		0			
Storage Cap Reductn	0	0			0	0	0		0			
Reduced v/c Ratio	0.83	0.44			0.56	0.53	0.81		0.10			

Intersection Summary
Area Type: Other
Cycle Length: 80
Actuated Cycle Length: 80
Offset: $0(0 \%)$, Referenced to phase 2:EBT and 6:WBT, Start of Green
Natural Cycle: 70
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.87
Intersection Signal Delay: 17.2 Intersection LOS: B
Intersection Capacity Utilization 65.7\% ICU Level of Service C
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 2: Exit 5 NB Off \& NH 28

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		\$			4			F			\uparrow	
Traffic Volume (vph)	5	25	10	345	0	70	0	400	125	15	595	0
Future Volume (vph)	5	25	10	345	0	70	0	400	125	15	595	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.966			0.977			0.968				
Flt Protected		0.994			0.960						0.999	
Satd. Flow (prot)	0	1789	0	0	1730	0	0	1703	0	0	1808	0
FIt Permitted		0.937			0.716						0.981	
Satd. Flow (perm)	0	1686	0	0	1290	0	0	1703	0	0	1775	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		17			55			36				
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		285			644			243			338	
Travel Time (s)		6.5			14.6			5.5			7.7	
Peak Hour Factor	0.60	0.60	0.60	0.96	0.96	0.96	0.89	0.89	0.89	0.86	0.86	0.86
Heavy Vehicles (\%)	2\%	2\%	2\%	3\%	3\%	3\%	8\%	8\%	8\%	5\%	5\%	5\%
Adj. Flow (vph)	8	42	17	359	0	73	-	449	140	17	692	0
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	67	0	0	432	0	0	589	0	0	709	0
Turn Type	Perm	NA		Perm	NA			NA		Perm	NA	
Protected Phases		2			2			1			,	
Permitted Phases	2			2						1		
Detector Phase	2	2		2	2			1		1	1	
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0			5.0		5.0	5.0	
Minimum Split (s)	24.0	24.0		24.0	24.0			24.0		24.0	24.0	
Total Split (s)	25.0	25.0		25.0	25.0			35.0		35.0	35.0	
Total Split (\%)	41.7\%	41.7\%		41.7\%	41.7\%			58.3\%		58.3\%	58.3\%	
Maximum Green (s)	19.0	19.0		19.0	19.0			29.0		29.0	29.0	
Yellow Time (s)	4.0	4.0		4.0	4.0			4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0			2.0		2.0	2.0	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		6.0			6.0			6.0			6.0	
Lead/Lag	Lag	Lag		Lag	Lag			Lead		Lead	Lead	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes			Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0		3.0	3.0	
Recall Mode	None	None		None	None			Min		Min	Min	
Walk Time (s)	7.0	7.0		7.0	7.0			7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0			11.0		11.0	11.0	
Pedestrian Calls (\#/hr)	0	0		0	0			0		0	0	
Act Effct Green (s) ${ }^{\text {c }}$		19.1			19.1			27.3			27.3	
Actuated g/C Ratio		0.33			0.33			0.47			0.47	
v/c Ratio		0.12			0.94			0.72			0.86	
Control Delay		12.4			51.7			17.7			26.4	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		12.4			51.7			17.7			26.4	
LOS		B			D			B			C	
Approach Delay		12.4			51.7			17.7			26.4	

	\cdots	,	2	n	k	(\%	\nearrow	\rightarrow	5	4	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Approach LOS		B			D			B			C	
Queue Length 50th (ft)		13			135			145			206	
Queue Length 95th (ft)		22			\#304			247			\#368	
Internal Link Dist (tt)		205			564			163			258	
Turn Bay Length (ft)												
Base Capacity (vph)		562			458			866			884	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.12			0.94			0.68			0.80	
Intersection Summary												
Area Type:												

Cycle Length: 60
Actuated Cycle Length: 58.4
Natural Cycle: 70
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.94
Intersection Signal Delay: 29.1
Intersection LOS: C
Intersection Capacity Utilization 83.4\%
ICU Level of Service E
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 4: NH 102 \& Fordway $/ \mathrm{N}$. High St

	7	\rightarrow		7	\longleftarrow		4	4	p	\checkmark	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\dagger		${ }^{7}$	¢		${ }^{*}$	ち		*	\uparrow	7
Traffic Volume (vph)	105	205	60	35	385	80	60	260	40	70	230	105
Future Volume (vph)	105	205	60	35	385	80	60	260	40	70	230	105
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.966			0.974			0.980				0.850
FIt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1656	1684	0	1703	1746	0	1719	1773	0	1703	1792	1524
FIt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1656	1684	0	1703	1746	0	1719	1773	0	1703	1792	1524
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		20			14			9				205
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		505			530			361			411	
Travel Time (s)		11.5			12.0			8.2			9.3	
Peak Hour Factor	0.96	0.96	0.96	0.94	0.94	0.94	0.85	0.85	0.85	0.91	0.91	0.91
Heavy Vehicles (\%)	9\%	9\%	9\%	6\%	6\%	6\%	5\%	5\%	5\%	6\%	6\%	6\%
Parking (\#/r)			0									
Adj. Flow (vph)	109	214	63	37	410	85	71	306	47	77	253	115
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	109	277	0	37	495	0	71	353	0	77	253	115
Turn Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases												4
Detector Phase	5	2		1	6		3	8		7	4	4
Switch Phase												
Minimum Initial (s)	4.0	5.0		4.0	10.0		4.0	10.0		4.0	9.0	9.0
Minimum Split (s)	10.0	30.0		10.0	30.0		10.0	25.0		10.0	25.0	25.0
Total Split (s)	12.0	33.0		12.0	33.0		10.0	25.0		10.0	25.0	25.0
Total Split (\%)	15.0\%	41.3\%		15.0\%	41.3\%		12.5\%	31.3\%		12.5\%	31.3\%	31.3\%
Maximum Green (s)	6.0	27.0		6.0	27.0		4.0	19.0		4.0	19.0	19.0
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	6.0
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	Min		None	Min		Min	None		Min	None	None
Walk Time (s)		7.0			7.0			7.0			7.0	7.0
Flash Dont Walk (s)		11.0			11.0			11.0			11.0	11.0
Pedestrian Calls (\#/hr)		10			10			0			10	10
Act Effct Green (s)	6.0	29.4		5.9	24.1		4.0	17.5		4.0	17.5	17.5
Actuated g/C Ratio	0.08	0.39		0.08	0.32		0.05	0.23		0.05	0.23	0.23
v / C Ratio	0.83	0.42		0.28	0.88		0.79	0.85		0.86	0.61	0.23
Control Delay	83.0	20.1		40.6	42.7		90.6	48.3		103.4	33.9	1.1
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	83.0	20.1		40.6	42.7		90.6	48.3		103.4	33.9	1.1
LOS	F	C		D	D		F	D		F	C	A

Cycle Length: 80
Actuated Cycle Length: 75.9
Natural Cycle: 80
Control Type: Actuated-Uncoordinated
Maximum vic Ratio: 0.88
Intersection Signal Delay: 43.3
Intersection LOS: D
Intersection Capacity Utilization 70.9\% ICU Level of Service C
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 23: Birch St/Crystal Ave \& NH 102 (E Broadway)

	*	\uparrow	「	W	\downarrow	\downarrow	4	\not	¢	$\frac{1}{7}$	4	4
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%	¢ \uparrow	"	K*	¢ \uparrow	F	\%	\uparrow	「	\%	\uparrow	7
Traffic Volume (vph)	20	230	135	310	220	145	135	170	20	125	290	370
Future Volume (vph)	20	230	135	310	220	145	135	170	20	125	290	370
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	150		150	0		0	0		0	0		0
Storage Lanes	1		1	2		1	1		1	1		1
Taper Length (tt)	25			25			25			25		
Lane Util. Factor	1.00	0.95	1.00	0.97	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850			0.850			0.850			0.850
FIt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1736	3471	1553	3335	3438	1538	1752	1845	1568	1752	1845	1568
FIt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1736	3471	1553	3335	3438	1538	1752	1845	1568	1752	1845	1568
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			255			184			327			259
Link Speed (mph)		30			30			30			30	
Link Distance (t)		639			394			532			387	
Travel Time (s)		14.5			9.0			12.1			8.8	
Peak Hour Factor	0.84	0.84	0.84	0.79	0.79	0.79	0.86	0.86	0.86	0.99	0.99	0.99
Heavy Vehicles (\%)	4\%	4\%	4\%	5\%	5\%	5\%	3\%	3\%	3\%	3\%	3\%	3\%
Adj. Flow (vph)	24	274	161	392	278	184	157	198	23	126	293	374
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	24	274	161	392	278	184	157	198	23	126	293	374
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Free	Prot	NA	ptov
Protected Phases	5	2		1	6		7	4		3	8	81
Permitted Phases		2	2		6	6		4	Free		8	
Detector Phase	5	2	2	1	6	6	7	4		3	8	81
Switch Phase												
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	8.0	6.0	8.0		7.0	8.0	
Minimum Split (s)	14.0	31.0	31.0	14.0	40.0	40.0	12.0	21.0		13.0	21.0	
Total Split (s)	14.0	31.0	31.0	23.0	40.0	40.0	15.0	21.0		15.0	21.0	
Total Split (\%)	15.6\%	34.4\%	34.4\%	25.6\%	44.4\%	44.4\%	16.7\%	23.3\%		16.7\%	23.3\%	
Maximum Green (s)	8.0	25.0	25.0	17.0	34.0	34.0	9.0	15.0		9.0	15.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0		6.0	6.0	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes		Yes	Yes								
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	Max	C-Max	C-Max	None	Max	Max	None	None		None	None	
Walk Time (s)	5.0	5.0	5.0		5.0	5.0		5.0			5.0	
Flash Dont Walk (s)	11.0	11.0	11.0		11.0	11.0		11.0			11.0	
Pedestrian Calls (\#/hr)	0	0	0		0	0		0			0	
Act Effct Green (s)	8.0	26.8	26.8	15.2	34.0	34.0	9.0	15.3	90.0	8.7	15.0	36.2
Actuated g/C Ratio	0.09	0.30	0.30	0.17	0.38	0.38	0.10	0.17	1.00	0.10	0.17	0.40
v / C Ratio	0.16	0.27	0.25	0.70	0.21	0.26	0.90	0.63	0.01	0.74	0.95	0.48
Control Delay	40.5	25.5	1.2	42.0	19.5	4.1	88.0	45.1	0.0	66.1	80.3	8.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Cycle Length: 90
Actuated Cycle Length: 90
Offset: 0 (0\%), Referenced to phase 2:NBT, Start of Green
Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum vic Ratio: 0.95
Intersection Signal Delay: 35.6
Intersection Capacity Utilization 58.3\%
Intersection LOS: D
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 15: Folsom Rd/Tsienneto Rd \& Crystal Av/NH 28

	S_{B}^{*}	\rightarrow	2	N_{N}	\leftarrow	\pm	3 EB	\ngtr	\dagger		4	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NEL.	NET	NER		SWT	SWR
Lane Configurations	${ }^{1}$	4t		\%	性			\uparrow	「		\uparrow	\%
Traffic Volume (vph)	50	790	0	0	655	30	5	0	5	50	0	245
Future Volume (vph)	50	790	0	0	655	30	5	0	5	50	0	245
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	75		0	150		150	0			0		0
Storage Lanes	1		0	1		0	0		1	0		1
Taper Length (ft)	50			25			25			25		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Frt					0.993				0.850			0.850
FIt Protected	0.950							0.950			0.950	
Satd. Flow (prot)	1687	3374	0	1863	3514	0	0	1805	1615	0	1787	1599
FIt Permitted	0.950							0.720			0.751	
Satd. Flow (perm)	1687	3374	0	1863	3514	0	0	1368	1615	0	1413	1599
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					6				109			227
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		277			755			218			433	
Travel Time (s)		6.3			17.2			5.0			9.8	
Peak Hour Factor	0.83	0.83	0.83	0.92	0.92	0.92	0.50	0.50	0.50	0.90	0.90	0.90
Heavy Vehicles (\%)	7\%	7\%	7\%	2\%	2\%	2\%	0\%	0\%	0\%	1\%	1\%	1\%
Adj. Flow (vph)	60	952	0	0	712	33	10	0	10	56	,	272
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	60	952	0	0	745	0	0	10	10	0	56	272
Turn Type	Prot	NA		Prot	NA		custom	NA	custom	Perm	NA	Perm
Protected Phases	5	2		1	-						4	
Permitted Phases					6		8	8	8	4		4
Detector Phase	5	2		1	6		8	8	8	4	4	4
Switch Phase												
Minimum Initial (s)	8.0	8.0		5.0	8.0		5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	14.0	46.0		11.0	43.0		33.0	33.0	33.0	33.0	33.0	33.0
Total Split (s)	14.0	46.0		11.0	43.0		33.0	33.0	33.0	33.0	33.0	33.0
Total Split (\%)	15.6\%	51.1\%		12.2\%	47.8\%		36.7\%	36.7\%	36.7\%	36.7\%	36.7\%	36.7\%
Maximum Green (s)	8.0	40.0		5.0	37.0		27.0	27.0	27.0	27.0	27.0	27.0
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0		0.0	0.0
Total Lost Time (s)	6.0	6.0		6.0	6.0			6.0	6.0		6.0	6.0
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	C-Max		None	None		None	None	None	None	None	None
Act Effit Green (s)	9.2	67.7			55.2			10.3	10.3		10.3	10.3
Actuated g/C Ratio	0.10	0.75			0.61			0.11	0.11		0.11	0.11
v / C Ratio	0.35	0.38			0.35			0.06	0.04		0.35	0.71
Control Delay	42.8	4.9			12.9			33.0	0.2		40.6	18.9
Queue Delay	0.0	0.0			0.0			0.0	0.0		0.0	0.0
Total Delay	42.8	4.9			12.9			33.0	0.2		40.6	18.9
LOS.	D	A			B			C	A		D	B
Approach Delay		7.1			12.9			16.6			22.6	

Cycle Length: 90
Actuated Cycle Length: 90
Offset: $63(70 \%)$, Referenced to phase 2:EBT, Start of Green
Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.71
Intersection Signal Delay: 11.7
Intersection LOS: B
Intersection Capacity Utilization 53.4\% ICU Level of Service A
Analysis Period (min) 15
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 6: Applebees/Linlew Dr \& NH 28

	\rangle	$\overrightarrow{S B}$	\%	t	NG	4	4	${ }_{5}^{4}$	1			\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7 *}$	蚛		*	性		${ }_{9}$	¢		${ }^{7}$	\uparrow	F
Traffic Volume (vph)	100	630	5		610	220	10	5	5	180	5	100
Future Volume (vph)	100	630	5	5	610	220	10	5	5	180	5	100
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	150		150	150		150	0		-	0		0
Storage Lanes	2		0	1		0	1		0	1		1
Taper Length (ft)	200			25			25			25		
Lane Util. Factor	0.97	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	0.95	0.95	1.00
Frt		0.999			0.960			0.925				0.850
Fit Protected	0.950			0.950			0.950			0.950	0.955	
Satd. Flow (prot)	3303	3402	0	1736	3332	0	1805	1758	0	1665	1674	1568
Flt Permitted	0.950			0.950			0.950			0.950	0.955	
Satd. Flow (perm)	3303	3402	0	1736	3332	0	1805	1758	0	1665	1674	1568
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		1			79			7				111
Link Speed (mph)		30			30			30			30	
Link Distance (tt)		412			486			151			343	
Travel Time (s)		9.4			11.0			3.4			7.8	
Peak Hour Factor	0.83	0.83	0.83	0.97	0.97	0.97	0.67	0.67	0.67	0.90	0.90	0.90
Heavy Vehicles (\%)	6\%	6\%	6\%	4\%	4\%	4\%	0\%	0\%	0\%	3\%	3\%	3\%
Adj. Flow (vph)	120	759	6	5	629	227	15	7	,	200	6	111
Shared Lane Traffic (\%)										49\%		
Lane Group Flow (vph)	120	765	0	5	856	0	15	14	0	102	104	111
Turn Type	Prot	NA		Prot	NA		Split	NA		Split	NA	pt+ov
Protected Phases Permitted Phases	5	2		1	6		3	3		4	4	45
Permitted Phases Detector Phase								3				
Detector Phase Switch Phase	5	2		1	6		3	3		4	4	45
Switch Phase												
Minimum Initial (s)	5.0	8.0		5.0	8.0		5.0	5.0		8.0	8.0	
Minimum Split (s)	14.0	53.0		11.0	50.0		11.0	11.0		15.0	15.0	
Total Split (s)	14.0	53.0		11.0	50.0		11.0	11.0		15.0	15.0	
Total Split (\%)	15.6\%	58.9\%		12.2\%	55.6\%		12.2\%	12.2\%		16.7\%	16.7\%	
Maximum Green (s)	8.0	47.0		5.0	44.0		5.0	5.0		9.0	9.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s) Total Lost Time (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s) Lead/Lag	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lead		Lag	Lag	
Lead-Lag Optimize? Vehicle Extension (s)	Yes	Yes										
Vehicle Extension (s) Recall Mode	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode Walk Time (s)	None	Min		None	C-Min		None	None		None	None	
Walk Time (s) Flash Dont Walk (s)		5.0			5.0		5.0	5.0		5.0	5.0	
Flash Dont Walk (s)		11.0			11.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (\#/hr) Act Efft Green (s)		0			0		0	0		0	0	
Act Effct Green (s)	8.0	57.4		5.6	45.5		6.3	6.3		10.7	10.7	24.7
Actuated g/C Ratio	0.09	0.64		0.06	0.51		0.07	0.07		0.12	0.12	0.27
v/c Ratio	0.41	0.35		0.05	0.50		0.12	0.11		0.52	0.53	0.22
Control Delay Queue Delay	42.9	10.3		61.6	10.1		40.8	30.0		46.5	46.7	6.0
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0

Cycle Length: 90
Actuated Cycle Length: 90
Offset: $0(0 \%)$, Referenced to phase 6:WBT, Start of Green
Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum vic Ratio: 0.53
Intersection Signal Delay: 15.9
Intersection LOS: B
ICU Level of Service A
Intersection Capacity Utilization 54.8\%
Analysis Period (min) 15
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 9: VIP Dr/Ashleigh Dr \& NH 28

	\cdots	4	\%	\checkmark	$\frac{1}{7}$	λ	4	\ngtr	\neg	$\zeta_{\text {WO }}$	\checkmark	4
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	${ }^{7}$	\uparrow		${ }^{*}$	\uparrow	\%	${ }^{7}$	\uparrow		${ }_{7}$	t	
Traffic Volume (vph)	100	220	20	25	210	255	120	100	80	80	270	90
Future Volume (vph)	100	220	20	25	210	255	120	100	80	80	270	90
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	150		150	150		150	150		150	150		150
Storage Lanes	1		0	1		1	1		0	,		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.988				0.850		0.933			0.963	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1752	1823	0	1736	1827	1553	1770	1738	0	1787	1812	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1752	1823	0	1736	1827	1553	1770	1738	0	1787	1812	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR))				202		48			20	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		481			347			479			371	
Travel Time (s)		10.9			7.9			10.9			8.4	
Peak Hour Factor	0.82	0.82	0.82	0.81	0.81	0.81	0.68	0.68	0.68	0.78	0.78	0.78
Heavy Vehicles (\%)	3\%	3\%	3\%	4\%	4\%	4\%	2\%	2\%	2\%	1\%	1\%	1\%
Adj. Flow (vph)	122	268	24	31	259	315	176	147	118	103	346	115
Shared Lane Traffic (\%) 040												
Lane Group Flow (vph)	122	292	0	31	259	315	176	265	0	103	461	0
Turn Type	Prot	NA		Prot	NA	pt+ov	Prot	NA		Prot	NA	
Protected Phases	1	6		5	2	23	3	8		7	4	
Permitted Phases												
Detector Phase	1	6		5	2	23	3	8		7	4	
Switch Phase												
Minimum Initial (s)	8.0	8.0		8.0	8.0		8.0	8.0		8.0	8.0	
Minimum Split (s)	14.0	20.0		14.0	20.0		14.0	20.0		14.0	20.0	
Total Split (s)	14.0	24.0		14.0	24.0		15.0	26.0		16.0	27.0	
Total Split (\%)	17.5\%	30.0\%		17.5\%	30.0\%		18.8\%	32.5\%		20.0\%	33.8\%	
Maximum Green (s)	8.0	18.0		8.0	18.0		9.0	20.0		10.0	21.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Lead/Lag	Lead	Lag										
Lead-Lag Optimize?	Yes	Yes										
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	C-Max		None	None		None	None	
Act Effct Green (s)	8.0	26.5		8.0	18.1	33.1	9.0	23.4		9.2	20.9	
Actuated g/C Ratio	0.10	0.33		0.10	0.23	0.41	0.11	0.29		0.12	0.26	
v/c Ratio	0.70	0.48		0.18	0.63	0.41	0.88	0.49		0.50	0.95	
Control Delay	57.5	26.8		35.8	35.7	7.9	77.5	24.2		41.9	59.4	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	57.5	26.8		35.8	35.7	7.9	77.5	24.2		41.9	59.4	
LOS	E	C		D	D	A	E	c		D	E	
Approach Delay		35.9			21.2			45.5			56.2	

	4	\uparrow	「	\checkmark	\downarrow	\downarrow	4	\nearrow	-	7	4	4
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Approach LOS		D			C			D			E	
Queue Length 50th (ft)	60	99		15	117	35	88	94		49	217	
Queue Length 95th (ft)	\#119	193		36	171	71	\#126	114		82	\#309	
Internal Link Dist (ft)		401			267			399			291	
Turn Bay Length (ft)	150			150		150	150			150		
Base Capacity (vph)	175	607		173	414	761	199	543		223	490	
Starvation Cap Reductn	0	0		0	0	,	0	0		0	0	
Spillback Cap Reductn	0	0		0	0	0	0	0		0	0	
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	
Reduced v/c Ratio	0.70	0.48		0.18	0.63	0.41	0.88	0.49		0.46	0.94	

Intersection Summary

Area Type: Other

Cycle Length: 80
Actuated Cycle Length: 80
Offset: 0 (0\%), Referenced to phase 2:SBT, Start of Green
Natural Cycle: 80
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.95
Intersection Signal Delay: 39.2
Intersection Capacity Utilization 65.8\%
Intersection LOS: D
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 1: Tsienneto Rd \& NH 28 Byp S/NH 28 Byp N

APPENDIX G-2: HCM AND SYNCHRO PRINTOUTS - SIGNALIZED INTERSECTION CAPACITY ANALYSES - 2015 PM PEAK HOURS SYNCHRO PRINTOUTS

Splits and Phases: 7: NH 102 \& Exit 4 SB Off

	4	K	1	\cdots	\rangle	3	\nearrow	-	1	\checkmark	k
Lane Group	NBL2	NBL	NBR	SEL	SER	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\% ${ }^{1 / 1}$		${ }^{*}$			${ }^{4}$	性			¢ 4	「
Traffic Volume (vph)	580	0	605	0	0	475	740	0	0	485	0
Future Volume (vph)	580	0	605	0	0	475	740	0	0	485	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.97	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Fit			0.850								
FIt Protected	0.950					0.950					
Satd. Flow (prot)	3467	0	1599	0	0	1770	3539	0	0	3539	1863
FIt Permitted	0.950					0.950					
Satd. Flow (perm)	3467	0	1599	0	0	1770	3539	0	0	3539	1863
Right Turn on Red			Yes					Yes			Yes
Satd. Flow (RTOR)			499								
Link Speed (mph)		25		30			30			30	
Link Distance (ft)		347		390			361			346	
Travel Time (s)		9.5		8.9			8.2			7.9	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.96	0.96	0.96	0.87	0.87	0.87
Heavy Vehicles (\%)	1\%	1\%	1\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Adj. Flow (vph)	630	0	658	0	0	495	771	0	0	557	0
Shared Lane Traffic (\%)											
Lane Group Flow (vph)	630	0	658	0	0	495	771	0	0	557	0
Turn Type	Prot		Free			Prot	NA			NA	Free
Protected Phases	2					7	4			8	
Permitted Phases			Free				7				Free
Detector Phase	2					7	4			8	
Switch Phase											
Minimum Initial (s)	5.0					5.0	10.0			10.0	
Minimum Split (s)	9.5					9.5	66.0			66.0	
Total Split (s)	38.0					44.0	82.0			38.0	
Total Split (\%)	31.7\%					36.7\%	68.3\%			31.7\%	
Maximum Green (s)	33.5					39.5	76.0			32.0	
Yellow Time (s)	3.5					3.5	4.0			4.0	
All-Red Time (s)	1.0					1.0	2.0			2.0	
Lost Time Adjust (s)	0.0					0.0	0.0			0.0	
Total Lost Time (s)	4.5					4.5	6.0			6.0	
Lead/Lag						Lead				Lag	
Lead-Lag Optimize?						Yes				Yes	
Vehicle Extension (s)	3.0					3.0	3.0			3.0	
Recall Mode	C-Max					None	None			None	
Walk Time (s)							7.0			7.0	
Flash Dont Walk (s)							11.0			11.0	
Pedestrian Calls (\#/hr)							0			0	
Act Effct Green (s)	43.4		120.0			36.7	66.1			24.9	
Actuated g/C Ratio	0.36		1.00			0.31	0.55			0.21	
v / c Ratio	0.50		0.41			0.91	0.40			0.76	
Control Delay	33.3		0.8			62.3	19.5			51.5	
Queue Delay	0.0		0.0			0.0	0.0			0.0	
Total Delay	33.3		0.8			62.3	19.5			51.5	
LOS	C		A			E	B			D	
Approach Delay		16.7					36.2			51.5	

	\cdots			$\geqslant>$	\nearrow	¢	\%	4	k
Lane Group	NBL2	NBR	SEL	SER NEL	NET	NER	SWL	SWT	SWR
Approach LOS					D			D	
Queue Length 50th (ft)	202	0		374	200			215	
Queue Length 95th (ft)	281	0		\#548	242			250	
Internal Link Dist (tt)			310		281			266	
Turn Bay Length (ft)									
Base Capacity (vph)	1253	1599		582	2241			943	
Starvation Cap Reductn	0	0		0	0			0	
Spillback Cap Reductn	0	0		0	0			0	
Storage Cap Reductn	0	0		0	0			0	
Reduced v/c Ratio	0.50	0.41		0.85	0.34			0.59	
Intersection Summary									
Area Type: Other									
Cycle Length: 120									
Actuated Cycle Length: 120									
Offset: 0 (0\%), Referenced to phase 2:NBL and 6:, Start of Green									
Natural Cycle: 135									
Control Type: Actuated-Coordinated									
Maximum v/c Ratio: 0.91									
Intersection Signal Delay: 30.9			Intersection LOS: C						
Intersection Capacity Utilization 68.4\%			ICU Level of Service C						
Analysis Period (min) 15									
\# 95th percentile volume exceeds capacity, queue may be longer.									

Splits and Phases: 11: Exit 4 NB Off \& NH 102

	4	\rightarrow		\checkmark		4	4	4	7	\checkmark	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\uparrow \uparrow$	\%	${ }^{7}$	¢ \uparrow					\% ${ }^{17}$		*
Traffic Volume (vph)	0	650	280	135	490	0	0	0	0	645	0	265
Future Volume (vph)	0	650	280	135	490	0	0	0	0	645	0	265
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (f)	0		0	500		0	0		0	0		0
Storage Lanes	0		1	1		0	0		0	2		1
Taper Length (ft)	25			30			25			25		
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	0.97	1.00	1.00
Frt			0.850									0.850
Flt Protected				0.950						0.950		
Satd. Flow (prot)	0	3471	1553	1719	3438	0	0	0	0	3367	0	1553
FIt Permitted				0.950						0.950		
Satd. Flow (perm)	0	3471	1553	1719	3438	0	0	0	0	3367	0	1553
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			322									276
Link Speed (mph)		30			30			30			35	
Link Distance (ft)		410			699			486			444	
Travel Time (s)		9.3			15.9			11.0			8.6	
Peak Hour Factor	0.87	0.87	0.87	0.86	0.86	0.86	0.92	0.92	0.92	0.91	0.91	0.91
Heavy Vehicles (\%)	4\%	4\%	4\%	5\%	5\%	5\%	2\%	2\%	2\%	4\%	4\%	4\%
Adj. Flow (vph)	0	747	322	157	570	0	0	0	0	709	0	291
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	747	322	157	570	0	0	0	0	709	0	291
Turn Type		NA	Free	Prot	NA					Prot		Prot
Protected Phases		2		1	6					4		4
Permitted Phases			Free		1							
Detector Phase		2		1	6					4		4
Switch Phase 4												
Minimum Initial (s)		5.0		4.0	5.0					3.0		3.0
Minimum Split (s)		41.0		10.0	41.0					36.0		36.0
Total Split (s)		36.0		24.0	60.0					40.0		40.0
Total Split (\%)		36.0\%		24.0\%	60.0\%					40.0\%		40.0\%
Maximum Green (s)		30.0		18.0	54.0					34.0		34.0
Yellow Time (s)		4.0		4.0	4.0					4.0		4.0
All-Red Time (s)		2.0		2.0	2.0					2.0		2.0
Lost Time Adjust (s)		0.0		0.0	0.0					0.0		0.0
Total Lost Time (s)		6.0		6.0	6.0					6.0		6.0
Lead/Lag		Lag		Lead								6.0
Lead-Lag Optimize?		Yes		Yes								
Vehicle Extension (s)		4.0		4.0	4.0					4.0		4.0
Recall Mode		C-Min		None	C-Min					None		None
Walk Time (s)		7.0			7.0					7.0		7.0
Flash Dont Walk (s)		11.0			11.0					11.0		11.0
Pedestrian Calls (\#/hr)		0			0					0		0
Act Effct Green (s)		38.4	100.0	14.7	59.2					28.8		28.8
Actuated g/C Ratio		0.38	1.00	0.15	0.59					0.29		0.29
v/c Ratio		0.56	0.21	0.62	0.28					0.73		0.45
Control Delay		27.8	0.3	45.3	4.8					36.5		6.2
Queue Delay		0.0	0.0	0.0	0.0					0.0		0.0

$\xlongequal{\prime}$			\checkmark			4	4	p		\downarrow	\downarrow
Lane Group EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay	27.8	0.3	45.3	4.8					36.5		6.2
LOS	C	A	D	A					D		A
Approach Delay	19.5			13.5						27.7	
Approach LOS	B			B						C	
Queue Length 50th (ft)	197	0	101	97					207		7
Queue Length 95th (ft)	277	0	151	52					254		63
Internal Link Dist (t)	330			619			406			364	
Turn Bay Length (t)			500								
Base Capacity (vph)	1334	1553	309	2034					1144		710
Starvation Cap Reductn	0	0	0	0					0		0
Spillback Cap Reductn	0	0	0	0					0		0
Storage Cap Reductn	0	0	0	0					0		0
Reduced v/c Ratio	0.56	0.21	0.51	0.28					0.62		0.41
Intersection Summary											
Area Type: Other											
Cycle Length: 100											
Actuated Cycle Length: 100											
Offset: 48 (48\%), Referenced to phase 2:EBT and 6:WBT, Start of Green											
Natural Cycle: 90											
Control Type: Actuated-Coordinated											
Maximum v/c Ratio: 0.73											
Intersection Signal Delay: 20.9			Intersection LOS: C								
Intersection Capacity Utilization 58.8\%			ICU Level of Service B								
Analysis Period (min) 15											

Analysis Period (min) 15

ICU Level of Service B

Splits and Phases: 3: NH 28 \& Exit 5 SB Off

	\Rightarrow	\rightarrow	7	\checkmark		4	4	\uparrow	p	\checkmark	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	个4			¢4	「	\%		7			
Traffic Volume (vph)	235	1060	0	0	425	535	220	0	240	0	0	0
Future Volume (vph)	235	1060	0	0	425	535	220	0	240	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	500		0	0		0	0		0	0		0
Storage Lanes	1		0	0		1	1		1	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt						0.850			0.850			
Flt Protected	0.950						0.950					
Satd. Flow (prot)	1752	3505	0	0	3505	1568	1703	0	1524	0	0	0
Flt Permitted	0.950						0.950					
Satd. Flow (perm)	1752	3505	0	0	3505	1568	1703	0	1524	0	0	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)						588			98			
Link Speed (mph)		30			30			35			35	
Link Distance (t)		699			492			450			828	
Travel Time (s)		15.9			11.2			8.8			16.1	
Peak Hour Factor	0.92	0.92	0.92	0.91	0.91	0.91	0.67	0.67	0.67	0.92	0.92	0.92
Heavy Vehicles (\%)	3\%	3\%	3\%	3\%	3\%	3\%	6\%	6\%	6\%	2\%	2\%	2\%
Adj. Flow (vph)	255	1152	0	0	467	588	328	0	358	0	0	0
Shared Lane Traffic (\%) 0												
Lane Group Flow (vph)	255	1152	0	0	467	588	328	0	358	0	0	0
Turn Type	Prot	NA			NA	Free	Prot		Prot			
Protected Phases	5	2			6		8		8			
Permitted Phases		52				Free						
Detector Phase	5	2			6		8		8			
Switch Phase												
Minimum Initial (s)	4.0	16.0			16.0		4.0		4.0			
Minimum Split (s)	26.0	55.0			24.0		33.0		33.0			
Total Split (s)	32.0	61.0			29.0		39.0		39.0			
Total Split (\%)	32.0\%	61.0\%			29.0\%		39.0\%		39.0\%			
Maximum Green (s)	26.0	55.0			23.0		33.0		33.0			
Yellow Time (s)	4.0	4.0			4.0		4.0		4.0			
All-Red Time (s)	2.0	2.0			2.0		2.0		2.0			
Lost Time Adjust (s)	0.0	0.0			0.0		0.0		0.0			
Total Lost Time (s)	6.0	6.0			6.0		6.0		6.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Vehicle Extension (s)	4.0	4.0			4.0		4.0		4.0			
Recall Mode	None	C-Max			C-Max		None		None			
Walk Time (s)		7.0			7.0							
Flash Dont Walk (s)		11.0			11.0							
Pedestrian Calls (\#/hr)		0			0							
Act Effict Green (s)	20.3	62.1			35.8	100.0	25.9		25.9			
Actuated g/C Ratio	0.20	0.62			0.36	1.00	0.26		0.26			
v / c Ratio	0.72	0.53			0.37	0.38	0.75		0.77			
Control Delay	48.4	12.7			27.4	0.7	44.1		35.2			
Queue Delay	0.0	0.0			0.0	0.0	0.0		0.0			

Intersection Summary

```
Area Type: Other
```

Cycle Length: 100
Actuated Cycle Length: 100
Offset: $0(0 \%)$, Referenced to phase 2:EBT and 6:WBT, Start of Green
Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum vic Ratio: 0.77
Intersection Signal Delay: 21.4 Intersection LOS: C
Intersection Capacity Utilization 58.8\% ICU Level of Service B
Analysis Period (min) 15
Splits and Phases: 2: Exit 5 NB Off \& NH 28

	S	k)		${ }_{\sqrt{B}}^{k}$	¢	y EB	γ	T			-
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		¢			\$			ち			\uparrow	
Traffic Volume (vph)	15	50	5	230	0	100	0	760	150	15	415	0
Future Volume (vph)	15	50	5	230	0	100	0	760	150	15	415	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Utill. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.990			0.959			0.978				
FIt Protected		0.989			0.966						0.998	
Satd. Flow (prot)	0	1842	0	0	1743	0	0	1822	0	0	1841	0
FIt Permitted		0.902			0.740						0.620	
Satd. Flow (perm)	0	1680	0	0	1335	0	0	1822	0	0	1144	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		6			55			24				
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		170			373			245			336	
Travel Time (s)		3.9			8.5			5.6			7.6	
Peak Hour Factor	0.83	0.83	0.83	0.98	0.98	0.98	0.95	0.95	0.95	0.89	0.89	0.89
Heavy Vehicles (\%)	1\%	1\%	1\%	1\%	1\%	1\%	2\%	2\%	2\%	3\%	3\%	3\%
Adj. Flow (vph)	18	60	6	235	0	102	0	800	158	17	466	,
Shared Lane Trafic (\%)												
Lane Group Flow (vph)	0	84	0	0	337	0	0	958	0	0	483	0
Turn Type	Perm	NA		Perm	NA			NA		Perm	NA	
Protected Phases		2			2			1			1	
Permitted Phases	2			2						1		
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0			5.0		5.0	5.0	
Minimum Split (s)	24.0	24.0		24.0	24.0			24.0		24.0	24.0	
Total Split (s)	24.0	24.0		24.0	24.0			36.0		36.0	36.0	
Total Split (\%)	40.0\%	40.0\%		40.0\%	40.0\%			60.0\%		60.0\%	60.0\%	
Maximum Green (s)	18.0	18.0		18.0	18.0			30.0		30.0	30.0	
Yellow Time (s)	4.0	4.0		4.0	4.0			4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0			2.0		2.0	2.0	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		6.0			6.0			6.0			6.0	
Lead/Lag	Lag	Lag		Lag	Lag			Lead		Lead	Lead	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes			Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0		3.0	3.0	
Recall Mode	Min	Min		Min	Min			None		None	None	
Walk Time (s)	7.0	7.0		7.0	7.0			7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0			11.0		11.0	11.0	
Pedestrian Calls (\#/hr)	0	0		0	0			0		0	0	
Act Effit Green (s)		15.8			15.8			30.1			30.1	
Actuated g/C Ratio		0.27			0.27			0.52			0.52	
v / c Ratio		0.18			0.84			1.00			0.81	
Control Delay		15.9			36.6			47.1			26.8	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		15.9			36.6			47.1			26.8	
LOS		B			D			D			C	
Approach Delay		15.9			36.6			47.1			26.8	

Intersection Summary

```
Area Type:
Other
```

Cycle Length: 60
Actuated Cycle Length: 57.9
Natural Cycle: 80
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 1.00
Intersection Signal Delay: $38.5 \quad$ Intersection LOS: D
Intersection Capacity Utilization 95.4\% ICU Level of Service F
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 4: NH 102 \& Fordway/N. High St

Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	7	\dagger		${ }^{7}$	4	7	${ }^{7}$	\dagger		\%	¢	
Traffic Volume (vph)	70	295	35	135	340	150	135	410	40	75	250	65
Future Volume (vph)	70	295	35	135	340	150	135	410	40	75	250	65
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.984				0.850		0.987			0.969	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1752	1815	0	1752	1845	1568	1787	1857	0	1787	1823	0
FIt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1752	1815	0	1752	1845	1568	1787	1857	0	1787	1823	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		7				161		6			15	
Link Speed (mph)		30			30			30			30	
Link Distance (t)		361			411			477			530	
Travel Time (s)		8.2			9.3			10.8			12.0	
Peak Hour Factor	0.91	0.91	0.91	0.93	0.93	0.93	0.95	0.95	0.95	0.94	0.94	0.94
Heavy Vehicles (\%)	3\%	3\%	3\%	3\%	3\%	3\%	1\%	1\%	1\%	1\%	1\%	1\%
Adj. Flow (vph)	77	324	38	145	366	161	142	432	42	80	266	69
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	77	362	0	145	366	161	142	474	0	80	335	0
Turn Type	Prot	NA		Prot	NA	pm+ov	Prot	NA		Prot	NA	
Protected Phases	,	.		7	,	5	5	2		1	6	
Permitted Phases						4						
Detector Phase	3	8		7	4	5	5	2		1	6	
Switch Phase												
Minimum Initial (s)	4.0	5.0		4.0	10.0	4.0	4.0	10.0		4.0	9.0	
Minimum Split (s)	17.0	24.0		11.0	24.0	16.0	16.0	24.0		11.0	24.0	
Total Split (s)	17.0	27.0		15.0	25.0	16.0	16.0	32.0		11.0	27.0	
Total Split (\%)	20.0\%	31.8\%		17.6\%	29.4\%	18.8\%	18.8\%	37.6\%		12.9\%	31.8\%	
Maximum Green (s)	11.0	21.0		9.0	19.0	10.0	10.0	26.0		5.0	21.0	
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0		6.0	6.0	
Lead/Lag	Lead	Lag		Lead	Lag	Lead	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None	None	None	C-Max		None	None	
Act Effct Green (s)	8.8	19.5		8.9	22.0	37.6	9.7	29.5		5.6	22.9	
Actuated g/C Ratio	0.10	0.23		0.10	0.26	0.44	0.11	0.35		0.07	0.27	
v/c Ratio	0.43	0.86		0.79	0.77	0.21	0.70	0.73		0.68	0.67	
Control Delay	42.5	51.3		67.9	43.3	3.5	55.8	34.2		69.5	35.1	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	42.5	51.3		67.9	43.3	3.5	55.8	34.2		69.5	35.1	
LOS	D	D		E	D	A	E	C		E	D	
Approach Delay		49.7			39.1			39.1			41.7	
Approach LOS		D			D			D			D	
Queue Length 50th (ft)	39	178		77	184	0	74	231		43	157	
Queue Length 95th (ft)	80	\#316		\#174	\#346	35.	\#155	\#393		\#119	\#272	

Intersection Summary

```
Area Type: Other
```

Cycle Length: 85
Actuated Cycle Length: 85
Offset: $0(0 \%)$, Referenced to phase 2:NET, Start of Green
Natural Cycle: 85
Control Type: Actuated-Coordinated
Maximum vic Ratio: 0.86
Intersection Signal Delay: 41.8 Intersection LOS: D
Intersection Capacity Utilization 87.5\% ICU Level of Service E
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 23: NH 102 (E Broadway) \& Birch St/Crystal Av

	9	4	\%	\checkmark	\downarrow	\downarrow	$\hat{E}_{e \beta}$	\ngtr	\%	$\psi_{w a}$	4	4
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	${ }^{7}$	¢ \uparrow	7	\% 71	\uparrow	7	${ }^{*}$	\uparrow	7	${ }^{7}$	\uparrow	「
Traffic Volume (vph)	80	360	150	520	430	190	240	320	90	150	220	380
Future Volume (vph)	80	360	150	520	430	190	240	320	90	150	220	380
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	150		150	0		-	-		0	0		0
Storage Lanes	1		1	2		1	1		1	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	1.00	0.97	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	3539	1583	3433	1863	1583	1770	1863	1583	1787	1881	1599
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1770	3539	1583	3433	1863	1583	1770	1863	1583	1787	1881	1599
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			256			202			199			142
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		639			394			532			387	
Travel Time (s)		14.5			9.0			12.1			8.8	
Peak Hour Factor	0.92	0.92	0.92	0.94	0.94	0.94	0.96	0.96	0.96	0.95	0.95	0.95
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	1\%	1\%	1\%
Adj. Flow (vph)	87	391	163	553	457	202	250	333	94	158	232	400
Shared Lane Traffic (\%) 20200030												
Lane Group Flow (vph)	87	391	163	553	457	202	250	333	94	158	232	400
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	pm+ov
Protected Phases	5	2		1	6		7	,		3	8	1
Permitted Phases			2			6			4			8
Detector Phase	5	2	2	1	6	6	7	4	4	3	8	1
Switch Phase												
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
Minimum Split (s)	15.0	25.0	25.0	35.0	45.0	45.0	14.0	40.0	40.0	15.0	25.0	35.0
Total Split (s)	15.0	25.0	25.0	35.0	45.0	45.0	25.0	40.0	40.0	15.0	25.0	35.0
Total Split (\%)	13.0\%	21.7\%	21.7\%	30.4\%	39.1\%	39.1\%	21.7\%	34.8\%	34.8\%	13.0\%	21.7\%	30.4\%
Maximum Green (s)	9.0	19.0	19.0	29.0	39.0	39.0	19.0	34.0	34.0	9.0	19.0	29.0
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lead
Lead-Lag Optimize?	Yes											
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	C-Max	C-Max	None								
Walk Time (s)		5.0	5.0		5.0	5.0		5.0	5.0		5.0	
Flash Dont Walk (s)		11.0	11.0		11.0	11.0		11.0	11.0		11.0	
Pedestrian Calls (\#/hr)		0	0		0	0		0	0		0	
Act Effct Green (s)	9.8	29.4	29.4	24.3	44.0	44.0	18.4	28.3	28.3	9.0	18.9	49.2
Actuated g/C Ratio	0.09	0.26	0.26	0.21	0.38	0.38	0.16	0.25	0.25	0.08	0.16	0.43
v / C Ratio	0.58	0.43	0.27	0.76	0.64	0.28	0.89	0.73	0.17	1.14	0.75	0.52
Control Delay	66.6	40.0	1.1	49.7	35.6	4.8	78.7	49.0	0.7	165.5	60.7	16.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

	\cdots	\dagger	1	\cdots	\downarrow	\downarrow	4	\not	¢	\%	4	4
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Total Delay	66.6	40.0	1.1	49.7	35.6	4.8	78.7	49.0	0.7	165.5	60.7	16.4
LOS	E	D	A	D	D	A	E	D	A	F	E	B
Approach Delay		33.7			36.9			53.3			59.2	
Approach LOS		C			D			D			E	
Queue Length 50th (ft)	62	130	0	199	284	0	182	224	0	~136	165	134
Queue Length 95th (ft)	\#134	198	0	248	419	51	\#324	310	0	\#273	241	190
Internal Link Dist (ft)		559			314			452			307	
Turn Bay Length (t)	150		150									
Base Capacity (vph)	153	905	595	865	712	730	292	550	608	139	392	824
Starvation Cap Reductn	,	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.57	0.43	0.27	0.64	0.64	0.28	0.86	0.61	0.15	1.14	0.59	0.49
Intersection Summary												

Area Type:
Cycle Length: 115
Actuated Cycle Length: 115
Offset: $0(0 \%)$, Referenced to phase 2:NBT, Start of Green
Natural Cycle: 115
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.14
Intersection Signal Delay: $44.9 \quad$ Intersection LOS: D
Intersection Capacity Utilization 74.5\% ICU Level of Service D
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Lanes, Volumes, Timings 6: Applebee's/Linlew Dr \& NH 28									Existing 2015 PM Peak 12/23/2016			
	\cdots	,	2	\cdots	k	\%	7	B^{\prime}	T		\checkmark	\cdots
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	${ }^{7}$	个t		7	\uparrow ¢			\uparrow	${ }^{\mathbf{7}}$		\uparrow	F
Traffic Volume (vph)	170	1400	5	20	855	80	15	10	15	45	10	215
Future Volume (vph)	170	1400	5	20	855	80	15	10	15	45	10	215
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.999			0.987				0.850			0.850
Flt Protected	0.950			0.950				0.971			0.961	0.850
Satd. Flow (prot)	1787	3571	0	1787	3528	0	0	1845	1615	0	1808	1599
Flt Permitted	0.950			0.950				0.774			0.747	1599
Satd. Flow (perm)	1787	3571	0	1787	3528	0	0	1471	1615	0	1405	1599
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		1			13				172			269
Link Speed (mph)		30			30			30			30	209
Link Distance (ft)		277			755			230			387	
Travel Time (s)		6.3			17.2			5.2			8.8	
Peak Hour Factor	0.97	0.97	0.97	0.95	0.95	0.95	0.90	0.90	0.90	0.80	0.80	0.80
Heavy Vehicles (\%)	1\%	1\%	1\%	1\%	1\%	1\%	0\%	0\%	0\%	1\%	1\%	1\%
Adj. Flow (vph)	175	1443	5	21	900	84	17	11	17	56	13	269
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	175	1448	0	21	984	0	0	28	17	0	69	269
Turn Type	Prot	NA		Prot	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases							8		8	4	4	4
Detector Phase	5	2		1	6		8	8	8	4	4	4
Switch Phase											4	4
Minimum Initial (s)	5.0	8.0		5.0	8.0		5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	26.0	63.0		11.0	48.0		21.0	21.0	21.0	21.0	21.0	21.0
Total Split (s)	26.0	63.0		11.0	48.0		21.0	21.0	21.0	21.0	21.0	21.0
Total Split (\%)	27.4\%	66.3\%		11.6\%	50.5\%		22.1\%	22.1\%	22.1\%	22.1\%	22.1\%	22.1\%
Maximum Green (s)	20.0	57.0		5.0	42.0		15.0	15.0	15.0	15.0	15.0	15.0
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0		0.0	0.0
Total Lost Time (s)	6.0	6.0		6.0	6.0			6.0	6.0		6.0	6.0
Lead/Lag	Lead	Lag		Lead	Lag						6.0	6.0
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	C-Max		None	C-Max		None	None	None	None	None	None
Walk Time (s)		7.0			7.0		7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)		11.0			11.0		11.0	11.0	11.0	11.0	11.0	11.0
Pedestrian Calls (\#hr)		0			0		0	0	0	0	0	0
Act Effct Green (s)	14.5	68.0		6.0	52.4			10.1	10.1		10.1	10.1
Actuated g/C Ratio	0.15	0.72		0.06	0.55			0.11	0.11		0.11	0.11
v / C Ratio	0.64	0.57		0.19	0.50			0.18	0.05		0.46	0.66
Control Delay	37.4	14.3		46.3	15.5			39.4	0.3		48.8	13.0
Queue Delay	0.0	0.0		0.0	0.0			0.0	0.0		0.0	0.0
Total Delay	37.4	14.3		46.3	15.5			39.4	0.3		48.8	13.0
LOS	D	B		D	B			D	A		D	B
Approach Delay		16.8			16.2			24.7			20.3	

Cycle Length: 95
Actuated Cycle Length: 95
Offset: 69 (73\%), Referenced to phase 2:SET and 6:NWT, Start of Green
Natural Cycle: 95
Control Type: Actuated-Coordinated
Maximum vic Ratio: 0.66
Intersection Signal Delay: 17.1 Intersection LOS: B
Intersection Capacity Utilization 67.7\% ICU Level of Service C
Analysis Period (min) 15
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 6: Applebee's/Linlew Dr \& NH 28

	\dagger	$\overrightarrow{S B}$	7	\checkmark	$\stackrel{4}{\mathrm{~N}}$	4	4	4	p		$\frac{1}{1}$	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7\%	个t		${ }_{4}$	个 \uparrow		\%	\dagger		${ }^{7}$	\uparrow	F
Traffic Volume (vph)	110	1095	5	5	800	260	40	10	10	345	5	135
Future Volume (vph)	110	1095	5	5	800	260	40	10	10	345	5	135
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	150		150	150		150	,		0	0		0
Storage Lanes	2		0	1		0	1		0	1		1
Taper Length (tt)	150			25			25			25		
Lane Util. Factor	0.97	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	0.95	0.95	1.00
Frt		0.999			0.963			0.925				0.850
FIt Protected	0.950			0.950			0.950			0.950	0.954	
Satd. Flow (prot)	3467	3571	0	1770	3408	0	1805	1758	0	1715	1722	1615
FIt Permitted	0.950			0.950			0.950			0.950	0.954	
Satd. Flow (perm)	3467	3571	0	1770	3408	0	1805	1758	0	1715	1722	1615
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		1			62			13				108
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		877			261			151			343	
Travel Time (s)		19.9			5.9			3.4			7.8	
Peak Hour Factor	0.84	0.84	0.84	0.90	0.90	0.90	0.78	0.78	0.78	0.86	0.86	0.86
Heavy Vehicles (\%)	1\%	1\%	1\%	2\%	2\%	2\%	0\%	0\%	0\%	0\%	0\%	0\%
Adj. Flow (vph)	131	1304	6	6	889	289	51	13	13	401	6	157
Shared Lane Traffic (\%)										49\%		
Lane Group Flow (vph)	131	1310	0	6	1178	0	51	26	0	205	202	157
Turn Type	Prot	NA		Prot	NA		Split	NA		Split	NA	ptor
Protected Phases	5	2		1	6		3	3		4	4	45
Permitted Phases		2			6							
Detector Phase	5	2		1	6		3	3		4	4	45
Switch Phase												
Minimum Initial (s)	5.0	8.0		5.0	8.0		5.0	5.0		8.0	8.0	
Minimum Split (s)	11.0	53.0		11.0	50.0		11.0	11.0		20.0	20.0	
Total Split (s)	14.0	53.0		11.0	50.0		11.0	11.0		20.0	20.0	
Total Split (\%)	14.7\%	55.8\%		11.6\%	52.6\%		11.6\%	11.6\%		21.1\%	21.1\%	
Maximum Green (s)	8.0	47.0		5.0	44.0		5.0	5.0		14.0	14.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lead		Lag	Lag	
Lead-Lag Optimize?	Yes	Yes										
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	C-Max		None	None		None	None		None	None	
Walk Time (s)		5.0			5.0		5.0	5.0		5.0	5.0	
Flash Dont Walk (s)		11.0			11.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (\#/hr)		0			0		0	0		0	0	
Act Effict Green (s)	7.7	58.5		5.1	47.0		5.0	5.0		13.5	13.5	27.2
Actuated g/C Ratio	0.08	0.62		0.05	0.49		0.05	0.05		0.14	0.14	0.29
v/c Ratio	0.47	0.60		0.06	0.69		0.54	0.25		0.84	0.83	0.29
Control Delay	47.4	14.0		65.0	14.8		65.2	34.5		69.2	67.0	10.9
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0

Intersection Summary

Area Type:

Other

Cycle Length: 95
Actuated Cycle Length: 95
Offset: $0(0 \%)$, Referenced to phase 2:EBT, Start of Green
Natural Cycle: 95
Control Type: Actuated-Coordinated
Maximum vic Ratio: 0.84
Intersection Signal Delay: 23.3
Intersection Capacity Utilization 65.9\%
Intersection LOS: C
ICU Level of Service C
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 9: VIP Dr/Ashleigh Dr \& NH 28

Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%	\dagger		\%	4	「	${ }_{7}$	\hat{i}		\%	\uparrow	
Traffic Volume (vph)	100	320	25	75	185	185	280	345	75	25	175	70
Future Volume (vph)	100	320	25	75	185	185	280	345	75	25	175	70
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	150		150	150		150	150		150	150		150
Storage Lanes	1		0	1		1	1		0			,
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.989				0.850		0.973			0.957	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1842	0	1787	1881	1599	1805	1849	0	1805	1818	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1770	1842	0	1787	1881	1599	1805	1849	0	1805	1818	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		4				195		13			21	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		481			347			479			371	
Travel Time (s)		10.9			7.9			10.9			8.4	
Peak Hour Factor	0.99	0.99	0.99	0.95	0.95	0.95	0.89	0.89	0.89	0.93	0.93	0.93
Heavy Vehicles (\%)	2\%	2\%	2\%	1\%	1\%	1\%	0\%	0\%	0\%	0\%	0\%	0\%
Adj. Flow (vph)	101	323	25	79	195	195	315	388	84	27	188	75
Shared Lane Traffic (\%) 4												
Lane Group Flow (vph)	101	348	0	79	195	195	315	472	0	27	263	0
Turn Type	Prot	NA		Prot	NA	pt+ov	Prot	NA		Prot	NA	
Protected Phases	1	6		5	2	23	3	8		7	4	
Permitted Phases		6			2							
Detector Phase	1	6		5	2	23	3	8		7	4	
Switch Phase												
Minimum Initial (s)	8.0	8.0		8.0	8.0		8.0	8.0		8.0	8.0	
Minimum Split (s)	14.0	20.0		14.0	20.0		14.0	28.0		14.0	14.0	
Total Split (s)	15.0	24.0		14.0	23.0		23.0	28.0		14.0	19.0	
Total Split (\%)	18.8\%	30.0\%		17.5\%	28.8\%		28.8\%	35.0\%		17.5\%	23.8\%	
Maximum Green (s)	9.0	18.0		8.0	17.0		17.0	22.0		8.0	13.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Lead/Lag	Lead	Lag										
Lead-Lag Optimize? Leag												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	C-Max		None	None		None	None	
Walk Time (s)								7.0				
Flash Dont Walk (s)								15.0				
Pedestrian Calls (\#/hr)								0				
Act Efftt Green (s)	8.7	21.8		8.0	21.2	43.5	16.3	29.4		8.0	12.7	
Actuated g/C Ratio	0.11	0.27		0.10	0.26	0.54	0.20	0.37		0.10	0.16	
v/c Ratio	0.53	0.69		0.44	0.39	0.20	0.86	0.69		0.15	0.86	
Control Delay	44.2	37.0		42.4	29.4	2.3	54.0	30.0		35.1	58.0	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	

	H	4	\%	L	\downarrow	\downarrow	4	\ngtr	入	\checkmark	1	4				
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR				
Total Delay	44.2	37.0		42.4	29.4	2.3	54.0	30.0		35.1	58.0					
LOS	D	D		D	C	A	D	C		D	E					
Approach Delay		38.6			20.4			39.6			55.9					
Approach LOS		D			C			D			E					
Queue Length 50th (ft)	48	165		38	86	0	151	162		13	119					
Queue Length 95th (ft)	97	\#307		80	149	30	\#278	\#394		36	\#248					
Internal Link Dist (t)		401			267			399			291					
Turn Bay Length (ft)	150			150		150	150			150						
Base Capacity (vph)	199	505		178	497	970	383	687		180	313					
Starvation Cap Reductn	0	0		0	0	0	0	0		0	0					
Spillback Cap Reductn	0	0		0	0	0	0	0		0	0					
Storage Cap Reductn	0	0		0	0	0	0	0		0	0					
Reduced v/c Ratio	0.51	0.69		0.44	0.39	0.20	0.82	0.69		0.15	0.84					
Intersection Summary																
Area Type: OtherCycle Length: $80 \quad$ On																
Actuated Cycle Length: 80																
Offset: 0 (0\%), Referenced to phase 2:SBT, Start of Green																
Natural Cycle: 80																
Control Type: Actuated-Coordinated																
Maximum v/c Ratio: 0.86																
Intersection Signal Delay: 37.2					Intersection LOS: D											
Intersection Capacity Utilization 74.4\%					ICU Level of Service D											
					Analysis Period (min) 15											
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.																

Splits and Phases: 1: Tsienneto Rd \& NH 28 Byp NB/NH 28 Byp SB

APPENDIX G-3: HCM PRINTOUTS - SIGNALIZED INTERSECTION CAPACITY ANALYSES - 2015 AM AND PM PEAK HOURS

HCM Signalized Intersection Capacity Analysis
7: Exit 4 SB Off

	1	1	\cdots		V	γ	7	1	4	k
Movement	NBL	NBR	SEL	SER	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	K＊	7			${ }^{*}$	个个			性	＂
Traffic Volume（vph）	210	200	0	0	585	590	0	0	875	0
Future Volume（vph）	210	200	0	0	585	590	0	0	875	0
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）	6.0	4.0			6.0	6.0			6.0	
Lane Util．Factor	0.97	1.00			1.00	0.95			0.95	
Frt	1.00	0.85			1.00	1.00			1.00	
Flt Protected	0.95	1.00			0.95	1.00			1.00	
Satd．Flow（prot）	3242	1495			1719	3438			3505	
FIt Permitted	0.95	1.00			0.95	1.00			1.00	
Satd．Flow（perm）	3242	1495			1719	3438			3505	
Peak－hour factor，PHF	0.88	0.88	0.92	0.92	0.94	0.94	0.94	0.92	0.92	0.92
Adj．Flow（vph）	239	227	，	0	622	628	0	0	951	0
RTOR Reduction（vph）	0	0	0	0	0	0	0	0	0	0
Lane Group Flow（vph）	239	227	0	0	622	628	0	0	951	0
Heavy Vehicles（\％）	8\％	8\％	2\％	2\％	5\％	5\％	5\％	3\％	3\％	3\％
Turn Type	Prot	Free			Prot	NA			NA	Free
Protected Phases	2				7	4			8	
Permitted Phases		Free								Free
Actuated Green，G（s）	12.9	100.0			41.1	75.1			28.0	
Effective Green， g （s）	12.9	100.0			41.1	75.1			28.0	
Actuated g／C Ratio	0.13	1.00			0.41	0.75			0.28	
Clearance Time（s）	6.0				6.0	6.0			6.0	
Vehicle Extension（s）	3.0				3.0	3.0			3.0	
Lane Grp Cap（vph）	418	1495			706	2581			981	
v／s Ratio Prot	c0．07				c0．36	0.18			c0．27	
v / s Ratio Perm		0.15								
v／c Ratio	0.57	0.15			0.88	0.24			0.97	
Uniform Delay，d1	41.0	0.0			27.2	3.8			35.6	
Progression Factor	1.00	1.00			1.00	1.00			1.00	
Incremental Delay，d2	5.6	0.2			12.4	0.0			21.3	
Delay（s）	46.5	0.2			39.6	3.8			56.9	
Level of Service	D	A			D	A			E	
Approach Delay（s）	24.0		0.0			21.6			56.9	
Approach LOS	c		A			C			E	
Intersection Summary										
HCM 2000 Control Delay			34.6	HCM 2000 Level of Service					C	
HCM 2000 Volume to Capacity ratio			0.86							
Actuated Cycle Length（s）			100.0	Sum of lost time（s）					18.0	
Intersection Capacity Utilization			84．6\％	ICU Level of Service					E	
Analysis Period（min）			15							
c Critical Lane Group										

	\Rightarrow	\rightarrow		7	\longleftarrow		4	\dagger	p		\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL		SBR
Lane Configurations	\%	个 \uparrow			¢ \uparrow	「	${ }^{7}$		\%			
Traffic Volume (vph)	240	740	0	0	540	740	300	0	110	0	0	0
Future Volume (vph)	240	740	0	0	540	740	300	0	110	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0			6.0	4.0	6.0		4.0			
Lane Util. Factor	1.00	0.95			0.95	1.00	1.00		1.00			
Frt	1.00	1.00			1.00	0.85	1.00		0.85			
Flt Protected	0.95	1.00			1.00	1.00	0.95		1.00			
Satd. Flow (prot)	1641	3282			3438	1538	1656		1482			
Flt Permitted	0.95	1.00			1.00	1.00	0.95		1.00			
Satd. Flow (perm)	1641	3282			3438	1538	1656		1482			
Peak-hour factor, PHF	0.87	0.87	0.87	0.90	0.90	0.90	0.78	0.78	0.78	0.92	0.92	0.92
Adj. Flow (vph)	276	851	0	0	600	822	385	0	141	0	0	0
RTOR Reduction (vph)	0	0	0	0	0		0	0	0	0	0	0
Lane Group Flow (vph)	276	851	0	0	600	822	385	0	141	0	0	0
Heavy Vehicles (\%)	10\%	10\%	10\%	5\%	5\%	5\%	9\%	9\%	9\%	2\%	2\%	2\%
Turn Type	Prot	NA			NA	Free	Prot		Free			
Protected Phases	5	2			6		8					
Permitted Phases		2			6	Free			Free			
Actuated Green, G (s)	15.7	46.6			24.9	80.0	21.4		80.0			
Effective Green, g (s)	15.7	46.6			24.9	80.0	21.4		80.0			
Actuated g/C Ratio	0.20	0.58			0.31	1.00	0.27		1.00			
Clearance Time (s)	6.0	6.0			6.0		6.0					
Vehicle Extension (s)	3.0	3.0			3.0		3.0					
Lane Grp Cap (vph)	322	1911			1070	1538	442		1482			
v / s Ratio Prot	c0.17	0.26			0.17		c0. 23					
v / s Ratio Perm						c0.53			0.10			
v/c Ratio	0.86	0.45			0.56	0.53	0.87		0.10			
Uniform Delay, d1	31.1	9.4			23.0	0.0	28.0		0.0			
Progression Factor	1.05	0.16			1.00	1.00	1.00		1.00			
Incremental Delay, d2	16.2	0.6			2.1	1.3	16.9		0.1			
Delay (s)	49.0	2.1			25.1	1.3	44.9		0.1			
Level of Service	D	A			c	A	D		A			
Approach Delay (s)		13.6			11.4			32.9			0.0	
Approach LOS		B			B			c			A	
Intersection Summary												
HCM 2000 Control Delay			15.9		HCM 2000	evel of S	ervice		B			
HCM 2000 Volume to Capacity ratio			0.78									
Actuated Cycle Length (s)			80.0		Sum of lost	time (s)			18.0			
Intersection Capacity Utilization			65.7\%		CU Level or	Service			C			
Análysis Period (min)			15									
c Critical Lane Group												

Movement	SEL	SET	SER	NHL	NWT	NOR	NL	NET	DER	SW	SST	SUR
Lane Configurations		$\$$			$\$$			\uparrow		\uparrow		
Traffic Volume (vph)	5	25	10	345	0	70	0	400	125	15	595	0
Future Volume (vph)	5	25	10	345	0	70	0	400	125	15	595	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0			6.0			6.0			60	

Total Lost time (s)
Lane Until. Factor

Fit
Fit Protected

Permitted Phases
Actuated Green, G (s)

Effective Green, $g(s)$	19.1	19.1

Actuated g/C Ratio	0.33	0.33
Clearance Time (s)	6.0	6.0

Vehicle Extension (s)	3.0
	551

Lane Gro Cap (
v/s Ratio Prot
422
v/s Ratio Perm
c0.31 c0.40
v / c Ratio
Uniform Delay, di
Progression Factor
Incremental Delay, dz
Delay (s) 13.8
Level of Service
Approach Delay (s)
13.8

Approach LOS
B

		$C 0.40$
0.94	0.72	0.85
19.1	12.4	13.8
1.00	1.00	1.00
28.1	3.1	8.5
47.1	15.5	22.3
D	B	C
47.1	15.5	22.3
D	B	C

Intersection Summary

HEM 2000 Control Delay
HEM 2000 Volume to Capacity ratio
Actuated Cycle Length (s)
Intersection Capacity Utilization
Analysis Period (min)

25.7	HCM 2000 Level of Service	C
0.89		
58.4	Sum of lost time (s)	E
83.4%	ICU Level of Service	
15		

	\rangle	\rightarrow	7	\checkmark	-	4	4	4	p	\checkmark	$\frac{1}{7}$	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	t		*	ち		${ }^{7}$	F		${ }^{7}$	\uparrow	\%
Traffic Volume (vph)	105	205	60	35	385	80	60	260	40	70	230	105
Future Volume (vph)	105	205	60	35	385	80	60	260	40	70	230	105
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	6.0
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	0.97		1.00	0.97		1.00	0.98		1.00	1.00	0.85
FIt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1656	1684		1703	1746		1719	1773		1703	1792	1524
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	1656	1684		1703	1746		1719	1773		1703	1792	1524
Peak-hour factor, PHF	0.96	0.96	0.96	0.94	0.94	0.94	0.85	0.85	0.85	0.91	0.91	0.91
Adj. Flow (vph)	109	214	62	37	410	85	71	306	47	77	253	115
RTOR Reduction (vph)	0	13	0	0	9	0	0	7	0	0	0	89
Lane Group Flow (vph)	109	264	0	37	486	0	71	346	0	77	253	26
Heavy Vehicles (\%)	9\%	9\%	9\%	6\%	6\%	6\%	5\%	5\%	5\%	6\%	6\%	6\%
Parking (\#/hr)			0									

Turn Type	Prot	NA	Prot	NA	Prot	NA	Prot	NA	Perm
Protected Phases	5	2	1	6	3	8	7	4	
Permitted Phases									4
Actuated Green, G (s)	6.0	29.3	3.4	26.7	4.0	17.5	4.0	17.5	17.5
Effective Green, $\mathrm{g}(\mathrm{s})$	6.0	29.3	3.4	26.7	4.0	17.5	4.0	17.5	17.5
Actuated g/C Ratio	0.08	0.37	0.04	0.34	0.05	0.22	0.05	0.22	0.22
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	127	630	74	596	87	396	87	401	341
v / s Ratio Prot	c0.07	c0.16	0.02	c0. 28	0.04	c0.20	c0.05	0.14	
v / s Ratio Perm									0.02
v/c Ratio	0.86	0.42	0.50	0.82	0.82	0.87	0.89	0.63	0.08
Uniform Delay, d1	35.7	18.1	36.6	23.5	36.7	29.3	36.9	27.4	24.0
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	40.1	0.5	5.2	8.4	42.3	18.7	59.7	3.2	0.1
Delay (s)	75.7	18.6	41.8	31.9	79.0	48.0	96.6	30.7	24.1
Level of Service	E	B	D	C	E	D	F	C	C
Approach Delay (s)		34.7		32.6		53.2		40.4	
Approach LOS		C		C		D		D	

Intersection Summary

HCM 2000 Control Delay	39.9	HCM 2000 Level of Service	D
HCM 2000 Volume to Capacity ratio	0.84		
Actuated Cycle Length (s)	78.2	Sum of lost time (s)	24.0
Intersection Capacity Utilization	70.9%	ICU Level of Service	C
Analysis Period (min)	15		

c Critical Lane Group

	4	¢	「	\cdots	\downarrow	\downarrow	4	\nearrow	¢	$\frac{1}{7}$	\checkmark	4
Movement	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	9	¢ \uparrow	7	${ }^{7 \%}$	¢午	7	${ }^{*}$	\uparrow	F	\%	\uparrow	7
Traffic Volume (vph)	20	230	135	310	220	145	135	170	20	125	290	370
Future Volume (vph)	20	230	135	310	220	145	135	170	20	125	290	370
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	4.0	6.0	6.0	6.0
Lane Util. Factor	1.00	0.95	1.00	0.97	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1736	3471	1553	3335	3438	1538	1752	1845	1568	1752	1845	1568
FIt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1736	3471	1553	3335	3438	1538	1752	1845	1568	1752	1845	1568
Peak-hour factor, PHF	0.84	0.84	0.84	0.79	0.79	0.79	0.86	0.86	0.86	0.99	0.99	0.99
Adj. Flow (vph)	24	274	161	392	278	184	157	198	23	126	293	374
RTOR Reduction (vph)	0	0	113	0	0	114	0	0	0	0	0	155
Lane Group Flow (vph)	24	274	48	392	278	70	157	198	23	126	293	219
Heavy Vehicles (\%)	4\%	4\%	4\%	5\%	5\%	5\%	3\%	3\%	3\%	3\%	3\%	3\%
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Free	Prot	NA	pt+ov
Protected Phases	5	2		1	6		7	4		3	8	81
Permitted Phases		2	2		6	6		4	Free		8	
Actuated Green, G (s)	8.0	26.8	26.8	15.2	34.0	34.0	9.0	15.3	90.0	8.7	15.0	36.2
Effective Green, g (s)	8.0	26.8	26.8	15.2	34.0	34.0	9.0	15.3	90.0	8.7	15.0	36.2
Actuated g/C Ratio	0.09	0.30	0.30	0.17	0.38	0.38	0.10	0.17	1.00	0.10	0.17	0.40
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0		6.0	6.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	154	1033	462	563	1298	581	175	313	1568	169	307	630
v / s Ratio Prot	0.01	c0.08		c0.12	0.08		c0.09	0.11		0.07	c0.16	0.14
v / s Ratio Perm			0.03			0.05			c0.01			
v/c Ratio	0.16	0.27	0.10	0.70	0.21	0.12	0.90	0.63	0.01	0.75	0.95	0.35
Uniform Delay, d1	37.9	24.1	22.9	35.2	19.0	18.2	40.0	34.7	0.0	39.6	37.2	18.7
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	2.1	0.6	0.5	3.7	0.4	0.4	39.8	4.1	0.0	16.3	39.0	0.3
Delay (s)	40.0	24.7	23.3	39.0	19.3	18.7	79.8	38.9	0.0	55.9	76.1	19.0
Level of Service	D	C	C	D	B	B	E	D	A	E	E	B
Approach Delay (s)		25.0			28.2			53.5			46.0	
Approach LOS		C			c			D			D	
Intersection Summary												
HCM 2000 Control Delay			37.1		HCM 2000	Level of S	ervice		D			
HCM 2000 Volume to Capacity ratio			0.61									
Actuated Cycle Length (s)			90.0		Sum of lost	time (s)			24.0			
Intersection Capacity Utilization			58.3\%		CU Level of	Service			B			
Analysis Period (min)			15									

c Critical Lane Group

	\rangle	\rightarrow		t	4	4	4	4	1	\checkmark	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\% ${ }^{10}$	¢ \uparrow t		\%	性		${ }^{*}$	F		*	\dagger	F
Traffic Volume (vph)	100	630	5		610	220	10	5	5	180	5	100
Future Volume (vph)	100	630	5	5	610	220	10	5	5	180	5	100
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	6.0
Lane Util. Factor	0.97	0.95		1.00	0.95		1.00	1.00		0.95	0.95	1.00
Frt	1.00	1.00		1.00	0.96		1.00	0.93		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.96	1.00
Satd. Flow (prot)	3303	3402		1736	3333		1805	1758		1665	1674	1568
FIt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.96	1.00
Satd. Flow (perm)	3303	3402		1736	3333		1805	1758		1665	1674	1568
Peak-hour factor, PHF	0.83	0.83	0.83	0.97	0.97	0.97	0.67	0.67	0.67	0.90	0.90	0.90
Adj. Flow (vph)	120	759	6	5	629	227	15	7	7	200	6	111
RTOR Reduction (vph)	-	0		0	41	0	0	7	0	0	0	81
Lane Group Flow (vph)	120	765	0	5	815	0	15	7	0	102	104	30
Heavy Vehicles (\%)	6\%	6\%	6\%	4\%	4\%	4\%	0\%	0\%	0\%	3\%	3\%	3\%
Turn Type	Prot	NA		Prot	NA		Split	NA		Split	NA	pt+ov
Protected Phases	5	2		1	6		3	3		4	4	45
Permitted Phases								3				
Actuated Green, G (s)	8.0	50.2		1.0	43.2		4.1	4.1		10.7	10.7	24.7
Effective Green, $\mathrm{g}(\mathrm{s})$	8.0	50.2		1.0	43.2		4.1	4.1		10.7	10.7	24.7
Actuatedg/C Ratio	0.09	0.56		0.01	0.48		0.05	0.05		0.12	0.12	0.27
Clearance Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	293	1897		19	1599		82	80		197	199	430
v/s Ratio Prot v/s Ratio Perm	c0.04	c0.22		0.00	c0.24		c0.01	0.00		0.06	c0.06	0.02
v/c Ratio	0.41	0.40		0.26	0.51		0.18	0.09		0.52	0.52	0.07
Uniform Delay, d1	38.8	11.4		44.1	16.1		41.3	41.2		37.2	37.3	24.2
Progression Factor	1.00	1.00		1.52	0.60		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	0.9	0.1		6.9	1.1		1.1	0.5		2.3	2.5	0.1
Delay (s)	39.7	11.5		73.9	10.8		42.4	41.7		39.5	39.7	24.2
Level of Service	D	B		E	B		D	D		D	D	C
Approach Delay (s)		15.3			11.2			42.1			34.2	
Approach LOS		B			B			D			C	

Intersection Summary			
HCM 2000 Control Delay	16.9	HCM 2000 Level of Service	B
HCM 2000 Volume to Capacity ratio	0.48		24.0
Actuated Cycle Length (s)	90.0	Sum of lost time (s)	A
Intersection Capacity Utilization	54.8%	ICU Level of Service	
Analysis Period (min)	15		
c Critical Lane Group			

Movement	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%	\dagger		*	\uparrow	F'	\%	t		\%	\uparrow	
Traffic Volume (vph)	100	220	20	25	210	255	120	100	80	80	270	90
Future Volume (vph)	100	220	20	25	210	255	120	100	80	80	270	90
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0		6.0	6.0	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	0.99		1.00	1.00	0.85	1.00	0.93		1.00	0.96	
FIt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1752	1822		1736	1827	1553	1770	1738		1787	1811	
Flt Permitted	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1752	1822		1736	1827	1553	1770	1738		1787	1811	
Peak-hour factor, PHF	0.82	0.82	0.82	0.81	0.81	0.81	0.68	0.68	0.68	0.78	0.78	0.78
Adj. Flow (vph)	122	268	24	31	259	315	176	147	118	103	346	115
RTOR Reduction (vph)	0	4	0	0	0	121	0	34	0	0	15	0
Lane Group Flow (vph)	122	288	0	31	259	194	176	231	0	103	447	0
Heavy Vehicles (\%)	3\%	3\%	3\%	4\%	4\%	4\%	2\%	2\%	2\%	1\%	1\%	1\%
Turn Type	Prot	NA		Prot	NA	pt+ov	Prot	NA		Prot	NA	
Protected Phases	1	6		5	2	23	3	8		7	4	
Permitted Phases												
Actuated Green, G (s)	8.0	21.8		3.2	17.0	32.0	9.0	23.4		7.6	22.0	
Effective Green, g (s)	8.0	21.8		3.2	17.0	32.0	9.0	23.4		7.6	22.0	
Actuated g/C Ratio	0.10	0.27		0.04	0.21	0.40	0.11	0.29		0.09	0.28	
Clearance Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	175	496		69	388	621	199	508		169	498	
v/s Ratio Prot	c0.07	c0.16		0.02	c0.14	0.12	c0.10	0.13		0.06	c0.25	
v/c Ratio	0.70	0.58		0.45	0.67	0.31	0.88	0.45		0.61	0.90	
Uniform Delay, d1	34.8	25.2		37.5	28.9	16.5	35.0	23.1		34.8	27.9	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	11.4	1.7		4.6	8.8	0.3	33.9	0.6		6.1	18.5	
Delay (s)	46.3	26.9		42.1	37.7	16.7	68.9	23.7		40.9	46.4	
Level of Service	D	C		D	D	B	E	C		D	D	
Approach Delay (s)		32.6			27.0			41.7			45.4	
Approach LOS		C			C			D			D	

Intersection Summary

HCM 2000 Control Delay	36.5	HCM 2000 Level of Service	D
HCM 2000 Volume to Capacity ratio	0.80		
Actuated Cycle Length (s)	80.0	Sum of lost time (s)	24.0
Intersection Capacity Utilization	65.8%	ICU Level of Service	C

C Critical Lane Group

	\rangle	\rightarrow	\%	6	\leftarrow	4	4	\uparrow	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR		SBT	SBR
Lane Configurations	${ }^{7}$	¢ \uparrow			¢ \uparrow	F	${ }^{*}$		7			
Traffic Volume (vph)	235	1060	0	0	425	535	220	0	240	0	0	0
Future Volume (vph)	235	1060	0	0	425	535	220	0	240	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0			6.0	4.0	6.0		6.0			
Lane Util. Factor	1.00	0.95			0.95	1.00	1.00		1.00			
Frt	1.00	1.00			1.00	0.85	1.00		0.85			
FIt Protected	0.95	1.00			1.00	1.00	0.95		1.00			
Satd. Flow (prot)	1752	3505			3505	1568	1703		1524			
FIt Permitted	0.95	1.00			1.00	1.00	0.95		1.00			
Satd. Flow (perm)	1752	3505			3505	1568	1703		1524			
Peak-hour factor, PHF	0.92	0.92	0.92	0.91	0.91	0.91	0.67	0.67	0.67	0.92	0.92	0.92
Adj. Flow (vph)	255	1152	0	0	467	588	328		358	0	0	0
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	73	0	0	0
Lane Group Flow (vph)	255	1152	0	0	467	588	328	0	285	0	0	0
Heavy Vehicles (\%)	3\%	3\%	3\%	3\%	3\%	3\%	6\%	6\%	6\%	2\%	2\%	2\%
Turn Type	Prot	NA			NA	Free	Prot		Prot			
Protected Phases	5	2			6		8		8			
Permitted Phases		52				Free						
Actuated Green, G (s)	20.3	62.1			35.8	100.0	25.9		25.9			
Effective Green, g (s)	20.3	62.1			35.8	100.0	25.9		25.9			
Actuated g/C Ratio	0.20	0.62			0.36	1.00	0.26		0.26			
Clearance Time (s)	6.0	6.0			6.0		6.0		6.0			
Vehicle Extension (s)	4.0	4.0			4.0		4.0		4.0			
Lane Grp Cap (vph)	355	2176			1254	1568	441		394			
v / s Ratio Prot	c0.15	c0.33			0.13		c0.19		0.19			
v/s Ratio Perm						0.38						
v/c Ratio	0.72	0.53			0.37	0.38	0.74		0.72			
Uniform Delay, d1	37.2	10.7			23.8	0.0	34.0		33.8			
Progression Factor	1.00	1.00			1.00	1.00	1.00		1.00			
Incremental Delay, d2	7.3	0.3			0.8	0.7	7.1		6.9			
Delay (s)	44.4	11.0			24.6	0.7	41.1		40.7			
Level of Service	D	B			C	A	D		D			
Approach Delay (s)		17.1			11.3			40.9			0.0	
Approach LOS		B			B			D			A	
Intersection Summary												
HCM 2000 Control Delay			20.3		CM 2000	Level of S	ervice		C			
HCM 2000 Volume to Capacity ratio			0.66									
Actuated Cycle Length (s)			100.0		um of lost	time (s)			18.0			
Intersection Capacity Utilization			58.8\%		Level of	f Service			B			
Analysis Period (min)			15									
c Critical Lane Group												

	\cdots	\%)	\ldots	k	\%	\%	\not	P	,	4	-
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%	性		${ }^{7}$	中t			\uparrow	7		\uparrow	7
Traffic Volume (vph)	170	1400	5	20	855	80	15	10	15	45	10	215
Future Volume (vph)	170	1400	5	20	855	80	15	10	15	45	10	215
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0			6.0	6.0		6.0	6.0
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00	1.00		1.00	1.00
Fit	1.00	1.00		1.00	0.99			1.00	0.85		1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00			0.97	1.00		0.96	1.00
Satd. Flow (prot)	1787	3572		1787	3528			1844	1615		1808	1599
FIt Permitted	0.95	1.00		0.95	1.00			0.77	1.00		0.75	1.00
Satd. Flow (perm)	1787	3572		1787	3528			1471	1615		1405	1599
Peak-hour factor, PHF	0.97	0.97	0.97	0.95	0.95	0.95	0.90	0.90	0.90	0.80	0.80	0.80
Adj. Flow (vph)	175	1443	5	21	900	84	17	11	17	56	12	269
RTOR Reduction (vph)	0	0	0	0	6	0	0	0	15	0	0	240
Lane Group Flow (vph)	175	1448	0	21	978	0	0	28	2	0	69	29
Heavy Vehicles (\%)	1\%	1\%	1\%	1\%	1\%	1\%	0\%	0\%	0\%	1\%	1\%	1\%
Turn Type	Prot	NA		Prot	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases							8		8	4	4	4
Actuated Green, G (s)	14.5	64.4		2.5	52.4			10.1	10.1		10.1	10.1
Effective Green, g (s)	14.5	64.4		2.5	52.4			10.1	10.1		10.1	10.1
Actuated g/C Ratio	0.15	0.68		0.03	0.55			0.11	0.11		0.11	0.11
Clearance Time (s)	6.0	6.0		6.0	6.0			6.0	6.0		6.0	6.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0	3.0		3.0	3.0
Lane Grp Cap (vph)	272	2421		47	1945			156	171		149	169
v / s Ratio Prot	c0. 10	c0.41		0.01	0.28							
v/s Ratio Perm								0.02	0.00		c0.05	0.02
v/c Ratio	0.64	0.60		0.45	0.50			0.18	0.01		0.46	0.17
Uniform Delay, d1	37.8	8.3		45.6	13.2			38.7	38.0		39.9	38.6
Progression Factor	0.77	1.64		1.00	1.00			1.00	1.00		1.00	1.00
Incremental Delay, d2	4.0	0.8		6.6	0.9			0.6	0.0		2.3	0.5
Delay (s)	33.3	14.5		52.2	14.2			39.2	38.0		42.2	39.1
Level of Service	C	B		D	B			D	D		D	D
Approach Delay (s)		16.5			14.9			38.8			39.7	
Approach LOS		B			B			D			D	
Intersection Summary												
HCM 2000 Control Delay			18.9		M 2000 L	evel of Sersider	Srvice		B			
HCM 2000 Volume to Capacity ratio			0.61									
Actuated Cycle Length (s)			95.0		m of lost	ime (s)			18.0			
Intersection Capacity Utilization			67.7\%		J Level of	Service			C			
Analysis Period (min)			15									
c Critical Lane Group												

	\rangle	\rightarrow		\checkmark	\downarrow		4	4	7		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*} 1$	个t		\％	个t		${ }_{4}$	\dagger		\％	\uparrow	「
Traffic Volume（vph）	110	1095	5	5	800	260	40	10	10	345	4	135
Future Volume（vph）	110	1095	5	5	800	260	40	10	10	345	5	135
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	6.0
Lane Util．Factor	0.97	0.95		1.00	0.95		1.00	1.00		0.95	0.95	1.00
Frt	1.00	1.00		1.00	0.96		1.00	0.93		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.95	1.00
Satd．Flow（prot）	3467	3572		1770	3409		1805	1758		1715	1721	1615
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.95	1.00
Satd．Flow（perm）	3467	3572		1770	3409		1805	1758		1715	1721	1615
Peak－hour factor，PHF	0.84	0.84	0.84	0.90	0.90	0.90	0.78	0.78	0.78	0.86	0.86	0.86
Adj．Flow（vph）	131	1304	6	6	889	289	51	13	13	401	6	157
RTOR Reduction（vph）	0	0	0	0	32	0	0	12	0	0	0	77
Lane Group Flow（vph）	131	1310	0	6	1146	0	51	14	0	205	202	80
Heavy Vehicles（\％）	1\％	1\％	1\％	2\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％
Turn Type	Prot	NA		Prot	NA		Split	NA		Split	NA	$\mathrm{pt}+0 \mathrm{~V}$
Protected Phases	5	2		1	6		3	3		4	4	45
Permitted Phases		2			6							
Actuated Green，G（s）	7.7	52.5		1.0	45.8		4.0	4.0		13.5	13.5	27.2
Effective Green， g （s）	7.7	52.5		1.0	45.8		4.0	4.0		13.5	13.5	27.2
Actuated g／C Ratio	0.08	0.55		0.01	0.48		0.04	0.04		0.14	0.14	0.29
Clearance Time（s）	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Vehicle Extension（s）	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap（vph）	281	1974		18	1643		76	74		243	244	462
v／s Ratio Prot v／s Ratio Perm	c0．04	c0．37		0.00	0.34		c0． 03	0.01		c0．12	0.12	0.05
v／c Ratio	0.47	0.66		0.33	0.70		0.67	0.18		0.84	0.83	0.17
Uniform Delay，d1	41.7	15.0		46.7	19.2		44.9	43.9		39.7	39.6	25.5
Progression Factor	1.00	1.00		1.48	0.69		1.00	1.00		1.00	1.00	1.00
Incremental Delay，d2	1.2	1.8		9.3	1.1		20.8	1.2		22.5	20.1	0.2
Delay（s）	42.9	16.8		78.4	14.4		65.7	45.1		62.2	59.7	25.6
Level of Service	D	B		E	B		E	D		E	E	C
Approach Delay（s）		19.2			14.7			58.7			51.1	
Approach LOS		B			B			E			D	
Intersection Summary												
HCM 2000 Control DelayHCM 2000 Volume to Capacity ratio			24.0	HCM 2000 Level of Service					C			
			0.72									
Actuated Cycle Length（s）			95.0	Sum of lost time（s）					24.0			
Intersection Capacity Utilization			65．9\％	ICU Level of Service					C			
Analysis Period（min）			15									
c Critical Lane Group												

Movement	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	${ }^{4}$	F		\%	\uparrow	F	${ }^{7}$	F		*	A	
Traffic Volume (vph)	100	320	25	75	185	185	280	345	75	25	175	70
Future Volume (vph)	100	320	25	75	185	185	280	345	75	25	175	70
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0		6.0	6.0	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	0.99		1.00	1.00	0.85	1.00	0.97		1.00	0.96	
FIt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	1843		1787	1881	1599	1805	1849		1805	1819	
FIt Permitted	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1770	1843		1787	1881	1599	1805	1849		1805	1819	
Peak-hour factor, PHF	0.99	0.99	0.99	0.95	0.95	0.95	0.89	0.89	0.89	0.93	0.93	0.93
Adj. Flow (vph)	101	323	25	79	195	195	315	388	84	27	188	75
RTOR Reduction (vph)	0	3	0	0	0	101	,	8		27	17	0
Lane Group Flow (vph)	101	345	0	79	195	94	315	464	0	27	246	0
Heavy Vehicles (\%)	2\%	2\%	2\%	1\%	1\%	1\%	0\%	0\%	0\%	0\%	0\%	0\%
Turn Type	Prot	NA		Prot	NA	pt+ov	Prot	NA		Prot	NA	
Protected Phases	1	6		5	2	23				7	4	
Permitted Phases		6			2							
Actuated Green, G (s)	7.1	17.0		6.4	16.3	38.6	16.3	29.4		3.2	16.3	
Effective Green, $\mathrm{g}(\mathrm{s})$	7.1	17.0		6.4	16.3	38.6	16.3	29.4		3.2	16.3	
Actuated g/C Ratio	0.09	0.21		0.08	0.20	0.48	0.20	0.37		0.04	0.20	
Clearance Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	157	391		142	383	771	367	679		72	370	
v/s Ratio Prot	c0.06	c0.19		0.04	0.10	0.06	c0.17	c0.25		0.01	0.14	
v/c Ratio	0.64	0.88		0.56	0.51	0.12	0.86	0.68		0.38	0.67	
Uniform Delay, d1	35.2	30.5		35.4	28.3	11.4	30.7	21.4		37.4	29.3	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	8.7	20.2		4.7	4.8	0.1	17.7	2.8		3.3	4.5	
Delay (s)	43.9	50.7		40.1	33.1	11.5	48.4	24.2		40.7	33.8	
Level of Service	D	D		D	C	B	D	C		D	C	
Approach Delay (s)		49.2			25.3			33.9			34.5	
Approach LOS		D			C			C			C	

Intersection Summary			
HCM 2000 Control Delay	35.4	HCM 2000 Level of Service	D
HCM 2000 Volume to Capacity ratio	0.83		24.0
Actuated Cycle Length (s)	80.0	Sum of lost time (s)	D
Intersection Capacity Utilization	74.4%	ICU Level of Service	
Analysis Period (min)	15		

c Critical Lane Group

APPENDIX H: GOOGLE MAPS PRINTOUT OF TRAFFIC CONDITIONS - DERRY AREA - JANUARY 2018

Thursday, January 25, 2018

APPENDIX I: HCM PRINTOUTS - UNSIGNALIZED INTERSECTION CAPACITY ANALYSES - 2015 AM AND PM PEAK HCM PRINTOUTS

Major/Minor	Minor2		Minor1				Major1			Major2		
Conflicting Flow All	1942	1943	1198	1940	1954	568	1212	0	0	571	0	0
Stage 1	1209	1209	-	731	731	-	-	.	-	.	-	
Stage 2	733	734	-	1209	1223	\cdot	-	-	-	-	-	
Critical Hdwy	7.12	6.52	6.22	7.1	6.5	6.2	4.12	-	.	4.12	.	
Critical Hdwy Stg 1	6.12	5.52	.	6.1	5.5	-	.	-	-	.	.	
Critical Hdwy Stg 2	6.12	5.52	-	6.1	5.5	-	-	-	-	-	-	
Follow-up Hdwy	3.518	4.018	3.318	3.5	4	3.3	2.218	-	-	2.218	-	
Pot Cap-1 Maneuver	49	65	226	50	65	526	576	-	.	1002	.	
Stage 1	223	256	.	416	430	1.	.	
Stage 2	412	426	-	225	254	-	-	-	-	-	-	
Platoon blocked, \%								-	-		-	
Mov Cap-1 Maneuver	43	55	226	22	55	526	576	-	-	1002	-	
Mov Cap-2 Maneuver	43	55	.	22	55	
Stage 1	191	252	-	357	369	-	-	-	-	-	-	
Stage 2	351	365	-	110	250	-	-	-	-	-	.	

Approach	SE	NW	NE	SW
HCM Control Delay, s	43	11.9	1.5	0

Intersection						
Int Delay, s/veh	4.2					
Movement	EBL	EBR	NBL		SBT	SBR
Lane Configurations	\%			\uparrow	\dagger	
Traffic Vol, veh/h	180	10	5	125	175	230
Future Vol, veh/h	180	10	5	125	175	230
Conflicting Peds, \#hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	.	None	.	None
Storage Length	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	89	89	91	91	93	93
Heavy Vehicles, \%	5	5	4	4	2	2
Mumt Flow	202	11	5	137	188	247

Major/Minor	Minor2	Major1				
Conflicting Flow All	460	312	435	0	Major2	
\quad Stage 1	312	-	-	-	-	0
Stage 2	148	-	-	-	-	-
Critical Hdwy	6.45	6.25	4.14	-	-	-
Critical Hdwy Stg 1	5.45	-	-	-	-	-
Critical Hdwy Stg 2	5.45	-	-	-	-	-
Follow-up Hdwy	3.545	3.345	2.236	-	-	-
Pot Cap-1 Maneuver	554	721	1114	-	-	-
\quad Stage 1	735	-	-	-	-	-
Stage 2	872	-	-	-	-	-
Platoon blocked, \%			-	-	-	
Mov Cap-1 Maneuver	551	721	1114	-	-	-
Mov Cap-2 Maneuver	551	-	-	-	-	-
Stage 1	735	-	-	-	-	-
Stage 2	868	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	15.4	0.3	0

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	1114	-558	-	-	
HCM Lane V/C Ratio	0.005	-0.383	-	-	
HCM Control Delay (s)	8.2	0	15.4	-	-
HCM Lane LOS	A	A	C	-	-
HCM 95th \%tile Q(veh)	0	-	1.8	-	-

Intersection						
Int Delay, s/veh	0.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M			\uparrow	\dagger	
Traffic Vol, veh/h	10	0	0	310	400	20
Future Vol, veh/h	10	0	0	310	400	20
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	.	None
Storage Length	0	.	-	-	\cdot	.
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	\cdot	-	0	0	-
Peak Hour Factor	44	44	95	95	96	96
Heavy Vehicles, \%	79	79	4	4	6	6
Mumt Flow	23	0	0	326	417	21

Major/Minor	Minor2	Major1						Major2
Conflicting Flow All	753	427	438	0	-	0		
\quad Stage 1	427	-	-	-	-	-		
Stage 2	326	-	-	-	-	-		
Critical Hdwy	7.19	6.99	4.14	-	-	-		
Critical Hdwy Stg 1	6.19	-	-	-	-	-		
Critical Hdwy Stg 2	6.19	-	-	-	-	-		
Follow-up Hdwy	4.211	4.011	2.236	-	-	-		
Pot Cap-1 Maneuver	286	492	1111	-	-	-		
\quad Stage 1	521	-	-	-	-	-		
Stage 2	587	-	-	-	-	-		
Platoon blocked, \%			-	-	-			
Mov Cap-1 Maneuver	286	492	1111	-	-	-		
Mov Cap-2 Maneuver	286	-	-	-	-	-		
Stage 1	521	-	-	-	-	-		

Approach	EB	NB	SB
HCM Control Delay, s	18.7	0	0

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR
Capacity (veh/h)	1111	-286	-	-
HCM Lane V/C Ratio	-	-0.079	-	-
HCM Control Delay (s)	0	-18.7	-	-
HCM Lane LOS	A	-	C	-
HCM 95th \%tile Q(veh)	0	-	0.3	-

Intersection												
Int Delay, s/veh 2.5												
Movement	EBL EBT		EBR	WBL					SER		NWT NWR	
Lane Configurations		t			¢			\pm			\$	
Traffic Vol, veh/h	35	270	5	30	385	10	10	5	30	10	5	35
Future Vol, veh/h	35	270	5	30	385	10	10	5	30	10	5	35
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	.	-	Yield			None
Storage Length	-	-	-	-	-	-	-	-	.		-	
Veh in Median Storage, \#	-	0		-	0	-	-	0	-		0	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	89	89	89	96	96	96	65	65	65	67	67	67
Heavy Vehicles, \%	7	7	7		5	5	2	2	2	0	0	
Mumt Flow	39	303	6	31	401	10	15	8	46	15	7	

Approach	EB	WB	SE	NW
HCM Control Delay, s	0.9	0.6	10.5	14.2
HCM LOS		B	B	

Minor Lane/Major Mvmt	NWLn1	EBL	EBT	EBR	WBL	WBT	WBR SELn1
Capacity (veh/h)	465	1121	-	-1235	-	-724	
HCM Lane V/C Ratio	0.16	0.035	-	-0.025	-	-0.096	
HCM Control Delay (s)	14.2	8.3	-	-	8	0	-10.5
HCM Lane LOS	B	A	-	-	A	A	-
HCM 95th \%tile Q(veh)	0.6	0.1	-	-	0.1	-	-
B		0.3					

Intersection						
Int Delay, s/veh	22.6					
Movement	NWL	NWR	NET	NER	SWL	SWT
Lane Configurations	${ }^{1}$	${ }^{*}$	\uparrow	「		¢ \uparrow
Traffic Vol, veh/h	215	80	370	245	80	570
Future Vol, veh/h	215	80	370	245	80	570
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	Yield	-	None
Storage Length	\square	150	-	0	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	\checkmark	0	-	-	0
Peak Hour Factor	83	83	86	86	81	81
Heavy Vehicles, \%	2		3	3	2	2
Mumt Flow	259	96	430	285	99	704

Major/Minor	Minor1	Major1	Major2			
Conflicting Flow All	979	430	0	0	430	0
\quad Stage 1	430	-	-	-	-	-
Stage 2	549	-	-	-	-	-
Critical Hdwy	6.63	6.23	-	-	4.13	-
Critical Hdwy Stg 1	5.43	-	-	-	-	-
Critical Hdwy Stg 2	5.83	-	-	-	-	-
Follow-up Hdwy	3.519	3.319	-	-	2.219	-
Pot Cap-1 Maneuver	262	624	-	-	1128	-
\quad Stage 1	655	-	-	-	-	-
\quad Stage 2	543	-	-	-	-	-
Platoon blocked, \%			-	-	1128	-
Mov Cap-1 Maneuver	~ 224	624	-	-	-	-
Mov Cap-2 Maneuver	~ 224	-	-	-	-	-
Stage 1	655	-	-	-	-	-
Stage 2	465	-	-	-		
					SW	
Approach	NW					

HCMLOS F

Minor Lane/Major Mvmt	NET	NERNWLn1NWLn2	SWL	SWT		
Capacity (veh/h)	-	-224	624	1128	-	
HCM Lane V/C Ratio	-	-1.156	0.154	0.088	-	
HCM Control Delay (s)	-	-154.3	11.8	8.5	0.5	
HCM Lane LOS	-	-	F	B	A	A
HCM 95th \%tile Q(veh)	-	-	12.3	0.5	0.3	-

Notes
\sim : Volume exceeds capacity $\quad \$$: Delay exceeds $300 \mathrm{~s} \quad \mathrm{t}$: Computation Not Defined \quad : All major volume in platoon

Major/Minor	Major1	Major2				
Conflicting Flow All	770	0	-	0	1640	747
\quad Stage 1	-	-	-	-	747	-
Stage 2	-	-	-	-	893	-
Critical Hdwy	4.17	-	-	-	6.46	6.26
Critical Hdwy Stg 1	-	-	-	-	5.46	-
Critical Hdwy Stg 2	-	-	-	-	5.46	-
Follow-up Hdwy	2.263	-	-	-	3.554	3.354
Pot Cap-1 Maneuver	823	-	-	-	108	406
Stage 1	-	-	-	-	461	-
Stage 2	-	-	-	-	393	-
Platoon blocked, \%		-	-	-	106	406
Mov Cap-1 Maneuver	823	-	-	-	106	-
Mov Cap-2 Maneuver	-	-	-	-	461	-
Stage 1	-	-	-	-	384	-

Approach	EB	WB	SB
HCM Control Delay, s	0.2	0	143.2
HCM LOS			F

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1
Capacity (veh/h)	823	-	-	-137
HCM Lane V/C Ratio	0.022	-	-	-1.011
HCM Control Delay (s)	9.5	-	-	-143.2
HCM Lane LOS	A	-	-	-
HCM 95th \%tile Q(veh)	0.1	-	-	-

13: NH 102 W/NH 102 E \& Bypass 28 S/Bypass 28 N \& E Derry Rd

Intersection										
Intersection Delay, s/veh	76.6									
Intersection LOS	F	ERR		Byp 28		Byp 28		2 EB		102 WB
Approach		WB		NB		SB		NE		SW
Entry Lanes		1		1		1		1		1
Conflicting Circle Lanes		1		1		1		1		1
Adj Approach Flow, veh/h		516		436		557		617		397
Demand Flow Rate, veh/h		530		450		595		666		424
Vehicles Circulating, veh/h		788		673		698		629		1006
Vehicles Exiting, veh/h		335		622		732		665		312
Follow-Up Headway, s		3.186		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#/h		0		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000		1.000
Approach Delay, s/veh		77.5		29.5		83.5		96.6		86.1
Approach LOS		F		D		F		F		F
Lane	Left									
Designated Moves	LR		LTR		LTR		LTR		LTR	
Assumed Moves	LR		LTR		LTR		LTR		LTR	
RT Channelized										
Lane Util	1.000		1.000		1.000		1.000		1.000	
Critical Headway, s	5.193		5.193		5.193		5.193		5.193	
Entry Flow, veh/h	530		450		595		666		424	
Cap Entry Lane, veh/h	514		576		562		602		413	
Entry HV Adj Factor	0.973		0.970		0.936		0.926		0.935	
Flow Entry, veh/h	516		436		557		617		396	
Cap Entry, veh/h	500		559		526		558		386	
VIC Ratio	1.031		0.781		1.058		1.106		1.026	
Control Delay, s/veh	77.5		29.5		83.5		96.6		86.1	
LOS	F		D		F		F		F	
95th \%tile Queue, veh	15		7		16		19		13	

Approach	LB	WB	NB	SB
HCM Control Delay, s	237	296.3	3.6	0.3
HCM LOS	F			

Minor Lane/Major Mvmt	NBL	NET	NBR EBLn1	EBLn2WBLn1	SBL	SET	SER	
Capacity (veh/h)	1131	-	-	965	99	1030	-	-
HCM Lane V/C Ratio	0.289	-	-3.388	0.35	1.371	0.014	-	-
HCM Control Delay (s)	9.5	0	$-\$ 1890$	13.6	296.3	8.5	0	-
HCM Lane LOS	A	A	-	F	B	F	A	A
HCM 95th \%tile Q(veh)	1.2	-	-	5	1.6	9.8	0	-

Notes
~: Volume exceeds capacity $\$$: Delay exceeds $300 \mathrm{~s} \quad \mathrm{+}$: Computation Not Defined *: All major volume in platoon

Intersection						
Int Delay, s/veh	SE		1	Γ		E
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M			\uparrow	\uparrow	
Traffic Vol, veh/h	95	0	15	165	320	300
Future Vol, veh/h	95	0	15	165	320	300
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	94	94	91	91	82	82
Heavy Vehicles, \%	2	2	11	11	2	2
Mvmt Flow	101	0	16	181	390	366

Int Delay, s/veh 11.5		SET	SER			NWR	NEL	NET			SWT SWR	
Movement	SEL											
Lane Configurations		\uparrow	\%		\dagger		7	\dagger			\dagger	
Traffic Vol, veh/h	10	5	130	5	0	5	285	950	120	5	720	35
Future Vol, veh/h	10	5	130	5	0	5	285	950	120	5	720	35
Conflicting Peds, \#hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	.	None
Storage Length	-	-	150	-	-	.	150	-	.	-	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	83	83	83	58	58	58	97	97	97	95	95	95
Heavy Vehicles, \%	2	2	2		0	0	1	1	1	2	2	2
Mumt Flow	12	6	157	9	0	9	294	979	124	5	758	37

Major/Minor	Minor2		Minor1				Major1			Major2			
Conflicting Flow All	2420	2478	776	2419	2434	1041		795	0	0	1103	0	0
Stage 1	787	787	.	1629	1629	-		-	-	-	.	-	
Stage 2	1633	1691	-	790	805	-		-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.1	6.5	6.2		4.11	-	-	4.12	.	
Critical Hdwy Stg 1	6.12	5.52	.	6.1	5.5	-		.	-	-	.	-	
Critical Hdwy Stg 2	6.12	5.52		6.1	5.5	-		-	-	-	-	-	
Follow-up Hdwy	3.518	4.018	3.318	3.5	4	3.3		2.209	-	-	2.218	-	.
Pot Cap-1 Maneuver	22	30	397	23	32	282		831	-	-	633	-	-
Stage 1	385	403	-	130	162	-		-	-	-	.	-	-
Stage 2	128	149	-	386	398	-		-	-	-	-	-	
Platoon blocked, \%									-	-		-	
Mov Cap-1 Maneuver	15	19	397	~ 8	20	282		831	-	-	633	.	
Mov Cap-2 Maneuver	15	19	.	~ 8	20	-		-	-	-	.	-	
Stage 1	249	397	-	84	105	-		-	-	-	-	-	
Stage 2	80	96	-	227	392	-		-	-	-	-	-	
Approach	SE			NW		-		NE			SW		
HCM Control Delay, s	79.8			\$ 578.2				2.5			0.1		
HCM LOS	F			F									
	E3			NB SB		W3							
Minor Lane/Major Mvmt	NEL	NET	NER	WWLn1 SELn1 S	SELn2	SWL	SWT	SWR					
Capacity (veh/h)	831	-	-	$16 \quad 16$	397	633	-	-					
HCM Lane V/C Ratio	0.354	-		1.0781 .13	0.395	0.008	-	-					
HCM Control Delay (s)	11.7	-		578.28598 .6	19.9	10.7	0	-					
HCM Lane LOS	B	-	-	F F	C	B	A	-					
HCM 95th \%tile Q(veh)	1.6	.	.	$2.6 \quad 2.7$	1.8	0	.	-					

Notes
\sim : Volume exceeds capacity $\quad \$$: Delay exceeds $300 \mathrm{~s} \quad+$: Computation Not Defined \quad : All major volume in platoon

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	1064	-410	-	-	
HCM Lane V/C Ratio	0.005	-1.152	-	-	
HCM Control Delay (s)	8.4	0	123.5	-	-
HCM Lane LOS	A	A	F	-	-
HCM 95th \%tile Q(veh)	0	-	17.8	-	-

Notes
\sim : Volume exceeds capacity $\quad \$$: Delay exceeds $300 \mathrm{~s} \quad+$: Computation Not Defined *: All major volume in platoon

Major/Minor	Minor2	Major1				
Conflicting Flow All	1270	517	523	0	Major2	
\quad Stage 1	517	-	-	-	-	0
Stage 2	753	-	-	-	-	-
Critical Hdwy	6.46	6.26	4.11	-	-	-
Critical Hdwy Stg 1	5.46	-	-	-	-	-
Critical Hdwy Stg 2	5.46	-	-	-	-	-
Follow-up Hdwy	3.554	3.354	2.209	-	-	-
Pot Cap-1 Maneuver	182	550	1049	-	-	-
\quad Stage 1	590	-	-	-	-	-
Stage 2	458	-	-	-	-	-
Platoon blocked, \%				-	-	
Mov Cap-1 Maneuver	182	550	1049	-	-	-
Mov Cap-2 Maneuver	182	-	-	-	-	-
Stage 1	590	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	27.2	0	0

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	1049	-182	-	-	
HCM Lane V/C Ratio	-	-0.11	-	-	
HCM Control Delay (s)	0	-27.2	-	-	
HCM Lane LOS	A	-	D	-	-
HCM 95th \%tile Q(veh)	0	-	0.4	-	-

Intersection												
Int Delay, s/veh 4												
Movement EBL EBT EBR WBL WBT WBR SEL SET SER NWL NWT NWR												
Lane Configurations		\uparrow			*			\pm			\dagger	
Traffic Vol, veh/h	45	665	5	30	375	20	20	10	70	5	10	50
Future Vol, veh/h	45	665	5	30	375	20	20	10	70	5	10	50
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	Yield	.		None
Storage Length	-	-	-	-	-	-	-	-	.	-		-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	94	94	94	88	88	88	67	67	67	82	82	82
Heavy Vehicles, \%	1	1	1	2	2	2	0	0	0	0	0	0
Mvmt Flow	48	707	5	34	426	23	30	15	104	6	12	61

Major/Minor	Major1		Major2				Minor2		Minor1			
Conflicting Flow All	449	0	0	713	0	0	1348	1315	438	1319	1323	710
Stage 1	-	-	-	-	-	-	506	506	-	806	806	
Stage 2	-	-	-	-	-	-	842	809	-	513	517	
Critical Hdwy	4.11	-	-	4.12	-	-	7.1	6.5	6.2	7.1	6.5	6.2
Critical Hdwy Stg 1	.	-	-	-	-	-	6.1	5.5	.	6.1	5.5	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.1	5.5	-	6.1	5.5	
Follow-up Hdwy	2.209	-	-	2.218	-	-	3.5	4	3.3	3.5	4	3.3
Pot Cap-1 Maneuver	1117	-	-	887	-	-	129	159	623	135	158	437
Stage 1	.	-	-	.	-	-	552	543	.	379	398	
Stage 2	-	-	-	-	-	-	362	396		548	537	
Platoon blocked, \%		-	-		-	-						
Mov Cap-1 Maneuver	1117	-	-	887	-	-	94	140	623	94	139	437
Mov Cap-2 Maneuver	-	-	-	-	-	-	94	140	-	94	139	
Stage 1	-	-	-	-	-	-	513	515		352	370	
Stage 2	-	-	-	-	-	-	280	368	-	420	510	-

Approach	EB	WB	SE	NW
HCM Control Delay, s	0.5	0.7	22.5	23.7
HCM LOS			C	C

Minor Lane/Major Mvmt	NWLn1	EBL	EBT	EBR	WBL	WBT	WBR SELn1
Capacity (veh/h)	271	1117	-	-	887	-	-
HCM Lane V/C Ratio	0.293	0.043	-	-0.038	-	-0.424	
HCM Control Delay (s)	23.7	8.4	0	-	9.2	0	-
HCM Lane LOS	C	A	A	-	A	A	-
HCM 95th \%tile Q(veh)	1.2	0.1	-	-	0.1	-	-
C							

Minor Lane/Major Mvmt	NET	NERNWLnNWLn2	SWL	SST		
Capacity (veh/h)	-	-	147	500	978	-
HCM Lane V/C Ratio	-	-1.424	0.279	0.138	-	
HCM Control Delay (s)	-	-282.3	15	9.3	0.7	
HCM Lane LOS	-	-	F	C	A	A
HCM 95th \%tile Q(veh)	-	-	13.6	1.1	0.5	-

Notes
\sim : Volume exceeds capacity $\quad \$$: Delay exceeds $300 \mathrm{~s} \quad+$: Computation Not Defined *: All major volume in platoon

Intersection										
Intersection Delay, s/veh	153.6									
Intersection LOS	F			Bye 25		Byp 28		102 EB		$102 W^{3}$
Approach		WB		NB		SB		NE		SW
Entry Lanes		1		1		1		1		1
Conflicting Circle Lanes		1		1		1		1		1
Adj Approach Flow, veh/h		544		489		804		688		264
Demand Flow Rate, veh/h		549		499		811		695		268
Vehicles Circulating, veh/h		828		1055		555		862		964
Vehicles Exiting, veh/h		726		502		677		504		413
Follow-Up Headway, s		3.186		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#/h		0		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000		1.000
Approach Delay, s/veh		103.3		169.4		146.4		240.0		24.6
Approach LOS		F		F		F		F		-
Lane	Left									
Designated Moves	LR		LTR		LTR		LTR		LTR	
Assumed Moves	LR		LTR		LTR		LTR		LTR	
RT Channelized										
Lane Util	1.000		1.000		1.000		1.000		1.000	
Critical Headway, s	5.193		5.193		5.193		5.193		5.193	
Entry Flow, veh/h	549		499		811		695		268	
Cap Entry Lane, veh/h	494		393		649		477		431	
Entry HV Adj Factor	0.991		0.980		0.991		0.990		0.983	
Flow Entry, veh/h	544		489		803		688		263	
Cap Entry, veh/h	489		385		643		473		424	
VIC Ratio	1.112		1.268		1.250		1.456		0.622	
Control Delay, s/veh	103.3		169.4		146.4		240.0		24.6	
LOS	F		F		F		F		C	
95th \%tile Queue, veh	18		21		30		34		4	

Intersection												
Int Delay, s/veh	12.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「		\$			¢			¢	
Traffic Vol, veh/h	10	40	435	5	30	20	200	435	10	25	290	15
Future Vol, veh/h	10	40	435	5	30	20	200	435	10	25	290	15
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	.	-	None	.	.	None	.	-	None			None
Storage Length	-	-	,	-	.	.	-	-	.	-	-	
Veh in Median Storage, \#	-	0	.	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	88	88	88	82	82	82	93	93	93	91	91	91
Heavy Vehicles, \%	2	2	2	0	0	0	1	1	1	1	1	1
Mumt Flow	11	45	494	6	37	24	215	468	11	27	319	16

Major/Minor	Minor2		Minor1				Major1			Major2		
Conflicting Flow All	1316	1291	327	1308	1293	473	335	0	0	478	0	0
Stage 1	382	382	-	903	903	-	-	.	-	.	-	
Stage 2	934	909	-	405	390	\cdot	-	-	-	-	-	
Critical Hdwy	7.12	6.52	6.22	7.1	6.5	6.2	4.11	-	-	4.11	-	
Critical Hdwy Stg 1	6.12	5.52	-	6.1	5.5	.	-	-	-	-	.	
Critical Hdwy Stg 2	6.12	5.52	-	6.1	5.5	-	-	-	-	-	-	
Follow-up Hdwy	3.518	4.018	3.318	3.5	4	3.3	2.209	-	-	2.209	-	
Pot Cap-1 Maneuver	135	163	714	138	164	595	1230	-	-	1090	-	
Stage 1	640	613	-	335	359	.	.	-	.	.	.	
Stage 2	319	354	-	626	611	-	-	-	-	-	-	
Platoon blocked, \%								-	-		-	
Mov Cap-1 Maneuver	80	120	714	24	121	595	1230	-	-	1090	.	
Mov Cap-2 Maneuver	80	120	-	24	121	-	.	-	-	-	-	
Stage 1	488	594	-	255	274	-	-	-	-	-	-	
Stage 2	202	270	-	172	592	-	-	-	-	-	-	
Approach	EB			WB			NB			SB		
HCM Control Delay, s	25.6			76.5			2.6			0.6		
HCM LOS	D			F								

Minor Lane/Major Mvmt	NBL	NBT	NBR EBLn1 EBLn2WBLn1	SBL	SBT	SBR		
Capacity (veh/h)	1230	-	-	109	714	112	1090	-

APPENDIX J: 2040 AWDT PEAK HOUR VOLUMES

	11-Apr-17	TABLE I-1														
	rev 5-17-17	Adjusted 2040 AAWDT and Peak Hour No-Build volumes based on 2015 counts														
	rev 9-14-17															
		Annual			Seasonal: Use Urban Highway Group 4 adjustment factors											
		Growth rates:			Intersection Turning Movement Counts				AM Peak	PM Peak						
		2014-2015	1.025				April	Adj Factor=	= 0.96	0.99						
		2015-2015	1.000				May		0.96	0.98						
		2016-2015	0.975				June		0.96	0.94						
							July		1.04	0.96						
							Sept		0.95	0.97						
														(Apply \% to		
														2015 adj		
					Counted	Adj 2015		Counted	Adj 2015		2015 AWDT	2040 AAWDT	\%	AAWDT)	2040	2040
		Count	Raw	Adj 2015	AM Peak	AM Peak	AM Pkas	PM Peak	PM Peak	PM Pk as	Base Model	No-Build	Growth	2040 NB	NoBd	NoBd
Derry	Count Lecation	Month/rir	AAWDT	AAWDT	Volume	Volume	\% of AAWDT	Volume	Volume	\% of AAWDT	Assigns	Assigns	2015-40	AAWDT	AM Pk	PM Pk
	Folsom Rd W of NH 28	May-16	15,585	15,195	836	803	5.28\%	1418	1390	9.15\%	13,406	10,220	-23.77\%	11,584	612	1060
	Folsom Rd W of NH 28	May-16	12,070	11,768	778	747	6.35\%	1199	1175	9.98\%	8,960	10,537	17.60\%	13,839	878	1382
	Pinkerton St E of Tsienneto	May-16	10,722	10,454	695	667	6.38\%	1017	997	9.54\%	8,776	6,396 \|	-27.12\%	7,619	486	727
	Tsiennto Rd, W of NH 102	May-16	5,532	5,394	483	464	8.60\%	511	501	9.29\%	5,666	9,072	60.11\%	8,636	743	802
	Tsienneto Rd E of Pinkerton	May-16	15,012	14,637	1113	1068	7.30\%	1499	1469	10.04\%	14,200	18,876 \|	32.93\%	19,457	1420\|	1953
	NH 102, E of NH 28 Bypass	May-16	7,456	7,270	595	571	7.85\%	661	648	8.91\%	7,016	6,126	-12.69\%	6,348	499	566
	$\mathrm{NH} 28 \mathrm{Byp}, \mathrm{N}$ of Acadermy Dr	May-16	8,615	8,400	756	726	8.64\%	881	863	10.27\%	7,318	2,853 \|	-61.01\%	3,275	2831	336
	NH 28 Byp, N of Tsienneto Rd	May-16	12,250	11,944	997	957	8.01\%	1201	1177	9.85\%	9,377	4,072	-56.57\%	5,187	416	511
	NH 28 Byp, S of Thornton Rd (south)	May-16	14,341	13,982	1110	1066	7.62\%	1392	1364	9.76\%	12,227	7,327\|	-40.08\%	8,379	63\|	817
	NH 102 E of Griffin St	Apr-14	16,410	16,820	1080	1037	6.17\%	1224	1212	7.21\%	18,002	20,810	15.60\%	19,444	1199	1401
	NH 102 W of Abbot St	Apr-14	14,220	14.576	1020	979	6.72\%	1148	1137	7.80\%	11,128	14,902 \|	33.91\%	19,519	1311\|	1523
	Fordway over Beaver Brook	Apr-14	5,500	5,638	411	395	7.01\%	481	476	8.44\%	5,114	3,511	-31.35\%	3,871	271	327
	Franklin St Ext, N. of Folsom Rd	Apr-14	1,795	1,840	109	105	5.71\%	171	169	9.18\%	1,254	1,959 \|	56.22\%	2,874	164 \|	264
	Ash St at Londonderry town line	Apr-14	6,956	7,130	477	458	6.42\%	722	715	10.03\%	5,936	13,790	132.31\%	16,564	1064	1661
	Crystal Av (NH 28), S of Rollins	Jun-15	13,134	13,134	1026	985	7.50\%	1174	1104	8.41\%	13,215	10,463	-20.82\%	10,399	$780 \mid$	1661
	NH 102, at Derry/Chester town line	Jul-15	8,200	8,200	644	670	8.17\%	841	807	9.84\%	10,839	12,783	17.94\%	9,671	790	952
	average						7.11\%			9.23\%						
1-dery	NH 102, E of Hampton Dr	Jul-15	31,102	31,102	2478	2577	8.29\%	2842	2728	8.77\%	30,418	51,401	68.98\%	52,557	4355	4610
	NH 102, E of Exit 4			26,800	2140		7.99\%	2145		8.00\%	20,818	32,410	55.68\%	41,723	3332	3339
	NH 102 at Derry Town line	May-16	22,656	22,090	1718	1649	7.46\%	1796	1760	7.97\%	22,983	29,904 \|	30.11\%	28,742	2146	2290
	NH 28 at Derry Town line	May-16	17,324	16,891	1279	1228	7.27\%	1682	1648	9.76\%	19,392	15,638	-19.36\%	13,621	990	1329
	NH 28 N of Liberty Dr	Sep-15	14,994	14,994	1407	1337	8.92\%	1247	1210	8.07\%	15,406	14,733 \|	-4.37\%	14,339	1279\|	1157
	Gilcreast Rd N of NH 102	May-16	10,070	9,818	697	669	6.81\%	1008	988	10.06\%	9,397	16,438	74.93\%	17,174	1170	1728
	Londonderry Rd, N of NH 102			4,622	215	215	4.55\%	465	465	10.06\%	4,742	4,823 \|	1.71\%	4,701	219	473
	Ash St E of Londonderry Rd	Jun-15	6,591	6,591	477	458	6.95\%	723	680	10.32\%	5,949	14,001	135.35\%	15,512	1078	1600
	average						7.29\%			9.13\%			135.35\%	15,12	107	1600
	Exit 4 NB Off-ramp	May-16	10,249	9,993	435	418	4.18\%	1223	1199	12.00\%	10,389	20,215	94.58\%	19,444	813	2333
	Exit 4 NB On-ramp	May-16	10,303	10,045	1079	1036	10.31\%	812	796	7.92\%	9,550	21,343 \|	123.49\%	22,449	2315	2333
	Exit 4 SB Off-ramp	May-16	9,862	9,615	753	723	7.52\%	952	933	9.70\%	8,157	18,349	124.95\%	21,629	1626	
	Exit 4 SB On-ramp - EB to SB	May-16	5,310	5,177	673	646	12.48\%	311	305	5.89\%	4,907	10,778	119.65\%	11,371	1419	2099
	Exit 4 SB On-ramp - WB to SB	May-16	4,767	4,648	537	516	11.10\%	244	239	5.14\%	3,637	7,402	103.52\%	11,460 9,460	1050	670
	average						9.12\%			8.13\%						486
	Exit 5 NB Off-ramp	May-16	5,745	5,601	400	384	6.86\%	472	463	8.27\%	4,430	6,401	44.49\%	8,093	555	669
	Exit 5 NB On-ramp	May-16	9,580	9,341	992	952	10.19\%	793	777	8.32\%	9,101	13,499 \|	48.32\%	13,855	1412\|	1152
	Exit 5 SB Off-ramp	May-16	9,520	9,282	781	750	8.08\%	939	920	9.91\%	9,234	13,577	47.03\%	13,648	1103	1353
	Exit 5 SB On-ramp	May-16	5,645	5,504	519	498	9.05\%	427	418	7.59\%	3,919	5,884	50.14\%	8,264	748	628
	average						8.54\%			8.52\%						
	1-93, south of Exit 4 (DOT PATR)			71,060		5420	7.63\%		5870	8.26\%	72,378	118,908	64.29\%	116,743	8,904	9,644
	NB			35,740		1980	36.5\%		$3410 \quad 5$	58.1\%	36,417	59,234	62.65\%	58,133	3,253	5,602
	SB			35,320		3440	63.5\%		$2450 \quad 4$	41.9\%	35,961	59,674	65.94\%	58,610	5,651	4,042
	$1-93$, between Exits 4 and 5			71,000		5640	7.94\%		5885	8.29\%	71,152	120,205	68.94\%	119,948	9,528	9,942
	NB					2630	46.6\%		3015 5	51.2\%	35,578	60,363	69.66\%	-	4,443	5,093
	S8					3010	53.4\%		2870 -48	48.8\%	35,574	59,842	68.22\%	-	5,085	4,849
	1-93, north of Exit 5			76,000		6425	8.45\%		6690	8.80\%	81,139	134,995	66.37\%	126,445	10,690	11,130
	NB					3200	49.8\%		3325 49,7	49.7\%	40,250	67,460	67.60\%		5,324	5,532
	58					3225	50.2\%		3365 50	50.3\%	40,889	67,535	65.17\%	-	5,366	5,598
					Counted	Adj 2015		Counted	Adj 2015		2015 AWDT	2040 AWDT	\%	AawDT)	2040	2040
				Adj 2015	AM Peak	AM Peak	AM Pk as	PM Peak	PM Peak	PM Pk as	Base Model	No-Build	Growth	2040 NB	NoBd	NoBd
				AAWDT	Volume	Volume	\% of AAWDT	Volume	Volume \%	\% of AAWDT	Assigns	Assigns	2015-40	AAWDT	AM Pk	PM Pk
	Note - Exit 5 SB off ramp AM peak volume does not include one count that appears anomalous when compared to other counts in same hour															
	Red counts are from NHDOT Town summary data - 2014 or 2015															

APPENDIX K: PROCEDURE TO ESTIMATE TMC FROM AWDT

CLD: Fuss \& O'Neill
iti) Gemmerchal streer - Namitiester. V1/ 03101
phe 603.6688223 - is 60366888802

TO: File

DATE: September 29, 2017
RE: \quad Traffic Technical Meme
Procedure for Estimating Intersection Turning Movement Volumes from Fixit +.1 Model AWDT's
(:LD | Fuss \& O'Neill Reference No. 05-024+

The Exit 4.1 project has been using the Southern New I lampshire Planning Commission's (SNIIPC) regional travel demand model te develop traffic projections. for the 2015 base year and 2040 design year for the No-Build and the five 4 A alternative interchange/connector rovad configurations. This model provides Arerage W'eekday Traffic volumes (AWDT:) based on existing traffic volume information and existing/projected land use and socio-economic data for the SNITPC: region, and has been calibrated by SNIIPC to replicare base conditions to current standards.

However, the model is only calibrated to daily wolumes on the primary roadway segments in the SNIIPC: area and not down to the intersection level. Therefore, for design purposes, these AWDT volumes must be converted into. AM and PM peak hour turning movement volumes at the key intersections in the Exit 4.1 study area for each alternative for analysis so that the appropriare level of roadway and intersection improvements can be determined to serve the expected traffic demands in the 2040 design year, as well as to determine the expected level of impact of each alternative on natural and cultural resources for the SDFIS document.

The base AM and PM peak hour intersection turning movement volumes collected by the NIIDOT at 19 study area intersections in 2016 were adjusted to develop base year 2015 volumes to be consistent with the base year of the SNIIPC: model. The SNI IPC model is able to provide AWDI's at intersections by using the node and the intersecting links to create a series of 'From Link$>$ Through Node> To Link' paths to simulate the allowed turning movement columes at any particular node on a daily basis, including new intersections that will be created under some of the Exit 4. alternatives. This intersection-level information from the model was provided by SNIIPC: for all alternatives and was used as guidance to develop turning movement rolume estimates for the 2040 No -Build and Build conditions for design and analysis purposes.

Basic Procedure

A separate spreadsheet was developed for each alternative that included all the intersections to be analyzed for that alternarive, The 2015 base SM and PM peak hour turning movement volumes for each approach were inserted, along with the corresponding From Link>Thru Node> To Link volumes representing each turning movement for that seenario. The total approach volume was

CLD| Fuss \& O'Neill

Memorandum to Files
CLD | Fuss \& O'Neill Reference No. 05-0244
September 29, 2017
Page - 2
calculated for each peak hour, as well as the existing percentage of the total volume represented by each turning movement on that approach. This was then compared to the model-provided AWDT for each of these movements, as well as the percent of the total approach AWDT from the model that each of these movements represented.

It should be noted that some of the movements on any intersection approach may not have a corresponding model link associated with it, since the model does not include every minor street or driveway in its network. In these cases, the existing counted volumes were either perpetuated or adjusted to reflect a reasonable growth rate, depending on the characteristics of that particular approach and/or movement.

Intersection-level AWDTs were then provided for each alternative, and the percentage of the total approach AWDT for each movement calculated again for that alternative. The total AWDT for that approach was compared to the 2015 model results, and the ratio between the two was calculated. This ratio was then applied to the total 2015 peak hour volume on that approach to derive the peak hour volume for that approach. If the ratio was greater than 1.0 , the total approach volume was increased proportionately, and vice versa.

Since the model volumes should reflect changes in traffic distribution associated with the alternative being analyzed, the change in the percentage of the AWDT for each movement should be indicative of how turning movements at any intersection would be affected by an Exit 4 A interchange alternative being added to the network. As such, the ratio comparing the turn percentage for an alternative to the base 2015 model was calculated on an AWDT basis. This turn percentage ratio was then multiplied by the existing turn percentages as reflected in the 2015 traffic counts on each approach. In some cases, this ratio may be greater than 1.0 , indicating that movement should now represent a higher percentage of the total approach movements than exhibited in the 2015 base condition. At no time should the sum of the adjusted turn percentages be greater than 1.0 , so in some cases engineering judgment was applied to make one of the movements (usually the highest percentage one, but not always) balance the approach so that the total turn percentages were equal to 1.0 .

There were also other individual manual adjustments made to balance volumes between adjacent intersections where there should be little, if any, differences in directional volumes, such as between Ross' Corner (Crystal Avenue, Folsom Road and Tsienneto Road) and the Tsienneto/Pinkerton Street intersection. Resulting peak hour volumes at an intersection were also compared to modelprojected volumes on adjacent links as a reasonableness test. Traffic volumes directly added to the network from zone connections in the vicinity of these intersections were also evaluated to determine if any differences berween intersections could be attributed to the traffic heading to and from these zones, based on an assumed AM peak/PM peak split of 7% and 9% of AWDT, respectively, as reflected in the actual field counts.

Other Adjustments

One notable traffic distribution challenge was discovered under Alternative A. The SNHPC model showed a larger than expected increase in westbound AWDT for the right turn movement from NH 102 to Crystal Avenue northbound, then a left turn at Rollins Street, followed by a right turn onto Franklin Street. This resulted in a substantial increase in left turns from Franklin Street onto North

CLD|Fuss \& O'Neill

Memorandum to Files
CLD | Fuss \& O’Neill Reference No. 05-0244
September 29, 2017
Page - 3
High Street, which appeared to be an unreasonable path given the existing characteristics of Franklin Street. At our request, SNHPC performed a 'trace' of the path of westbound trips that were on the NH 102 link just east of Crystal Avenue that were destined for the Franklin/North High Street intersection. The attached graphics show the eastbound and westbound traces for the 2015, 2040 No-Build and 2040 Alternative A scenarios.

This trace found that a large number of trips from both East Derry Road and the traffic zone serving the Pinkerton Street area north of NH 102 were being directed along this path. These trips were manually redistributed to the NH 102/NH 28 Bypass traffic circle and to Pinkerton Street directly to adjust to what was considered a more reasonable path between these locations.

This basic procedure will be used for all alternatives to develop 2040 AM and PM peak hour intersection volumes for analysis purposes. Other alternative-specific adjustments may also be needed at certain locations based on the model-generated AWDT intersection assignments as we proceed further.

PK:LCG:ams
Attachments

- Alternative A intersection volume spreadsheet
- Alternative A - 2040 AM and PM peak hour intersection volumes - final
- SNHPC trace for westbound trips to Franklin Street (2015, 2040 No-Build, 2040 Alt A)

M Traffic																			
From Thru To				7:45 AM Adjusted 2015	Exist Turn \%	2015 exist Model ADT \% ADT		2040 Alt A					2040 Alt A 2040 Alt B		2040 Alt C	2040 Alt D	2040 Alt F	$\frac{2040 \text { NoBd }}{\text { Model }}$	
									Change in	Adj	Adj								
				ADT				\% ADT	ADT ratio	Turn \%	Turn Vols	Model	Model	Model	Mode!	Model			
3556	791	3251	EB Left		75	12.5\%	638	6.0\%	515	6.0\%	0.99	12.3\%	60	515	523	1105	1083	1569	2136
		792	EB Thru		520	86.7\%	9915	94.0\%	8111	94.0\%	1.00	87.7\%	430	8111	7748	8555	9509	14981	13168
			EB Right	5	0.8\%	0	0.0\%	0	0.0\%	\#DIV/0!	0.0\%	0	0	0	0	0	0	0	
				600		10553		8626		0.817	1	490	8626	8271	9660	10592	16550	15304	
792	791		WB Left	5	0.4\%	0	0.0\%	0	0.0\%	-	0.4\%	5	0	0	0	0	0	0	
		3556	WB Thru	1090	97.3\%	9567	83.0\%	6688	67.5\%	0.81	97.3\%	930	6688	8105	7803	8660	15931	15412	
		3251	WB Right	25	2.2\%	1959	17.0\%	3221	32.5\%	1.91	2.2\%	20	3221	2764	3132	3070	464	449	
				1120		11526		9909		0.860	1	960	9909	10869	10935	11730	16395	15861	
None			NB Left	0	0.0\%	0	\#DIV/0!	이	\#DIV/0!	-	0.0\%	\#DIV/0!	0	0	0	0	0	0	
			NB Thru	0	0.0\%	0	\#DIV/0!	0	\#DIV/0!	\#DIV/0!	0.0\%	\#DIV/0!	0	0	0	0	0	0	
			NB Right	1	100.0\%	0	\#DIV/0!	0	\#DIV/0!	\#DIV/0!	100.0\%	\#DIV/0!	0	0	0	0	0	0	
				1		0		0		\#DIV/0!	1	\#DIV/0!	0	0	0	0	0	0	
3251	791	792	SB Left	10	8.7\%	1543	71.9\%	2394	85.5\%	1.19	52.7\%	80	2394	2465	2170	1975	1143	875	
			SB Thru	0	0.0\%	0	0.0\%	0	0.0\%	1.00	0.0\%	0	0	0	0	0	0	0	
		3556	SB Right	105	91.3\%	602	28.1\%	407	14.5\%	0.52	47.3\%	70	407	556	1226	1225	1345	1364	
				115		2145		2801		1.306	1	150	2801	3021	3396	3200	2488	2239	

\#5 NH 102 at Londonderry Road

PM Traffic

Percetage adjusted manually to add to 100% on approach
Existing percentages or volumes carried forward

\#6 NH 102 at Fordway/High
PM Traffic

Percetage adjusted manually to add to 100% on approach
Existing percentages or volumes carried forward

or volumes carried forward
Adjusted WB RT volume to divert excess trips destined for Franklin via Rollins (43% of total trips)
\#8 N High St/ Ash St Extension

			NHigh	-7		AM Traffic												
				7:45 AM				2040 Alt A										
	Nodes			Adjusted	Exist	2015 existi	ing model			Change in	Adj	Adj	2040 Alt A	2040 Alt B	2040 Alt C	2040 Alt D	2040 Alt F	2040 NoBd
From	Thru	To	To	2015	Turn \%	ADT	\% ADT	ADT	\% ADT	ADT ratio	Turn \%	Turn Vols	Model	Model	Mode!	Model	Model	Model
2125	3485	2124	EB Left	180	94.7\%	1654	100.0\%	2217	100.0\%	1.00	94.7\%	240	2217	1875	3213	3387	3746	4501
			EB Thru	0	0.0\%	0	0.0\%	0	0.0\%	-	0.0\%	0						
		2123	EB Right	10	5.3\%	0	0.0\%	0	0.0\%	1.00	5.3\%	10	0	0	0	0	0	0
				190		1654		2217		1.340 \|	1	250						4501
None	3485		WB Left	0	\#DIV/0!	0	\#DIV/0!	0	\#DiV/0!	\#DIV/0!	0.0\%	0						0
			WB Thru	0	\#DIV/O!	0	\#DIV/0!	0	\#DIV/0!	\#DiV/0!	0.0\%	0						0
			WB Right	0	\#DIV/0!	0	\#DIV/0!	0	\#DIV/0!	\#DIV/0!	0.0\%	0						0
				0		0		0		\#DIV/0! \|	0	0						0
2123	3485	2125	133 NB Left	5	3.8\%	0	0.0\%	0	0.0\%	1.00	3.8\%	5		0	0	0	0	
		2124	NB Thru	125	96.2\%	1630	100.0\%	3167	100.0\%	1.00	96.2\%	240	3167	601	1604	1014	678	1110
			NB Right	0	0.0\%	0	0.0\%		0.0\%	1.00	0.0\%	0		601	1604	1014	678	110
				130		1630		3167		1.943\|	1	250						1110
2124	3485		SB Left	0	0.0\%	0	0.0\%	0	0.0\%	\#DIV/0!	0.0\%	0						
		2123	SB Thru	175	43.2\%	1464	38.2\%	2317	54.2\%	1.42	57.9\%	260	2317	1432	570	664		1461
		2125	SB Right	230	56.8\%	2366	61.8\%	1961	45.8\%	0.74	42.1\%	190	1961	1832	3315	2618	4026	4049
				405		3830		4278		1.117\|	1	450						5510
	Notes:			123 to 133	$=143,212$	to $133=1$	39, 2125 to	$133=59$										
		$133=$ Zon	Centroid	33 to 2123	$=164$, to 21	24=124, to	$2125=52$											

\#8 N High St/ Ash St Extension
PM Traffic

	M Traffic				2040 Alt A										
	4:30 PM		2015 existing model												
	Adjusted						Change in ADT ratio	Adj Turn \%	$\begin{gathered} \text { Adj } \\ \text { Tum Vols } \end{gathered}$	2040 Alt A	2040 Alt B	2040 Alt C	2040 Alt D	2040 Alt F	2040 NoBd
	2015	Turn \%	ADT	\% ADT	ADT	\% ADT				Model	Model	Model	Model	Model	Model
EB Left	420	98.8\%	1654	100.0\%	2217	100.0\%	1.00	98.8\%	560	2217	1875	3213	3387	3746	4501
EB Thru	0	0.0\%	0	0.0\%	0	0.0\%	1.00	0.0\%	0	0	0	0	0	0	0
EB Right	5	1.2\%	0	0.0\%	0	0.0\%	1.00	1.2\%	10	0	0	0	0	0	0
	425		1654		2217		1.340\|	1	570						4501
WB Left	0	\#DIV/0!	0	\#DIV/0!	0	0.0\%	-	0.0\%	0	0	0	0	0	0	0
WB Thru	0	\#DIV/0!	0	\#DIV/0!	0	0.0\%	-	0.0\%	0	0	0	0	0	0	0
WB Right	0	\#DIV/0!	0	\#DIV/0!	0	0.0\%	-	0.0\%	0	0	0	0	0	0	0
	0		0				0.000 \|	0	0						0
NB Left	5	1.7\%	0	0.0\%	0	0.0\%	1.00	1.7\%	5	0	0	0	0	0	0
NB Thru	290	98.3\%	1630	100.0\%	3167	100.0\%	1.00	98.3\%	555	3167	601	1604	1014	678	1110
NB Right	0	0.0\%	0	0.0\%	0	0.0\%	1.00	0.0\%	0	0	0	0	0	0	0
	295		1630		3167		1.943\|	1	570						1110
SB Left	0	0.0\%	0	0.0\%	0	0.0\%	\#DIV/0!	0.0\%	0	0	0	0	0	0	0
SB Thru	170	39.1\%	1464	38.2\%	2317	54.2\%	1.42	54.8\%	270	2317	1432	570	664	1045	1461
SB Right	265	60.9\%	2366	61.8\%	1961	45.8\%	0.74	45.2\%	220	1961	1832	3315	2618	4026	4049
	435		3830		4278		1.117	1	490						5510
	Percetage a xisting per	djusted ma entages or	nually to add volumes c	to 100\% arried forw	on approach ard										

Notes: 377 is zone centroid for Madden Rd
\#9 N High St/ Madden Road

	PM Traffic				2040 Alt A					NOT USED					
	4:30 PM		2015 existing model												
	Adjusted 2015	$\begin{aligned} & \text { Exist } \\ & \text { Turn \% } \end{aligned}$			ADT	\% ADT	Change in ADT ratio	Adj Turn \%	Adj Turn Vols	$\begin{aligned} & 2040 \text { Alt A } \\ & \text { Model } \end{aligned}$	2040 Alt B	$2040 \text { Alt C }$ Mode!	$\begin{aligned} & 2040 \text { Alt D } \\ & \text { Model } \end{aligned}$	$\begin{aligned} & 2040 \text { Alt F } \\ & \text { Model } \end{aligned}$	$\frac{2040 \mathrm{NoBd}}{\text { Model }}$
EB Left	10	100.0\%	149	60.8\%	0	\#DIV/0!	\#DIV/0!	100.0\%	0		$0 \quad 117$	146	146	100	$\begin{array}{r} \text { Model } \\ 100 \end{array}$
EB Thru	0	0.0\%	0	0.0\%	0	\#DIV/0!	1.00	0	0		0	0	0	0	100 0
EB Right	0	0.0\%	96	39.2\%	0	\#DIV/0!	\#DIV/0!	0	0		$0 \quad 57$	85	85	131	131
	10		245		0		0.000	1	0						231
WB Left	0	0.0\%	0	0.0\%	0	0.0\%	1.00	0	0		00	0	0	0	0
WB Thru	0	0.0\%	0	0.0\%	0	0.0\%	1.00	0	0		0	0	0	0	0
WB Right	0	0.0\%	0	0.0\%	0	0.0\%	1.00	0	0		0	0	0	0	0
	0		0		0		0.000	0	0						0
NB Left	0	0.0\%	92	2.7\%	0	\#DIV/0!	\#DIV/0!	0.0\%	0	0	085	87	87	121	129
NB Thru	700	100.0\%	3316	97.3\%	0	\#DIV/0!	1.00	100.0\%	0		02758	4901	4486	4376	5557
NB Right	0	0.0\%	0	0.0\%	0	\#DIV/0!	\#DIV/0!	0.0\%	0	0	00	0	0	0	0
	700		3408		0		0.000	1	0						5686
SB Left	0	0.0\%	0	0.0\%	,	\#DIVIor	\#DIV/0!	0.0\%	0	0	00	0	0	0	0
SB Thru	440	97.8\%	3873	96.2\%	0	\#DIV/0!	1.00	\#DIV/0!	\#DIV/0!	0	3468	3967	3366	5003	5488
SB Right	10	2.2\%	153	3.8\%	0	\#DIV/0!	\#DIV/0!	\#DiV/0!	\#DIV/0!	0	- 112	144	144	110	102
	450		4026		0		0.000	\#DIV/0!	0						5590

Percetage adjusted manually to add to 100% on approach
Existing percentages or volumes carried forward

\#10 Folsom Rd at Franklin St

\#10 Folsom Rd at Franklin S

Percetage adjusted manually to add to 100% on approach
Existing percentages or volumes carried forward
Adjusted NB LT volume to divert excess trips destined for Franklin via Rollins and Rt 102 WB onto Crystal (34% of total)
\#11 Ross' Corner (Folsom/Tsienneto at NH 28/Crystal)
AM Traffic

From	$\frac{\text { Nodes }}{\text { Thru }}$	To		7:45 AM Adjusted 2015	$\begin{gathered} \text { Exist } \\ \text { Turn \% } \end{gathered}$	2015 existin ADT	\% model	2040 Alt A	\% ADT	Change in ADT ratio	$\begin{gathered} \text { Adj } \\ \text { Turn \% } \\ \hline \end{gathered}$	Adj Turn Vols	$\frac{2040 \text { Alt A }}{\text { Model }}$	$\frac{2040 \text { Alt B }}{\text { Model }}$	$\frac{2040 \text { Alt C }}{\text { Model }}$	$\frac{2040 \text { Alt D }}{\text { Model }}$	$\frac{2040 \text { Alt } F}{\text { Model }}$	$\frac{2040 \mathrm{NoBd}}{\text { Model }}$		Manual Alt A Adjustment:		
3483	1863	1864	EB Left	135	41.5\%	1215	26.5\%	1139	6.5\%	0.24	10.2\%	130	1139	13	1780	1518	768	582				
		2107	EB Thru	170	52.3\%	3242	70.8\%	15176	86.5\%	1.22	63.9\%	800	15176	2671	4489	4351	4100	5269		820		
		1862	EB Right	20	6.2\%	123	2.7\%	1228	7.0\%	2.61	25.9\%	320	1228	0	0	0	0	0				
				325		4580		17543		3.830	1	1245						5851				
2107	1863	1862	WB Left	125	15.9\%	1495	14.6\%	385	2.8\%	0.20	3.1\%	30	385	427	509	348	1693	1629				
		3483	WB Thru	290	36.9\%	2578	25.1\%	9700	71.7\%	2.85	77.0\%	800	9700	1965	3171	2746	4354	4686		935		
		1864	WB Right	370	47.1\%	6179	60.3\%	3444	25.5\%	0.42	19.9\%	210	3444	8568	8302	12265	5564	4901		220		
				785		10252		13529		1.320	1	1040						11216				
1862	1863	3483	NB Left	20	5.2\%	0	0.0\%	1627	44.3\%	1.50	47.8\%	100	1627	81	0	0	0	0				
		1864	NB Thru	230	59.7\%	4742	70.0\%	1495	40.7\%	0.58	34.7\%	70	1495	4035	4496	4547	2411	3115				
		2107	NB Right	135	35.1\%	2028	30.0\%	548	14.9\%	0.50	17.5\%	40	548	1510	1569	2144	2901	1831				
				385		6770		3670		0.542	,	210						4946				
1864	1863	2107	SB Left	310	45.9\%	5682	45.4\%	567	17.4\%	1.50	29.8\%	50	567	7758	7168	8224	5165	5388				
		1862	SB Thru	220	32.6\%	5019	40.1\%	1959	59.9\%	1.49	48.7\%	100	1959	4512	6154	6186	3308	3644				
		3483	SB Right	145	21.5\%	1803	14.4\%	742	22.7\%	1.00	21.5\%	50	742		54	31	0	0				
				675		12504		3268		0.261	1	180						9032				
		\#11	Ross ${ }^{\text {C }}$ Corner	(Folsom/T	sienneto a	a $\mathrm{NH} \mathbf{2 8} / \mathrm{Cr}$	stal)															
				4:30 PM				PM Traffic (rev per new TMC) 2040 Alt A														
				Adjusted	Exist	2015 existing model ADT \% ADT		ADT \% ADT		Change in ADT ratio	Adj	$\begin{gathered} \text { Adj } \\ \text { Turn Vols } \\ \hline \end{gathered}$	$\left\lvert\, \begin{array}{ll} 2040 \text { Alt A } 2040 \text { Alt B } \\ \text { Model } & \text { Model } \end{array}\right.$		$\begin{aligned} & 2040 \text { Alt C } 2040 \text { Alt D } 2040 \text { Alt F } \\ & \text { Model } \\ & \text { Model } \end{aligned} \begin{aligned} & \text { Model } \end{aligned}$			$\frac{2040 \text { NoBd }}{\text { Model }}$				
				2015	Turn \%			Turn \%														
			EB Left	240	36.9\%	1215	26.5\%			1139	6.5\%	0.24	9.0\%	230	1139	13	1780	1518	768	582		
			EB Thru	320	49.2\%	3242	70.8\%	15176	86.5\%	1.22	77.1\%	1920	15176	2671	4489	4351	4100	5269	1380			
			EB Right	90	13.8\%	123	2.7\%	1228	7.0\%	1.00	13.8\%	340	1228	0	0	0	0	0				
				650		4580		17543		3.830	,	2490						5851				
				150	20.0\%	1495	14.6\%	385	2.8\%	0.20	3.9\%	40	385	427	509	348	1693	1629	44.44444	45		
			WB Thru	220	29.3\%	2578	25.1\%	9700	71.7\%	2.85	74.7\%	740	9700	1965	3171	2746	4354	4686	822.2222	820		
			WB Right	380	50.7\%	6179	60.3\%	3444	25.5\%	0.42	21.4\%	210	3444	8568	8302	12265	5564			- 235		
				750		10252		13529		1.320	1	990						11216	1100			
			NB Left	80	13.6\%	0	0.0\%	1627	44.3\%	0.90	12.2\%	40	1627	81	,	0	0	0				
			NB Thru	360	61.0\%	4742	70.0\%	1495	40.7\%	0.58	75.1\%	240	1495	4035	4496	4547	2411	3115				
			NB Right	150	25.4\%	2028	30.0\%	548	14.9\%	0.50	12.7%	40	548	1510	1569	2144	2901	1831				
				590		6770		3670		0.542	1	320						4946				
			SB Left	520	45.6\%	5682	45.4\%	567	17.4\%	0.38	17.4\%	501	567	7758	7168	8224	5165	5388				
			SB Thru	430	37.7\%	5019	40.1\%	1959	59.9\%	1.49	65.9\%	200	1959	4512	6154	6186	3308	3644				
			SB Right	190	16.7\%	1803	14.4\%	742	22.7\%	1.00	16.7\%	50	742	0	54	31	0	0				
				1140		12504		3268		0.261	1	300						9032				

Existing percentages or volumes carried forward
Manual adjustment to balance to Pinkerton intx
\#12 Tsienneto Rd at Pinkerton St

\#12 Tsienneto Rd at Pinkerton St

Percentage adjusted manually to add to 100% on approach
Existing percentages or volumes carried forward
Adjusted NB LT volume to divert excess trips destined for Franklin via Rollins and Rt 102 WB onto Crystal (34% of total)

			-		AM Traffic													
				7:45 AM				40 Alt A										
Nodes From	Thru			Adjusted 2015	Exist Turn \%	$\begin{aligned} & 2015 \text { existi } \\ & \text { ADT } \end{aligned}$	$\begin{aligned} & \text { ng model } \\ & \text { \% ADT } \end{aligned}$	ADT	\% ADT	Change in ADT ratio	Adj Turn \%	Adj Turn Vols	$2040 \text { Alt A }$	$2040 \text { Alt B }$	$2040 \text { Alt C }$	$2040 \text { Alt D }$	$2040 \text { Alt F }$	$\underline{2040 \mathrm{NoBd}}$
None	1865		EB Left	5	50.0\%	0	\#DIV/0!	0	\#DIV/0!	1.00	50.0\%	5	0	0	0	0	0	Model
			EB Thru	0	0.0\%	0	\#DIV/0!	0	\#DIV/01	1.00	0.0\%	0	0	0	0	0	0	0 0
			EB Right	5	50.0\%	0	\#DIV/0!	0	\#DIV/0!	1.00	50.0\%	5	0	0	0	0	0	0
				10		0		0		1.000	1	10						0
2100	1865	1864	WB Left	50	16.9\%	1319	98.0\%	437	47.0\%	0.48	8.1\%	20	437	262	213	418	618	710
			WB Thru	0	0.0\%	0	0.0\%	0	0.0\%	1.00	0.0\%	0	0	0	0	0	0	0
		1866	WB Right	245	83.1\%	27	2.0\%	493	53.0\%	26.43	91.9\%	180	493	86	0	478	77	44
				295		1346		930		0.691	1	200						754
1864	1865		NB Left	0	0.0\%	0	0.0\%	0	0.0\%	1.00	0.0\%	0	0	0	0	0	0	0
		1866	NB Thru	655	95.6\%	12136	100.0\%	6017	99.0\%	1.00	95.6\%	330	6017	12591	14578	18330	8743	8598
		2100	NB Right	30	4.4\%	1	0.0\%	61	1.0\%	121.81	4.4\%	10	61	12	14	18330	8743 1	859
				685		12137		6078		0.501	1	340						8599
1866	1865	2100	SB Left	50	6.0\%	790	6.2\%	810	21.0\%	1.00	6.0\%	20	810	208	427	2384	878	693
		1864	SB Thru	790	94.0\%	11898	93.8\%	3055	79.0\%	1.00	94.0\%	240	3055	11940	13963	14812	8462	8943
			SB Right	0	0.0\%	0	0.0\%	0	0.0\%	1.00	0.0\%	0	0	11940	13963 0	14812 0	8462	8943 0
				840		12688		3865		0.305	1	260	0	0	0	0	0	9636

\#13 NH 28 at Linlew Dr

> Percetage adjusted manually to add to 100% on approach
> Existing percentages or volumes carried forward
> Manual adjustment to balance between intersections
\#14 NH 28 at Ashleigh Dr

NH 28 at Ashleigh Dr

PM Traffic

	PM Traffic									2040 Alt A 2040 Alt B Model Model		$\begin{aligned} & 2040 \text { Alt C } \\ & \text { Model } \end{aligned}$	$\begin{aligned} & 2040 \text { Alt D } \\ & \text { Model } \end{aligned}$	$\begin{aligned} & 2040 \text { Alt F } \\ & \text { Model } \end{aligned}$	$\frac{2040 \text { NoBd }}{\text { Model }}$
	$\begin{array}{r} 4: 30 \text { PM } \\ \text { Adjusted } \\ 2015 \\ \hline \end{array}$	Exist Tum \%	2015 existing model ADT \% ADT		2040 Alt A										
					ADT	\% ADT	Change in ADT ratio	$\begin{gathered} \text { Adj } \\ \text { Turn \% } \end{gathered}$	Adj Tum Vols						
EB Left	40	66.7\%	664	37.0\%	646	40.3\%	1.09	67.5\%	30	646	523	988	1052	623	613
EB Thru	10	16.7\%	13	0.7\%	9	0.6\%	1.00	16.7\%	10	9	8	7	9	10	10
EB Right	10	16.7\%	1117	62.3\%	947	59.1\%	0.95	15.8\%	10	947	1072	663	597	1022	1033
	60		1794		1602		0.893	1.000	50						1656
WB Left	345	71.1\%	952	60.9\%	885	57.6\%	0.95	67.3\%	320	885	1011	902	565	952	964
WB Thru	5	1.0\%	13	0.8\%	9	0.6\%	1.00	1.0\%	5	9	8	100	9	10	10
WB Right	135	27.8\%	599	38.3\%	643	41.8\%	1.09	31.7\%	150	643	518	6144	1008	618	606
	485		1564		1537		0.983	1.000	480						1580
NB Left	5	0.5\%	1121	9.2\%	934	14.3\%	1.56	0.7\%	5	934	1391	676	597	1018	1013
NB Thru	800	75.1\%	10087	82.9\%	4709	72.3\%	1.00	75.1\%	430	4709	4314	19350	17663	6854	6685
NB Right	260	24.4\%	955	7.9\%	867	13.3\%	1.70	24.2\%	140	867	1332	805	566	949	944
	1065		12163		6510		0.535	1.000	570						8642
SB Left	110	9.1\%	596	5.0\%	660	17.9\%	3.58	8.2\%	30	660	197	5937	1008	621	626
SB Thru	1095	90.5\%	10619	89.4\%	2358	64.1\%	1.00	90.5\%	330	2358	3258	19426	16605	7697	7927
SB Right	5	0.4\%	660	5.6\%	659	17.9\%	3.22	1.3\%	5	659	204	982	1052	627	632
	1210		11875		3677		0.310	1.000	370						9185

[^1]\#15 NH 28 at Scobie Pond Rd

From $\frac{\text { Nodes }}{\text { Thru }}$ To				$\begin{array}{r} 7: 45 \mathrm{AM} \\ \text { Adjusted } \\ 2015 \\ \hline \end{array}$	Exist Turn \%	AM Traffic 2040 Alt A							$\frac{2040 \text { Alt A }}{\text { Model }}$	2040 Alt B	2040 Alt C	2040 Alt D	2040 Alt F	$\frac{2040 \mathrm{NoBd}}{\text { Model }}$	
				2015 exist ADT		g model			Change in	Adj	Adj								
				ADT		\% ADT	ADT	\% ADT	ADT ratio	Turn \%	Turn Vols	Model		Model	Model	Model			
2099	1867	3295	WB Left		80	69.6\%	2115	98.6\%	850	61.5\%	0.62	43.4\%	30	850	1139	387	507	1026	958
		793	WB Right		35	30.4\%	29	1.4\%	531	38.5\%	28.43	56.6\%	40	531	307	1328	1681	85	95
				115		2144		1381		0.644	1.00	70						1053	
3295	1867	793	NB Thru	645	94.2\%	9581	84.4\%	5429	90.5\%	1.07	96.4\%	350	5429	4912	20011	19301	7425	7245	
		2099	NB Right	40	5.8\%	1769	15.6\%	569	9.5\%	0.61	3.6\%	10	569	444	327	423	669	659	
				685		11350		5998		0.528	1.00	360						7904	
793	1867	2099	SB Left	15	2.0\%	21	0.2\%	652	18.7\%	87.26	20.2\%	50	652	254	1099	1324	47	71	
		3295	SB Thru	720	98.0\%	9760	99.8\%	2828	81.3\%	0.81	79.8\%	210	2828	2520	20020	18157	7919	8227	
				735		9781		3480		0.356	1.00	260						8298	

\#15 NH 28 at Scobie Pond Rd

	$\begin{array}{r} 4: 30 \mathrm{PM} \\ \text { Adjusted } \\ 2015 \\ \hline \end{array}$	Exist Turn \%	2015 existing modelADT $\%$ ADT		PM Traffic 2040 Alt A					2040 Alt A 2040 Alt B Model Model		$2040 \text { Alt O }$ Model	2040 Alt D Model	$\begin{aligned} & 2040 \text { Alt F } \\ & \text { Model } \end{aligned}$		
					ADT	\% ADT	Change in ADT ratio	Adj Turn \%	Adj Turn Vols			$\frac{2040 \text { NoBd }}{\text { Model }}$				
WB Left	70	70.0\%	2115	98.6\%	850	61.5\%	0.62	43.7\%	30	850	1139		387	507	1026	958
WB Right	30	30.0\%	29	1.4\%	531	38.5\%	28.43	56.3\%	30	531	307	1328	1681	85	95	
	100		2144		1381		0.644	1.00	60						1053	
NB Thru	700	81.4\%	9581	84.4\%	5429	90.5\%	1.07	87.3\%	390	5429	4912	20011	19301	7425	7245	
NB Right	160	18.6\%	1769	15.6\%	569	9.5\%	0.61	12.7\%	60	569	444	327	423	669	659	
	860		11350		5998		0.528	1.00	450						7904	
SB Left	40	3.4\%	21	0.2\%	652	18.7\%	87.26	3.4\%	10	652	254	1099	1324	47	71	
SB Thru	1125	96.6\%	9760	99.8\%	2828	81.3\%	0.81	96.6\%	400	2828	2520	20020	18157	7919	8227	
	1165		9781		3480		0.356	1.00	410						8298	

[^2]
\#17 NH 28 Bypass/Pinkerton St/Nesmith St

\#17 NH 28 Bypass/Pinkerton St/Nesmith St

Percetage adjusted manually to add to 100% on approach
Existing percentages or volumes carred forward
Manual adjustment to balance to tratic circle
Adjusted NB LT volume to divert excess trips destined for Franklin via Rollins and Rt 102 WB onto Crystal (34\% of total)
\#18 NH 28 Bypass at Tsienneto Rd

\#18 NH 28 Bypass at Tsienneto Rd
PM Traffic

[^3]Existing percentages or volumes carried forward
\#19 NH 102 at Tsienneto Rd

From ${ }^{\text {Nodes }}$ Thru To				$7: 45$ AM AM Traffic $\mathbf{2 0 4 0}$ Alt A AM Traffic 2040 Alt A									$2040 \text { Alt A } 2040 \text { Alt B }$		2040 Alt C	2040 Alt D	$\frac{2040 \text { Alt F } 2040 \text { NBld }}{\text { Model } M o d e l}$		
				$\begin{array}{r} \text { Adjusted } \\ 2015 \\ \hline \end{array}$	$\begin{aligned} & \text { Exist } \\ & \text { Turn \% } \\ & \hline \end{aligned}$	2015 existing model				Change in ADT ratio	Adj Turn \%	Adj Turn Vols							
				ADT		\% ADT	ADT	\% ADT	Model				Model	Model	Model				
1882	1883	2082	EB Left		15	8.3\%	404	7.9\%	173	4.2\%	0,53	4.4\%	10	173	601	495	202	325	282
		1884	EB Thru	165	91.7\%	4687	92.1\%	3917	95.8\%	1.04	95.4\%	130	3917	1895	1639	3497	3962	3825	
				180		5091		4090		0.803	1.00	140							
1884	1883	1882	WB Thru	320	51.6\%	3861	55.7\%	2954	34.2\%	0.61	31.7\%	240	2954	1706	2079	3185	3075	2811	
		2082	WB Right	300	48.4\%	3071	44.3\%	5681	65.8\%	1.49	68.3\%	530	5681	7788	7145	5545	5011	4751	
				620		6932		8635		1.246	1.00	770							
2082	1883	1884	SB Left	95	100.0\%	1934	88.3\%	4803	96.7\%	1.09	100.0\%	220	4803	7507	7450	5441	3682	3867	
		1882	SB Right	0	0.0\%	256	11.7\%	166	3.3\%	0.29	0.0\%	0	166	431	439	174	173	172	
				95		2190		4969		2.269	1.00	220							

\#19 NH 102 at Tsienneto Rd

	4:30 PM				PM Traffic $2040 \text { Alt A }$										
	$\begin{array}{r} \text { Adjusted } \\ 2015 \\ \hline \end{array}$	Exist Turn \%	$\begin{aligned} & 2015 \text { existir } \\ & \text { ADT } \end{aligned}$	ng model $\% \mathrm{ADT}$	ADT	\% ADT	Change in ADT ratio	Adj Turn \%	Adj Turn Vols	2040 Alt A Mode!	$2040 \text { Alt B }$ Model	$2040 \text { Alt C }$ Model	$2040 \text { Alt D }$ Model	$2040 \text { Alt F }$	$2040 \text { NBId }$
EB Left	15	4.0\%	404	7.9\%	173	4.2\%	0.53	2.1\%	10	173	601	495	202	325	282
EB Thru	360	96.0\%	4687	92.1\%	3917	95.8\%	1.04	97.9\%	290	3917	1895	1639	3497	3962	3825
	375		5091		4090		0.803	1.00	300						
WB Thru	235	55.3\%	3861	55.7\%	2954	34.2\%	0.61	34.0\%	180	2954	1706	2079	3185	3075	2811
WB Right	190	44.7\%	3071	44.3\%	5681	65.8\%	1.49	66.0\%	350	5681	7788	7145	5545	5011	4751
	425		6932		8635		1.246	1.00	530						
SB Left	270	98.2\%	1934	88.3\%	4803	96.7\%	1.09	99.5\%	620	4803	7507	7450	5441	3682	3867
SB Right	5	1.8\%	256	11.7\%	166	3.3\%	0.29	0.5\%	0	166	431	439	174	173	172
	275		2190		4969		2.269	1.00	620						

[^4]Existing percentages or volumes carried forward

$$
\begin{gathered}
\text { N } \\
11 \\
\text { Nterrative A } \\
\text { Ara } \\
\text { Final }
\end{gathered}
$$

Derra

621
1839

3232

3251

992

2134
1003

3234

1910
1915

57

2040 Alt A WB 1859-1876
Cun

APPENDIX L: HCS FREEWAY FACILITY APPENDIX

4A 2015 Freeway Facility - Northbound

Station	Length	Node	Description	Accel/Decel		Lanes	FFS	\%Trucks/RV	PHF				
1526+70		a											
	5280	1	Basic Highway			1 lanes	70 mph	$4.11 / 0.57$		AM \& PM From Permanent Recorder Station South of Exit 4			
$1579+50$		b							0.94	Default Value for all Mainline Segments per NHDOT			
	1500	2	Diverge- Exit 4 off Ramp	Decel	814	1 lane	50 mph	7.4	0.77	AM	NB Right and Left intersection turning movements		
$1594+50$	PVM	c						1.8	0.92	PM			
	3275	3	Basic Highway					$4.11 / 0.57$		AM \& PM From Permanent Recorder Station South of Exit 4			
$1627+25$	PVM	d											
	1500	4	Merge - Exit 4 on Ramp	Accel	1400	1 lane	50 mph	3.4	0.90	AM	WB Right intersection turning movements		
$1642+25$		e						2.5	0.87	PM			
	13025	5	Basic Highway					7.5/0.0		AM From Noise Study Counts Location A-B			
$1772+50$		f						3/0.3		PM From Noise Study Counts Location A-B			
	1500	6	Diverge- Exit 5 off Ramp	Decel	480	1 lane	50 mph	9.1	0.75	AM	NB Right and Left intersection turning movements		
$1787+50$		g						7.5	0.67	PM			
	4100	7	Basic Highway					7.5/0.0		AM From Noise Study Counts Location A-B			
$1828+50$		h						3/0.3		PM From Noise Study Counts Location A-B			
	1500	8	Merge - Exit 5 on Ramp	Accel	750	1 lane	50 mph	5.7	0.83	AM	WB Right intersection turning movements		
$1843+50$		i						2.4	0.89	PM			
	5280	9	Basic Highway					$7.5 / 0.0$		AM From Noise Study Counts Location A-B			
$1896+30$		j						3/0.3		PM From Noise Study Counts Location A-B			

4A 2015 Freeway Facility - Southbound

4A 2040 Freeway Facility - No Build - Northbound

Station	Length	Node	Description	Accel/Decel		Lanes	FFS
1526+20		a					
	5280	1	Basic Highway				70 mph
1579+00		b					
	1500	2	Diverge- Exit 4 off Ramp	Decel	814	2 lanes	50 mph
1594+00	PVM	c	2 Lane				
	4525	3	Basic Highway				
$1639+25$	PVM	d					
	1500	4	Merge - Exit 4 on Ramp	Accel	1400	1 lane	50 mph
1654+25		e					
	11825	5	Basic Highway				
1772+50		f					
	1500	6	Diverge- Exit 5 off Ramp	Decel	480	1 lane	50 mph
$1787+50$	PVM	g					
	4100	7	Basic Highway				
1828+50	PVM	h					
	1500	8	Merge - Exit 5 on Ramp	Accel	900	1 lane	50 mph
1843+50		i					
	5280	000+09	Basic Highway				
1896+30		j					

Use same Truck\% and PHF as Existing

Contract D
1594+00 PVM for Exit 4 off ramp

1639+25 PMV for Exit 4 on ramp

Contract I
1787+50 PVM for Exit 5 off ramp
$1828+50$ PCM for Exit 5 on ramp

4A 2040 Freeway Facility - No Build - Southbound

Use same Truck\% and PHF as Existing

4A 2040 Freeway Facility - Alts A\&B - Northbound

Station	Length	Node	Description		Accel/Decel		Lanes	FFS	\%Trucks/RV	PHF	
1526+20		a									
	5280	1	Basic Highway					70 mph	4.11/0.57		AM \& PM From Permanent Recorder Station South of Exit 4
1579+00		b								0.94	Default Value for all Mainline Segments per NHDOT
	1500	2	Diverge- Exit 4 off Ramp.		Decel	814	2 Lane	50 mph	7.4	0.77	AM
1594+00	PVM	c							1.8	0.92	PM
	4525	3	Basic Highway						4.11/0.57		AM \& PM From Permanent Recorder Station South of Exit 4
1639+25	PVM	d									
	1500	4	Merge - Exit 4 on Ramp		Accel	1400	1 Lane	50 mph	3.4	0.90	AM
1654+25		e							2.5	0.87	PM
	-700	5	Overlap						7.5/0.0		
1647+25		f							3/0.3		PM From Noise Study Counts Location A-B
	1500	6	Diverge- Exit 4A off ramp		Decel	750	1 Lane	50 mph	6.41	0.81	AM
$1662+25$	PVM	g							3.53	0.84	PM
	3310	7	Basic Highway			4A Ramps			7.5/0.0		
1695+35	PVM	h							3/0.3		
	1500	8	Merge - Exit 4A on Ramp		Accel	890	1 Lane	50 mph	6.41	0.81	AM
1710+35		i							3.53	0.84	PM
	6215	9	Basic Highway						7.5/0.0		
1772+50		j							3/0.3		
	1500	10	Diverge-Exit 5 off Ramp		Decel	480	1 Lane	50 mph	9.1	0.75	AM
1787+50	PVM	k							7.5	0.67	PM
	4100	11	Basic Highway						7.5/0.0		AM From Noise Study Counts Location A-B
1828+50	PVM	1							3/0.3		PM From Noise Study Counts Location A-B
	1500	12	Merge - Exit 5 on Ramp		Accel	750	1 Lane	50 mph	5.7	0.83	AM
1843+50		m							2.4	0.89	PM
	5280	13	Basic Highway						7.5/0.0		AM From Noise Study Counts Location A-B
$1896+30$		n							3/0,3		PM From Noise Study Counts Location A-B

4A 2040 Freeway Facility - Alts A\&B - Southbound

Station	Length	Node	Description		Accel/Decel		Lane	FFS	\%Trucks/\%RV	PHF	
3892+80		a							$6.2 / 0.1$		AM - From Noise Study Counts Location A-B
	5280	1	Basic Highway				4 lanes	70 mph	3.62/0.3		PM - From Noise Study Counts Location A-B
$3840+00$		b								0.94	AM \& PM Default Value for all Mainline
	1500	2	Diverge-Exit 5 off Ramp		Decel	750	1 lane	50 mph	5.77	0.74	AM
$3825+00$		c							4.28	0.885	PM
	3920	3	Basic Highway						$6.2 / 0.1$		AM - From Noise Study Counts Location A-B
$3785+80$		d							3.62/0.3		PM - From Noise Study Counts Location A-B
	1500	4	Merge - Exit 5 on Ramp		Accel	1420	1 lane	50 mph	9.81	0.84	AM
$3770+80$		e							4.41	0.81	PM
	7615	5	Basic Highway						$6.2 / 0.1$		AM - From Noise Study Counts Location A-B
3709+65		f							3.62/0.3		PM - From Noise Study Counts Location A-B
	1500	6	Diverge- Exit 4A off Ramp		Decel	500	1 lane	50 mph	7.26	0.80	AM Average of known ramps
$3694+65$		g							4.23	0.84	PM Average of known ramps
	3165	7	Basic Highway			4A Ramps			$6.2 / 0.1$	0.94	
		h							3.62/0.3		
$3663+00$	PVM	8	Merge		Accel	815	1 lane	50 mph	7.26	0.80	AM Average of known ramps
	1500	i							4.23	0.84	PM Average of known ramps
	-650	9.	Overlap								
	1500										
$3639+50$	PVM	10	Diverge		Decel	735	1 lane	50 mph	7.26	0.80	AM Average of known ramps
		k							4.23	0.84	PM Average of known ramps
	2650	11	Basic Highway							0.94	AM/PM Default Value
$3613+00$	PVM	1							3.78/0.62		AM \& PM From Permanent Recorder Station South of Exit 4
	1500	12	2 Merge - Exit 4 on Ramp (loop)		Accel	1376	1 lane	30 mph	6.20	0.82	AM Default Value
$3598+00$		m							4.0	0.82	PM Default Value
	600	13	Basic Highway							0.94	AM/PM Default Value
$3592+00$	PVM	n							3.78/0.62		AM \& PM From Permanent Recorder Station South of Exit 4
	1500	14	Merge - Exit 4 on Ramp		Accel	1390	1 lane	50 mph	6.2	0.82	AM Default Value
$3577+00$		-							4.0	0.82	PM Default Value
	5280	15	Basic High	way					$3.78 / 0.62$		AM \& PM From Permanent Recorder Station South of Exit 4
$3524+20$		p									

4A 2040 Freeway Facility - Alts C\&D - Northbound

Station	Length	Node	Description	Accel/Decel		Lanes	FFS	\%Trucks/RV	PHF	
1526+20		a								
	5280	1	Basic Highway					4.11/0.57		AM \& PM From Permanent Recorder Station South of Exit 4
1579+00		b							0.94	Default Value for all Mainline Segments per NHDOT
	1500		Diverge-Exit 4 off Ramp	Decel	814	2 Lane	50	7.4	0.77	AM
1594+00	PVM	c						1.8	0.92	PM
	4525		Basic Highway					4.11/0.57		AM \& PM From Permanent Recorder Station South of Exit 4
1639+25	PVM	d								
	1500		4 Merge - Exit 4 on Ramp	Accel	1400	1 Lane	50	3.4	0.90	AM
1654+25		e						2.5	0.87	PM
	4497		5 Basic Highway					7.5/0.0		AM From Noise Study Counts Location A-B
1699+22		f						3/0.3		PM From Noise Study Counts Location A-B
	1500		Diverge-Exit 4A off ramp	Decel	734	1 Lane	50	6.41	0.81	AM Average of known ramps
1714+22		g			4A Ramps			3.53	0.84	PM Average of known ramps
	2702		Basic Highway					7.5/0.0		
1741+24		h						3/0.3		
	1500		8 Merge - Exit 4A on Ramp	Accel	1400	1 Lane	50	6.41	0.81	AM Average of known ramps
1756+24		i						3.53	0.84	PM Average of known ramps
	1626		Basic Highway					7.5/0.0		
1772+50		j						3/0.3		
	1500	10	Diverge- Exit 5 off Ramp	Decel	480	1 Lane	50	9.1	0.75	AM
1787+50	PVM	k						7.5	0.67	PM
	4100	11	Basic. Highway					7.5/0.0		AM From Noise Study Counts Location A-B
1828+50	PVM	1						3/0.3		PM From Noise Study Counts Location A-B
	1500	12	Merge - Exit 5 on Ramp	Accel	750	1 Lane	50	5.7	0.83	AM
1843+50		m						2.4	0.89	PM
	5280	13	Basic Highway					7.5/0.0		AM From Noise Study Counts Location A-B
1896+30		ก						3/0.3		PM From Noise Study Counts Location A-B

4A 2040 Freeway Facility - Alts C\&D - Southbound

Station	Length	Node	Description	Accel/Decel		Lanes	FFS	\|Trucks/\%R	PHF	
$3892+80$		a						6.2/0.1		AM - From Noise Study Counts Location A-B
	5280	1	Basic Highway					$3.62 / 0.3$		PM - From Noise Study Counts Location A-B
$3840+00$		b							0.94	AM \& PM Default Value for all Mainline
	1500	2	Diverge- Exit 5 off Ramp	Decel	750	1 lane	50 mph	5.77	0.74	AM
$3825+00$		c						4.28	0.885	PM
	3920	3	Basic Highway					$6.2 / 0.1$		AM - From Noise Study Counts Location A-B
$3785+80$		d						3.62/0.3		PM - From Noise Study Counts Location A-B
	1500	4	Merge - Exit 5 on Ramp	Accel	1420	1 lane	50 mph	9.81	0.84	AM
$3770+80$		e						4.41	0.81	PM
	2705	5	Basic Highway					$6.2 / 0.1$		AM - From Noise Study Counts Location A-B
$3758+75$		f						3.62/0.3		PM - From Noise Study Counts Location A-B
	1500	6	Diverge- Exit 4A off Ram	Decel	485	1 lane	50 mph	6.74	0.84	AM Average of known ramps
$3743+75$		g						3.89	0.86	PM Average of known ramps
	2850	7	Basic Highway		4A Ramps			$6.2 / 0.1$		
$3715+25$		h						3/0.3		
	1500	8	Merge - Exit 4A on Ramf	Accel	1400	1 lane	50 mph	6.74	0.84	AM Average of known ramps
$3700+25$		i						3.89	0.86	PM Average of known ramps
	4675	9	Basic Highway						0.94	AM/PM - Default Value
$3653+50$		j						$3.78 / 0.62$		AM \& PM From Permanent Recorder Station South of Exit 4
	1500	10	Diverge- Exit 4 off Ramp	Decel	738	1 lane	50 mph	5.2	0.95	AM
$3638+50$	PVM	k						2.85	0.92	PM
	2550	11	Basic Highway					$3.78 / 0.62$		AM \& PM From Permanent Recorder Station South of Exit 4
$3613+00$	PVM	1							0.94	AM/PM - Default Value
	1500	12	Merge - Exit 4 on Ramp	Accel	1376	1 lane	30 mph	6.20	0.82	AM
$3598+00$		m						4.0	0.82	PM
	600	13	Basic Highway						0.94	AM/PM - Default Value
$3592+00$	PVM	n						$3.78 / 0.62$		AM \& PM From Permanent Recorder Station South of Exit 4
	1500	14	Merge - Exit 4 on Ramp	Accel	1390	1 lane	50 mph	6.2	0.82	AM Default Value
$3577+00$		\bigcirc						4.0	0.82	PM Default Value
	5280	15	Basic Highway					3.78/0.62		AM \& PM From Permanent Recorder Station South of Exit 4
$3524+20$		p								

HCS 2010 Facilities Report

Project Information

Analyst	PK/LCG	Agency	CLD	
Jurisdiction		Time Period Analyzed	AM Peak - NB	
Analysis Year	2040 No Build - AM	Date	$6 / 8 / 2017$	
Project Description	I-93 NB - from S. of Exit 4 to N of Exit 5			
Facility Global Input				
Jam Density, pc/mi/ln	Density at Capacity, pc/mi/ln	45.0		
Queue Discharge Capacity Drop, \%	7	Total Segments	9	
Total Time Periods	1	Time Period Duration, min	15	

Segment Geometric Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	$\mathrm{a}->\mathrm{b}$	5280	4
2	Diverge	Diverge	$\mathrm{b} .->\mathrm{c}$	1500	4
3	Basic	Basic	$\mathrm{c}->\mathrm{d}$	4525	4
4	Merge	Merge	$\mathrm{d}->\mathrm{e}$	1500	4
5	Basic	Basic	$\mathrm{f}->\mathrm{f}$	11825	4
6	Diverge	Diverge	$\mathrm{g}->\mathrm{h}$	1500	4
7	Basic	Basic	$\mathrm{h}->\mathrm{i}$	4100	4
8	Merge	Merge	Basic	1500	4
9	Basic			5280	4

Facility Segment Data

Segment 1: Basic

Time Period	PHF	fHV	Flow Rate $\mathbf{(p c / h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $\mathbf{(p c / m i / l n})$	LOS
1	0.94	0.979	3537	9600	0.37	70.0	12.6	

Segment 2: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.77	0.979	0.964	3537	1098	9600	4200	0.37	0.26	68.0	60.7	13.0	-2.7	A

Segment 3: Basic

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		$\begin{gathered} \text { LOS } \\ \hline \text { A } \end{gathered}$
1	0.94		0.979		2439		9600		0.28		70.0		8.7		
Segment 4: Merge															
Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d / c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	

1	0.94	0.90	0.979	0.983	4539	2617	9600	2100	0.55	1.25	53.3	61.7	45.0	21.9	C
Segment 5: Basic															
Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
1	0.94		0.964		4539		9600		0.55		70.0		16.2		B
Segment 6: Diverge															
Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.75	0.964	0.956	4539	774	9600	2100	0.55	0.37	67.7	61.5	16.8	20.7	C

Segment 7: Basic

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		$\begin{aligned} & \text { Speed } \\ & \text { (mi/h) } \end{aligned}$		Density (pc/mi/ln)		LOS
1	0.94		0.964		3765		9600		0.48		70.0		13.4		B
Segment 8: Merge															
Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.83	0.964	0.972	5513	1748	9600	2100	0.66	0.83	63.1	60.3	21.8	25.3	C

Segment 9: Basic

Time Period	PHF	fHV	Flow Rate $\mathbf{(p c / h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $\mathbf{(p c / m i / l n)}$	LOS
1	0.94	0.964	5513	9600	0.64	69.6	19.8	

Facility Time Period Results

\mathbf{T}	Speed, mi/h	Density, pc/mi/ln	Density, veh/mi/ln	Travel Time, min	LOS
1	68.4	16.3	15.8	6.1	B

Facility Overall Results

HCS 2010 Facilities Report

Project Information

Analyst	PK/LCG	Agency	
Jurisdiction		Time Period Analyzed	AM Peak - SB
Analysis Year	$2040-$ No Build AM	Date	$6 / 8 / 2017$
Project Description	I-93 SB - from N of Exit 5 to S of Exit 4		
Facility Global Input	190.0	Density at Capacity, pc/mi/ln	45.0
Jam Density, pc/mi/ln	Total Segments	11	
Queue Discharge Capacity Drop, \%	7	Time Period Duration, min	15
Total Time Periods	1		

Segment Geometric Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	$\mathrm{a}->\mathrm{b}$	5280	4
2	Diverge	Diverge	$\mathrm{b}->\mathrm{c}$	1500	4
3	Basic	Basic	$\mathrm{c}->\mathrm{d}$	3920	4
4	Merge	Merge	$\mathrm{d}->\mathrm{e}$	1500	4
5	Basic	Basic	$\mathrm{f}->\mathrm{f}$	11730	4
6	Diverge	Diverge	$\mathrm{g}->\mathrm{h}$	1500	4
7	Basic	Basic	$\mathrm{h}->\mathrm{i}$	2550	4
8	Merge	Merge	$\mathrm{i}->\mathrm{j}$	1500	4
9	Basic	Basic	$\mathrm{l}->\mathrm{m}$	600	4
10	Merge	Merge	Basic	1500	4
11	Basic		5280	4	

Facility Segment Data
Segment 1: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c} / \mathbf{h})$	Capacity $(\mathbf{p c} / \mathbf{h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.970	5659	9600	0.59	69.5	20.4	C

Segment 2: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.74	0.970	0.972	5659	1536	9600	2100	0.59	0.73	65.5	59.6	21.6	28.2	D

Segment 3: Basic

Time Period	PHF	fHV	Flow Rate ($\mathbf{p c / h}$)	Capacity ($\mathbf{p c / h}$)	\mathbf{d} / \mathbf{c} Ratio	$\mathbf{S p e e d}$ $(\mathbf{m i} / \mathbf{h})$	Density $\mathbf{(p c / m i / l n)}$	LOS
1	0.94	0.970	4447	9600	0.46	70.0	15.9	B

Segment 4: Merge

Period					(pc/h)		(pc/h)		Ratio		(mi/h)		(pc/mi/ln)		
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.84	0.970	0.953	5384	937	9600	2100	0.56	0.45	64.3	61.8	20.9	20.7	C

Segment 5: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c} / \mathbf{h})$	Capacity $(\mathbf{p c} / \mathbf{h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.970	5270	9600	0.55	69.8	18.9	C

Segment 6: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.95	0.970	0.975	5270	1754	9600	2100	0.55	0.84	64.7	59.1	20.4	25.9	C

Segment 7: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.980	3452	9600	0.36	70.0	12.3	

Segment 8: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & \text { (pc/mi/ln) } \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.82	0.980	0.970	4772	1320	9600	2000	0.50	0.66	64.4	61.9	18.5	16.5	B

Segment 9: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c} / \mathbf{h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.980	4592	9600	0.48	70.0	16.4	B

Segment 10: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.82	0.980	0.970	6377	1785	9600	2100	0.66	0.85	63.3	60.8	25.2	24.1	C

Segment 11: Basic

Time Period	PHF	$\mathbf{f H V}$	Flow Rate $(\mathbf{p c / h})$	Capacity $(\mathbf{p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.980	6133	9600	0.64	68.7	22.3	

Facility Time Period Results

T	Speed, mi/h	Density, pc/mi/ln	Density, veh/mi/ln	Travel Time, min	LOS
1	68.5	19.3	18.8	6.1	C
Facility Overall Results					
Space Mean Speed, mi/h		68.5	Density, veh/mi/		18.8
Average Travel Time, min		6.1			

HCS 2010 Facilities Report

Project Information

Analyst	PK/LCG	Agency	CLD	
Jurisdiction		Time Period Analyzed	PM Peak - NB	
Analysis Year	2040 No Build PM - NB	Date	$6 / 8 / 2017$	
Project Description	I-93 NB - from S. of Exit 4 to N of Exit 5			
Facility Global Input				
Jam Density, pc/mi/ln	Density at Capacity, pc/mi/ln	45.0		
Queue Discharge Capacity Drop, \%	7	Total Segments	9	
Total Time Periods	1	Time Period Duration, min	15	

Segment Geometric Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	$\mathrm{a}->\mathrm{b}$	5280	4
2	Diverge	Diverge	$\mathrm{b} .->\mathrm{c}$	1500	4
3	Basic	Basic	$\mathrm{c}->\mathrm{d}$	4525	4
4	Merge	Merge	$\mathrm{d}->\mathrm{e}$	1500	4
5	Basic	Basic	$\mathrm{f}->\mathrm{f}$	11825	4
6	Diverge	Diverge	$\mathrm{g}->\mathrm{h}$	1500	4
7	Basic	Basic	$\mathrm{h}->\mathrm{i}$	4100	4
8	Merge	Merge	Basic	1500	4
9	Basic			5280	4

Facility Segment Data

Segment 1: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c} / \mathbf{h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.979	6085	9600	0.63	68.8	22.1	

Segment 2: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.92	0.979	0.991	6085	2561	9600	4200	0.63	0.61	63.7	57.0	23.9	12.3	B

Segment 3: Basic

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS B
1	0.94		0.979		3548		9600		0.37		70.0		12.7		
Segment 4: Merge															
Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d / c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	

1	0.94	0.87	0.979	0.988	5619	2071	9600	2100	0.59	0.99	63.7	61.3	22.1	23.0	C

Segment 5: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i} / \mathbf{l n})$	LOS
1	0.94	0.985	5449	9600	0.57	69.7	19.5	

Segment 6: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d / cRatio		Speed (mi/h)		Density (pc/mi/ln)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.67	0.985	0.964	5449	1037	9600	2100	0.57	0.49	66.9	60.9	20.4	25.4	C

Segment 7: Basic

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
1	0.94		0.985		4725		9600		0.49		70.0		16.9		B
Segment 8: Merge															
Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.89	0.985	0.988	6033	1308	9600	2100	0.63	0.62	63.3	60.5	23.8	25.1	C

Segment 9: Basic

Time Period	PHF	fHV	Flow Rate $\mathbf{(p c / h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $\mathbf{(p c / m i / l n)}$	LOS
1	0.94	0.985	5967	9600	0.62	69.0	21.6	

Facility Time Period Results

\mathbf{T}	Speed, mi/h	Density, pc/mi/ln	Density, veh/mi/ln	Travel Time, min	LOS
1	68.6	19.6	19.2	6.1	C

Facility Overall Results

Space Mean Speed, mi/h	68.6	Density, veh/mi/ln	19.2
Average Travel Time, min	6.1		
Copyright © 2017 University of Florida. All Rights Reserved.	HCS 2010 Facilities Version 6.90		

HCS 2010 Facilities Report

Project Information

Analyst	PK/LCG	Agency	
Jurisdiction		Time Period Analyzed	PM Peak - SB
Analysis Year	2040 No Build - PM	Date	$6 / 10 / 2017$
Project Description	I-93 SB - from N of Exit 5 to S of Exit 4		
Facility Global Input	190.0	Density at Capacity, pc/mi/ln	45.0
Jam Density, pc/mi/ln	Total Segments	11	
Queue Discharge Capacity Drop, \%	7	Time Period Duration, min	15
Total Time Periods	1		

Segment Geometric Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	$\mathrm{a}->\mathrm{b}$	5280	4
2	Diverge	Diverge	$\mathrm{b}->\mathrm{c}$	1500	4
3	Basic	Basic	$\mathrm{c}->\mathrm{d}$	3920	4
4	Merge	Merge	$\mathrm{d}->\mathrm{e}$	1500	4
5	Basic	Basic	$\mathrm{f}->\mathrm{f}$	11730	4
6	Diverge	Diverge	$\mathrm{g}->\mathrm{h}$	1500	4
7	Basic	Basic	$\mathrm{h}->\mathrm{i}$	2550	4
8	Merge	Merge	$\mathrm{i}->\mathrm{j}$	1500	4
9	Basic	Basic	$\mathrm{j}->\mathrm{k}$	600	4
10	Merge	Merge	Basic		1500
11	Basic		5280	4	

Facility Segment Data

Segment 1: Basic

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
1	0.94		0.982		6186		9600		0.64		68.6		22.5		C
Segment 2: Diverge															
Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & \text { (pc/mi/ln) } \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.89	0.982	0.979	6186	1555	9600	2100	0.64	0.74	65.4	59.6	23.6	30.3	D
Segment 3: Basic															
Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
1	0.94		0.982		4631		9600		0.49		70.0		16.5		B

Segment 4: Merge

Period					(pc/h)		(pc/h)		Ratio		(mi/h)		(pc/mi/ln)		
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.81	0.982	0.978	5426	795	9600	2100	0.57	0.38	64.3	61.9	21.1	20.2	C

Segment 5: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c} / \mathbf{h})$	Capacity $(\mathbf{p c} / \mathbf{h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.982	5426	9600	0.56	69.7	19.5	C

Segment 6: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.92	0.982	0.986	5426	2315	9600	2100	0.56	1.10	53.3	57.7	45.0	29.2	D

Segment 7: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $\mathbf{(p c / m i / l n)}$	LOS
1	0.94	0.980	3111	9600	0.33	70.0	11.1	

Segment 8: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.82	0.980	0.980	3715	604	9600	2000	0.39	0.30	65.5	62.8	14.2	10.2	B

Segment 9: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.980	3715	9600	0.38	70.0	13.3	

Segment 10: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.82	0.980	0.980	4549	834	9600	2100	0.47	0.40	65.7	63.8	17.3	14.4	B

Segment 11: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c} / \mathbf{h})$	Capacity $(\mathbf{p c} / \mathbf{h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.980	4549	9600	0.46	70.0	16.2	

Facility Time Period Results

T	Speed, mi/h	Density, pc/mi/ln	Density, veh/mi/ln	Travel Time, min	LOS
1	68.3	19.4	19.1	6.1	C
Facility Overall Results					
Space Mean Speed, mi/h		68.3	Density, veh/m		19.1
Average Travel Time, min		6.1			

HCS 2010 Facilities Report

Project Information

Analyst	PK/LCG	Agency	CLD	
Jurisdiction		Time Period Analyzed	AM Peak - NB w/Overlap	
Analysis Year	2040 4A South Alt. A - AM-NB	Date	$6 / 30 / 2017$	
Project Description	I-93 NB - from S. of Exit 4 to N of Exit 5			
Facility Global Input				
Jam Density, pc/mi/ln	Density at Capacity, pc/mi/ln	45.0		
Queue Discharge Capacity Drop, \%	7	Total Segments	13	
Total Time Periods	1	Time Period Duration, min	15	

Segment Geometric Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	$\mathrm{a}>\mathrm{b}$	5280	4
2	Diverge	Diverge	$\mathrm{b}>\mathrm{c}$	1500	4
3	Basic	Basic	$\mathrm{c}>\mathrm{d}$	4525	4
4	Merge	Merge	$\mathrm{d}>\mathrm{e}$	$\mathrm{e}>\mathrm{f}$	1500
5	Overlap	Basic	$\mathrm{f}>\mathrm{g}$	700	4
6	Diverge	Diverge	$\mathrm{g}>\mathrm{h}$	1500	4
7	Basic	Basic	$\mathrm{h}>\mathrm{i}$	3310	4
8	Merge	Merge	$\mathrm{j}>\mathrm{k}$	1500	4
9	Basic	Basic	$\mathrm{k}>\mathrm{l}$	6215	4
10	Diverge	Diverge	$\mathrm{l}>\mathrm{m}$	1500	4
11	Basic	Basic	$\mathrm{m}>\mathrm{n}$	4100	4
12	Merge	Merge	Basic		1500
13	Basic		5280	4	

Facility Segment Data

Segment 1: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.979	3662	9600	0.38	70.0	13.1	B

Segment 2: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.77	0.979	0.964	3662	977	9600	4200	0.38	0.23	68.7	61.0	13.3	-3.2	A
Segment 3: Basic															
Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
1	0.94		0.979		2874		9600		0.30		70.0		10.3		A

Segment 4: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.90	0.979	0.983	4733	1859	9600	2100	0.49	0.89	64.8	62.7	18.3	19.3	B

Segment 5: Overlap

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.979	4662	9600	0.49	64.8	18.3	

Segment 6: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.81	0.964	0.969	4734	1013	9600	2100	0.49	0.48	67.0	60.9	17.7	20.2	C

Segment 7: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i} / \mathbf{l n})$	LOS
1	0.94	0.964	3857	9600	0.40	70.0	13.8	B

Segment 8: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.81	0.964	0.969	5628	1771	9600	2100	0.59	0.84	63.2	60.5	22.3	24.9	C

Segment 9: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.964	5391	9600	0.56	69.7	19.3	

Segment 10: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.75	0.964	0.956	5391	907	9600	2100	0.56	0.43	67.3	61.2	20.0	24.5	C

Segment 11: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h})$	Density $\mathbf{(p c / m i} / \mathbf{l n})$	LOS
1	0.94	0.964	4674	9600	0.49	70.0	16.7	B

Segment 12: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.83	0.964	0.972	6081	1407	9600	2100	0.63	0.67	63.1	60.2	24.1	25.7	C

Segment 13: Basic

Time Period	PHF	$\mathbf{f H V}$	Flow Rate $(\mathbf{p c} / \mathbf{h})$	Capacity $(\mathbf{p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.964	5926	9600	0.62	69.1	21.4	

Facility Time Period Results

\mathbf{T}	Speed, mi/h	Density, pc/mi/ln	Density, veh/mi/ln	Travel Time, min	LOS
1	68.5	16.9	16.4	6.4	B

Facility Overall Results

Space Mean Speed, mi/h	68.5	Density, veh/mi/ln	16.4
Average Travel Time, min	6.4		

HCS 2010 Facilities Report

Project Information

Analyst	PK/LCG	Agency	
Jurisdiction		Time Period Analyzed	AM Peak - SB
Analysis Year	2040 - 4A South Alt. A AM - SB Overlap	Date	$6 / 30 / 2017$
Project Description	I-93 SB - from N of Exit 5 to S of Exit 4		
Facility Global Input	190.0	Density at Capacity, pc/mi/ln	45.0
Jam Density, pc/mi/ln	Total Segments	15	
Queue Discharge Capacity Drop, \%	7	Time Period Duration, min	15
Total Time Periods	1		

Segment Geometric Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	$\mathrm{a}->\mathrm{b}$	5280	4
2	Diverge	Diverge	$\mathrm{b}->\mathrm{c}$	1500	4
3	Basic	Basic	$\mathrm{c}->\mathrm{d}$	3920	4
4	Merge	Merge	$\mathrm{d}->\mathrm{e}$	1500	4
5	Basic	Basic	$\mathrm{e}->\mathrm{f}$	7615	4
6	Diverge	Diverge	$\mathrm{f}>\mathrm{g}$	$\mathrm{g}>\mathrm{h}$	1500
7	Basic	Basic	$\mathrm{h}>\mathrm{i} 4 \mathrm{~A}$ on ramp	4165	4
8	Merge	Merge	$\mathrm{j}>\mathrm{k}$	1500	4
9	Overlap	Basic	$\mathrm{k}>\mathrm{l}$	650	4
10	Diverge	Diverge	$\mathrm{l}>\mathrm{m}$	1500	4
11	Basic	Basic	$\mathrm{m}>\mathrm{n}$	2650	4
12	Merge	Merge	$\mathrm{l}>\mathrm{m}$	1500	4
13	Basic	Basic	$m>n$	1580	4
14	Merge	Merge	Basic		1500
15	Basic			5280	4

Facility Segment Data
Segment 1: Basic

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & \text { (pc/mi/ln) } \end{aligned}$		LOS
1	0.94		0.970		5994		9600		0.62		69.0		21.7		C
Segment 2: Diverge															
Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.74	0.970	0.972	5994	869	9600	2100	0.62	0.41	67.3	61.3	22.3	24.2	C

Segment 3: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c} / \mathbf{h})$	Capacity $(\mathbf{p c} / \mathbf{h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i} / \mathbf{l n})$	LOS
1	0.94	0.970	5125	9600	0.55	69.9	18.3	

Segment 4: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.84	0.970	0.953	6218	1093	9600	2100	0.67	0.52	64.3	62.5	24.2	20.6	C

Segment 5: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i} / \mathbf{l n})$	LOS
1	0.94	0.970	6218	9600	0.65	68.5	22.7	C

Segment 6: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.80	0.970	0.965	6218	2241	9600	2100	0.65	1.07	53.3	57.8	45.0	33.9	D

Segment 7: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c} / \mathbf{h})$	Capacity $(\mathbf{p c} / \mathbf{h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.964	3977	9600	0.46	70.0	14.2	B

Segment 8: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & \text { (pc/mi/ln) } \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.80	0.970	0.965	5246	1269	9600	2100	0.59	0.60	64.0	61.3	20.5	22.2	C

Segment 9: Overlap

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h})$	Density $\mathbf{(p c / m i} / \mathbf{l n})$	LOS
1	0.94	0.970	5246	9600	0.57	64.0	20.5	

Segment 10: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.80	0.970	0.965	5246	1587	9600	2100	0.57	0.76	65.3	59.5	20.1	24.4	C

Segment 11: Basic

| Time
 Period | PHF | fHV | Flow Rate
 (pc/h) | Capacity
 (pc/h) | d/c
 Ratio | Speed
 (mi/h) | Density
 (pc/mi/ln) | LOS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.94 | 0.970 | 3659 | 9600 | 0.43 | 70.0 | 13.1 | |
| Segment 12: Merge | | | | | | | | |
| Time
 Period | PHF | fHV | Flow Rate
 (pc/h) | Capacity
 (pc/h) | d/c
 Ratio | Speed
 (mi/h) | Density
 (pc/mi/ln) | LOS |

	\mathbf{F}	\mathbf{R}	\mathbf{F}	\mathbf{R}	Freeway	Ramp	Freeway	Ramp	F	\mathbf{R}	\mathbf{F}	\mathbf{R}	Freeway	Ramp	
1	0.94	0.82	0.980	0.970	4350	691	9600	2000	0.49	0.35	65.1	62.6	16.7	12.6	B

Segment 13: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.980	4350	9600	0.49	70.0	15.5	

Segment 14: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi / h)		$\begin{aligned} & \text { Density } \\ & \text { (pc/mi/ln) } \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.82	0.980	0.970	6311	1961	9600	2100	0.69	0.93	63.1	60.5	25.0	24.7	C

Segment 15: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h)}$	Density (pc/mi/ln)	LOS
1	0.94	0.980	6311	9600	0.66	68.3	23.1	

Facility Time Period Results

\mathbf{T}	Speed, mi/h	Density, pc/mi/ln	Density, veh/mi/ln	Travel Time, min	LOS
1	67.4	21.1	20.6	6.9	C

Facility Overall Results

Space Mean Speed, mi/h	67.4	Density, veh/mi/ln	20.6
Average Travel Time, min	6.9		

HCS 2010 Facilities Report

Project Information

Analyst	PK/LCG	Agency	
Jurisdiction		Time Period Analyzed	AM Peak - SB
Analysis Year	2040 - 4A South Alt. A AM - SB Overlap	Date	$6 / 30 / 2017$
Project Description	I-93 SB - from N of Exit 5 to S of Exit 4		
Facility Global Input	190.0	Density at Capacity, pc/mi/ln	45.0
Jam Density, pc/mi/ln	Total Segments	15	
Queue Discharge Capacity Drop, \%	7	Time Period Duration, min	15
Total Time Periods	1		

Segment Geometric Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	$\mathrm{a}->\mathrm{b}$	5280	4
2	Diverge	Diverge	$\mathrm{b}->\mathrm{c}$	1500	4
3	Basic	Basic	$\mathrm{c}->\mathrm{d}$	3920	4
4	Merge	Merge	$\mathrm{d}->\mathrm{e}$	1500	4
5	Basic	Basic	$\mathrm{e}->\mathrm{f}$	7615	4
6	Diverge	Diverge	$\mathrm{f}>\mathrm{g}$	$\mathrm{g}>\mathrm{h}$	1500
7	Basic	Basic	$\mathrm{h}>\mathrm{i} 4 \mathrm{~A}$ on ramp	4165	4
8	Merge	Basic	$\mathrm{j}>\mathrm{j}$	1500	4
9	Overlap	Basic	$\mathrm{k}>\mathrm{l}$	650	4
10	Diverge	Diverge	$\mathrm{l}>\mathrm{m}$	1500	4
11	Basic	Basic	$\mathrm{m}>\mathrm{n}$	2650	4
12	Merge	Merge	$\mathrm{l}>\mathrm{m}$	1500	4
13	Basic	Basic	$m>n$	1580	4
14	Merge	Merge	Basic		1500
15	Basic			5280	4
				4	

Facility Segment Data
Segment 1: Basic

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & \text { (pc/mi/ln) } \end{aligned}$		LOS
1	0.94		0.970		5994		9600		0.62		69.0		21.7		C
Segment 2: Diverge															
Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.74	0.970	0.972	5994	869	9600	2100	0.62	0.41	67.3	61.3	22.3	24.2	C

Segment 3: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c} / \mathbf{h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.970	5308	9600	0.55	69.8	19.0	

Segment 4: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & \text { (pc/mi/ln) } \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.84	0.970	0.953	6401	1093	9600	2100	0.67	0.52	64.1	62.3	25.0	21.2	C

Segment 5: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.970	6268	9600	0.65	68.4	22.9	C

Segment 6: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.80	0.970	0.965	6268	2241	9600	4200	0.65	0.53	64.8	57.8	24.2	16.3	B

Segment 7: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c} / \mathbf{h})$	Capacity $(\mathbf{p c} / \mathbf{h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.964	4398	9600	0.46	70.0	15.7	B

Segment 8: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & \text { (pc/mi/ln) } \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.80	0.970	0.965	5639	1269	7200	2100	0.61	0.60	69.2	57.9	21.1	30.2	C

Segment 9: Overlap

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h})$	Density $\mathbf{(p c / m i} / \mathbf{l n})$	LOS
1	0.94	0.970	5445	9600	0.57	69.2	21.1	C

Segment 10: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.80	0.970	0.965	5445	1587	9600	2100	0.57	0.76	65.3	59.5	20.8	25.2	C

Segment 11: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	d/c Ratio	Speed (mi/h)	$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$	LOS
1	0.94	0.970	4102	9600	0.43	70.0	14.7	B
Segment 12: Merge								
Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	d/c Ratio	Speed (mi/h)	Density (pc/mi/ln)	LOS

	F	\mathbf{R}	\mathbf{F}	\mathbf{R}	Freeway	Ramp	Freeway	Ramp	F	\mathbf{R}	F	\mathbf{R}	Freeway	Ramp	
1	0.94	0.82	0.980	0.970	4751	691	9600	2000	0.49	0.35	64.9	62.4	18.3	13.8	B

Segment 13: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h})$	Density $\mathbf{(p c / m i} / \mathbf{l n})$	LOS
1	0.94	0.980	4657	9600	0.49	70.0	16.6	

Segment 14: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi / h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.82	0.980	0.970	6618	1961	9600	2100	0.69	0.93	62.6	59.9	26.4	25.6	C

Segment 15: Basic

Time Period	PHF	fHV	Flow Rate $\mathbf{(p \mathbf { c } / \mathbf { h })}$	Capacity $\mathbf{(p \mathbf { p c }} \mathbf{)}$	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h})$	Density $(\mathbf{p c / m i} / \mathbf{l n})$	LOS
1	0.94	0.980	6350	9600	0.66	68.3	23.3	

Facility Time Period Results

\mathbf{T}	Speed, mi/h	Density, pc/mi/ln	Density, veh/mi/ln	Travel Time, min	LOS
1	68.0	21.0	20.4	6.8	C

Facility Overall Results

Space Mean Speed, mi/h	68.0	Density, veh/mi/ln	20.4
Average Travel Time, min	6.8		

HCS 2010 Facilities Report

Project Information

Analyst	PK/LCG	Agency	CLD
Jurisdiction		Time Period Analyzed	PM Peak - NB Overlap
Analysis Year	2040 4A South Alt. A - PM-NB	Date	$6 / 30 / 2017$
Project Description	I-93 NB - from S. of Exit 4 to N of Exit 5		

Facility Global Input

Jam Density, pc/mi/ln	190.0	Density at Capacity, pc/mi/ln	45.0
Queue Discharge Capacity Drop, \%	7	Total Segments	13
Total Time Periods	1	Time Period Duration, min	15

Segment Geometric Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	$\mathrm{a}->\mathrm{b}$	5280	4
2	Diverge	Diverge	$\mathrm{b} .->\mathrm{c}$	1500	4
3	Basic	Basic	$\mathrm{c}->\mathrm{d}$	4525	4
4	Merge	Merge	$\mathrm{d}>\mathrm{e}$	$\mathrm{e}>\mathrm{f}$	1500
5	Overlap	Basic	$\mathrm{f}>\mathrm{g}$	700	4
6	Diverge	Diverge	$\mathrm{g}>\mathrm{h}$	1500	4
7	Basic	Basic	$\mathrm{h}>\mathrm{j}$	3310	4
8	Merge	Merge	$\mathrm{j}>\mathrm{j}$	1500	4
9	Basic	Basic	$\mathrm{k}>\mathrm{l}$	1500	4
10	Diverge	Diverge	$\mathrm{l}>\mathrm{m}$	4100	4
11	Basic	Basic	$\mathrm{m}>\mathrm{n}$	1500	4
12	Merge	Merge	Basic	5280	4
13	Basic			4	4

Facility Segment Data

Segment 1: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $(\mathbf{p c} / \mathbf{h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.979	6303	9600	0.66	68.4	23.0	C

Segment 2: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.77	0.979	0.964	6303	2809	9600	4200	0.66	0.67	63.0	56.4	25.0	14.4	B
Segment 3: Basic															
Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
1	0.94		0.979		4037		9600		0.42		70.0		14.4		B

Segment 4: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.87	0.979	0.988	5509	1472	9600	2100	0.57	0.70	64.6	62.6	21.3	20.1	C

Segment 5: Overlap

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c} / \mathbf{h})$	Capacity $(\mathbf{p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.979	5412	9600	0.56	64.6	21.3	

Segment 6: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.84	0.979	0.983	5412	860	9600	2100	0.56	0.41	67.4	61.3	20.1	24.3	C

Segment 7: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i} / \mathbf{l n})$	LOS
1	0.94	0.985	4612	9600	0.48	70.0	16.5	B

Segment 8: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.84	1.000	0.983	6045	1502	9600	2100	0.63	0.72	63.2	60.5	23.9	25.1	C

Segment 9: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.985	5951	9600	0.62	69.0	21.6	

Segment 10: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d / cRatio		Speed (mi/h)		Density (pc/mi/ln)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.67	0.964	0.964	6081	1215	9600	2100	0.63	0.58	66.3	60.4	22.9	28.6	D

Segment 11: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h})$	Density $\mathbf{(p c / m i} / \mathbf{l n})$	LOS
1	0.94	0.985	5103	9600	0.53	69.9	18.3	C

Segment 12: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & \text { (pc/mi/ln) } \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.89	0.964	0.988	6266	1052	9600	2100	0.65	0.50	63.3	60.6	24.7	24.8	C

Segment 13: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	d/c Ratio	Speed (mi/h)	$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$	LOS
1	0.94	0.964	6235	9600	0.65	68.5	22.8	C

Facility Time Period Results

\mathbf{T}	Speed, mi/h	Density, pc/mi/ln	Density, veh/mi/ln	Travel Time, min	LOS
1	67.9	20.6	20.2	6.4	C

Facility Overall Results

Space Mean Speed, mi/h	67.9	Density, veh/mi/ln	20.2
Average Travel Time, min	6.4		
Copyright © 2017 University of Florida. All Rights Reserved.	HCS 2010 Facilities Version 6.90 2040 4A South Alt A PM-NB Overlap.xuf	Generated: 7/14/2017 6:54:10 AM	

HCS 2010 Facilities Report

Project Information

Analyst	PK/LCG	Agency	
Jurisdiction		Time Period Analyzed	PM Peak - SB
Analysis Year	2040 - 4A South Alt. A PM - SB Overlap	Date	$6 / 30 / 2017$
Project Description	I-93 SB - from N of Exit 5 to S of Exit 4		
Facility Global Input	190.0	Density at Capacity, pc/mi/ln	45.0
Jam Density, pc/mi/ln	Total Segments	15	
Queue Discharge Capacity Drop, \%	7	Time Period Duration, min	15
Total Time Periods	1		

Segment Geometric Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	$\mathrm{a}->\mathrm{b}$	5280	4
2	Diverge	Diverge	$\mathrm{b}->\mathrm{c}$	1500	4
3	Basic	Basic	$\mathrm{c}->\mathrm{d}$	3920	4
4	Merge	Merge	$\mathrm{d}->\mathrm{e}$	1500	4
5	Basic	Basic	$\mathrm{e}>\mathrm{f}$	7615	4
6	Diverge	Diverge	$\mathrm{f}>\mathrm{g}$	1500	4
7	Basic	Basic	$\mathrm{h}>\mathrm{i}$	3165	4
8	Merge	Merge	$\mathrm{j}>\mathrm{j}$	1500	4
9	Overlap	Basic	$\mathrm{k}>\mathrm{l}$	650	4
10	Diverge	Diverge	$\mathrm{l}>\mathrm{m}$	1500	4
11	Basic	Basic	$\mathrm{m}>\mathrm{n}$	2650	4
12	Merge	Merge	$\mathrm{n}>\mathrm{o}$	1500	4
13	Basic	Basic	$\mathrm{o}>\mathrm{p}$	600	4
14	Merge	Merge	Basic		1500
15	Basic		5280	4	

Facility Segment Data

Segment 1: Basic															
Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
1	0.94		0.982		5931		9600		0.62		69.1		21.5		C
Segment 2: Diverge															
Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.89	0.982	0.979	5931	883	9600	2100	0.62	0.42	67.2	61.3	22.1	24.0	C

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c} / \mathbf{h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS 1
0.94	0.982	5102	9600	0.53	69.9	18.3		

Segment 4: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc / h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & \text { (pc/mi/ln) } \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.81	0.970	0.978	6094	928	9600	2100	0.63	0.44	64.5	62.8	23.6	19.5	B

Segment 5: Basic

Time Period	PHF	$\mathbf{f H V}$	Flow Rate $(\mathbf{p c} / \mathbf{h})$	Capacity $(\mathbf{p c} / \mathbf{h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.982	5899	9600	0.61	69.1	21.3	C

Segment 6: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.84	0.982	0.979	5899	1879	9600	2100	0.61	0.89	64.4	58.7	22.9	31.0	D

Segment 7: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c} / \mathbf{h})$	Capacity $(\mathbf{p c} / \mathbf{h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.982	4225	9600	0.44	75.3	14.0	B

Segment 8: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.84	0.982	0.979	5289	1064	9600	2100	0.55	0.51	64.2	61.6	20.6	21.4	C

Segment 9: Overlap

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h})$	Density $\mathbf{(p c / m i} / \mathbf{l n})$	LOS
1	0.94	0.982	5173	9600	0.54	64.2	20.6	

Segment 10: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.84	0.982	0.979	5173	1921	9600	2100	0.54	0.91	64.0	58.6	20.2	26.4	C

Segment 11: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	d/c Ratio	Speed (mi/h)	$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{In}) \end{aligned}$	LOS
1	0.94	0.980	3468	9600	0.36	70.0	12.4	B
Segment 12: Merge								
Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	d/c Ratio	Speed (mi/h)	$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$	LOS

	\mathbf{F}	\mathbf{R}	\mathbf{F}	\mathbf{R}	Freeway	Ramp	Freeway	Ramp	\mathbf{F}	\mathbf{R}	\mathbf{F}	\mathbf{R}	Freeway	Ramp	
1	0.94	0.82	0.980	0.980	3785	317	9600	2000	0.39	0.16	65.7	62.9	14.4	9.2	A

Segment 13: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $\mathbf{(p c / m i / l n)}$	LOS
1	0.94	0.980	3745	9600	0.39	70.0	13.4	

Segment 14: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.82	0.980	0.980	4660	915	9600	2100	0.49	0.44	65.2	62.9	17.9	15.1	B

Segment 15: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h)}$	Density (pc/mi/ln)	LOS
1	0.94	0.980	4543	9600	0.47	70.0	16.2	B

Facility Time Period Results

\mathbf{T}	Speed, mi/h	Density, pc/mi/ln	Density, veh/mi/ln	Travel Time, min	LOS
1	68.6	18.8	18.4	6.6	C

Facility Overall Results

Space Mean Speed, mi/h	68.6	Density, veh $/ \mathrm{mi} / \mathrm{ln}$	18.4
Average Travel Time, min	6.6		

HCS 2010 Facilities Report

Project Information

Analyst	PK/LCG	Agency	CLD	
Jurisdiction		Time Period Analyzed	AM Peak - NB w/Overlap	
Analysis Year	2040 4A South Alt. B - AM-NB	Date	$6 / 30 / 2017$	
Project Description	I-93 NB - from S. of Exit 4 to N of Exit 5			
Facility Global Input				
Jam Density, pc/mi/ln	Density at Capacity, pc/mi/ln	45.0		
Queue Discharge Capacity Drop, \%	7	Total Segments	13	
Total Time Periods	1	Time Period Duration, min	15	

Segment Geometric Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	$\mathrm{a}>\mathrm{b}$	5280	4
2	Diverge	Diverge	$\mathrm{b}>\mathrm{c}$	1500	4
3	Basic	Basic	$\mathrm{c}>\mathrm{d}$	4525	4
4	Merge	Merge	$\mathrm{d}>\mathrm{e}$	$\mathrm{e}>\mathrm{f}$	1500
5	Overlap	Basic	$\mathrm{f}>\mathrm{g}$	700	4
6	Diverge	Diverge	$\mathrm{g}>\mathrm{h}$	1500	4
7	Basic	Basic	$\mathrm{h}>\mathrm{i}$	3310	4
8	Merge	Merge	$\mathrm{j}>\mathrm{k}$	1500	4
9	Basic	Basic	$\mathrm{k}>\mathrm{l}$	6215	4
10	Diverge	Diverge	$\mathrm{l}>\mathrm{m}$	1500	4
11	Basic	Basic	$\mathrm{m}>\mathrm{n}$	4100	4
12	Merge	Merge	Basic		1500
13	Basic		5280	4	

Facility Segment Data

Segment 1: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.979	3673	9600	0.38	70.0	13.1	B

Segment 2: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.77	0.979	0.964	3673	983	9600	4200	0.38	0.23	68.7	61.0	13.4	-3.1	A
Segment 3: Basic															
Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
1	0.94		0.979		2690		9600		0.30		70.0		9.6		A

Segment 4: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.90	0.979	0.983	4790	2165	9600	2100	0.53	1.03	53.3	62.2	45.0	20.8	C

Segment 5: Overlap

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c} / \mathbf{h})$	Capacity $(\mathbf{p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.979	4790	9600	0.52	53.3	45.0	

Segment 6: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.81	0.964	0.969	4790	1102	9600	2100	0.52	0.52	66.7	60.7	18.0	23.2	C

Segment 7: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity $(\mathbf{p c} / \mathbf{h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i} / \mathbf{l n})$	LOS
1	0.94	0.964	3688	9600	0.43	70.0	13.2	B

Segment 8: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.81	0.964	0.969	5223	1535	9600	2100	0.59	0.73	63.9	61.3	20.4	22.7	C

Segment 9: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.964	5223	9600	0.56	69.9	18.7	

Segment 10: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.75	0.964	0.956	5223	851	9600	2100	0.56	0.41	67.4	61.3	19.4	23.6	C

Segment 11: Basic

Time Period	PHF	fHV	Flow Rate $\mathbf{(p c / h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h})$	Density $\mathbf{(p c / m i} / \mathbf{l n})$	LOS
1	0.94	0.964	4372	9600	0.49	70.0	15.6	B

Segment 12: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.83	0.964	0.972	5729	1357	9600	2100	0.64	0.65	63.5	60.7	22.6	24.4	C

Segment 13: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	d/c Ratio	Speed (mi/h)	$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$	LOS
1	0.94	0.964	5729	9600	0.62	69.4	20.6	C

Facility Time Period Results

\mathbf{T}	Speed, mi/h	Density, pc/mi/ln	Density, veh/mi/ln	Travel Time, min	LOS
1	67.6	17.8	17.3	6.5	B

Facility Overall Results

Space Mean Speed, mi/h	67.6	Density, veh/mi/ln	17.3
Average Travel Time, min	6.5		

HCS 2010 Facilities Report

Project Information

Analyst	PK/LCG	Agency	
Jurisdiction		Time Period Analyzed	AM Peak - SB
Analysis Year	2040 - 4A South Alt. B AM - SB Overlap	Date	$6 / 30 / 2017$
Project Description	I-93 SB - from N of Exit 5 to S of Exit 4		
Facility Global Input	190.0	Density at Capacity, pc/mi/ln	45.0
Jam Density, pc/mi/ln	Total Segments	15	
Queue Discharge Capacity Drop, \%	7	Time Period Duration, min	15
Total Time Periods	1		

Segment Geometric Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	$\mathrm{a}->\mathrm{b}$	5280	4
2	Diverge	Diverge	$\mathrm{b}->\mathrm{c}$	1500	4
3	Basic	Basic	$\mathrm{c}->\mathrm{d}$	3920	4
4	Merge	Merge	$\mathrm{d}->\mathrm{e}$	1500	4
5	Basic	Basic	$\mathrm{e}->\mathrm{f}$	7615	4
6	Diverge	Diverge	$\mathrm{f}>\mathrm{g}$	$\mathrm{g}>\mathrm{h}$	1500
7	Basic	Basic	$\mathrm{h}>\mathrm{i} 4 \mathrm{~A}$ on ramp	4165	4
8	Merge	Merge	$\mathrm{j}>\mathrm{j}$	1500	4
9	Overlap	Basic	$\mathrm{k}>\mathrm{l}$	650	4
10	Diverge	Diverge	$\mathrm{l}>\mathrm{m}$	1500	4
11	Basic	Basic	$\mathrm{m}>\mathrm{n}$	2650	4
12	Merge	Merge	$\mathrm{l}>\mathrm{m}$	1500	4
13	Basic	Basic	$m>n$	600	4
14	Merge	Merge	Basic		1500
15	Basic			5280	4
				4	

Facility Segment Data
Segment 1: Basic

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & \text { (pc/mi/ln) } \end{aligned}$		LOS
1	0.94		0.970		6043		9600		0.63		68.9		21.9		C
Segment 2: Diverge															
Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.74	0.970	0.972	6043	681	9600	2100	0.63	0.32	67.7	61.8	22.3	23.5	C

Segment 3: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c} / \mathbf{h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS 1
0.94	0.970	5362	9600	0.57	69.8	19.2		

Segment 4: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & \text { (pc/mi/ln) } \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.84	0.970	0.953	6211	849	9600	2100	0.66	0.40	64.4	62.8	24.1	19.5	B

Segment 5: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.970	6211	9600	0.65	68.6	22.6	C

Segment 6: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.80	0.970	0.965	6211	2293	9600	2100	0.65	1.09	53.3	57.7	45.0	34.2	D

Segment 7: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c} / \mathbf{h})$	Capacity $(\mathbf{p c} / \mathbf{h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.964	3918	9600	0.45	70.0	14.0	B

Segment 8: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & \text { (pc/mi/ln) } \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.80	0.970	0.965	5388	1470	9600	2100	0.60	0.70	63.7	61.0	21.1	23.5	C

Segment 9: Overlap

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	d/c Ratio	Speed (mi/h)	$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$	LOS
1	0.94	0.970	5388	9600	0.58	63.7	21.1	C

Segment 10: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{In}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.80	0.970	0.965	5388	1697	9600	2100	0.58	0.81	64.9	59.2	20.8	25.5	C

Segment 11: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	d/c Ratio	Speed (mi/h)	$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$	LOS
1	0.94	0.970	3691	9600	0.43	70.0	13.2	B
Segment 12: Merge								
Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	d/c Ratio	Speed (mi/h)	$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$	LOS

	\mathbf{F}	\mathbf{R}	\mathbf{F}	\mathbf{R}	Freeway	Ramp	Freeway	Ramp	\mathbf{F}	\mathbf{R}	\mathbf{F}	\mathbf{R}	Freeway	Ramp	
1	0.94	0.82	0.980	0.970	4426	735	9600	2000	0.50	0.37	65.0	62.5	17.0	13.0	B

Segment 13: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $\mathbf{(p c / m i / l n)}$	LOS
1	0.94	0.980	4426	9600	0.49	70.0	15.8	

Segment 14: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & \text { (pc/mi/ln) } \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.82	0.980	0.970	6356	1930	9600	2100	0.69	0.92	63.1	60.5	25.2	24.7	C

Segment 15: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c} / \mathbf{h})$	Capacity $(\mathbf{p c} / \mathbf{h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.980	6356	9600	0.66	68.2	23.3	

Facility Time Period Results

\mathbf{T}	Speed, $\mathbf{m i} / \mathbf{h}$	Density, pc/mi/ln	Density, veh/mi/ln	Travel Time, min	LOS
1	67.3	21.5	20.9	6.7	C

Facility Overall Results

Space Mean Speed, mi/h	67.3	Density, veh $/ \mathrm{mi} / \mathrm{ln}$	20.9
Average Travel Time, min	6.7		

HCS 2010 Facilities Report

Project Information

Analyst	PK/LCG	Agency	CLD
Jurisdiction		Time Period Analyzed	PM Peak - NB Overlap
Analysis Year	2040 4A South Alt. B - PM-NB	Date	$6 / 30 / 2017$
Project Description	I-93 NB - from S. of Exit 4 to N of Exit 5		

Facility Global Input

Jam Density, pc/mi/ln	190.0	Density at Capacity, pc/mi/ln	45.0
Queue Discharge Capacity Drop, \%	7	Total Segments	13
Total Time Periods	1	Time Period Duration, min	15

Segment Geometric Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	$\mathrm{a}->\mathrm{b}$	5280	4
2	Diverge	Diverge	$\mathrm{b} .->\mathrm{c}$	1500	4
3	Basic	Basic	$\mathrm{c}->\mathrm{d}$	4525	4
4	Merge	Merge	$\mathrm{d}>\mathrm{e}$	$\mathrm{e}>\mathrm{f}$	1500
5	Overlap	Basic	$\mathrm{f}>\mathrm{g}$	700	4
6	Diverge	Diverge	$\mathrm{g}>\mathrm{h}$	1500	4
7	Basic	Basic	$\mathrm{h}>\mathrm{j}$	3310	4
8	Merge	Merge	$\mathrm{j}>\mathrm{j}$	1500	4
9	Basic	Basic	$\mathrm{k}>\mathrm{l}$	1500	4
10	Diverge	Diverge	$\mathrm{l}>\mathrm{m}$	4100	4
11	Basic	Basic	$\mathrm{m}>\mathrm{n}$	1500	4
12	Merge	Merge	Basic	5280	4
13	Basic			4	4

Facility Segment Data

Segment 1: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $(\mathbf{p c} / \mathbf{h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.979	6324	9600	0.66	68.3	23.1	C

Segment 2: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.77	0.979	0.964	6324	2822	9600	4200	0.66	0.67	63.0	56.4	25.1	14.5	B
Segment 3: Basic															
Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
1	0.94		0.979		4048		9600		0.42		70.0		14.5		B

Segment 4: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.87	0.979	0.988	5758	1710	9600	2100	0.60	0.81	64.1	61.9	22.5	21.9	C

Segment 5: Overlap

Time Period	PHF	fHV	Flow Rate $\mathbf{(p c / h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.979	5645	9600	0.59	64.1	22.5	

Segment 6: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.84	0.979	0.983	5645	933	9600	2100	0.59	0.44	67.1	61.1	21.0	23.2	C

Segment 7: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i} / \mathbf{l n})$	LOS
1	0.94	0.985	4779	9600	0.50	70.0	17.1	B

Segment 8: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.84	1.000	0.983	6009	1302	9600	2100	0.63	0.62	63.5	60.9	23.7	24.1	C

Segment 9: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $(\mathbf{p c} / \mathbf{h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.985	5940	9600	0.62	69.1	21.5	

Segment 10: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d / cRatio		Speed (mi/h)		Density (pc/mi/ln)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.67	0.964	0.964	6070	1138	9600	2100	0.63	0.54	66.6	60.6	22.8	28.2	D

Segment 11: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h})$	Density $\mathbf{(p c / m i} / \mathbf{l n})$	LOS
1	0.94	0.985	5146	9600	0.54	69.9	18.4	C

Segment 12: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.89	0.964	0.988	6276	1018	9600	2100	0.65	0.48	63.2	60.6	24.8	24.6	C

Segment 13: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	d/c Ratio	Speed (mi/h)	$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$	LOS
1	0.94	0.964	6246	9600	0.65	68.5	22.8	C

Facility Time Period Results

\mathbf{T}	Speed, mi/h	Density, pc/mi/ln	Density, veh/mi/ln	Travel Time, min	LOS
1	67.9	20.8	20.4	6.4	C

Facility Overall Results

Space Mean Speed, mi/h	67.9	Density, veh/mi/ln	20.4
Average Travel Time, min	6.4		

HCS 2010 Facilities Report

Project Information

Analyst	PK/LCG	Agency	
Jurisdiction		Time Period Analyzed	PM Peak - SB
Analysis Year	2040 - 4A South Alt. B PM - SB Overlap	Date	$6 / 30 / 2017$
Project Description	I-93 SB - from N of Exit 5 to S of Exit 4		
Facility Global Input	190.0	Density at Capacity, pc/mi/ln	45.0
Jam Density, pc/mi/ln	Total Segments	15	
Queue Discharge Capacity Drop, \%	7	Time Period Duration, min	15
Total Time Periods	1		

Segment Geometric Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	$\mathrm{a}->\mathrm{b}$	5280	4
2	Diverge	Diverge	$\mathrm{b}->\mathrm{c}$	1500	4
3	Basic	Basic	$\mathrm{c}->\mathrm{d}$	3920	4
4	Merge	Merge	$\mathrm{d}->\mathrm{e}$	1500	4
5	Basic	Basic	$\mathrm{e}->\mathrm{f}$	7615	4
6	Diverge	Diverge	$\mathrm{g}>\mathrm{h}$	1500	4
7	Basic	Basic	$\mathrm{h}>\mathrm{i}$	3990	4
8	Merge	Basic	$\mathrm{j}>\mathrm{j}$	1500	4
9	Overlap	Basic	$\mathrm{k}>\mathrm{l}$	650	4
10	Diverge	Diverge	$\mathrm{l}>\mathrm{m}$	1500	4
11	Basic	Basic	$\mathrm{m}>\mathrm{n}$	2325	4
12	Merge	Merge	$\mathrm{n}>\mathrm{o}$	1500	4
13	Basic	Basic	$\mathrm{o}>\mathrm{p}$	600	4
14	Merge	Merge	Basic		1500
15	Basic		5280	4	

Facility Segment Data

Segment 1: Basic															
Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & \text { (pc/mi/ln) } \end{aligned}$		LOS
1	0.94		0.982		5947		9600		0.62		69.0		21.6		C
Segment 2: Diverge															
Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.89	0.982	0.979	5947	693	9600	2100	0.62	0.33	67.6	61.7	22.0	23.2	C

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c} / \mathbf{h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS 1
0.94	0.982	5297	9600	0.55	69.8	19.0		

Segment 4: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.81	0.970	0.978	6083	720	9600	2100	0.63	0.34	64.6	63.1	23.5	18.6	B

Segment 5: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c} / \mathbf{h})$	Capacity $(\mathbf{p c} / \mathbf{h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.982	5915	9600	0.62	69.1	21.4	C

Segment 6: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.84	0.982	0.979	5915	1915	9600	2100	0.62	0.91	64.4	58.7	23.0	31.2	D

Segment 7: Basic

Time Period	PHF	fHV	Flow Rate $\mathbf{(p c / h})$	Capacity $(\mathbf{p c} / \mathbf{h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.982	4209	9600	0.44	70.0	15.0	B

Segment 8: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & \text { (pc/mi/ln) } \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.84	0.982	0.979	5437	1228	7200	2100	0.58	0.58	69.5	58.6	20.2	29.1	C

Segment 9: Overlap

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h})$	Density $\mathbf{(p c / m i} / \mathbf{l n})$	LOS
1	0.94	0.982	5303	9600	0.55	62.2	28.4	

Segment 10: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathbf{l n}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.84	0.982	0.979	5303	2055	7200	2100	0.74	0.98	62.2	58.3	28.4	30.2	D

Segment 11: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	d/c Ratio	Speed (mi/h)	Density (pc/mi/ln)	LOS
1	0.94	0.980	3479	9600	0.36	70.0	12.4	B
Segment 12: Merge								
Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	d/c Ratio	Speed (mi/h)	Density (pc/mi/ln)	LOS

	\mathbf{F}	\mathbf{R}	\mathbf{F}	\mathbf{R}	Freeway	Ramp	Freeway	Ramp	\mathbf{F}	\mathbf{R}	\mathbf{F}	\mathbf{R}	Freeway	Ramp	
1	0.94	0.82	0.980	0.980	3815	336	9600	2000	0.40	0.17	65.6	62.9	14.5	9.4	A

Segment 13: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $\mathbf{(p c / m i / l n)}$	LOS
1	0.94	0.980	3772	9600	0.39	70.0	13.5	

Segment 14: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & \text { (pc/mi/ln) } \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.82	0.980	0.980	4674	902	9600	2100	0.49	0.43	65.1	62.9	17.9	15.1	B

Segment 15: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity $(\mathbf{p c} / \mathbf{h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h)}$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.980	4559	9600	0.47	70.0	16.3	

Facility Time Period Results

\mathbf{T}	Speed, mi/h	Density, pc/mi/ln	Density, veh/mi/ln	Travel Time, min	LOS
1	68.4	19.3	18.9	6.7	C

Facility Overall Results

Space Mean Speed, mi/h	68.4	Density, veh $/ \mathrm{mi} / \mathrm{ln}$	18.9
Average Travel Time, min	6.7		

HCS 2010 Facilities Report

Project Information

Analyst	PK/LCG	Agency	CLD	
Jurisdiction		Time Period Analyzed	AM Peak - NB	
Analysis Year	2040 4A North Alt. C - AM-NB	Date	$6 / 30 / 2017$	
Project Description	I-93 NB - from S. of Exit 4 to N of Exit 5			
Facility Global Input				
Jam Density, pc/mi/ln	Density at Capacity, pc/mi/ln	45.0		
Queue Discharge Capacity Drop, \%	7	Total Segments	13	
Total Time Periods	1	Time Period Duration, min	15	

Segment Geometric Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	$\mathrm{a}->\mathrm{b}$	5280	4
2	Diverge	Diverge	$\mathrm{b} .->\mathrm{c}$	1500	4
3	Basic	Basic	$\mathrm{c}->\mathrm{d}$	4525	4
4	Merge	Merge	$\mathrm{d}->\mathrm{e}$	1500	4
5	Basic	Basic	$\mathrm{f}>\mathrm{f}$	4497	4
6	Diverge	Diverge	$\mathrm{g}>\mathrm{h}$	1500	4
7	Basic	Basic	$\mathrm{h}>\mathrm{j}$	2702	4
8	Merge	Merge	$\mathrm{j}>\mathrm{k}$	1500	4
9	Basic	Basic	$\mathrm{k}>\mathrm{l}$	1626	4
10	Diverge	Diverge	$\mathrm{l}>\mathrm{m}$	4100	4
11	Basic	Basic	$\mathrm{m}>\mathrm{n}$	1500	4
12	Merge	Merge	Basic	5280	4
13	Basic			4	4

Facility Segment Data

Segment 1: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c} / \mathbf{h})$	Capacity $(\mathbf{p c} / \mathbf{h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.979	3548	9600	0.37	70.0	12.7	B

Segment 2: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.77	0.979	0.964	3548	1017	9600	4200	0.37	0.24	68.4	60.9	13.0	-3.2	A
Segment 3: Basic															
Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
1	0.94		0.979		2727		9600		0.28		70.0		9.7		A

Segment 4: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.90	0.979	0.983	4677	1950	9600	2100	0.49	0.93	64.7	62.6	18.1	19.5	B

Segment 5: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.964	4674	9600	0.49	70.0	16.7	B

Segment 6: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		$\begin{aligned} & \text { Speed } \\ & \text { (mi/h) } \end{aligned}$		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.81	0.964	0.969	4674	325	9600	2100	0.49	0.15	69.0	62.7	16.9	19.0	B

Segment 7: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i} / \mathbf{l n})$	LOS
1	0.94	0.964	4392	9600	0.46	70.0	15.7	B

Segment 8: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{In}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.81	0.964	0.969	5953	1561	9600	2100	0.62	0.74	64.1	61.9	23.2	21.9	C

Segment 9: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $\mathbf{(p c / m i / l n)}$	LOS
1	0.94	0.964	5744	9600	0.60	69.4	20.7	

Segment 10: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.95	0.75	0.964	0.956	5684	802	9600	2000	0.59	0.40	63.9	56.0	22.2	25.1	C

Segment 11: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h})$	Density $\mathbf{(p c / m i} / \mathbf{l n})$	LOS
1	0.94	0.964	5109	9600	0.53	69.9	18.3	C

Segment 12: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.83	0.964	0.972	6125	1016	9600	2100	0.64	0.48	63.3	60.6	24.2	24.2	C

Segment 13: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	d/c Ratio	Speed (mi/h)	$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$	LOS
1	0.94	0.964	6014	9600	0.63	68.9	21.8	C

Facility Time Period Results

\mathbf{T}	Speed, mi/h	Density, pc/mi/ln	Density, veh/mi/ln	Travel Time, min	LOS
1	68.4	17.0	16.4	6.1	B

Facility Overall Results

HCS 2010 Facilities Report

Project Information

Analyst	PK/LCG	Agency		
Jurisdiction		Time Period Analyzed	AM Peak - SB	
Analysis Year	2040 4A North Alt C AM - SB	Date	$7 / 6 / 2017$	
Project Description	I-93 SB - from N of Exit 5 to S of Exit 4			
Facility Global Input				
Jam Density, pc/mi/ln	Density at Capacity, pc/mi/ln	45.0		
Queue Discharge Capacity Drop, \%	7	Total Segments	15	
Total Time Periods	1	Time Period Duration, min	15	

Segment Geometric Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	$\mathrm{a}->\mathrm{b}$	5280	4
2	Diverge	Diverge	$\mathrm{b}->\mathrm{c}$	1500	4
3	Basic	Basic	$\mathrm{c}->\mathrm{d}$	3920	4
4	Merge	Merge	$\mathrm{d}->\mathrm{e}$	1500	4
5	Basic	Basic	$\mathrm{e}->\mathrm{f}$	2705	4
6	Diverge	Diverge	$\mathrm{f}>\mathrm{g}$	$\mathrm{g}>\mathrm{h}$	1500
7	Basic	$\mathrm{h}>\mathrm{i}$	2850	4	
8	Merge	Merge	$\mathrm{i}>\mathrm{j}$	1500	4
9	Basic	Basic	$\mathrm{j}>\mathrm{k}$	4675	4
10	Diverge	Diverge	$\mathrm{l}>\mathrm{l}$	1500	4
11	Basic	Basic	$\mathrm{m}>\mathrm{n}$	2550	4
12	Merge	Merge	$\mathrm{n}>\mathrm{o}$	1500	4
13	Basic	Basic	$\mathrm{o}>\mathrm{p}$	600	4
14	Merge	Merge	Basic		1500
15	Basic			5280	4

Facility Segment Data

Segment 1: Basic

Time Period	PHF	fHV	Flow Rate $\mathbf{(p c / h})$	Capacity $(\mathbf{p c} / \mathbf{h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i} / \mathbf{l n})$	LOS
1	0.94	0.970	5994	9600	0.62	69.0	21.7	C

Segment 2: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{In}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.74	0.970	0.972	5994	646	9600	2100	0.62	0.31	67.8	61.9	22.1	25.2	C

Segment 3: Basic

Period	$\mathbf{(p c / h)}$						
(pc/h)	Ratio	(mi/h)	(pc/mi/ln)				
1	0.94	0.970	5484	9600	0.57	69.7	19.7

Segment 4: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.84	0.970	0.953	6421	937	9600	2100	0.67	0.45	63.4	61.0	25.3	23.9	C

Segment 5: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	d/c Ratio	Speed $(\mathrm{mi} / \mathrm{h})$ (mi/h)	$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$	LOS
1	0.94	0.970	6306	9600	0.66	68.4	23.0	C

Segment 6: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.84	0.970	0.967	6306	1939	9600	2100	0.66	0.92	64.3	58.6	24.5	32.9	D

Segment 7: Basic

Time Period	PHF	fHV	Flow Rate $\mathbf{(p c / h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h})$	Density $\mathbf{(p c / m i} / \mathbf{l n})$	LOS
1	0.94	0.970	4579	9600	0.48	70.0	16.4	B

Segment 8: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.84	1.000	0.967	5007	566	9600	2100	0.52	0.27	65.5	63.8	19.1	14.7	B

Segment 9: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c} / \mathbf{h})$	Capacity $(\mathbf{p c} / \mathbf{h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.980	5031	9600	0.52	70.0	18.0	B

Segment 10: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.95	0.970	0.975	5083	1215	9600	1900	0.53	0.64	59.7	51.3	21.3	22.5	C

Segment 11: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.980	3810	9600	0.40	70.0	13.6	

Segment 12: Merge

Time Period	PHF	fHV	Flow Rate $(\mathrm{pc} / \mathrm{h})$	Capacity $(\mathrm{pc} / \mathrm{h})$	d/c Ratio	Speed $(\mathrm{mi} / \mathrm{h})$	Density $(\mathrm{pc} / \mathrm{mi} / \mathrm{ln})$	LOS

	\mathbf{F}	\mathbf{R}	\mathbf{F}	\mathbf{R}	Freeway	Ramp	Freeway	Ramp	\mathbf{F}	\mathbf{R}	\mathbf{F}	\mathbf{R}	Freeway	Ramp	
1	0.94	0.82	0.980	0.970	4728	918	9600	2000	0.49	0.46	64.7	62.1	18.3	15.5	B

Segment 13: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $\mathbf{(p c / m i / l n)}$	LOS
1	0.94	0.980	4603	9600	0.48	70.0	16.4	

Segment 14: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi / h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.82	0.980	0.970	6401	1798	9600	2100	0.67	0.86	63.3	60.8	25.3	24.3	C

Segment 15: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c} / \mathbf{h})$	Capacity $(\mathbf{p c} / \mathbf{h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.980	6155	9600	0.64	68.7	22.4	

Facility Time Period Results

\mathbf{T}	Speed, mi/h	Density, pc/mi/ln	Density, veh/mi/ln	Travel Time, min	LOS
1	67.9	20.4	19.9	6.4	C

Facility Overall Results

Space Mean Speed, mi/h	67.9	Density, veh/mi/ln	19.9
Average Travel Time, min	6.4		

HCS 2010 Facilities Report

Project Information

Analyst	PK/LCG	Agency	CLD	
Jurisdiction		Time Period Analyzed	PM Peak - NB	
Analysis Year	2040 4A North Alt. C - PM-NB	Date	$6 / 30 / 2017$	
Project Description	I-93 NB - from S. of Exit 4 to N of Exit 5			
Facility Global Input				
Jam Density, pc/mi/ln	Density at Capacity, pc/mi/ln	45.0		
Queue Discharge Capacity Drop, \%	7	Total Segments	13	
Total Time Periods	1	Time Period Duration, min	15	

Segment Geometric Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	$\mathrm{a}->\mathrm{b}$	5280	4
2	Diverge	Diverge	$\mathrm{b} .->\mathrm{c}$	1500	4
3	Basic	Basic	$\mathrm{c}->\mathrm{d}$	4525	4
4	Merge	Merge	$\mathrm{d}->\mathrm{e}$	1500	4
5	Basic	Basic	$\mathrm{f}>\mathrm{f}$	4497	4
6	Diverge	Diverge	$\mathrm{g}>\mathrm{h}$	1500	4
7	Basic	Basic	$\mathrm{h}>\mathrm{j}$	2702	4
8	Merge	Merge	$\mathrm{j}>\mathrm{k}$	1500	4
9	Basic	Basic	$\mathrm{k}>\mathrm{l}$	1626	4
10	Diverge	Diverge	$\mathrm{l}>\mathrm{m}$	4100	4
11	Basic	Basic	$\mathrm{m}>\mathrm{n}$	1500	4
12	Merge	Merge	Basic	5280	4
13	Basic			4	4

Facility Segment Data

Segment 1: Basic

Time Period	PHF	fHV	Flow Rate $\mathbf{(p c / h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.979	6112	9600	0.64	68.8	22.2	

Segment 2: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.92	0.979	0.991	6112	2369	9600	4200	0.64	0.56	64.4	57.5	23.7	11.1	B
Segment 3: Basic															
Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
1	0.94		0.979		3765		9600		0.39		70.0		13.4		B

Segment 4: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.87	0.979	0.988	5306	1541	9600	2100	0.55	0.73	64.7	62.6	20.5	19.8	B

Segment 5: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c} / \mathbf{h})$	Capacity $(\mathbf{p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.985	5173	9600	0.54	69.9	18.5	

Segment 6: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.84	0.985	0.983	5173	279	9600	2100	0.54	0.13	68.9	62.8	18.8	20.6	C

Segment 7: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c} / \mathbf{h})$	Capacity $(\mathbf{p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.985	4925	9600	0.51	70.0	17.6	

Segment 8: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{In}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.84	0.985	0.983	6245	1320	9600	2100	0.65	0.63	64.1	62.0	24.4	21.8	C

Segment 9: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.985	6102	9600	0.64	68.8	22.2	C

Segment 10: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.67	0.985	0.964	6102	1068	9600	2100	0.64	0.51	66.7	60.8	22.9	28.0	C

Segment 11: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h})$	Density $\mathbf{(p c / m i} / \mathbf{l n})$	LOS
1	0.94	0.985	5357	9600	0.56	69.8	19.2	C

Segment 12: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		$\begin{aligned} & \text { Speed } \\ & (\mathrm{mi} / \mathrm{h}) \end{aligned}$		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.89	0.985	0.988	6119	762	9600	2100	0.64	0.36	63.6	61.1	24.1	23.1	C

Segment 13: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	d/c Ratio	Speed (mi/h)	$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$	LOS
1	0.94	0.985	6081	9600	0.63	68.8	22.1	C

Facility Time Period Results

\mathbf{T}	Speed, mi/h	Density, pc/mi/ln	Density, veh/mi/ln	Travel Time, min	LOS
1	68.3	20.0	19.7	6.2	C

Facility Overall Results

Space Mean Speed, mi/h	68.3	Density, veh/mi/ln	19.7
Average Travel Time, min	6.2		

HCS 2010 Facilities Report

Project Information

Analyst	PK/LCG	Agency		
Jurisdiction		Time Period Analyzed	PM Peak - SB	
Analysis Year	2040 4A North Alt C PM - SB	Date	$7 / 6 / 2017$	
Project Description	I-93 SB - from N of Exit 5 to S of Exit 4			
Facility Global Input				
Jam Density, pc/mi/ln	Density at Capacity, pc/mi/ln	45.0		
Queue Discharge Capacity Drop, \%	7	Total Segments	15	
Total Time Periods	1	Time Period Duration, min	15	

Segment Geometric Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	$\mathrm{a}->\mathrm{b}$	5280	4
2	Diverge	Diverge	$\mathrm{b}->\mathrm{c}$	1500	4
3	Basic	Basic	$\mathrm{c}->\mathrm{d}$	3920	4
4	Merge	Merge	$\mathrm{d}->\mathrm{e}$	1500	4
5	Basic	Basic	$\mathrm{e}->\mathrm{f}$	2705	4
6	Diverge	Diverge	$\mathrm{f}>\mathrm{g}$	$\mathrm{g}>\mathrm{h}$	1500
7	Basic	$\mathrm{h}>\mathrm{i}$	2850	4	
8	Merge	Merge	$\mathrm{i}>\mathrm{j}$	1500	4
9	Basic	Basic	$\mathrm{j}>\mathrm{k}$	4675	4
10	Diverge	Diverge	$\mathrm{l}>\mathrm{l}$	1500	4
11	Basic	Basic	$\mathrm{m}>\mathrm{n}$	2550	4
12	Merge	Merge	$\mathrm{n}>\mathrm{o}$	1500	4
13	Basic	Basic	$\mathrm{o}>\mathrm{p}$	600	4
14	Merge	Merge	Basic		1500
15	Basic			5280	4

Facility Segment Data

Segment 1: Basic

Time Period	PHF	fHV	Flow Rate $\mathbf{(p c / h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i} / \mathbf{l n})$	LOS
1	0.94	0.982	5877	9600	0.61	69.2	21.2	C

Segment 2: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & \text { (pc/mi/ln) } \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.89	0.982	0.979	5877	658	9600	2100	0.61	0.31	67.7	61.8	21.7	24.8	C

Segment 3: Basic

Period	$\mathbf{(p c / h)}$						
(pc/h)	Ratio	(mi/h)	(pc/mi/ln)				
1	0.94	0.982	5260	9600	0.55	69.8	18.8

Segment 4: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.81	0.982	0.978	6055	795	9600	2100	0.63	0.38	63.8	61.5	23.7	22.2	C

Segment 5: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	d/c Ratio	Speed $(\mathrm{mi} / \mathrm{h})$ (mi/h)	$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$	LOS
1	0.94	0.970	6016	9600	0.63	68.9	21.8	C

Segment 6: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.86	0.982	0.981	5942	1665	9600	2100	0.62	0.79	65.1	59.3	22.8	30.2	D

Segment 7: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.982	4420	9600	0.46	70.0	15.8	

Segment 8: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.86	0.982	0.981	4906	486	9600	2100	0.51	0.23	65.5	63.9	18.7	14.1	B

Segment 9: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c} / \mathbf{h})$	Capacity $(\mathbf{p c} / \mathbf{h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.980	4874	9600	0.51	70.0	17.4	B

Segment 10: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.92	0.980	0.986	4874	1598	9600	2100	0.51	0.76	65.0	59.4	18.7	23.6	C

Segment 11: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	d/c Ratio	Speed (mi/h)	$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$	LOS
1	0.94	0.980	3300	9600	0.34	70.0	11.8	B
Segment 12: Merge								
Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	d/c Ratio	Speed (mi/h)	$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$	LOS

	\mathbf{F}	\mathbf{R}	\mathbf{F}	\mathbf{R}	Freeway	Ramp	Freeway	Ramp	\mathbf{F}	\mathbf{R}	\mathbf{F}	\mathbf{R}	Freeway	Ramp	
1	0.94	0.82	0.980	0.980	3723	423	9600	2000	0.39	0.21	65.5	62.7	14.2	10.2	B

Segment 13: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $\mathbf{(p c / m i / l n)}$	LOS
1	0.94	0.980	3669	9600	0.38	70.0	13.1	

Segment 14: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & \text { (pc/mi/ln) } \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.82	0.980	0.980	4509	840	9600	2100	0.47	0.40	65.7	63.8	17.2	14.3	B

Segment 15: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	\mathbf{d} / \mathbf{c} Ratio	Speed (mi/h)	Density (pc/mi/ln)	LOS
1	0.94	0.980	4402	9600	0.46	70.0	15.7	

Facility Time Period Results

\mathbf{T}	Speed, mi/h	Density, pc/mi/ln	Density, veh/mi/ln	Travel Time, min	LOS
1	68.5	18.2	17.8	6.4	C

Facility Overall Results

Space Mean Speed, mi/h	68.5	Density, veh $/ \mathrm{mi} / \mathrm{ln}$	17.8
Average Travel Time, min	6.4		

HCS 2010 Facilities Report

Project Information

Analyst	PK/LCG	Agency	CLD	
Jurisdiction		Time Period Analyzed	AM Peak - NB	
Analysis Year	$2040 ~ 4 A ~ N o r t h ~ A l t ~ D ~-~ A M ~-~$ NB	Date	$6 / 20 / 2017$	
Project Description	I-93 NB - from S. of Exit 4 to N of Exit 5			
Facility Global Input				
Jam Density, pc/mi/ln	Density at Capacity, pc/mi/ln	45.0		
Queue Discharge Capacity Drop, \%	7	Total Segments	13	
Total Time Periods	1	Time Period Duration, min	15	

Segment Geometric Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	$\mathrm{a}->\mathrm{b}$	5280	4
2	Diverge	Diverge	$\mathrm{b} .->\mathrm{c}$	1500	4
3	Basic	Basic	$\mathrm{c}->\mathrm{d}$	4525	4
4	Merge	Merge	$\mathrm{d}->\mathrm{e}$	1500	4
5	Basic	Basic	$\mathrm{e}>\mathrm{f}$	4497	4
6	Diverge	Diverge	$\mathrm{f}>\mathrm{g}$	1500	4
7	Basic	Basic	$\mathrm{h}>\mathrm{j}$	2702	4
8	Merge	Merge	$\mathrm{j}>\mathrm{j}$	1500	4
9	Basic	Basic	$\mathrm{k}>\mathrm{l}$	1626	4
10	Diverge	Diverge	$\mathrm{l}>\mathrm{m}$	1500	4
11	Basic	Basic	$\mathrm{m}>\mathrm{n}$	4100	4
12	Merge	Merge	Basic		1500
13	Basic		5280	4	
				4	

Facility Segment Data

Segment 1: Basic															
Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & \text { (pc/mi/ln) } \end{aligned}$		LOS
1	0.94		0.979		3548		9600		0.37		70.0		12.7		B
Segment 2: Diverge															
Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.77	0.979	0.964	3548	1058	9600	4200	0.37	0.25	68.2	60.8	13.0	-2.9	A
Segment 3: Basic															
Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & \text { (pc/mi/ln) } \end{aligned}$		LOS

1	0.94		0.979		2695		9600		0.28		70.0		9.6		A
Segment 4: Merge															
Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.90	0.979	0.983	4583	1888	9600	2100	0.48	0.90	64.8	62.8	17.7	19.0	B

Segment 5: Basic

Time Period	PHF	fHV	Flow Rate $\mathbf{(p c / h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h})$	Density $\mathbf{(p c / m i} / \mathbf{l n})$	LOS
1	0.94	0.964	4580	9600	0.48	70.0	16.4	

Segment 6: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.81	0.964	0.969	4580	172	9600	2100	0.48	0.08	69.4	63.1	16.5	17.9	B

Segment 7: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.964	4431	9600	0.46	70.0	15.8	B

Segment 8: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.81	0.964	0.969	6017	1586	9600	2100	0.63	0.76	64.0	61.8	23.5	22.2	C

Segment 9: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.964	5805	9600	0.60	69.3	20.9	C

Segment 10: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.75	0.964	0.956	5805	851	9600	2100	0.60	0.41	67.3	61.3	21.6	25.8	C

Segment 11: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c} / \mathbf{h})$	Capacity $(\mathbf{p c} / \mathbf{h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.964	5132	9600	0.53	69.9	18.4	C

Segment 12: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	

1	0.94	0.83	0.964	0.972	6167	1035	9600	2100	0.64	0.49	63.4	60.7	24.3	24.4	C
Segment 13: Basic															
Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
1	0.94		0.964		6053		9600		0.63		68.9		22.0		C
Facility Time Period Results															
T	Speed, mi/h				Density, pc/mi/ln		Density, veh/mi/ln			Travel Time, min			LOS		
1	68.6				17.0		16.4			6.1			B		
Facility Overall Results															
Space Mean Speed, mi/h					68.6			Density, veh/mi/ln					16.4		
Average Travel Time, min					6.1										
Copyright © 2017 University of Florida. All Rights Reserved.							HCS 2010 Facilities Version 6.90 2040 4A North Alt D AM-NB.xuf						Generated: 7/19/2017 10:34:20 A		

HCS 2010 Facilities Report

Project Information

Analyst	PK/LCG	Agency	
Jurisdiction		Time Period Analyzed	AM Peak - SB
Analysis Year	20404 4 North Alt D AM - SB	Date	$7 / 6 / 2017$
Project Description	I-93 SB - from N of Exit 5 to S of Exit 4		

Facility Global Input

Jam Density, pc/mi/ln	190.0	Density at Capacity, pc/mi/ln	45.0
Queue Discharge Capacity Drop, \%	7	Total Segments	15
Total Time Periods	1	Time Period Duration, min	15

Segment Geometric Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	$\mathrm{a}->\mathrm{b}$	5280	4
2	Diverge	Diverge	$\mathrm{b}->\mathrm{c}$	1500	4
3	Basic	Basic	$\mathrm{c}->\mathrm{d}$	3920	4
4	Merge	Merge	$\mathrm{d}->\mathrm{e}$	1500	4
5	Basic	Basic	$\mathrm{e}->\mathrm{f}$	2705	4
6	Diverge	Diverge	$\mathrm{f}>\mathrm{g}$	$\mathrm{g}>\mathrm{h}$	1500
7	Basic	Basic	$\mathrm{h}>\mathrm{i}$	2850	4
8	Merge	Merge	$\mathrm{j}>\mathrm{k}$	1500	4
9	Basic	Basic	$\mathrm{k}>\mathrm{l}$	4675	4
10	Diverge	Diverge	$\mathrm{l}>\mathrm{m}$	1500	4
11	Basic	Basic	$\mathrm{m}>\mathrm{n}$	2550	4
12	Merge	Merge	$\mathrm{n}>\mathrm{o}$	1500	4
13	Basic	Basic	$\mathrm{o}>\mathrm{p}$	600	4
14	Merge	Merge	Basic		1500
15	Basic			5280	4

Facility Segment Data

Segment 1: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h)}$	Density $\mathbf{(p c / m i / l n)}$	LOS
1	0.94	0.970	5994	9600	0.62	69.0	21.7	C

Segment 2: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{gathered} \text { Density } \\ (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{gathered}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.74	0.970	0.972	5994	653	9600	2100	0.62	0.31	67.7	61.8	22.1	25.2	C

Segment 3: Basic

Period	$\mathbf{(p c / h)}$						
(pc/h)	Ratio	(mi/h)	(pc/mi/ln)				
1	0.94	0.970	5478	9600	0.57	69.7	19.7

Segment 4: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.84	0.970	0.953	6409	931	9600	2100	0.67	0.44	63.4	61.0	25.3	23.9	C

Segment 5: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c} / \mathbf{h})$	Capacity (pc/h)	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h})$	Density $(\mathbf{p c / m i} / \mathbf{l n})$	LOS
1	0.94	0.970	6295	9600	0.66	68.4	23.0	C

Segment 6: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.84	0.970	0.967	6295	1908	9600	2100	0.66	0.91	64.4	58.7	24.4	32.7	D

Segment 7: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.970	4595	9600	0.48	70.0	16.4	B

Segment 8: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.84	1.000	0.967	4974	517	9600	2100	0.52	0.25	65.5	63.8	19.0	14.4	B

Segment 9: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c} / \mathbf{h})$	Capacity $(\mathbf{p c} / \mathbf{h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.980	5004	9600	0.52	70.0	17.9	B

Segment 10: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.95	0.970	0.975	5056	1188	9600	1900	0.53	0.63	59.9	51.4	21.1	22.3	C

Segment 11: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.980	3810	9600	0.40	70.0	13.6	

Segment 12: Merge

Time Period	PHF	fHV	Flow Rate $(\mathrm{pc} / \mathrm{h})$	Capacity $(\mathrm{pc} / \mathrm{h})$	d/c Ratio	Speed $(\mathrm{mi} / \mathrm{h})$	Density $(\mathrm{pc} / \mathrm{mi} / \mathrm{ln})$	LOS

	\mathbf{F}	\mathbf{R}	\mathbf{F}	\mathbf{R}	Freeway	Ramp	Freeway	Ramp	\mathbf{F}	\mathbf{R}	\mathbf{F}	\mathbf{R}	Freeway	Ramp	
1	0.94	0.82	0.980	0.970	4728	918	9600	2000	0.49	0.46	64.7	62.1	18.3	15.5	B

Segment 13: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $\mathbf{(p c / m i / l n)}$	LOS
1	0.94	0.980	4603	9600	0.48	70.0	16.4	

Segment 14: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathbf{l n}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.82	0.980	0.970	6388	1785	9600	2100	0.67	0.85	63.3	60.8	25.2	24.2	C

Segment 15: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c} / \mathbf{h})$	Capacity $(\mathbf{p c} / \mathbf{h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.980	6144	9600	0.64	68.7	22.4	

Facility Time Period Results

\mathbf{T}	Speed, mi/h	Density, pc/mi/ln	Density, veh/mi/ln	Travel Time, min	LOS
1	67.9	20.3	19.8	6.4	C

Facility Overall Results

Space Mean Speed, mi/h	67.9	Density, veh/mi/ln	19.8
Average Travel Time, min	6.4		

HCS 2010 Facilities Report

Project Information

Analyst	PK/LCG	Agency	CLD	
Jurisdiction		Time Period Analyzed	PM Peak - NB	
Analysis Year	2040 4A North Alt D - PM-NB	Date	$6 / 20 / 2017$	
Project Description	I-93 NB - from S. of Exit 4 to N of Exit 5			
Facility Global Input				
Jam Density, pc/mi/ln	Density at Capacity, pc/mi/ln	45.0		
Queue Discharge Capacity Drop, \%	7	Total Segments	13	
Total Time Periods	1	Time Period Duration, min	15	

Segment Geometric Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	$\mathrm{a}->\mathrm{b}$	5280	4
2	Diverge	Diverge	$\mathrm{b} .->\mathrm{c}$	1500	4
3	Basic	Basic	$\mathrm{c}->\mathrm{d}$	4525	4
4	Merge	Merge	$\mathrm{d}->\mathrm{e}$	1500	4
5	Basic	Basic	$\mathrm{f}>\mathrm{f}$	4497	4
6	Diverge	Diverge	$\mathrm{g}>\mathrm{h}$	1500	4
7	Basic	Basic	$\mathrm{h}>\mathrm{j}$	2702	4
8	Merge	Merge	$\mathrm{j}>\mathrm{k}$	1500	4
9	Basic	Basic	$\mathrm{k}>\mathrm{l}$	1626	4
10	Diverge	Diverge	$\mathrm{l}>\mathrm{m}$	4100	4
11	Basic	Basic	$\mathrm{m}>\mathrm{n}$	1500	4
12	Merge	Merge	Basic	5280	4
13	Basic			4	4

Facility Segment Data

Segment 1: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $(\mathbf{p c} / \mathbf{h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.979	6112	9600	0.64	68.8	22.2	C

Segment 2: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.92	0.979	0.991	6112	2468	9600	4200	0.64	0.59	64.1	57.3	23.8	11.6	B
Segment 3: Basic															
Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
1	0.94		0.979		3667		9600		0.38		70.0		13.1		B

Segment 4: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.87	0.979	0.988	5162	1495	9600	2100	0.54	0.71	64.8	62.8	19.9	19.1	B

Segment 5: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.985	5033	9600	0.52	70.0	18.0	B

Segment 6: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.84	0.985	0.983	5033	145	9600	2100	0.52	0.07	69.2	63.1	18.2	19.5	B

Segment 7: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h)}$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.985	4903	9600	0.51	70.0	17.5	B

Segment 8: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{In}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.84	0.985	0.983	6247	1344	9600	2100	0.65	0.64	64.0	62.0	24.4	21.9	C

Segment 9: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.985	6102	9600	0.64	68.8	22.2	

Segment 10: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d / cRatio		Speed (mi/h)		Density (pc/mi/ln)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.67	0.985	0.964	6102	1146	9600	2100	0.64	0.55	66.5	60.6	22.9	28.4	D

Segment 11: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h})$	Density $\mathbf{(p c / m i} / \mathbf{l n})$	LOS
1	0.94	0.985	5303	9600	0.55	69.8	19.0	C

Segment 12: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.83	0.985	0.988	6132	829	9600	2100	0.64	0.39	63.5	61.0	24.1	23.4	C

Segment 13: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	d/c Ratio	Speed (mi/h)	$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$	LOS
1	0.94	0.985	6037	9600	0.63	68.9	21.9	C

Facility Time Period Results

\mathbf{T}	Speed, mi/h	Density, pc/mi/ln	Density, veh/mi/ln	Travel Time, min	LOS
1	68.4	19.8	19.5	6.2	C

Facility Overall Results

Space Mean Speed, mi/h	68.4	Density, veh/mi/ln	19.5
Average Travel Time, min	6.2		

HCS 2010 Facilities Report

Project Information

Analyst	PK/LCG	Agency		
Jurisdiction		Time Period Analyzed	PM Peak - SB	
Analysis Year	2040 4A North Alt D PM - SB	Date	$7 / 6 / 2017$	
Project Description	I-93 SB - from N of Exit 5 to S of Exit 4			
Facility Global Input				
Jam Density, pc/mi/ln	Density at Capacity, pc/mi/ln	45.0		
Queue Discharge Capacity Drop, \%	7	Total Segments	15	
Total Time Periods	1	Time Period Duration, min	15	

Segment Geometric Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	$\mathrm{a}->\mathrm{b}$	5280	4
2	Diverge	Diverge	$\mathrm{b}->\mathrm{c}$	1500	4
3	Basic	Basic	$\mathrm{c}->\mathrm{d}$	3920	4
4	Merge	Merge	$\mathrm{d}->\mathrm{e}$	1500	4
5	Basic	Basic	$\mathrm{e}->\mathrm{f}$	2705	4
6	Diverge	Diverge	$\mathrm{f}>\mathrm{g}$	$\mathrm{g}>\mathrm{h}$	1500
7	Basic	$\mathrm{h}>\mathrm{i}$	2850	4	
8	Merge	Merge	$\mathrm{i}>\mathrm{j}$	1500	4
9	Basic	Basic	$\mathrm{j}>\mathrm{k}$	4675	4
10	Diverge	Diverge	$\mathrm{l}>\mathrm{l}$	1500	4
11	Basic	Basic	$\mathrm{m}>\mathrm{n}$	2550	4
12	Merge	Merge	$\mathrm{n}>\mathrm{o}$	1500	4
13	Basic	Basic	$\mathrm{o}>\mathrm{p}$	600	4
14	Merge	Merge	Basic		1500
15	Basic			5280	4

Facility Segment Data

Segment 1: Basic

Time Period	PHF	fHV	Flow Rate $\mathbf{(p c / h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i} / \mathbf{l n})$	LOS
1	0.94	0.982	5872	9600	0.61	69.2	21.2	C

Segment 2: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & \text { (pc/mi/ln) } \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.89	0.982	0.979	5872	664	9600	2100	0.61	0.32	67.8	61.8	21.7	24.8	C

Segment 3: Basic

Period	$\mathbf{(p c / h)}$						
(pc/h)	Ratio	(mi/h)	(pc/mi/ln)				
1	0.94	0.982	5249	9600	0.55	69.9	18.8

Segment 4: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.81	0.982	0.978	6038	789	9600	2100	0.63	0.38	63.8	61.5	23.7	22.1	C

Segment 5: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	d/c Ratio	Speed $(\mathrm{mi} / \mathrm{h})$ (mi/h)	$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$	LOS
1	0.94	0.970	5999	9600	0.62	69.0	21.7	C

Segment 6: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.86	0.982	0.981	5926	1636	9600	2100	0.62	0.78	65.2	59.4	22.7	30.0	D

Segment 7: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.982	4431	9600	0.46	70.0	15.8	

Segment 8: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.86	0.982	0.981	4875	444	9600	2100	0.51	0.21	65.6	63.9	18.6	13.8	B

Segment 9: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity $(\mathbf{p c} / \mathbf{h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.980	4847	9600	0.50	70.0	17.3	

Segment 10: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d / c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.92	0.980	0.986	4847	1565	9600	2100	0.50	0.75	65.1	59.5	18.6	23.4	C

Segment 11: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	d/c Ratio	$\begin{aligned} & \text { Speed } \\ & \text { (mi/h) } \end{aligned}$	$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$	LOS
1	0.94	0.980	3305	9600	0.34	70.0	11.8	B
Segment 12: Merge								
Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	d / c Ratio	Speed (mi/h)	Density (pc/mi/ln)	LOS

	\mathbf{F}	\mathbf{R}	\mathbf{F}	\mathbf{R}	Freeway	Ramp	Freeway	Ramp	F	\mathbf{R}	\mathbf{F}	\mathbf{R}	Freeway	Ramp	
1	0.94	0.82	0.980	0.980	3728	423	9600	2000	0.39	0.21	65.5	62.7	14.2	10.3	B

Segment 13: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $\mathbf{(p c / m i / l n)}$	LOS
1	0.94	0.980	3675	9600	0.38	70.0	13.1	

Segment 14: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & \text { (pc/mi/ln) } \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.82	0.980	0.980	4515	840	9600	2100	0.47	0.40	65.7	63.8	17.2	14.3	B

Segment 15: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	\mathbf{d} / \mathbf{c} Ratio	Speed (mi/h)	Density (pc/mi/ln)	LOS
1	0.94	0.980	4407	9600	0.46	70.0	15.7	

Facility Time Period Results

\mathbf{T}	Speed, mi/h	Density, pc/mi/ln	Density, veh/mi/ln	Travel Time, min	LOS
1	68.6	18.2	17.8	6.4	C

Facility Overall Results

Space Mean Speed, mi/h	68.6	Density, veh $/ \mathrm{mi} / \mathrm{ln}$	17.8
Average Travel Time, min	6.4		

HCS 2010 Facilities Report

Project Information

Analyst	PK/LCG	Agency	CLD	
Jurisdiction		Time Period Analyzed	AM Peak - NB	
Analysis Year	2040 Alternative F - AM-NB	Date	$6 / 8 / 2017$	
Project Description	I-93 NB - from S. of Exit 4 to N of Exit 5			
Facility Global Input				
Jam Density, pc/mi/ln	Density at Capacity, pc/mi/ln	45.0		
Queue Discharge Capacity Drop, \%	7	Total Segments	9	
Total Time Periods	1	Time Period Duration, min	15	

Segment Geometric Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	$\mathrm{a}->\mathrm{b}$	5280	4
2	Diverge	Diverge	$\mathrm{b} .->\mathrm{c}$	1500	4
3	Basic	Basic	$\mathrm{c}->\mathrm{d}$	4525	4
4	Merge	Merge	$\mathrm{d}->\mathrm{e}$	1500	4
5	Basic	Basic	$\mathrm{f}->\mathrm{f}$	11825	4
6	Diverge	Diverge	$\mathrm{g}->\mathrm{h}$	1500	4
7	Basic	Basic	$\mathrm{h}->\mathrm{i}$	4100	4
8	Merge	Merge	Basic	1500	4
9	Basic			5280	4

Facility Segment Data

Segment 1: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	d/c Ratio	Speed (mi/h)	$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{In}) \end{aligned}$	LOS
1	0.94	0.979	3542	9600	0.37	70.0	12.7	B

Segment 2: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.77	0.979	0.964	3542	1105	9600	4200	0.37	0.26	68.0	60.7	13.0	-2.6	A

Segment 3: Basic

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		$\begin{gathered} \text { LOS } \\ \hline \text { A } \end{gathered}$
1	0.94		0.979		2437		9600		0.28		70.0		8.7		
Segment 4: Merge															
Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d / c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	

1	0.94	0.90	0.973	0.983	4537	2622	9600	2100	0.55	1.25	53.3	61.7	45.0	21.9	C
Segment 5: Basic															
Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
1	0.94		0.964		4537		9600		0.55		70.0		16.2		B
Segment 6: Diverge															
Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.75	0.964	0.956	4537	753	9600	2100	0.55	0.36	67.8	61.6	16.7	20.6	C

Segment 7: Basic

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
1	0.94		0.964		3784		9600		0.49		70.0		13.5		B
Segment 8: Merge															
Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.83	0.964	0.972	5513	1729	9600	2100	0.67	0.82	63.1	60.3	21.8	25.3	C

Segment 9: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.964	5513	9600	0.65	69.6	19.8	

Facility Time Period Results

\mathbf{T}	Speed, mi/h	Density, pc/mi/ln	Density, veh/mi/ln	Travel Time, min	LOS
1	68.4	16.3	15.8	6.1	B

Facility Overall Results

Space Mean Speed, mi/h	68.4	Density, veh/mi/ln	15.8
Average Travel Time, min	6.1		
Copyright © 2017 University of Florida. All Rights Reserved.		HCS 2010 Facilities Version 6.90 2040 Alternative F AM-NB.xuf	Generated: 7/14/2017 7:36:54 PM

HCS 2010 Facilities Report

Project Information

Analyst	PK/LCG	Agency	
Jurisdiction		Time Period Analyzed	AM Peak - SB
Analysis Year	2040 - Alternative F AM-SB	Date	$6 / 18 / 2017$
Project Description	I-93 SB - from N of Exit 5 to S of Exit 4		
Facility Global Input	190.0	Density at Capacity, pc/mi/ln	45.0
Jam Density, pc/mi/ln	Total Segments	11	
Queue Discharge Capacity Drop, \%	7	Time Period Duration, min	15
Total Time Periods	1		

Segment Geometric Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	$\mathrm{a}->\mathrm{b}$	5280	4
2	Diverge	Diverge	$\mathrm{b}->\mathrm{c}$	1500	4
3	Basic	Basic	$\mathrm{c}->\mathrm{d}$	3920	4
4	Merge	Merge	$\mathrm{d}->\mathrm{e}$	1500	4
5	Basic	Basic	$\mathrm{f}->\mathrm{f}$	11730	4
6	Diverge	Diverge	$\mathrm{g}->\mathrm{h}$	1500	4
7	Basic	Basic	$\mathrm{h}->\mathrm{i}$	2550	4
8	Merge	Merge	$\mathrm{i}->\mathrm{j}$	1500	4
9	Basic	Basic	$\mathrm{j}->\mathrm{k}$	600	4
10	Merge	Merge	Basic	1500	4
11	Basic		5280	4	

Facility Segment Data
Segment 1: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c} / \mathbf{h})$	Capacity $(\mathbf{p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i} / \mathbf{l n})$	LOS
1	0.94	0.970	5582	9600	0.58	69.6	20.1	

Segment 2: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.74	0.970	0.972	5582	1383	9600	2100	0.58	0.66	65.9	60.0	21.2	25.1	C

Segment 3: Basic

Time Period	PHF	fHV	Flow Rate ($\mathbf{p c / h}$)	Capacity (pc/h)	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h})$	Density (pc/mi/ln)	LOS
1	0.94	0.970	4491	9600	0.47	70.0	16.0	B

Segment 4: Merge

Period					(pc/h)		(pc/h)		Ratio		(mi/h)		(pc/mi/ln)		
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.84	0.970	0.953	5428	937	9600	2100	0.57	0.45	64.8	62.9	20.9	17.5	B

Segment 5: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity $(\mathbf{p c} / \mathbf{h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.970	5314	9600	0.55	69.8	19.0	C

Segment 6: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.95	0.970	0.975	5314	1792	9600	2100	0.55	0.85	64.6	59.0	20.6	26.2	C

Segment 7: Basic

Time Period	PHF	fHV	Flow Rate ($\mathbf{p c / h}$)	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h})$	Density (pc/mi/ln)	LOS
1	0.94	0.980	3457	9600	0.36	70.0	12.3	

Segment 8: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & \text { (pc/mi/ln) } \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.82	0.980	0.970	4796	1339	9600	2000	0.50	0.67	64.3	61.7	18.6	17.5	B

Segment 9: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.980	4614	9600	0.48	70.0	16.5	B

Segment 10: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.82	0.980	0.970	6387	1773	9600	2100	0.67	0.84	62.8	60.1	25.4	24.2	C

Segment 11: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity $(\mathbf{p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.980	6144	9600	0.64	68.7	22.4	

Facility Time Period Results

T	Speed, mi/h	Density, pc/mi/ln	Density, veh/mi/ln	Travel Time, min	LOS
1	68.5	19.3	18.8	6.1	C
Facility Overall Results					
Space Mean Speed, mi/h		68.5	Density, veh/m		18.8
Average Travel Time, min		6.1			

HCS 2010 Facilities Report

Project Information

Analyst	PK/LCG	Agency	CLD	
Jurisdiction		Time Period Analyzed	PM Peak - NB	
Analysis Year	2040 Alternative F PM - NB	Date	$6 / 27 / 2017$	
Project Description	I-93 NB - from S. of Exit 4 to N of Exit 5			
Facility Global Input				
Jam Density, pc/mi/ln	Density at Capacity, pc/mi/ln	45.0		
Queue Discharge Capacity Drop, \%	7	Total Segments	9	
Total Time Periods	1	Time Period Duration, min	15	

Segment Geometric Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	$\mathrm{a}->\mathrm{b}$	5280	4
2	Diverge	Diverge	$\mathrm{b} .->\mathrm{c}$	1500	4
3	Basic	Basic	$\mathrm{c}->\mathrm{d}$	4525	4
4	Merge	Merge	$\mathrm{d}->\mathrm{e}$	1500	4
5	Basic	Basic	$\mathrm{f}->\mathrm{f}$	11825	4
6	Diverge	Diverge	$\mathrm{g}->\mathrm{h}$	1500	4
7	Basic	Basic	$\mathrm{h}->\mathrm{i}$	4100	4
8	Merge	Merge	Basic	1500	4
9	Basic			5280	4

Facility Segment Data

Segment 1: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c} / \mathbf{h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $\mathbf{(m i / h})$	Density $(\mathbf{p c} / \mathbf{m i} / \mathbf{l n})$	LOS
1	0.94	0.979	6102	9600	0.64	68.8	22.2	C

Segment 2: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.92	0.979	0.991	6102	2583	9600	4200	0.64	0.62	63.7	57.0	23.9	12.5	B

Segment 3: Basic

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)		LOS B
1	0.94		0.979		3542		9600		0.37		70.0		12.7		
Segment 4: Merge															
Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d / c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	

1	0.94	0.87	0.979	0.988	5613	2071	9600	2100	0.58	0.99	63.7	61.3	22.0	23.0	C

Segment 5: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $(\mathbf{p c / m i} / \mathbf{l n})$	LOS
1	0.94	0.985	5443	9600	0.57	69.7	19.5	

Segment 6: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d / cRatio		Speed (mi/h)		Density (pc/mi/ln)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.67	0.985	0.964	5443	1014	9600	2100	0.57	0.48	66.9	60.9	20.3	25.3	C

Segment 7: Basic

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
1	0.94		0.985		4736		9600		0.49		70.0		16.9		B
Segment 8: Merge															
Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.89	0.985	0.988	6032	1296	9600	2100	0.63	0.62	63.5	60.9	23.7	24.1	C

Segment 9: Basic

Time Period	PHF	fHV	Flow Rate $\mathbf{(p c / h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i} / \mathbf{h})$	Density $\mathbf{(p c / m i / l n)}$	LOS
1	0.94	0.985	5967	9600	0.62	69.0	21.6	

Facility Time Period Results

\mathbf{T}	Speed, mi/h	Density, pc/mi/ln	Density, veh/mi/ln	Travel Time, min	LOS
1	68.6	19.6	19.2	6.1	C

Facility Overall Results

Space Mean Speed, mi/h	68.6	Density, veh/mi/ln	19.2
Average Travel Time, min	6.1		
Copyright © 2017 University of Florida. All Rights Reserved.	HCS 2010 Facilities Version 6.90		

HCS 2010 Facilities Report

Project Information

Analyst	PK/LCG	Agency		
Jurisdiction		Time Period Analyzed	PM Peak - SB	
Analysis Year	2040 Alternative F - PM	Date	$6 / 18 / 2017$	
Project Description	I-93 SB - from N of Exit 5 to S of Exit 4			
Facility Global Input				
Jam Density, pc/mi/ln	Density at Capacity, pc/mi/ln	45.0		
Queue Discharge Capacity Drop, \%	7	Total Segments	11	
Total Time Periods	3	Time Period Duration, min	15	

Segment Geometric Data

No.	Coded	Analyzed	Name	Length, ft	Lanes
1	Basic	Basic	$\mathrm{a}->\mathrm{b}$	5280	4
2	Diverge	Diverge	$\mathrm{b}->\mathrm{c}$	1500	4
3	Basic	Basic	$\mathrm{c}->\mathrm{d}$	3920	4
4	Merge	Merge	$\mathrm{d}->\mathrm{e}$	1500	4
5	Basic	Basic	$\mathrm{f}->\mathrm{f}$	11730	4
6	Diverge	Diverge	$\mathrm{g}->\mathrm{h}$	1500	4
7	Basic	Basic	$\mathrm{h}->\mathrm{i}$	2550	4
8	Merge	Merge	$\mathrm{i}->\mathrm{j}$	1500	4
9	Basic	Basic	$\mathrm{j}->\mathrm{k}$	600	4
10	Merge	Merge	Basic		1500
11	Basic		5230	4	

Facility Segment Data

Segment 1: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	d/c Ratio	Speed (mi/h)	$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$	LOS
1	0.94	0.982	6099	9600	0.64	68.8	22.2	C
2	0.94	0.982	6099	9600	0.64	68.8	22.2	C
3	0.94	0.982	6099	9600	0.64	68.8	22.2	C

Segment 2: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.89	0.980	0.979	6099	1400	9600	2100	0.64	0.67	65.8	59.9	23.2	27.2	C
2	0.94	0.89	0.980	0.979	6099	1400	9600	2100	0.64	0.67	65.8	59.9	23.2	27.2	C
3	0.94	0.89	0.980	0.979	6099	1400	9600	2100	0.64	0.67	65.8	59.9	23.2	27.2	C

Segment 3: Basic

Period	$\mathbf{(p c / h)}$						
1	0.94	0.982	4699	(pc/h)	Ratio	(mi/h)	(pc/mi/ln)
2	0.94	0.982	4699	9600	0.50	70.0	16.8
3	0.94	0.982	4699	9600	0.50	70.0	16.8

Segment 4: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.81	0.982	0.978	5488	789	9600	2100	0.58	0.38	65.1	63.4	21.1	17.0	B
2	0.94	0.81	0.980	0.978	5488	789	9600	2100	0.58	0.38	65.1	63.4	21.1	17.0	B
3	0.94	0.81	0.980	0.978	5488	789	9600	2100	0.58	0.38	65.1	63.4	21.1	17.0	B

Segment 5: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	d/c Ratio	Speed (mi/h)	$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{In}) \end{aligned}$	LOS
1	0.94	0.982	5488	9600	0.57	69.7	19.7	C
2	0.94	0.982	5488	9600	0.57	69.7	19.7	C
3	0.94	0.982	5488	9600	0.57	69.7	19.7	C

Segment 6: Diverge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		$\begin{aligned} & \text { Density } \\ & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \end{aligned}$		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.92	0.980	0.986	5488	2359	9600	2100	0.57	1.12	53.3	57.5	45.0	29.6	D
2	1.00	0.92	0.980	0.986	5488	2359	9600	2100	0.54	1.12	53.3	57.5	45.0	29.6	D
3	1.00	0.92	0.980	0.986	5488	2359	9600	2100	0.54	1.12	53.3	57.5	45.0	29.6	D

Segment 7: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i / h})$	Density $\mathbf{(p c / m i / l n)}$	LOS
1	0.94	0.980	3129	9600	0.33	70.0	11.2	
2	0.94	0.980	3129	9600	0.33	70.0	11.2	B
3	0.94	0.980	3129	9600	0.33	70.0	11.2	B

Segment 8: Merge

Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.90	0.82	0.978	0.980	3739	610	9600	2000	0.41	0.30	65.4	62.6	14.3	11.1	B
2	0.90	0.82	0.978	0.980	3739	610	9600	2000	0.41	0.30	65.4	62.6	14.3	11.1	B
3	0.90	0.82	0.978	0.980	3739	610	9600	2000	0.41	0.30	65.4	62.6	14.3	11.1	B

Segment 9: Basic

Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	\mathbf{d} / \mathbf{c} Ratio	Speed (mi/h)	Density (pc/mi/ln)	LOS
1	0.94	0.980	3739	9600	0.38	70.0	13.4	B
2	0.94	0.980	3739	9600	0.38	70.0	13.4	B

3	0.94		0.980		3739		9600		0.38		70.0		13.4		B
Segment 10: Merge															
Time Period	PHF		fHV		Flow Rate (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R	Freeway	Ramp	
1	0.94	0.82	0.980	0.980	4567	828	9600	2100	0.47	0.39	65.7	63.8	17.4	14.5	B
2	0.94	0.82	0.980	0.980	4567	828	9600	2100	0.47	0.39	65.7	63.8	17.4	14.5	B
3	0.94	0.82	0.980	0.980	4567	828	9600	2100	0.47	0.39	65.7	63.8	17.4	14.5	B

Segment 11: Basic

Time Period	PHF	fHV	Flow Rate $(\mathbf{p c / h})$	Capacity $\mathbf{(p c / h})$	\mathbf{d} / \mathbf{c} Ratio	Speed $(\mathbf{m i / h})$	Density $(\mathbf{p c / m i / l n})$	LOS
1	0.94	0.980	4567	9600	0.46	70.0	16.3	
2	0.94	0.980	4567	9600	0.46	70.0	16.3	B
3	0.94	0.980	4567	9600	0.46	70.0	16.3	B

Facility Time Period Results

\mathbf{T}	Speed, mi/h	Density, pc/mi/ln	Density, veh/mi/ln	Travel Time, min	LOS
1	68.4	19.5	19.1	6.1	C
2	68.4	19.5	19.1	6.1	C
3	68.4	19.5	19.1	6.1	C

Facility Overall Results

Space Mean Speed, mi / h	68.4	Density, veh/mi/ln	19.1
Average Travel Time, \min	6.1		

APPENDIX M: ESTIMATE OF CONTRIBUTION OF WOODMONT COMMONS TRAFFIC TO EXITS 4 AND 4A

540 Commerctal Street • Nanchester, NIt 03101
ph: 603.668.8223 - fx: 603.668 .8802
cldacldengineers.com • www.eldengineers.com
Comnecticut | Maine | Massachusetts \| New I lampshire \| New York | Rhode Island | Verment

TO: File
$\begin{array}{ll}\text { FROM: } & \text { Paul Konieczka, AICP } P K \\ & \text { Linda C. Greer, PE, PTOE }\end{array}$
DATE: February 5, 2018
RE: Traffic Technical Memo
Estimate of Contribution of Woodmont Commons Traffic to Exits 4 and 4A
CLD | Fuss \& O'Neill Reference No. 05-0244

The Freeway Facilities analysis for the Exit 4A project showed a few cases, such as the Exit 4A SB off-ramp under Alternative A, where a single lane on-or off-ramp would not provide an acceptable operating condition, or Level of Service (LOS). Ameliorating this condition would require either a two-lane ramp or a reduction in volume that would improve the LOS. The NIIDOT requested that the project team investigate the potential contribution of traffic from the proposed Woodmont Commons development to the various Exit 4 and Exit 4 A ramps for the various interchange alternatives under consideration. This information should provide some guidance as to the sensitivity of these analyses to the assumed development scenarios for Woodmont Commons, especially since the full traffic impact of that development project has been assigned to the Exit 4 A modeling network without any consideration for the 23% of potential internally captured trips estimated in the Woodmont Commons master transportation study. This approach was agreed upon between CLD|Fuss and O'Neill and the NI IDOT per an email dated March 8, 2017.

It should be restated that the 2040 land use scenarios for the Woodmont Commons development vary by alternative. The southerly interchange alternatives (A and B) assume the maximum potential development scenario as allowed by the proposed zoning and the conditional use permit issued by the Town of Londonderry. The No-Build case as well as the remaining Build alternatives, either with or without an interchange (C, D and F), have assumed a less intense development scenario for the Woodmont Commons project.

To develop these traffic estimates, we worked with the Southern New I lampshire Planning Commission (SNIIPC) to provide information on the allocation of trips to the various Exit 4 and 4A ramps from the various traffic zones in their network, including the Woodmont Commons traffic zones (Zone 277 on the west side of I-93 and Zones 69 and 375 on the east side), from the regional travel demand model that was used for this project. We requested this information for the 2015 base year to set a pre-Woodmont development condition as well as the 2040 design year for the No-Build alternative and two of the five 4A Build alternative interchange/connector road configurations (Alternative A with a southerly interchange, and Alternative C with a northerly interchange). This model only provides Average Weekday Traffic volumes (AWDTs) so a percentage of the projected daily traffic assignments attributable to these three zones could be calculated. Color plots of the trip assignments to the existing and proposed ramps were provided by

CLD | Fuss \& O'Neill
Memorandum to Files
CLD | Fuss \& O’Neill Reference No. 05-0244
February 5, 2018
Page - 2
SNHPC for all the ramps and scenarios requested, which are attached to this memo. This information was also summarized in tabular form, which is also attached to this memo.

Findings

The data shows that the 2015 development of the three subject zones has only a small contribution to the Exit 4 ramps, mostly from the Zone 277 area (Garden Lane), and totals only about 12.7% of daily traffic on all Exit 4 ramps. The two zones to the east have minimal existing development and contribute few trips to Exit 4.

By the 2040 No-Build case, assumed the lesser Woodmont Commons development scenario, traffic from the three zones contribute almost 27% of total daily ramp traffic at Exit 4. The total number of trips assigned to the ramps by the model would more than double by 2040, and the contribution of Woodmont traffic from the three zones to each individual ramp would increase by approximately a factor of 2 over 2015 conditions. Woodmont-related trips would account for almost 40% of the total increase in ramp traffic at Exit 4 in the 2040 No-Build case. Except for the SB on-ramp from the east, Woodmont traffic accounts for between $24-44 \%$ of the traffic assigned to any one ramp on a daily basis.

With Alternative A in place, total ramp assignments at Exit 4 are reduced by about 20\% to 62,773 trips per day. However, because that the Woodmont development scenario is maximized with a southerly interchange in place, the traffic assignments from the three Woodmont zones make up a larger proportion of total ramp traffic at Exit 4, to about 36% of the total, even with Exit 4A in place. The NB on-ramp and SB off-ramp see increases in traffic over the No-Build case with Alternative A in place, while the SB on-ramp traffic sees modest reductions. The NB off-ramp sees a small increase in traffic with Alternative A over the 2040 No-Build case.

At Exit 4A, Woodmont-related traffic assignments account for roughly the same percentage of total ramp traffic (36.3%) as they do at Exit 4 (36.2%). Woodmont-related traffic contributions range from between 26% (4,887 of the 18,996 total daily trips assigned to the SB Off-ramp) to 55% (4,795 of the 8,732 total daily trips assigned to the NB off-ramp) of total traffic on any one ramp at Exit 4A. The sensitivity analysis of the operations of the Exit 4A SB off-ramp as a single-lane off-ramp, as presented in the Traffic Technical Report, indicated that a reduction of 200 AM peak hour trips at this ramp would allow it to operate below capacity under 2040 conditions, so if the Woodmont development does not generate as much external traffic as projected in the SDEIS, this ramp may function acceptably as a single-lane off-ramp.

With a northerly interchange and a new roadway in Derry, as provided in Alternative C, the potential impacts of Woodmont-related traffic assignments on Exit 4A ramp volumes are much less in 2040 as compared to Alternative A. For one thing, the Woodmont development scenario is similar to the No-Build case, so it is not as intense as with a southerly interchange (Alternatives A or B). Furthermore, the interchange is further north of Exit 4, and not directly proximate to the Woodmont development itself, so its attractiveness as an alternate route from I-93 is diminished. As the table shows, Woodmont-related traffic comprises only 1% of total ramp traffic or individual ramp traffic at a northerly interchange. At Exit 4, there is slightly less total ramp traffic than under Alternative A, and Woodmont-related traffic accounts for just under a third of the total. The Exit 4

CLD | Fuss \& O'Neill

Memorandum to Files
CLD | Fuss \& O’Neill Reference No. 05-0244
February 5, 2018
Page - 3
NB on-ramp and SB off-ramp see the greatest increases in traffic assignments with Alternative C in place, as compared to the 2040 No-Build condition, but not to the same degree as with Alternative A in place.

Summary

In summary, based on the SNHPC traffic model, the different development scenarios for the Woodmont Commons project have varying effects on projected 2040 traffic assignments at both Exits 4 and 4A, depending on the location of the interchange. In the 2040 No-Build case, Woodmont traffic is projected to comprise about 27% of total daily ramp traffic at Exit 4, but will be a larger share (36%) of Exit 4 traffic with Alternative A and the maximum projected development scenario that was assumed for this case. Woodmont-related traffic will also account for more than a third of ramp traffic at Exit 4A with Alternative A, but substantially less with a northerly interchange (Alternative C).

It should be stressed that these are raw model assignments only to provide a broad-brush, order of magnitude level of impact on ramp traffic without any consideration of possible 'internally captured trips' within the mixed-use development itself that may not be assigned to the local street network per the 'live, work, play' design intent of the Woodmont project. Consideration of a 'credit' for any internally captured trips would also not directly translate into a similar reduction in any particular ramp volume (i.e., using a 10% capture rate does not necessarily mean that all ramps would see a 10% reduction in volumes) since the characteristics of the 'captured' trips may be different. The NHDOT and the developer are and will continue to coordinate efforts to monitor traffic conditions and the need for any additional improvements as the Woodmont project progresses and actual traffic volumes are realized.

PK:LCG:ams

Attachments

- Table - Contribution of Woodmont Commons Traffic Zones to Exit 4 and 4A Ramp

Volumes

- SNHPC Traffic Assignments - Selected Links at Exit 4 and 4A Interchange Ramps - 2015 Base Case, 2040 No-Build, 2040 Alternative A, and 2040 Alternative C

CONTRIBUTION OF WOODMONT COMMONS TRAFFIC ZONES TO EXIT 4 AND 4A RAMP VOLUMES

Scenario:

Ramp	Total Trips Assigned	Woodmont zones				\% ramp total
		277	69	375	WC sum	
Exit 4						
NB Off-ramp	10,389	1,053	10	-	1,063	10.2\%
NB On-ramp	9,550	1,171	3	-	1,174	12.3\%
SB On-ramp fr/ East	3,637	-	10	-	10	0.3\%
SB On-ramp fr. West	4,907	1,087	-	-	1,087	22.2\%
SB Off-ramp	8,157	1,306	-	-	1,306	16.0\%
Total	36,640				4,640	12.7\%

Scenario:

Ramp	Total Trips Assigned	Woodmont zones				\% ramp total	$\begin{gathered} \text { Diff from } \\ 2015 \text { NoBd } \end{gathered}$
		277	69	375	WC sum		
Exit 4							
NB Off-ramp	20,215	4,670	163	98	4,931	24.4\%	14.2\%
NB On-ramp	21,343	5,292	150	90	5,532	25.9\%	13.6\%
SB On-ramp fr/ East	7,402	-	151	94	245	3.3\%	3.0\%
SB On-ramp fr. West	10,778	4,724	-	-	4,724	43.8\%	21.7\%
SB Off-ramp	18,349	5,375	140	57	5,572	30.4\%	14.4\%
Total	78,087				21,004	26.9\%	14.2\%

Scenario:
2040 Build - Alternative A

Ramp	Total Trips Assigned	Woodmont zones				\% ramp total	$\begin{aligned} & \text { Diff from } \\ & 2040 \text { NoBd } \end{aligned}$
		277	69	375	WC sum		
Exit 4							
NB Off-ramp	18,073	5,062	-	-	5,062	28.0\%	3.6\%
NB On-ramp	15,150	5,823	485	325	6,633	43.8\%	17.9\%
SB On-ramp fr/ East	3,879	-	-	-	-	0.0\%	-3.3\%
SB On-ramp fr. West	11,836	5,093	-	-	5,093	43.0\%	-0.8\%
SB Off-ramp	13,795	5,919	-	-	5,919	42.9\%	12.5\%
Total	62,733				22,707	36.2\%	9.3\%

Scenario:
2040 Build - Alternative C

Ramp	Total Trips Assigned	Woodmont zones				\% ramp total	$\begin{array}{\|c} \text { Diff from } \\ 2040 \text { NoBd } \\ \hline \end{array}$
		277	69	375	WC sum		
Exit 4							
NB Off-ramp	18,728	4,589	163	95	4,847	25.9\%	1.5\%
NB On-ramp	15,903	5,309	146	-	5,455	34.3\%	8.4\%
SB On-ramp fr/ East	5,140	-	152	92	244	4.7\%	1.4\%
SB On-ramp fr. West	10,850	4,618	-	-	4,618	42.6\%	-1.3\%
SB Off-ramp	12,694	5,347	-	-	5,347	42.1\%	11.8\%
Total	63,315				20,511	32.4\%	5.5\%

Scenario:
2040 Build - Alternative A

| | Total Trips
 Ramp | Assigned | 277 | 69 | 375 | WC sum |
| :--- | ---: | ---: | ---: | ---: | ---: | :---: | | Tomp |
| :---: |
| total |

Scenario:
2040 Build - Alternative C

Ramp	Total Trips Assigned	Woodmont zones				$\begin{array}{\|c} \% \text { ramp } \\ \text { total } \end{array}$
		277	69	375	WC sum	
Exit 4A						
NB Off-ramp	2,795	23	-	-	23	0.8\%
NB On-ramp	13,410	-	-	89	89	0.7\%
SB Off-ramp	17,920	-	132	113	245	1.4\%
SB On-ramp	5,021	43	-	-	43	0.9\%
Total	39,146				400	1.0

2015 Exit 4 SB On Ramp from West

2015 Exit 4 SB Off Ramp

2015 Exit 4 NB Off Ramp

2015 Exit 4 NB On Ramp

2015NB Exit 4 SB on Ramp from East

2040NB Exit 4 SB off Ramp

2040NB Exit 4 NB off Ramp

2040NB Exit 4 NB on Ramp

2040 Alt A Exit 4A NB off Ramp

2040 Alt A Exit 4A SB off Ramp

2040 Alt A Exit 4A SB on Ramp

2040 Alt A Exit 4 NB On Ramp

2040 Alt A Exit 4 SB Off Ramp

2040 Alt C Exit 4A NB on Ramp

2040 Alt C Exit 4A SB off Ramp

2040 Alt C Exit 4 NB off Ramp

APPENDIX N-1: 2040 NO-BUILD INTERSECTION CAPACITY ANALYSES - HCM 2000 PRINTOUTS - AM PEAK HOUR

HCM Signalized Intersection Capacity Analysis
I Z: NH 102 \& Exit 4 SB Off

C Critical Lane Group

HCM Signalized Intersection Capacity Analysis
8：NH 102 \＆Exit 4 NB Off

Movement	NBL2	NBL	NBR	SEL	SER	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\％ 17		「\％			7	个坐			个个	7
Traffic Volume（vph）	1265	0	1070	0	0	1000	1185	0	0	540	780
Future Volume（vph）	1265	0	1070	0	0	1000	1185	0	0	540	780
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）	6.0		6.0			6.0	6.0			6.0	4.0
Lane Util．Factor	0.97		0.88			0.97	0.95			0.95	1.00
Fit	1.00		0.85			1.00	1.00			1.00	0.85
Fit Protected	0.95		1.00			0.95	1.00			1.00	1.00
Satd．Flow（prot）	3242		2632			3335	3438			3505	1568
Flt Permitted	0.95		1.00			0.95	1.00			1.00	1.00
Satd．Flow（perm）	3242		2632			3335	3438			3505	1568
Peak－hour factor，PHF	0.88	0.88	0.88	0.92	0.92	0.94	0.94	0.94	0.92	0.92	0.92
Adj．Flow（vph）	1438	0	1216	0	0	1064	1261	0	0	587	848
RTOR Reduction（vph）	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow（vph）	1438	0	1216	0	0	1064	1261	0	0	587	848
Heavy Vehicles（\％）	8\％	8\％	8\％	2\％	2\％	5\％	5\％	5\％	3\％	3\％	3\％
Turn Type	Prot		Prot			Prot	NA			NA	Free
Protected Phases	8		8			5	2			6	
Permitted Phases											Free
Actuated Green，G（s）	44.0		44.0			32.0	64.0			26.0	120.0
Effective Green，g（s）	44.0		44.0			32.0	64.0			26.0	120.0
Actuatedg／C Ratio	0.37		0.37			0.27	0.53			0.22	1.00
Clearance Time（s）	6.0		6.0			6.0	6.0			6.0	
Vehicle Extension（s）	3.0		3.0			3.0	3.0			3.0	
Lane Grp Cap（vph）	1188		965			889	1833			759	1568
v／s Ratio Prot	0.44		c0．46			c0．32	0.37			c0．17	
v／s Ratio Perm											0.54
v／c Ratio	1.21		1.26			1.20	0.69			0.77	0.54
Uniform Delay，d1	38.0		38.0			44.0	20.6			44.2	0.0
Progression Factor	1.00		1.00			0.86	1.02			1.00	1.00
Incremental Delay，d2	102.7		125.5			89.7	0.2			7.5	1.3
Delay（s）	140.7		163.5			127.6	21.2			51.8	1.3
Level of Service	F		F			F	C			D	A
Approach Delay（s）		151.2		0.0			69.9			22.0	
Approach LOS		F		A			E			C	

Intersection Summary			
HCM 2000 Control Delay	92.8	HCM 2000 Level of Service	F
HCM 2000 Volume to Capacity ratio	1.12		18.0
Actuated Cycle Length（s）	120.0	Sum of lost time（s）	F
Intersection Capacity Utilization	95.5%	ICU Level of Service	
Analysis Period（min）	15		
c Critical Lane Group			

HCM Signalized Intersection Capacity Analysis
32: Exit 5 SB On/Exit 5 SB Off \& NH 28
01/19/2018 $\rightarrow \rightarrow \downarrow \downarrow 4 \downarrow$

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\uparrow \uparrow$	7	*	$\uparrow \uparrow$					$7{ }^{17}$		7
Traffic Volume (vph)	0	935	390	240	550	0	0	0	0	820	0	535
Future Volume (vph)	0	935	390	240	550	0	0	0	0	820	0	535
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	00	190

Total Lost time (s)	6.0	4.0	6.0	6.0	6.0	6.0
Lane Util. Factor	0.95	1.00	1.00	0.95	0.97	1.00
Fit	1.00	0.85	1.00	1.00	1.00	0.85
Flt Protected	1.00	1.00	0.95	1.00	0.95	1.00

Satd. Flow (prot)	3471	1553	1719	3438	3367	1553
Flt Permitted	1.00	1.00	0.95	1.00	0.95	1.00

Satd. Flow (perm)	3471	1553	1719	3438					3367		1553	
Peak-hour factor, PHF	0.87	0.87	0.87	0.86	0.86	0.86	0.92	0.92	0.92	0.91	0.91	0.91

Adj. Flow (vph)	0	1075	448	279	640	0	0	0	0	901	0	588
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	189
Lane Group Flow (vph)	0	1075	448	279	640	0	0	0	0	901	0	399

Heavy Vehicles (\%)	4%	4%	4%	5%	5%	5%	2%	2%	2%	4%	4%
Turn Type	NA	Free	Prot	NA				Prot	Prot		
Protected Phases	2		1	6					4	4	
Permitted Phases			Free								

Actuated Green, G (s)	35.3	100.0	17.7	59.0		29.0	29.0
Effective Green, g (s)	35.3	100.0	17.7	59.0		29.0	29.0
Actuated g/C Ratio	0.35	1.00	0.18	0.59		0.29	0.29
Clearance Time (s)	6.0		6.0	6.0		6.0	6.0
Vehicle Extension (s)	5.0		3.0	5.0		3.0	3.0
Lane Grp Cap (vph)	1225	1553	304	2028		976	450
V / s Ratio Prot	c0.31		c0.16	0.19		c0.27	0.26
v/s Ratio Perm		0.29					
v/c Ratio	0.88	0.29	0.92	0.32		0.92	0.89
Uniform Delay, d1	30.3	0.0	40.4	10.3		34.4	33.9
Progression Factor	1.00	1.00	0.12	0.00		1.00	1.00
Incremental Delay, d2	9.0	0.5	16.0	0.2		13.8	18.6
Delay (s)	39.4	0.5	20.7	0.2		48.2	52.5
Level of Service	D	A	C	A		D	D
Approach Delay (s)	27.9			6.4	0.0		
Approach LOS	C			A	A		

Intersection Summary			
HCM 2000 Control Delay	31.2	HCM 2000 Level of Service	C
HCM 2000 Volume to Capacity ratio	0.90		18.0
Actuated Cycle Length (s)	100.0	Sum of lost time (s)	D
Intersection Capacity Utilization	78.5%	ICU Level of Service	
Analysis Period (min)	15		
C Critical Lane Group			

HCM Signalized Intersection Capacity Analysis
3: Exit 5 NB Off \& NH 28

	$\stackrel{ }{*}$			\checkmark	\leftarrow		4	\uparrow	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	$\uparrow \uparrow$			个个	F	\%		7			
Traffic Volume (vph)	605	1150	0	0	495	545	295	0	375	0	0	0
Future Volume (vph)	605	1150	0	0	495	545	295	0	375	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0			6.0	4.0	6.0		6.0			
Lane Util. Factor	1.00	0.95			0.95	1.00	1.00		1.00			
Fit	1.00	1.00			1.00	0.85	1.00		0.85			
Flt Protected	0.95	1.00			1.00	1.00	0.95		1.00			
Satd. Flow (prot)	1752	3505			3505	1568	1703		1524			
Flt Permitted	0.95	1.00			1.00	1.00	0.95		1.00			
Satd. Flow (perm)	1752	3505			3505	1568	1703		1524			
Peak-hour factor, PHF	0.92	0.92	0.92	0.91	0.91	0.91	0.67	0.67	0.67	0.92	0.92	0.92
Adj. Flow (vph)	658	1250	0	0	544	599	440	0	560	0	0	0
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	69	0	0	0
Lane Group Flow (vph)	658	1250	0	0	544	599	440	0	491	0	0	0
Heavy Vehicles (\%)	3\%	3\%	3\%	3\%	3\%	3\%	6\%	6\%	6\%	2\%	2\%	2\%
Turn Type	Prot	NA			NA	Free	Prot		Prot			
Protected Phases	5	2			6		8		8			
Permitted Phases		2			6	Free						
Actuated Green, G (s)	35.0	58.0			17.0	100.0	30.0		30.0			
Effective Green, g(s)	35.0	58.0			17.0	100.0	30.0		30.0			
Actuated g/C Ratio	0.35	0.58			0.17	1.00	0.30		0.30			
Clearance Time (s)	6.0	6.0			6.0		6.0		6.0			
Vehicle Extension (s)	5.0	5.0			5.0		3.0		3.0			
Lane Grp Cap (vph)	613	2032			595	1568	510		457			
v/s Ratio Prot	c0.38	0.36			c0.16		0.26		c0.32			
v/s Ratio Perm						0.38						
v / C Ratio	1.07	0.62			0.91	0.38	0.86		1.08			
Uniform Delay, d1	32.5	13.7			40.8	0.0	33.1		35.0			
Progression Factor	0.20	0.41			1.00	1.00	1.00		1.00			
Incremental Delay, d2	46.9	0.6			20.9	0.7	14.0		63.8			
Delay (s)	53.5	6.1			61.7	0.7	47.1		98.8			
Level of Service	D	A			E	A	D		F			
Approach Delay (s)		22.5			29.7			76.0			0.0	
Approach LOS		C			C			E			A	

Intersection Summary			
HCM 2000 Control Delay	37.7	HCM 2000 Level of Service	D
HCM 2000 Volume to Capacity ratio	1.04		18.0
Actuated Cycle Length (s)	100.0	Sum of lost time (s)	D
Intersection Capacity Utilization	78.5%	ICU Level of Service	
Analysis Period (min)	15		
C Critical Lane Group			

HCM Signalized Intersection Capacity Analysis
9: NH 102 \& St. Charles Street/Londonderry Road
01/19/2018

Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		\uparrow	F		\uparrow		\%	中 \uparrow		*	个 \uparrow	
Traffic Volume (vph)	5	0	295	0	0	0	955	1260	0	5	1160	10
Future Volume (vph)	5	0	295	0	0	0	955	1260	0	5	1160	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0	6.0				6.0	6.0		6.0	6.0	
Lane Util. Factor		1.00	1.00				1.00	0.95		1.00	0.95	
Fit		1.00	0.85				1.00	1.00		1.00	1.00	
Flt Protected		0.95	1.00				0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1770	1583				1770	3539		1770	3535	
Flt Permitted		1.00	1.00				0.95	1.00		0.95	1.00	
Satd. Flow (perm)		1863	1583				1770	3539		1770	3535	
Peak-hour factor, PHF	0.92	0.92	0.92	0.25	0.25	0.25	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	5	0	321	0	0	0	1038	1370	0	5	1261	11
RTOR Reduction (vph)	0	0	207	0	0	0	0	0	0	0	1	0
Lane Group Flow (vph)	0	5	114	0	0	0	1038	1370	0	5	1271	0
Heavy Vehicles (\%)	2\%	2\%	2\%	0\%	0\%	0\%	2\%	2\%	2\%	2\%	2\%	2\%
Turn Type	Perm	NA	custom				Prot	NA		Prot	NA	
Protected Phases		8			4		5	2		1	6	
Permitted Phases	8		6	4								
Actuated Green, G (s)		1.3	35.1				44.1	78.3		0.9	35.1	
Effective Green, g (s)		1.3	35.1				44.1	78.3		0.9	35.1	
Actuated g/C Ratio		0.01	0.36				0.45	0.79		0.01	0.36	
Clearance Time (s)		6.0	6.0				6.0	6.0		6.0	6.0	
Vehicle Extension (s)		3.0	3.0				3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		24	564				792	2813		16	1259	
v/s Ratio Prot							c0.59	0.39		0.00	c0.36	
v/s Ratio Perm		c0.00	0.07									
v/c Ratio		0.21	0.20				1.31	0.49		0.31	1.01	
Uniform Delay, d1		48.1	22.0				27.2	3.4		48.5	31.7	
Progression Factor		1.00	1.00				1.00	1.00		1.00	1.00	
Incremental Delay, d2		4.3	0.2				148.8	0.1		10.9	27.8	
Delay (s)		52.4	22.2				176.0	3.5		59.4	59.5	
Level of Service		D	C				F	A		E	E	
Approach Delay (s)		22.6			0.0			77.9			59.5	
Approach LOS		C			A			E			E	

| Intersection Summary | | | |
| :--- | ---: | :--- | ---: | :--- |
| HCM 2000 Control Delay | 67.5 | HCM 2000 Level of Service | E |
| HCM 2000 Volume to Capacity ratio | 1.16 | | 18.0 |
| Actuated Cycle Length (s) | 98.5 | Sum of lost time (s) | G |
| Intersection Capacity Utilization | 108.3% | ICU Level of Service | |
| Analysis Period (min) | 15 | | |
| c Critical Lane Group | | | |

Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		¢			\uparrow			\dagger			\uparrow	
Traffic Volume (vph)	5	30	0	230	0	50	0	860	215	5	555	0
Future Volume (vph)	5	30	0	230	0	50	0	860	215	5	555	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0			6.0			6.0			6.0	
Lane Util. Factor		1.00			1.00			1.00			1.00	
Fit		1.00			0.98			0.97			1.00	
Flt Protected		0.99			0.96			1.00			1.00	
Satd. Flow (prot)		1850			1729			1712			1809	
Flt Permitted		0.96			0.72			1.00			0.75	
Satd. Flow (perm)		1782			1304			1712			1364	
Peak-hour factor, PHF	0.60	0.60	0.60	0.96	0.96	0.96	0.89	0.89	0.89	0.86	0.86	0.86
Adj. Flow (vph)	8	50	0	240	0	52	0	966	242	6	645	0
RTOR Reduction (vph)	0	0	0	0	29	0	0	10	0	0	0	0
Lane Group Flow (vph)	0	58	0	0	263	0	0	1198	0	0	651	0
Heavy Vehicles (\%)	2\%	2\%	2\%	3\%	3\%	3\%	8\%	8\%	8\%	5\%	5\%	5\%
Turn Type	Perm	NA		Perm	NA			NA		Perm	NA	
Protected Phases		4			4			2			2	

Permitted Phases	4	4	2	
Actuated Green, G (s)	18.0	18.0	60.4	60.4
Effective Green, g (s)	18.0	18.0	60.4	60.4
Actuated g/C Ratio	0.20	0.20	0.67	0.67
Clearance Time (s)	6.0	6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	354	259	1143	911
v / s Ratio Prot			c0.70	
v/s Ratio Perm	0.03	c0.20		0.48
v/c Ratio	0.16	1.02	1.05	0.71
Uniform Delay, d1	30.0	36.2	15.0	9.5
Progression Factor	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.2	60.1	40.2	2.7
Delay (s)	30.2	96.3	55.2	12.2
Level of Service	C	F	E	B
Approach Delay (s)	30.2	96.3	55.2	12.2
Approach LOS	C	F	E	B

Intersection Summary			
HCM 2000 Control Delay	47.3	HCM 2000 Level of Service	D
HCM 2000 Volume to Capacity ratio	1.04		12.0
Actuated Cycle Length (s)	90.4	Sum of lost time (s)	F
Intersection Capacity Utilization	94.1%	ICU Level of Service	
Analysis Period (min)	15		
C Critical Lane Group			

Zone 3
7: NH 102 (E Broadway) \& Birch St/Crystal Av

	\cdots	\uparrow	F	\checkmark	\downarrow	ل	$\stackrel{4}{ }$	\nearrow	\uparrow	7	4	4
Movement	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%	\dagger		${ }^{4}$	\uparrow	7	\%	今		${ }^{7}$	\dagger	
Traffic Volume (vph)	105	180	35	135	180	160	100	470	60	70	335	65
Future Volume (vph)	105	180	35	135	180	160	100	470	60	70	335	65
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0		6.0	6.0	
Lane Utill Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Fit	1.00	0.98		1.00	1.00	0.85	1.00	0.98		1.00	0.98	
Fit Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1752	1800		1752	1845	1568	1787	1849		1787	1835	
Flt Permitted	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1752	1800		1752	1845	1568	1787	1849		1787	1835	
Peak-hour factor, PHF	0.91	0.91	0.91	0.93	0.93	0.93	0.95	0.95	0.95	0.94	0.94	0.94
Adj. Flow (vph)	115	198	38	145	194	172	105	495	63	74	356	69
RTOR Reduction (vph)	,	9	,	0	-	118	0	,	0	0	8	0
Lane Group Flow (vph)	115	227	0	145	194	54	105	553	0	74	417	0
Heary Vehicles (\%)	3\%	3\%	3\%	3\%	3\%	3\%	1\%	1\%	1\%	1\%	1\%	1\%
Turn Type	Prot	NA		Prot	NA	pm+ov	Prot	NA		Prot	NA	
Protected Phases	3	8		7	4	5	5	2		1	6	
Permitted Phases						4						
Actuated Green, G (s)	8.4	16.9		8.9	17.4	26.9	9.5	29.1		6.1	25.7	
Effective Green, $\mathrm{g}(\mathrm{s})$	8.4	16.9		8.9	17.4	26.9	9.5	29.1		6.1	25.7	
Actuated g/C Ratio	0.10	0.20		0.10	0.20	0.32	0.11	0.34		0.07	0.30	
Clearance Time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0		6.0	6.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	173	357		183	377	606	199	633		128	554	
v / s Ratio Prot	0.07	c0. 13		c0.08	0.11	0.01	c0.06	c0.30		0.04	0.23	
v / s Ratio Perm						0.02						
v/c Ratio	0.66	0.64		0.79	0.51	0.09	0.53	0.87		0.58	0.75	
Uniform Delay, d1	36.9	31.2		37.1	30.0	20.4	35.6	26.2		38.2	26.8	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	9.3	3.7		20.5	1.2	0.1	2.5	15.4		6.2	5.8	
Delay (s)	46.2	34.9		57.6	31.2	20.5	38.1	41.6		44.4	32.5	
Level of Service	D	C		E	c	C	D	D		D	C	
Approach Delay (s)		38.6			35.1			41.1			34.3	
Approach LOS		D			D			D			C	

Intersection Summary			
HCM 2000 Control Delay	37.5	HCM 2000 Level of Service	D
HCM 2000 Volume to Capacity ratio	0.99	Sum of lost time (s)	24.0
Actuated Cycle Length (s)	85.0	E	
Intersection Capacity Utilization	86.2%	ICU Level of Service	
Analysis Period (min)	15		

Analysis Piod (m)
15
c Critical Lane Group

8: N. High St/N. High St \& Ash St Ext

	-	∇	4	4	\downarrow	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	\%			\uparrow	F	
Traffic Volume (vph)	1145	0	0	195	170	455
Future Volume (vph)	1145	0	0	195	170	455
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Fit					0.902	
Fit Protected	0.950					
Satd. Flow (prot)	1787	0	0	1863	1697	0
Fit Permitted	0.950					
Satd. Flow (perm)	1787	0	0	1863	1697	0
Link Speed (mph)	30			30	30	
Link Distance (ft)	322			309	249	
Travel Time (s)	7.3			7.0	5.7	
Peak Hour Factor	0.90	0.90	0.87	0.87	0.87	0.87
Heavy Vehicles (\%)	1\%	1\%	2\%	2\%	1\%	1\%
Adj. Flow (vph)	1272	0	0	224	195	523
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	1272	0	0	224	718	0
Sign Control	Stop			Free	Free	

Intersection Summary

Area Type: Other

Control Type: Unsignalized
Intersection Capacity Utilization 111.3\%
ICU Level of Service H
Analysis Period (min) 15

9: N High St \& Madden Rd

	4	7	4	\uparrow		\downarrow
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M			\uparrow	ち	
Trafic Volume (vph)	5	0	0	1173	625	5
Future Volume (vph)		0	0	1173	625	5
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Fit					0.999	.
FIt Protected	0.950					
Satd. Flow (prot)	1703	0	0	1881	1879	0
Fit Permitted	0.950					
Satd. Flow (perm)	1703	0	0	1881	1879	0
Link Speed (mph)	30			30	30	
Link Distance (t)	160			224	319	
Travel Time (s)	3.6			5.1	7.3	
Peak Hour Factor	0.50	0.50	0.93	0.93	0.86	0.86
Heavy Vehicles (\%)	6\%	6\%	1\%	1\%	1\%	1\%
Adj. Flow (vph)	10	0	0	1261	727	,
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	10	0	0	1261	733	0
Sign Control	Stop			Free	Free	
Intersection Summary						
Area Type: Other						
Control Type: Unsignalized						
Intersection Capacity Utilization 78.2\% ICU Level of Service D						
Analysis Period (min) 15						

	3	\rightarrow	7	5		*	\rightarrow	V	4	4	*	$\stackrel{ }{ }$
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations		¢			¢			\$			¢	
Traffic Volume (vph)	50	1145	5	0	480	0	0	10	155	5	10	25
Future Volume (vph)	50	1145	5	0	480	0	0	10	155	5	10	25
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (t)	150		150	150		150	0		0	150		150
Storage Lanes	0		0	0		0	0		0	0		
Taper Length (tt)	25			25			25			25		
Lane Utill. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.999						0.873			0.916	
Flt Protected		0.998									0.994	
Satd. Flow (prot)	0	1876	0	0	1863	0	0	1659	0	0	1730	0
Flt Permitted		0.998									0.994	
Satd. Flow (perm)	0	1876	0	0	1863	0	0	1659	0	0	1730	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		327			240			246			251	
Travel Time (s)		7.4			5.5			5.6			5.7	
Peak Hour Factor	0.94	0.94	0.94	0.88	0.88	0.88	0.67	0.67	0.67	0.82	0.82	0.82
Heary Vehicles (\%)	1\%	1\%	1\%	2\%	2\%	2\%	0\%	0\%	0\%	0\%	0\%	0\%
Adj. Flow (vph)	53	1218	5	,	545	0	,	15	231	,	12	30
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	1276	0	0	545	0	0	246	0	0	48	
Sign Control		Free			Free			Stop			Stop	

Intersection Summary

```
Area Type: Other
```

Control Type: Unsignalized
Intersection Capacity Utilization 106.4\% ICU Level of Service G
Analysis Period (min) 15

| | | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

	\cdots	\dagger	「	\checkmark	\downarrow	ل	$\stackrel{4}{ }$	\nearrow	\bigcirc	\checkmark	\backslash	4
Movement	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%	$\uparrow \uparrow$	F	**	\uparrow	\%	7	\uparrow	F	${ }^{7}$	\uparrow	$\overline{7}$
Traffic Volume (vph)	,	235	135	495	310	0	115	520	,	165	400	300
Future Volume (vph)	0	235	135	495	310	0	115	520	0	165	400	300
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0	6.0	6.0	6.0		6.0	6.0		6.0	6.0	6.0
Lane Util. Factor		0.95	1.00	0.97	1.00		-1.00	1.00		1.00	1.00	1.00
Fit		1.00	0.85	1.00	1.00		1.00	1.00		1.00	1.00	0.85
Flt Protected		1.00	1.00	0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)		3539	1583	3433	1863		1770	1863		1787	1881	1599
Flt Permitted		1.00	1.00	0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)		3539	1583	3433	1863		1770	1863		1787	1881	1599
Peak-hour factor, PHF	0.92	0.92	0.92	0.94	0.94	0.94	0.96	0.96	0.96	0.95	0.95	0.95
Adj. Flow (vph)	0	255	147	527	330	0	120	542		174	421	316
RTOR Reduction (vph)	0	0	116	0	0	0	0	0	0	0	0	138
Lane Group Flow (vph)	0	255	31	527	330	0	120	542	,	174	421	178
Heary Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	1\%	1\%	1\%
Tum Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	pm+ov
Protected Phases	5	2		1	6		7	4		3	8	1
Permitted Phases			2			6			4			8
Actuated Green, G (s)		24.5	24.5	23.5	54.0		13.1	34.0		9.0	29.9	53.4
Effective Green, g (s)		24.5	24.5	23.5	54.0		13.1	34.0		9.0	29.9	53.4
Actuated g/C Ratio		0.21	0.21	0.20	0.47		0.11	0.30		0.08	0.26	0.46
Clearance Time (s)		6.0	6.0	6.0	6.0		6.0	6.0		6.0	6.0	6.0
Vehicle Extension (s)		3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)		753	337	701	874		201	550		139	489	825
v / s Ratio Prot		0.07		c0. 15	c0. 18		0.07	c0.29		c0. 10	0.22	0.04
v/s Ratio Perm			0.02									0.07
v / C Ratio		0.34	0.09	0.75	0.38		0.60	0.99		1.25	0.86	0.22
Uniform Delay, d1		38.4	36.3	43.0	19.7		48.4	40.3		53.0	40.6	18.3
Progression Factor		1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2		1.2	0.5	4.6	0.3		4.7	34.4		159.1	14.4	0.1
Delay (s)		39.6	36.9	47.6	19.9		53.1	74.6		212.1	54.9	18.5
Level of Service		D	D	D	B		D	E		F	D	B
Approach Delay (s)		38.6			36.9			70.7			72.3	
Approach LOS		D			D			E			E	
Intersection Summary												
HCM 2000 Control Delay			56.4		HCM 2000	Level of	Service		E			
HCM 2000 Volume to Capacity ratioActuated Cycle Length (s)			0.80									
			115.0		Sum of los	time (s)			24.0			
Intersection Capacity Utilization			79.5\%		CU Level	fervice			D			
Analysis Period (min)			15									
c Critical Lane Group												

12: Tsienneto Rd \& Pinkerton St

	m	${ }_{C}$	\nearrow	T	5	4
Lane Group	NWL	NWR	NET	NER	SWL	SWT
Lane Configurations	${ }^{*}$	\%	4	\%		¢ \uparrow
Traffic Volume (vph)	60	110	785	370	95	775
Future Volume (vph)	60	110	785	370	95	775
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	150	150		0	0	
Storage Lanes	0	1		1	0	
Taper Length (ft)	25				25	
Lane Util. Factor	1.00	1.00	1.00	1.00	0.95	0.95
Fit		0.850		0.850		
Fit Protected	0.950					0.995
Satd. Flow (prot)	1787	1599	1881	1599	0	3556
Fit Permitted	0.950					0.995
Satd. Flow (perm)	1787	1599	1881	1599	0	3556
Link Speed (mph)	30		30			30
Link Distance (ft)	403		387			233
Travel Time (s)	9.2		8.8			5.3
Peak Hour Factor	0.86	0.86	0.96	0.96	0.85	0.85
Heavy Vehicles (\%)	1\%	1\%	1\%	1\%	1\%	1\%
Adj. Flow (vph)	70	128	818	385	112	912
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	70	128	818	385	0	1024
Sign Control	Stop		Free			Free

Intersection Summary

Area Type: Other

Control Type: Unsignalized
Intersection Capacity Utilization 78.8\% ICU Level of Service D
Analysis Period (min) 15

	\cdots	\%	\nearrow	r	4	4	
Movement	NWL	NWR	NET	NER	SWL	SWT	
Lane Configurations	7	「	\uparrow	¢		$\wedge_{\text {A }}$	
Traffic Volume (veh/h)	60	110	785	370	95	775	
Future Volume (Veh/h)	60	110	785	370	95	775	
Sign Control	Stop		Free			Free	
Grade	0\%		0\%			0\%	
Peak Hour Factor	0.86	0.86	0.96	0.96	0.85	0.85	
Hourly flow rate (vph)	70	128	818	385	112	912	
Pedestrians							
Lane Width (t)							
Walking Speed (t/s)							
Percent Blockage							
Right turn flare (veh)		6					
Median type			None			None	
Median storage veh)							
Upstream signal (ft)			387				
pX, platoon unblocked	0.74	0.74			0.74		
VC , conflicting volume	1498	818			818		
$\mathrm{vC1}$, stage 1 conf vol							
$\mathrm{vC2}$, stage 2 conf vol							
vCu, unblocked vol	1497	581			581		
tC , single (s)	6.8	6.9			4.1		
$\mathrm{tC}, 2$ stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free \%	3	62			85		
cM capacity (veh/h)	72	341			739		
Direction, Lane \#	NW 1	NE 1	NE 2	SW 1	SW 2		
Volume Total	198	818	385	416	608		
Volume Left	70	0	0	112	0		
Volume Right	128	0	385	0	0		
CSH	204	1700	1700	739	1700		
Volume to Capacity	0.97	0.48	0.23	0.15	0.36		
Queue Length 95th (ft)	207	0	0	13	0		
Control Delay (s)	83.7	0.0	0.0	4.3	0.0		
Lane LOS	F			A			
Approach Delay (s)	83.7	0.0		1.8			
Approach LOS	F						
Intersection Summary							
Average Delay			7.6				
Intersection Capacity UtilizationAnalysis Period (min)			78.8\%	ICU Level of Service			D
Analysis Period (min)			15				

Zone 4
2040 No Build PM Peak
13: Applebee's/Linlew Dr \& NH 28
HCM Signalized Intersection Capacity Analysis

| | | | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

	\Rightarrow			\checkmark	\leftarrow	4	4	\uparrow	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％1	个t		7	个t		\％	ち		\％	\uparrow	
Traffic Volume（vph）	115	815	5	5	530	255	35	10	10	350	5	135
Future Volume（vph）	115	815	5	5	530	255	35	10	10	350	5	135
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	6.0
Lane Util．Factor	0.97	0.95		1.00	0.95		1.00	1.00		0.95	0.95	1.00
Fit	1.00	1.00		1.00	0.95		1.00	0.93		1.00	1.00	0.85
Fit Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.95	1.00
Satd．Flow（prot）	3467	3571		1770	3367		1805	1758		1715	1721	1615
Fit Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.95	1.00
Satd．Flow（perm）	3467	3571		1770	3367		1805	1758		1715	1721	1615
Peak－hour factor，PHF	0.84	0.84	0.84	0.90	0.90	0.90	0.78	0.78	0.78	0.86	0.86	0.86
Adj．Flow（vph）	137	970	6	6	589	283	45	13	13	407	6	157
RTOR Reduction（vph）	0	0	0	－	59	0	0	12	0	0	0	112
Lane Group Flow（vph）	137	976	0	6	813	0	45	14	0	208	205	45
Heavy Vehicles（\％）	1\％	1\％	1\％	2\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％
Turn Type	Prot	NA		Prot	NA		Split	NA		Split	NA	pt＋ov
Protected Phases	5	2		1	6		，	3		4	4	45
Permitted Phases		2			6							
Actuated Green，G（s）	7.7	52.4		1.0	45.7		4.0	4.0		13.6	13.6	27.3
Effective Green， g （s）	7.7	52.4		1.0	45.7		4.0	4.0		13.6	13.6	27.3
Actuated g／C Ratio	0.08	0.55		0.01	0.48		0.04	0.04		0.14	0.14	0.29
Clearance Time（s）	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Vehicle Extension（s）	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap（vph）	281	1969		18	1619		76	74		245	246	464
v / s Ratio Prot	c0．04	c0．27		0.00	0.24		c0．02	0.01		c0．12	0.12	0.03
v / s Ratio Perm 0												
v／c Ratio	0.49	0.50		0.33	0.50		0.59	0.18		0.85	0.83	0.10
Uniform Delay d1	41.8	13.1		46.7	16.9		44.7	43.9		39.7	39.6	24.8
Progression Factor	1.00	1.00		1.38	0.82		1.00	1.00		1.00	1.00	1.00
Incremental Delay，d2	1.3	0.9		9.2	0.2		11.8	1.2		23.0	20.8	0.1
Delay（s）	43.1	14.0		73.8	14.1		56.5	45.1		62.7	60.4	24.9
Level of Service	D	B		E	B		E	D		E	E	，
Approach Delay（s）		17.6			14.5			52.3			51.5	
Approach LOS		B			B			D			D	

Intersection Summary			
HCM 2000 Control Delay	24.8	HCM 2000 Level of Service	C
HCM 2000 Volume to Capacity ratio	0.59		24.0
Actuated Cycle Length（s）	95.0	Sum of lost time（s）	B
Intersection Capacity Utilization	58.5%	ICU Level of Service	

c Critical Lane Group

	4	\rightarrow	\longleftarrow	4	\checkmark	\checkmark	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	${ }^{\circ}$	\uparrow	\dagger		M ${ }^{\text {P }}$		
Traffic Volume (vph)	40	630	515	20	40	90	
Future Volume (vph)	40	630	515	20	40	90	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Fit			0.995		0.906		
Fit Protected	0.950				0.985		
Satd. Flow (prot)	1770	1863	1853	0	1646	0	
Flt Permitted	0.950				0.985		
Satd. Flow (perm)	1770	1863	1853	0	1646	0	
Link Speed (mph)		30	30		30		
Link Distance (ft)		535	210		522		
Travel Time (s)		12.2	4.8		11.9		
Peak Hour Factor	0.91	0.91	0.90	0.90	0.75	0.75	
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	3\%	3\%	
Adj. Flow (vph)	44	692	572	22	53	120	0
Shared Lane Traffic (\%)							
Lane Group Flow (vph)	44	692	594	0	173	0	
Sign Control		Free	Free		Stop		

Intersection Summary

Area Type: Other
Control Type: Unsignalized

Intersection Capacity Utilization 47.7\%
ICU Level of Service A

Direction, Lane\#	EB 1	EB 2	WB 1	SB 1	
Volume Total	44	692	594	173	
Volume Left	44	0	0	53	
Volume Right	0	0	22	120	
CSH	982	1700	1700	300	
Volume to Capacity	0.04	0.41	0.35	0.58	
Queue Length 95th (ft)	4	0	0	84	
Control Delay (s)	8.8	0.0	0.0	32.2	
Lane LOS	A			D	
Approach Delay (s)	0.5		0.0	32.2	
Approach LOS				D	
Intersection Summary					
Average Delay			4.0		
Intersection Capacity Utilization			47.7\%	ICU Level of Service	A
Analysis Period (min)			15		

	\dagger	\cdots	4	9	\uparrow	「	p	\checkmark	\downarrow	\downarrow	\nearrow	\cdots
Lane Group	WBL2	WBL	WBR	NBL	NBT	NBR	NBR2	SBL	SBT	SBR	NET	NER
Lane Configurations		N			\dagger				¢		¢	
Trafic Volume (vph)	10	365	195	10	95	75	10	300	135	50	240	420
Future Volume (vph)	10	365	195	10	95	75	10	300	135	50	240	420
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	100	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	100	1.00
Fit		0.954			0.940				0.986		0.908	
FIt Protected		0.968			0.997				0.970			
Satd. Flow (prot)	0	1737	0	0	1746	0	0	0	1799	0	1708	0
FIt Permitted		0.968			0.997				0.970			
Satd. Flow (perm)	0	1737	0	0	1746	0	0	0	1799	0	1708	0
Link Speed (mph)		30			30				30		30	
Link Distance (t)		449			456				370		390	
Travel Time (s)		10.2			10.4				8.4		8.9	
Peak Hour Factor	0.91	0.91	0.91	0.87	0.87	0.87	0.87	0.92	0.92	0.92	0.90	0.90
Heavy Vehicles (\%)	1\%	1\%	1\%	2\%	2\%	2\%	2\%	1\%	1\%	1\%	1\%	1\%
Adj. Flow (vph)	11	401	214	11	109	86	11	326	147	54	267	467
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	626	0	0	217	0	0	0	527	0	834	0
Sign Control		Yield			Yield				Yield		Yield	

Area Type: Other

Control Type: Roundabout
Intersection Capacity Utilization 127.5\% ICU Level of Service H
Analysis Period (min) 15

Lane Group	NER2	SWL	SWT	
Lane Configurations			\uparrow	
Traffic Volume (vph)	90	35	130	
Future Volume (vph)	90	35	130	
Ideal Flow (vphpl)	1900	1900	1900	
Lane Util. Factor	1.00	1.00	1.00	
Fit				
Flt Protected			0.990	
Satd. Flow (prot)	0	0	1844	
Flt Permitted			0.990	
Satd. Flow (perm)	0	0	1844	
Link Speed (mph)			30	
Link Distance (ft)			523	
Travel Time (s)			11.9	
Peak Hour Factor	0.90	0.91	0.91	
Heavy Vehicles (\%)	1\%	2\%	2\%	
Adj. Flow (vph)	100	38	143	
Shared Lane Traffic (\%)				
Lane Group Flow (vph)	0	0	181	
Sign Control			Yield	
08/01/2017				Synchro 9 Report
MWS				Page 1

16: NH 102 W/NH 102 E \& Bypass 28 S/Bypass 28 N \& E Detçy Praignalized Intersection Capacity Analysis

	1	-	4	\cdots	\dagger	$\stackrel{1}{1}$	p	,	\downarrow	\downarrow	7	ρ
Movement	WBL2	WBL	WBR	NBL	NBT	NBR	NBR2	SBL	SBT	SBR	NET	NER
Right Turn Channelized												
Traffic Volume (veh/h)	10	365	195	10	95	75	10	300	135	50	240	420
Future Volume (veh/h)	10	365	195	10	95	75	10	300	135	50	240	420
Peak Hour Factor	0.91	0.91	0.91	0.87	0.87	0.87	0.87	0.92	0.92	0.92	0.90	0.90
Hourly flow rate (vph)	11	401	214	11	109	86	11	326	147	54	267	467
Approach Volume (veh/h)		626			217		-		527		834	
Crossing Volume (veh/h)		473			1060				604		522	
High Capacity (veh/h)		954			593				859		917	
High v/c (veh/h)		0.66			0.37				0.61		0.91	
Low Capacity (veh/h)		773			457				688		740	
Low v/c (veh/h)		0.81			0.47				0.77		1.13	
Intersection Summary												
Maximum v/c High			0.91									
Maximum v/c Low			1.13									
Intersection Capacity Utilization		127.5\%		ICU Level of Service			H					
	入		*									
Movement	NER2	SWL	SWT									
Right Turn Channelized												
Traffic Volume (veh/h)	90	35	130									
Future Volume (veh/h)	90	35	130									
Peak Hour Factor	0.90	0.91	0.91									
Hourly flow rate (vph)	100	38	143									
Approach Volume (veh/h)			181									
Crossing Volume (veh/h)			746									
High Capacity (veh/h)			766									
High v/c (veh/h)			0.24									
Low Capacity (veh/h)			607									
Low v/c (veh/h)			0.30									
Intersection Summary												

Intersection								
Intersection Delay. s/veh	74.4							
Intersection LOS	F							
Approach		WB		NB		SB		NE
Entry Lanes		1		1		1		1
Conflicting Circle Lanes		1		1		1		1
Adj Approach Flow, veh/h		626		217		527		834
Demand Flow Rate, veh/h		632		221		532		843
Vehicles Circulating, veh/h		480		1071		612		527
Vehicles Exiting, veh/h		812		299		327		617
Follow-Up Headway, s		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		38.9		24.2		37.2		151.2
Approach LOS		E		C		E		F
Lane	Left		Left		Left		Left	
Designated Moves	LR		LTR		LTR		LTR	
Assumed Moves	LR		LTR		LTR		LTR	
RT Channelized								
Lane Util	1.000		1.000		1.000		1.000	
Critical Headway, s	5.193		5.193		5.193		5.193	
Entry Flow, veh/h	632		221		532		843	
Cap Entry Lane, veh/h	699		387		613		667	
Entry HV Adj Factor	0.990		0.981		0.990		0.990	
Flow Entry, veh/h	626		217		527		834	
Cap Entry, veh/h	692		380		606		660	
VIC Ratio	0.904		0.571		0.868		1.264	
Control Delay, s/veh	38.9		24.2		37.2		151.2	
LOS	E		C		E		F	
95th \%tile Queue, veh	12		3		10		32	

Intersection	
Intersection Delay. s/veh	
Intersection LOS	
Approach	SW
Entry Lanes	1
Conflicting Circle Lanes	1
Adj Approach Flow, veh/h	181
Demand Flow Rate, veh/h	185
Vehicles Circulating, veh/h	754
Vehicles Exiting, veh/h	358
Follow-Up Headway, s	3.186
Ped Vol Crossing Leg. \#h	0
Ped Cap Adj	1.000
Approach Delay, s/veh	12.3
Approach LOS	B
Lane	Left
Designated Moves	LTR
Assumed Moves	LTR
RT Channelized	
Lane Util	1.000
Critical Headway, s	5.193
Entry Flow, veh/h	185
Cap Entry Lane, veh/h	532
Entry HV Adj Factor	0.979
Flow Entry, veh/h	181
Cap Entry, veh/h	521
VIC Ratio	0.348
Control Delay, s/veh	12.3
LOS	B
95th \%tile Queue, veh	2

	\rangle	\rightarrow	∇	\checkmark	\leftarrow	4	4	4	P		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	$\overline{7}$		¢			¢			¢	
Traffic Volume (vph)	5	,	350	0	0	0	120	150	0	0	130	10
Future Volume (vph)	5	In	350	0	0	0	120	150	0	0	130	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	100	1.00	1.00	1.00	1.00	1.00	100	1.00	1.00	1.00	1.00	1.00
Fit			0.850								0.990	
Flt Protected		0.950						0.978				
Satd. Flow (prot)	0	1770	1583	0	1900	0	0	1840	0	0	1862	0
Flt Pemitted		0.950						0.978				
Satd. Flow (perm)	0	1770	1583	0	1900	0	0	1840	0	0	1862	0
Link Speed (mph)		30			30			30			30	
Link Distance (t)		113			453			475			436	
Travel Time (s)		2.6			10.3			10.8			9.9	
Peak Hour Factor	0.88	0.88	0.88	0.82	0.82	0.82	0.93	0.93	0.93	0.91	0.91	0.91
Heavy Vehicles (\%)	2\%	2\%	2\%	0\%	0\%	0\%	1\%	1\%	1\%	1\%	1\%	1\%
Adj. Flow (vph)	6	0	398	0	0	0	129	161	0	0	143	11
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	6	398	0	0	0	0	290	0	0	154	0
Sign Control		Stop			Stop			Free			Free	

Intersection Summary

Area Type: Other

Control Type: Unsignalized
Intersection Capacity Utilization 35.8\%
ICU Level of Service A
Analysis Period (min) 15

	\checkmark		4		$\frac{1}{\square}$	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M			\uparrow	\hbar°	
Traffic Volume (vph)	540	0	10	295	170	295
Future Volume (vph)	540	0	10	295	170	295
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Fit					0.914	
Fit Protected	0.950			0.998		
Satd. Flow (prot)	1787	0	0	1859	1686	0
Flt Permitted	0.950			0.998		
Satd. Flow (perm)	1787	0	0	1859	1686	0
Link Speed (mph)	30			30	30	
Link Distance (ft)	348			709	425	
Travel Time (s)	7.9			16.1	9.7	
Peak Hour Factor	0.90	0.90	0.87	0.87	0.89	0.89
Heavy Vehicles (\%)	1\%	1\%	2\%	2\%	3\%	3\%
Adj. Flow (vph)	600	0	11	339	191	331
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	600	0	0	350	522	0
Sign Control	Stop			Free	Free	
Intersection Summary						
Area Type: Other						
Control Type: UnsignalizedIntersection Capacity Utilization 63.6% ICU Level of Service B						
Analysis Period (min) 15						

Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	* ${ }^{1}$			\uparrow	ち	
Traffic Volume (veh/h)	540	0	10	295	170	295
Future Volume (Veh/h)	540	0	10	295	170	295
Sign Control	Stop			Free	Free	
Grade	0\%			0\%	0\%	
Peak Hour Factor	0.90	0.90	0.87	0.87	0.89	0.89
Hourly flow rate (vph)	600	0	11	339	191	331

Pedestrians

```
Lane Width (ft)
Walking Speed (ft/s)
```

Percent Blockage
Right turn flare (veh)
Median type
Median storage veh)
Upstream signal (ft)
Upstream signal (ft)
pX , platoon unblocked
vC , conflicting volume
$718 \quad 356522$
$\mathrm{vC1}$, stage 1 conf vol
vC 2 , stage 2 conf vol
$\begin{array}{llll}v C u, ~ u n b l o c k e d ~ v o l ~ & 718 & 356 & 522\end{array}$

tC , single (s)	6.4	6.2	4.1

$\mathrm{tC}, 2$ stage (s)
$\begin{array}{llll}\mathrm{tF}(\mathrm{s}) & 3.5 & 3.3 & 2.2\end{array}$
p0 queue free \% $0 \quad 100 \quad 99$
cM capacity (veh/h) $393 \quad 690 \quad 1044$

Direction, Lane \#	EB 1	NB 1	SB 1
Volume Total	600	350	522
Volume Left	600	11	0
Volume Right	0	0	331
cSH	393	1044	1700
Volume to Capacity	1.53	0.01	0.31
Queue Length 95th (tt)	818	1	0
Control Delay (s)	274.7	0.4	0.0
Lane LOS	F	A	
Approach Delay (s)	274.7	0.4	0.0
Approach LOS	F		

Intersection Summary
Average Delay 112
Intersection Capacity Utilization 63.6\%
Analysis Period (min) $\quad 15$
None None

APPENDIX N-2: 2040 NO-BUILD INTERSECTION CAPACITY ANALYSES - HCM 2000 PRINTOUTS - PM PEAK HOUR

HCM Signalized Intersection Capacity Analysis
7：NH 102 \＆Exit 4 SB Off

	－	\rightarrow	\longleftarrow	4	＊	4		01／19／2018
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations		坐晁	44		${ }^{*}$	「「		
Traffic Volume（vph）	0	1315	670	0	790	835		
Future Volume（vph）	0	1315	670	0	790	835		
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900		
Lane Width	12	12	12	12	16	12		
Total Lost time（s）		6.0	6.0		6.0	6.0		
Lane Util．Factor		0.95	0.95		1.00	0.88		
Fit		1.00	1.00		1.00	0.85		
Flt Protected		1.00	1.00		0.95	1.00		
Satd．Flow（prot）		3471	3406		1930	2682		
Flt Permitted		1.00	1.00		0.95	1.00		
Satd．Flow（perm）		3471	3406		1930	2682		
Peak－hour factor，PHF	0.93	0.93	0.88	0.88	0.89	0.89		
Adj．Flow（vph）	0	1414	761	0	888	938		
RTOR Reduction（vph）	0	0	0	0	0	0		
Lane Group Flow（vph）	0	1414	761	0	888	938		
Heavy Vehicles（\％）	4\％	4\％	6\％	6\％	6\％	6\％		
Turn Type		NA	NA		Prot	Prot		
Protected Phases		2	6		4	4		
Permitted Phases								
Actuated Green，G（s）		23.0	23.0		25.0	25.0		
Effective Green， g （s）		23.0	23.0		25.0	25.0		
Actuated g／C Ratio		0.38	0.38		0.42	0.42		
Clearance Time（s）		6.0	6.0		6.0	6.0		
Vehicle Extension（s）		3.0	3.0		3.0	3.0		
Lane Grp Cap（vph）		1330	1305		804	1117		
v / s Ratio Prot		c0．41	0.22		c0．46	0.35		
v／s Ratio Perm								
v／c Ratio		1.06	0.58		1.10	0.84		
Uniform Delay，d1		18.5	14.7		17.5	15.7		
Progression Factor		1.03	0.90		1.00	1.00		
Incremental Delay，d2		34.1	0.2		64.3	5.7		
Delay（s）		53.2	13.4		81.8	21.4		
Level of Service		D	B		F	C		
Approach Delay（s）		53.2	13.4		50.8			
Approach LOS		D	B		D			
Intersection Summary								
HCM 2000 Control Delay			44.5		HCM 2000	evel of Service	D	
HCM 2000 Volume to Capacity ratio			1.08					
Actuated Cycle Length（s）			60.0		Sum of lost	ime（s）	12.0	
Intersection Capacity Utilization			92．1\％		CU Level o	Service	F	
Analysis Period（min）			15					
c Critical Lane Group								

HCM Signalized Intersection Capacity Analysis
2
8：NH 102 \＆Exit 4 NB Off
01／19／2018

Movement	NBL2	NBL	NBR	SEL	SER	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	${ }^{7 \%}$		「「゙			\％＊	个个			44	F
Traffic Volume（vph）	460	0	355	0	0	1190	915	0	0	1260	1125
Future Volume（vph）	460	0	355	0	0	1190	915	0	0	1260	1125
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）	6.0		6.0			6.0	6.0			6.0	4.0
Lane Util．Factor	0.97		0.88			0.97	0.95			0.95	1.00
Fit	1.00		0.85			1.00	1.00			1.00	0.85
Flt Protected	0.95		1.00			0.95	1.00			1.00	1.00
Satd．Flow（prot）	3242		2632			3335	3438			3505	1568
Flt Permitted	0.95		1.00			0.95	1.00			1.00	1.00
Satd．Flow（perm）	3242		2632			3335	3438			3505	1568
Peak－hour factor，PHF	0.88	0.88	0.88	0.92	0.92	0.94	0.94	0.94	0.92	0.92	0.92
Adj．Flow（vph）	523	0	403	0	0	1266	973	0	0	1370	1223
RTOR Reduction（vph）	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow（vph）	523	0	403	0	0	1266	973	0	0	1370	1223
Heavy Vehicles（\％）	8\％	8\％	8\％	2\％	2\％	5\％	5\％	5\％	3\％	3\％	3\％
Turn Type	Prot		Prot			Prot	NA			NA	Free
Protected Phases	8		8			5	2			6	
Permitted Phases											Free
Actuated Green，G（s）	17.0		17.0			41.0	91.0			44.0	120.0
Effective Green，g（s）	17.0		17.0			41.0	91.0			44.0	120.0
Actuated g／C Ratio	0.14		0.14			0.34	0.76			0.37	1.00
Clearance Time（s）	6.0		6.0			6.0	6.0			6.0	
Vehicle Extension（s）	3.0		3.0			3.0	3.0			3.0	
Lane Grp Cap（vph）	459		372			1139	2607			1285	1568
v／s Ratio Prot	c0．16		0.15			c0．38	0.28			c0．39	
v／s Ratio Perm											0.78
v／c Ratio	1.14		1.08			1.11	0.37			1.07	0.78
Uniform Delay，d1	51.5		51.5			39.5	4.9			38.0	0.0
Progression Factor	1.00		1.00			0.86	1.15			1.00	1.00
Incremental Delay，d2	86.1		70.8			51.6	0.0			44.8	3.9
Delay（s）	137.6		122.3			85.6	5.7			82.8	3.9
Level of Service	F		F			F	A			F	A
Approach Delay（s）		130.9		0.0			50.9			45.6	
Approach LOS		F		A			D			D	

Intersection Summary			
HCM 2000 Control Delay	61.4	HCM 2000 Level of Service	E
HCM 2000 Volume to Capacity ratio	1.10		18.0
Actuated Cycle Length（s）	120.0	Sum of lost time（s）	F
Intersection Capacity Utilization	97.9%	ICU Level of Service	
Analysis Period（min）	15		
c Critical Lane Group			

HCM Signalized Intersection Capacity Analysis
2: Exit 5 SB On/Exit 5 SB Off \& NH 28

Intersection Summary			
HCM 2000 Control Delay	77.0	HCM 2000 Level of Service	E
HCM 2000 Volume to Capacity ratio	1.17	Sum of lost time (s)	18.0
Actuated Cycle Length (s)	140.0	E	
Intersection Capacity Utilization	89.8%	ICU Level of Service	
Analysis Period (min)	15		
c Critical Lane Group			

HCM Signalized Intersection Capacity Analysis
3: Exit 5 NB Off \& NH 28

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个 \uparrow			个4	F	7		7			
Traffic Volume (vph)	635	725	0	0	650	775	390	0	165	0	0	
Future Volume (vph)	635	725	0	0	650	775	390	0	165	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	00	190			

Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0			6.0	4.0	6.0		6.0		
Lane Util. Factor	1.00	0.95			0.95	1.00	1.00		1.00		
Ft	100	1.00			1.00	0.05	1.00		0.05		

ft	1.00	1.00			1.00	0.85	1.00	0.85				
Flt Protected	0.95	1.00			1.00	1.00	0.95	1.00				
Satd. Flow (prot)	1641	3282			3438	1538	1656	1482				
Flt Permitted	0.95	1.00			1.00	1.00	0.95	1.00				
Satd. Flow (perm)	1641	3282			3438	1538	1656	1482				
Peak-hour factor, PHF	0.87	0.87	0.87	0.90	0.90	0.90	0.78	0.78	0.78	0.92	0.92	0.92
Adj. Flow (vph)	730	833	0	0	722	861	500	0	212	0	0	0
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	120	0	0	0
Lane Group Flow (vph)	730	833	0	0	722	861	500	0	92	0	0	0
Heavy Vehicles (\%)	10\%	10\%	10\%	5\%	5\%	5\%	9\%	9\%	9\%	2\%	2\%	2\%
Turn Type	Prot	NA			NA	Free	Prot		Prot			

Protected Phases	5	2	6		8		8	
Permitted Phases		2	6	Free				
Actuated Green, G (s)	56.0	90.0	28.0	140.0	38.0		38.0	
Effective Green, g (s)	56.0	90.0	28.0	140.0	38.0		38.0	
Actuated g/C Ratio	0.40	0.64	0.20	1.00	0.27		0.27	
Clearance Time (s)	6.0	6.0	6.0		6.0		6.0	
Vehicle Extension (s)	5.0	5.0	5.0		3.0		3.0	
Lane Grp Cap (vph)	656	2109	687	1538	449		402	
V / s Ratio Prot	c0.44	0.25	c0.21		c0.30		0.06	
v/s Ratio Perm				0.56				
v/c Ratio	1.11	0.39	1.05	0.56	1.11		0.23	
Uniform Delay, d1	42.0	12.0	56.0	0.0	51.0		39.6	
Progression Factor	0.22	0.02	1.00	1.00	1.00		1.00	
Incremental Delay, d2	58.7	0.3	48.5	1.5	77.2		0.3	
Delay (s)	67.9	0.6	104.5	1.5	128.2		39.9	
Level of Service	E	A	F	A	F		D	
Approach Delay (s)		32.0	48.5			101.9		0.0
Approach LOS		C	D			F		A

Intersection Summary			
HCM 2000 Control Delay	51.7	HCM 2000 Level of Service	D
HCM 2000 Volume to Capacity ratio	1.10		18.0
Actuated Cycle Length (s)	140.0	Sum of lost time (s)	E
Intersection Capacity Utilization	89.8%	ICU Level of Service	
Analysis Period (min)	15		
C Critical Lane Group			

HCM Signalized Intersection Capacity Analysis
9：NH 102 \＆St．Charles Street／Londonderry Road

Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		\uparrow	F		¢		${ }^{4}$	个分		\％	个分	
Traffic Volume（vph）	5	0	240	0	0	0	250	690	5	5	1755	
Future Volume（vph）	5	0	240	0	0	0	250	690	5	5	1755	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）		6.0	6.0				6.0	6.0		6.0	6.0	
Lane Utill．Factor		1.00	1.00				1.00	0.95		1.00	0.95	
Frt		1.00	0.85				1.00	1.00		1.00	1.00	
Flt Protected		0.95	1.00				0.95	1.00		0.95	1.00	
Satd．Flow（prot）		1770	1583				1770	3536		1770	3538	
Flt Permitted		1.00	1.00				0.95	1.00		0.95	1.00	
Satd．Flow（perm）		1863	1583				1770	3536		1770	3538	
Peak－hour factor，PHF	0.92	0.92	0.92	0.25	0.25	0.25	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	5	0	261	0	0	0	272	750	5	5	1908	
RTOR Reduction（vph）	0	0	98	0	0	0	0	0	0	0	0	
Lane Group Flow（vph）	0	5	163	0	0	0	272	755	0	5	1913	
Heavy Vehicles（\％）	2\％	2\％	2\％	0\％	0\％	0\％	2\％	2\％	2\％	2\％	2\％	2\％
Turn Type	Perm	NA	custom				Prot	NA		Prot	NA	
Protected Phases		8			4		5	2		1	6	
Permitted Phases	8		6	4								
Actuated Green，G（s）		1.2	61.1				17.7	77.9		0.9	61.1	
Effective Green， $\mathrm{g}(\mathrm{s})$		1.2	61.1				17.7	77.9		0.9	61.1	
Actuated g／C Ratio		0.01	0.62				0.18	0.79		0.01	0.62	
Clearance Time（s）		6.0	6.0				6.0	6.0		6.0	6.0	
Vehicle Extension（s）		3.0	3.0				3.0	3.0		3.0	3.0	
Lane Grp Cap（vph）		22	986				319	2810		16	2205	
V / s Ratio Prot							c0．15	0.21		0.00	c0．54	
v／s Ratio Perm		c0．00	0.10									
v／c Ratio		0.23	0.17				0.85	0.27		0.31	0.87	
Uniform Delay，d1		47.9	7.7				38.9	2.6		48.2	15.1	
Progression Factor		1.00	1.00				1.00	1.00		1.00	1.00	
Incremental Delay，d2		5.2	0.1				19.2	0.1		10.9	3.9	
Delay（s）		53.2	7.8				58.1	2.7		59.1	19.0	
Level of Service		D	A				E	A		E	B	
Approach Delay（s）		8.7			0.0			17.4			19.1	
Approach LOS		A			A			B			B	

| Intersection Summary | | | |
| :--- | ---: | :--- | ---: | :--- |
| HCM 2000 Control Delay | 17.7 | HCM 2000 Level of Service | B |
| HCM 2000 Volume to Capacity ratio | 0.85 | | 18.0 |
| Actuated Cycle Length（s） | 98.0 | Sum of lost time（s） | E |
| Intersection Capacity Utilization | 85.5% | ICU Level of Service | |
| Analysis Period（min） | 15 | | |
| C Critical Lane Group | | | |

HCM Signalized Intersection Capacity Analysis
10: NH 102 \& Fordway/Madden Hill Road
01/19/2018

Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		¢			4			ち			\uparrow	
Traffic Volume (vph)	0	15	5	345	0	35	0	453	180	5	790	
Future Volume (vph)	0	15	5	345	0	35	0	453	180	5	790	

\|deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0			6.0			6.0			6.0	
Lane Util. Factor		1.00			1.00			1.00			1.00	
Fit		0.97			0.99			0.96			1.00	
Flt Protected		1.00			0.96			1.00			1.00	
Satd. Flow (prot)		1802			1743			1692			1809	
Flt Permitted		1.00			0.72			1.00			1.00	
Satd. Flow (perm)		1802			1315			1692			1802	
Peak-hour factor, PHF	0.60	0.60	0.60	0.96	0.96	0.96	0.89	0.89	0.89	0.86	0.86	0.86
Adj. Flow (vph)	0	25	8	359	0	36	0	509	202	6	919	
RTOR Reduction (vph)	0	6	0	0	25	0	0	16	0	0	-	
Lane Group Flow (vph)	0	27	,	0	370	0	0	695	0	0	925	0
Heavy Vehicles (\%)	2\%	2\%	2\%	3\%	3\%	3\%	8\%	8\%	8\%	5\%	5\%	5\%

Turn Type	NA	Perm	NA	NA	Perm	NA
Protected Phases	4		4	2		2
Permitted Phases	4	4			2	
Actuated Green, G (s)	26.1		26.1	49.1		49.1
Effective Green, g (s)	26.1		26.1	49.1		49.1
Actuated g/C Ratio	0.30		0.30	0.56		0.56
Clearance Time (s)	6.0		6.0	6.0		6.0
Vehicle Extension (s)	3.0		3.0	3.0		3.0
Lane Grp Cap (vph)	539		393	952		1014
v/s Ratio Prot	0.02			0.41		
v/s Ratio Perm			c0. 28			c0.51
v/c Ratio	0.05		0.94	0.73		0.91
Uniform Delay, d1	21.7		29.8	14.1		17.1
Progression Factor	1.00		1.00	1.00		1.00
Incremental Delay, d2	0.0		30.6	2.8		12.1
Delay (s)	21.8		60.4	17.0		29.2
Level of Service	C		E	B		C
Approach Delay (s)	21.8		60.4	17.0		29.2
Approach LOS	C		E	B		c

Intersection Summary			
HCM 2000 Control Delay	30.8	HCM 2000 Level of Service	C
HCM 2000 Volume to Capacity ratio	0.92		12.0
Actuated Cycle Length (s)	87.2	Sum of lost time (s)	E
Intersection Capacity Utilization	86.1%	ICU Level of Service	
Analysis Period (min)	15		
C Critical Lane Group			

	\Rightarrow	\rightarrow		\dagger		4	4	\uparrow	P	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations	7	F		\%	F		\%	\dagger		*	\uparrow	
Traffic Volume (vph)	80	235	90	35	520	80	90	160	40	70	125	11
Future Volume (vph)	80	235	90	35	520	80	90	160	40	70	125	11
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	6.0
Lane Util. Factor	1.00	1.00		1.00	1.00		- 1.00	1.00		1.00	1.00	1.00
Fit	1.00	0.96		1.00	0.98		1.00	0.97		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1656	1671		1703	1757		1719	1755		1703	1792	1524
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	1656	1671		1703	1757		1719	1755		1703	1792	1524
Peak-hour factor, PHF	0.96	0.96	0.96	0.94	0.94	0.94	0.85	0.85	0.85	0.91	0.91	0.91
Adj. Flow (vph)	83	245	94	37	553	85	106	188	47	77	137	126
RTOR Reduction (vph)	,	16	0	0	6	0	,	12	0	0	0	102
Lane Group Flow (vph)	83	323	0	37	632	0	106	223	0	77	137	24
Heavy Vehicles (\%)	9\%	9\%	9\%	6\%	6\%	6\%	5\%	5\%	5\%	6\%	6\%	6\%
Parking (\#/hr)			0									
Tum Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases												
Actuated Green, G (s)	4.6	29.7		3.4	28.5		4.0	14.4		4.0	14.4	14.
Effective Green, g (s)	4.6	29.7		3.4	28.5		4.0	14.4		4.0	14.4	14.4
Actuated g/C Ratio	0.06	0.39		0.05	0.38		0.05	0.19		0.05	0.19	0.19
Clearance Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Lane Gro Cap (vph)	100	657		76	663		91	334		90	341	29
v/s Ratio Prot	c0.05	0.19		0.02	c0.36		c0.06	c0.13		0.05	0.08	
v/s Ratio Perm												0.02
v/c Ratio	0.83	0.49		0.49	0.95		1.16	0.67		0.86	0.40	0.08
Uniform Delay, d1	35.1	17.2		35.2	22.8		35.8	28.3		35.5	26.8	25.1
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	40.8	0.6		4.8	23.8		145.5	5.0		50.6	0.8	0.1
Delay (s)	75.9	17.8		40.0	46.7		181.2	33.3		86.1	27.6	25.2
Level of Service	E	B		D	D		F	C		F	C	
Approach Delay (s)		29.2			46.3			79.3			40.0	
Approach LOS		C			D			E			D	

| Intersection Summary | | | |
| :--- | ---: | :--- | ---: | :--- |
| HCM 2000 Control Delay | 47.4 | HCM 2000 Level of Service | D |
| HCM 2000 Volume to Capacity ratio | 0.88 | | |
| Actuated Cycle Length (s) | 75.5 | Sum of lost time (s) | 24.0 |
| Intersection Capacity Utilization | 71.4% | ICU Level of Service | C |
| Analysis Period (min) | 15 | | |

C Critical Lane Group

	$\stackrel{ }{ }$	\checkmark	4	\dagger	\downarrow	4
Lane Group	EBL	ERR	NBL	NBT	SBT	SBR
Lane Configurations	${ }^{*}$			\uparrow	お	
Traffic Volume (vph)	490	0	0	85	175	395
Future Volume (vph)	490	0	0	85	175	395
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt					0.906	
Fit Protected	0.950					
Satd. Flow (prot)	1719	0	0	1827	1688	0
Flt Permitted	0.950					
Satd. Flow (perm)	1719	0	0	1827	1688	0
Link Speed (mph)	30			30	30	
Link Distance (ft)	322			309	249	
Travel Time (s)	7.3			7.0	5.7	
Peak Hour Factor	0.89	0.89	0.91	0.91	0.93	0.93
Heavy Vehicles (\%)	5\%	5\%	4\%	4\%	2\%	2\%
Adj. Flow (vph)	551	0	0	93	188	425
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	551	0	0	93	613	0
Sign Control	Stop			Free	Free	
Intersection Summary						
Area Type: Other						
Control Type: Unsignalized						
Intersection Capacity Utilization 67.3\%					Level	Service C
Analysis Period (min) 15						

	\dagger		4	4	\downarrow	\checkmark	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	M			\uparrow	A		
Traffic Volume (veh/h)	490	0	0	85	175	395	
Future Volume (Veh/h)	490	0	0	85	175	395	
Sign Control	Stop			Free	Free		
Grade	0\%			0\%	0\%		
Peak Hour Factor	0.89	0.89	0.91	0.91	0.93	0.93	
Hourly flow rate (vph)	551	0	0	93	188	425	
Pedestrians							
Lane Width (t)							
Walking Speed (t/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (t)							
pX, platoon unblocked							
vC, conflicting volume	494	400	613				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu , unblocked vol	494	400	613				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
pO queue free \%	0	100	100				
cM capacity (veh/h)	530	643	957				
Direction, Lane \#	EB 1	NB 1	SB 1				
Volume Total	551	93	613				
Volume Left	551	0	0				
Volume Right	0	0	425				
cSH	530	957	1700				
Volume to Capacity	1.04	0.00	0.36				
Queue Length 95th (tt)	394	0	0				
Control Delay (s)	78.0	0.0	0.0				
Lane LOS	F						
Approach Delay (s)	78.0	0.0	0.0				
Approach LOS	F						
Intersection Summary							
Average Delay			34.2				
Intersection Capacity UtilizationAnalysis Period (min)			67.3\%	ICU Level of Service			C
			15				

9: N High St \& Madden Rd Lanes. Volumes Timings

	\Rightarrow		4	\uparrow	\downarrow	\downarrow
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M			4	F	
Traffic Volume (vph)	5	0	0	520	565	15
Future Volume (vph)	5	0	0	520	565	15
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Utill Factor	1.00	100	1.00	1.00	1.00	1.00
Fit					0.996	.
Fit Protected	0.950					
Satd. Flow (prot)	1008	0	0	1827	1785	0
Fit Pemitted	0.950					
Satd. Flow (perm)	1008	0	0	1827	1785	0
Link Speed (mph)	30			30	30	
Link Distance (ft)	160			224	319	
Travel Time (s)	3.6			5.1	7.3	
Peak Hour Factor	0.44	0.44	0.95	0.95	0.96	0.96
Heavy Vehicles (\%)	79\%	79\%	4\%	4\%	6\%	6\%
Adj. Flow (vph)	11	0	0	547	589	16
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	11	0	0	547	605	0
Sign Control	Stop			Free	Free	
Intersection Summary						
Area Type: Other						
Control Type: Unsignalized						

	3	\rightarrow	7	5	\leftarrow	\cdots	\longrightarrow	k	\downarrow	4	k	$\stackrel{ }{ }$
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations		F			¢			\$			A	
Traffic Volume (vph)	40	465	5	0	490	0	0	5	65	10	5	20
Future Volume (vph)	40	465	5	0	490	0	0	5	65	10	5	20
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (t)	150		150	150		150	0		0	150		150
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (t)	25			25			25			25		
Lane Util Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.999						0.875			0.922	
Flt Protected		0.996									0.986	
Satd. Flow (prot)	0	1767	0	0	1810	0	0	1630	0	0	1727	0
FIt Permitted		0.996									0.986	
Satd. Flow (perm)	0	1767	0	0	1810	0	0	1630	0	0	1727	0
Link Speed (mph)		30			30			30			30	
Link Distance (t)		327			240			246			251	
Travel Time (s)		7.4			5.5			5.6			5.7	
Peak Hour Factor	0.89	0.89	0.89	0.96	0.96	0.96	0.65	0.65	0.65	0.67	0.67	0.67
Heavy Vehicles (\%)	7\%	7\%	7\%	5\%	5\%	5\%	2\%	2\%	2\%	0\%	0\%	0\%
Adj. Flow (vph)	45	522	6	0	510	0	0	8	100	15	7	30
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	573	0	0	510	0	0	108	0	0	52	0
Sign Control		Free			Free			Stop			Stop	

Intersection Summary Other
Area Type:Control Type: Unsignalized Intersection Capacity Utilization 71.5% Analysis Period (min) 15

	3	\rightarrow	\checkmark	5	\leftarrow		\leftrightarrows	\downarrow	4	4	*	$\stackrel{ }{ }$
Movement	EBL	EBT	EBR	WBL	WBT	WBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations		F			\$			\uparrow			¢	
Traffic Volume (veh/h)	40	465	5	0	490	0	0	5	65	10	5	20
Future Volume (Veh/h)	40	465	5	0	490	0	0	5	65	10	5	20
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.89	0.89	0.89	0.96	0.96	0.96	. 0.65	0.65	0.65	0.67	0.67	0.67
Hourly flow rate (vph)	45	522	6	0	510	0	0	8	100	15	7	30
Pedestrians												
Lane Width (ft)												
Walking Speed (t/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ti)												
pX, platoon unblocked												
vC, conflicting volume	510			528			1158	1128	510	1129	1125	525
vC1, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	510			528			1158	1128	510	1129	1125	525
tC, single (s)	4.2			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.3			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	96			100			100	96	82	89	96	95
cM capacity (veh/h)	1030			1024			154	195	563	141	198	556
Direction, Lane \#	EB 1	WB 1	SE1	NW 1								
Volume Total	573	510	108	52								
Volume Left	45	0	0	15								
Volume Right	6	0	100	30								
CSH	1030	1024	494	266								
Volume to Capacity	0.04	0.00	0.22	0.20								
Queue Length 95th (ft)	3	0	21	18								
Control Delay (s)	1.2	0.0	14.3	21.8								
Lane LOS	A		B	C								
Approach Delay (s)	1.2	0.0	14.3	21.8								
Approach LOS			B	C								
Intersection Summary												
Average Delay			2.7									
Intersection Capacity Utilization			71.5\%	ICU Level of Service			C			C		
Analysis Period (min)			15									

	4	\uparrow	1	\checkmark	\downarrow	\downarrow	4	\nearrow	¢	f	\checkmark	4
Movement	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%	$\uparrow \uparrow$	$\overline{7}$	7\%	¢ \uparrow	\%	1	\uparrow	\%	7	\uparrow	$\overline{7}$
Traffic Volume (vph)	0	150	120	295	160	,	65	276	0	135	525	295
Future Volume (vph)	0	150	120	295	160	0	65	276	0	135	525	295
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0	6.0	6.0	6.0		6.0	6.0		6.0	6.0	6.0
Lane Util. Factor		0.95	1.00	0.97	0.95		1.00	1.00		1.00	1.00	1.00
Fit		1.00	0.85	1.00	1.00		1.00	1.00		1.00	1.00	0.85
FIt Protected		1.00	1.00	0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)		3471	1553	3335	3438		1752	1845		1752	1845	1568
FIt Permitted		1.00	1.00	0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)		3471	1553	3335	3438		1752	1845		1752	1845	1568
Peak-hour factor, PHF	0.84	0.84	0.84	0.79	0.79	0.79	0.86	0.86	0.86	0.99	0.99	0.99
Adj. Flow (vph)	0	179	143	373	203	0	76	321	0	136	530	298
RTOR Reduction (vph)	-	0	101	0	0	0	0	0	0	0	0	169
Lane Group Flow (vph)	0	179	42	373	203	0	76	321	0	136	530	129
Heavy Vehicles (\%)	4\%	4\%	4\%	5\%	5\%	5\%	3\%	3\%	3\%	3\%	3\%	3\%
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Free	Prot	NA	pt+ov
Protected Phases	5	2		1	6		7	4		3	8	81
Permitted Phases		2	2		6	6		4	Free		8	
Actuated Green, G (s)		26.7	26.7	15.1	32.8		6.4	16.2		8.0	17.8	38.9
Effective Green, $\mathrm{g}(\mathrm{s})$		26.7	26.7	15.1	32.8		6.4	16.2		8.0	17.8	38.9
Actuated g/C Ratio		0.30	0.30	0.17	0.36		0.07	0.18		0.09	0.20	0.43
Clearance Time (s)		6.0	6.0	6.0	6.0		6.0	6.0		6.0	6.0	
Vehicle Extension (s)		3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		1029	460	559	1252		124	332		155	364	677
v / s Ratio Prot		0.05		c0.11	c0.06		0.04	0.17		c0.08	c0. 29	0.08
v/s Ratio Perm			0.03									
v/c Ratio		0.17	0.09	0.67	0.16		0.61	0.97		0.88	1.46	0.19
Uniform Delay, d1		23.5	22.9	35.1	19.3		40.6	36.6		40.5	36.1	15.8
Progression Factor		1.00	1.00	1.20	0.56		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2		0.4	0.4	2.9	0.3		8.7	40.1		38.7	220.0	0.1
Delay (s)		23.8	23.3	45.1	11.0		49.3	76.8		79.2	256.1	15.9
Level of Service		C	C	D	B		D	E		E	F	B
Approach Delay (s)		23.6			33.1			71.5			156.9	
Approach LOS		C			C			E			F	

ntersection Summary			
HCM 2000 Control Delay	91.3	HCM 2000 Level of Service	F
HCM 2000 Volume to Capacity ratio	0.72		24.0
Actuated Cycle Length (s)	90.0	Sum of lost time (s)	C
Intersection Capacity Utilization	67.7%	ICU Level of Service	
Analysis Period (min)	15		
C Critical Lane Group			

	m	\cdots	\bigcirc	T	4	\checkmark
Lane Group	NWL	NWR	NET	NER	SWL	SWT
Lane Configurations	7	${ }^{7}$	\uparrow	「		*个
Traffic Volume (vph)	75	70	500	220	65	775
Future Volume (vph)	75	70	500	220	65	775
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	150	150		0	0	
Storage Lanes	0	1		1	0	,
Taper Length (ft)	25				25	
Lane Util. Factor	1.00	1.00	1.00	1.00	0.95	0.95
Fit		0.850		0.850		
Flt Protected	0.950					0.996
Satd. Flow (prot)	1770	1583	1845	1568	0	3525
Flt Permitted	0.950					0.996
Satd. Flow (perm)	1770	1583	1845	1568	0	3525
Link Speed (mph)	30		30			30
Link Distance (ft)	408		387			233
Travel Time (s)	9.3		8.8			5.3
Peak Hour Factor	0.83	0.83	0.86	0.86	0.81	0.81
Heavy Vehicles (\%)	2\%	2\%	3\%	3\%	2\%	2\%
Adj. Flow (vph)	90	84	581	256	80	957
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	90	84	581	256	0	1037
Sign Control	Stop		Free			Intersection Summary Free
Intersection Summary						
Control Type: Unsignalized						
Intersection Capacity Utilization 63.8\% ICU Level of Service B				ICU Level of Service B		
Analysis Period (min) 15						

	\ldots	¢	\nearrow	T		\checkmark	
Movement	NWL	NWR	NET	NER	SWL	SWT	
Lane Configurations	\%	\%	\uparrow	$\overline{ }$		$\uparrow \uparrow$	
Traffic Volume (veh/h)	75	70	500	220	65	775	
Future Volume (Veh/h)	75	70	500	220	65	775	
Sign Control	Stop		Free			Free	
Grade	0\%		0\%			0\%	
Peak Hour Factor	0.83	0.83	0.86	0.86	0.81	0.81	
Hourly flow rate (vph)	90	84	581	256	80	957	
Pedestrians							
Lane Width (ft)							
Walking Speed (t/s)							
Percent Blockage							
Right turn flare (veh)		6					
Median type			None			TWLTL	
Median storage veh)						2	
Upstream signal (t)			387				
pX, platoon unblocked	0.86	0.86			0.86		
vC . conflicting volume	1220	581			581		
vC1, stage 1 conf vol	581						
vC2, stage 2 conf vol	638						
vCu, unblocked vol	1176	437			437		
tC, single (s)	6.8	6.9			4.1		
tC. 2 stage (s)	5.8						
tF (s)	3.5	3.3			2.2		
p0 queue free \%	75	83			92		
cM capacity (veh/h)	363	490			968		
Direction, Lane\#	NW 1	NE 1	NE 2	SW 1	SW 2		
Volume Total	174	581	256	399	638		
Volume Left	90	O		80	0		
Volume Right	84	O	256	0	0		
CSH	701	1700	1700	968	1700		
Volume to Capacity	0.25	0.34	0.15	0.08	0.38		
Queue Length 95th (ft)	24	0	0	7	0		
Control Delay (s)	16.1	0.0	0.0	2.6	0.0		
Lane LOS	C			A			
Approach Delay (s)	16.1	0.0		1.0			
Approach LOS	C						
Intersection Summary							
Average Delay			1.9				
Intersection Capacity Utilization			63.8\%		CU Level of	f Service	B
Analysis Period (min)			15				

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%	$\uparrow \uparrow$		*	个t			\uparrow	「		\uparrow	\%
Traffic Volume (vph)	45	595	0	0	465	30	0	0	0	25	0	400
Future Volume (vph)	45	595	0	0	465	30	0	0	0	25	0	400
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0			6.0						6.0	6.0
Lane Util. Factor	1.00	0.95			0.95						1.00	1.00
Fit	1.00	1.00			0.99						1.00	0.85
Flt Protected	0.95	1.00			1.00						0.95	1.00
Satd. Flow (prot)	1687	3374			3507						1787	1599
Flt Permitted	0.95	1.00			1.00						0.76	1.00
Satd. Flow (perm)	1687	3374			3507						1424	1599
Peak-hour factor, PHF	0.83	0.83	0.83	0.92	0.92	0.92	0.50	0.50	0.50	0.90	0.90	0.90
Adj. Flow (vph)	54	717	0	0	505	33	0	0	0	28	0	444
RTOR Reduction (vph)	0	0	0	0	4	0	0	0	0	0	0	269
Lane Group Flow (vph)	54	717	0	0	534	0	0	0	0	0	28	175
Heary Vehicles (\%)	7\%	7\%	7\%	2\%	2\%	2\%	0\%	0\%	0\%	1\%	1\%	1\%
Turn Type	Prot	NA		Prot	NA				Perm	Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases					6		8	8	8	4		4
Actuated Green, G (s)	5.2	62.9			51.7						15.1	15.1
Effective Green, $\mathrm{g}(\mathrm{s})$	5.2	62.9			51.7						15.1	15.1
Actuated g/C Ratio	0.06	0.70			0.57						0.17	0.17
Clearance Time (s)	6.0	6.0			6.0						6.0	6.0
Vehicle Extension (s)	3.0	3.0			3.0						3.0	3.0
Lane Grp Cap (vph)	97	2358			2014						238	268
v/s Ratio Prot	c0.03	c0.21			0.15							
v/s Ratio Perm											0.02	c0.11
v/c Ratio	0.56	0.30			0.27						0.12	0.65
Uniform Delay, d1	41.3	5.2			9.6						31.8	35.0
Progression Factor	1.01	1.33			1.34						1.00	1.00
Incremental Delay, d2	6.4	0.3			0.1						0.2	5.6
Delay (s)	48.1	7.2			12.9						32.0	40.6
Level of Service	D	A			B						C	D
Approach Delay (s)		10.0			12.9			0.0			40.1	
Approach LOS		B			B			A			D	

Intersection Summary

HCM 2000 Control Delay	18.9
HCM 2000 Volume to Capacity ratio	0.41
Actuated Cycle Length (s)	90.0
lntersection Capacity Utilization	48.6%
Analysis Period (min)	15

	\rangle	\rightarrow		\checkmark	\leftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%*	个 4		\%	\uparrow		\%	\dagger		${ }^{7}$	\uparrow	\%
Traffic Volume (vph)	105	630	5	5	405	215	10	5	5	180	5	100
Future Volume (vph)	105	630	5	5	405	215	10	5	5	180	5	100
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	6.0
Lane Util. Factor	0.97	0.95		1.00	0.95		1.00	1.00		0.95	0.95	1.00
Fit	1.00	1.00		1.00	0.95		1.00	0.93		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.96	1.00
Satd. Flow (prot)	3303	3402		1736	3291		1805	1758		1665	1674	1568
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.96	1.00
Satd. Flow (perm)	3303	3402		1736	3291		1805	1758		1665	1674	1568
Peak-hour factor, PHF	0.83	0.83	0.83	0.97	0.97	0.97	0.67	0.67	0.67	0.90	0.90	0.90
Adj. Flow (vph)	127	759	6	5	418	222	15	7	7	200	6	111
RTOR Reduction (vph)	,	0	0	0	81	0	0	7	0	0	0	79
Lane Group Flow (vph)	127	765	0	5	559	0	15	7	0	102	104	32
Heavy Vehicles (\%)	6\%	6\%	6\%	4\%	4\%	4\%	0\%	0\%	0\%	3\%	3\%	3\%
Turn Type	Prot	NA		Prot	NA		Split	NA		Split	NA	$\mathrm{pt}+\mathrm{v}$
Protected Phases	5	2		1	6		3	3		4	4	45
Permitted Phases								3				
Actuated Green, G (s)	8.8	49.1		1.3	41.6		4.1	4.1		11.5	11.5	26.3
Effective Green, $\mathrm{g}(\mathrm{s})$	8.8	49.1		1.3	41.6		4.1	4.1		11.5	11.5	26.3
Actuated g/C Ratio	0.10	0.55		0.01	0.46		0.05	0.05		0.13	0.13	0.29
Clearance Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	322	1855		25	1521		82	80		212	213	458
v/s Ratio Prot	c0.04	c0.22		0.00	0.17		c0.01	0.00		0.06	c0.06	0.02
v/s Ratio Perm												
v/C Ratio	0.39	0.41		0.20	0.37		0.18	0.09		0.48	0.49	0.07
Uniform Delay, d1	38.1	12.0		43.8	15.7		41.3	41.2		36.5	36.5	23.0
Progression Factor	1.00	1.00		1.17	0.60		1.00	1.00		1.00	1.00	1.00
Incremental Delay d2	0.8	0.1		3.6	0.6		1.1	0.5		1.7	1.8	0.1
Delay (s)	38.9	12.1		55.1	10.1		42.4	41.7		38.2	38.3	23.1
Level of Service	D	B		E	B		D	D		D	D	C
Approach Delay (s)		15.9			10.4			42.1			32.9	
Approach LOS		B			B			D			C	
Intersection Summary												
			17.3		CM 2000 L	Level of S	Service		B			
HCM 2000 Control Delay HCM 2000 Volume to Capacity ratio			0.43									
			90.0		um of lost	time (s)			24.0			
Actuated Cycle Length (s) Intersection Capacity Utilization			49.0\%		CU Level of	Service			A			
Analysis Period (min)			15									
c Critical Lane Group												

Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	*	\uparrow	\dagger		\%	
Traffic Volume (veh/h)	15	720	645	40	80	35
Future Volume (Veh/h)	15	720	645	40	80	35
Sign Control		Free	Free		Stop	
Grade		0\%	0\%		0\%	
Peak Hour Factor	0.84	0.84	0.89	0.89	0.83	0.83
Hourly flow rate (vph)	18	857	725	45	96	42
Pedestrians						
Lane Width (ft)						
Walking Speed (t / s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC , conflicting volume	770				1640	748
vC 1 , stage 1 conf vol						
vC 2 , stage 2 conf vol						
vCu , unblocked vol	770				1640	748
tC, single (s)	4.2				6.5	6.3
tC, 2 stage (s)						
tF (s)	2.3				3.6	3.4
p0 queue free \%	98				9	90
cM capacity (veh/h)	823				105	406

Direction, Lane\#	E8 1	EB 2	WB 1	SB 1	
Volume Total	18	857	770	138	
Volume Left	18	0	0	96	
Volume Right	0	0	45	42	
CSH	823	1700	1700	136	
Volume to Capacity	0.02	0.50	0.45	1.01	
Queue Length 95th (ft)	2	0	0	183	
Control Delay (s)	9.5	0.0	0.0	144.7	
Lane LOS	A			F	
Approach Delay (s)	0.2		0.0	144.7	
Approach LOS				F	
Intersection Summary					
Average Delay			11.3		
Intersection Capacity Utilization			51.1\%	ICU Level of Service	A
Analysis Period (min)			15		

	\checkmark	\cdots	4	\cdots	\dagger	\%	P		\dagger	\downarrow	\triangle	
Lane Group	WBL2	WBL	WBR	NBL	NBT	NBR	NBR2	SBL	SBT	SBR	NET	NER
Lane Configurations		\%			${ }_{4}$				${ }_{4}$		\uparrow	
Traffic Volume (vph)	10	305	205	15	85	45	10	95	110	85	120	140
Future Volume (vph)	10	305	205	15	85	45	10	95	110	85	120	140
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (tt)		0	150	0		150		0		0		150
Storage Lanes		1	0	0		0		0		0		
Taper Length (tt)		25		25				25				
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Fit		0.947			0.952				0.961		0.907	
Flt Protected		0.971			0.995				0.984			
Satd. Flow (prot)	0	1696	0	0	1747	0	0	0	1679	0	1596	
Flt Permitted		0.971			0.995				0.984			
Satd. Flow (perm)	0	1696	0	0	1747	0	0	0	1679	0	1596	
Link Speed (mph)		30			30				30		30	
Link Distance (tt)		465			456				371		400	
Travel Time (s)		10.6			10.4				8.4		9.1	
Peak Hour Factor	0.91	0.91	0.91	0.86	0.86	0.86	0.86	0.80	0.80	0.80	0.60	0.60
Heavy Vehicles (\%)	3\%	3\%	3\%	3\%	3\%	3\%	3\%	7\%	7\%	7\%	8\%	8\%
Adj. Flow (vph)	11	335	225	17	99	52	12	119	138	106	200	23
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	571	0	0	180	0	0	0	363	0	641	
Sign Control		Yield			Yield				Yield		Yield	

ntersection Summary
Area Type:
Other
Control Type: Roundabout
Intersection Capacity Utilization 107.7\%
ICU Level of Service G
Analysis Period (min) 15

Intersection				
Intersection Delay, s/veh	24.3			
Intersection LOS	C		NB	SB
Approach	WB	1	1	NE
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	1	180	363	1
Adj Approach Flow, veh/h	571	186	388	641
Demand Flow Rate, veh/h	588	595	693	
Vehicles Circulating, veh/h	390	442	303	344
Vehicles Exiting, veh/h	391	3.186	747	
Follow-Up Headway, s	3.186	0	3.184	3.186
Ped Vol Crossing Leg, \#/h	0	1.000	0	0
Ped Cap Adj	1.000	10.0	1.000	1.000
Approach Delay, s/veh	22.9	A	31.9	
Approach LOS	C		C	D

Lane	Left	Left	Left	Left
Designated Moves	LR	LTR	LTR	LTR
Assumed Moves	LR	LTR	LTR	LTR
RT Channelized				
Lane Util	1.000	1.000	1.000	1.000
Critical Headway, s	5.193	5.193	5.193	5.193
Entry Flow, veh/h	588	186	388	693
Cap Entry Lane, veh/h	765	623	559	801
Entry HV Adj Factor	0.971	0.968	0.936	0.925
Flow Entry, veh/h	571	180	363	641
Cap Entry, veh/h	743	603	524	741
V/C Ratio	0.769	0.298	0.694	0.865
Control Delay, s/veh	22.9	10.0	24.5	31.9
LOS	C	A	C	D
95th \%tile Queue, veh	7	1	5	10

Intersection	
Intersection Delay, s/veh	
Intersection LOS	
Approach	SW
Entry Lanes	1
Conflicting Circle Lanes	1
Adj Approach Flow, veh/h	307
Demand Flow Rate, veh/h	329
Vehicles Circulating, veh/h	708
Vehicles Exiting, veh/h	270
Follow-Up Headway, s	3.186
Ped Vol Crossing Leg, \#h	0
Ped Cap Adj	1.000
Approach Delay, s/veh	19.4
Approach LOS	C
Lane	Left
Designated Moves	LTR
Assumed Moves	LTR
RT Channelized	
Lane Util	1.000
Critical Headway, s	5.193
Entry Flow, veh/h	329
Cap Entry Lane, veh/h	557
Entry HV Adj Factor	0.934
Flow Entry, veh/h	307
Cap Entry, veh/h	520
VIC Ratio	0.591
Control Delay, s/veh	19.4
LOS	C
95th \%tile Queue, veh	

	4	\rightarrow		\checkmark		4	4	4	p	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	F		4			\dagger			¢	
Traffic Volume (veh/h)	5	0	150	0	0	0	145	135	0	0	110	30
Future Volume (Veh/h)	5	0	150	,	0	0	145	135	0	0	110	30
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.82	0.82	0.82	0.70	0.70	0.70	0.75	0.75	0.75	0.71	0.71	0.71
Hourly flow rate (vph)	6	,	183	0	0	0	193	180	0	0	155	42
Pedestrians												
Lane Width (ft)												
Walking Speed (fts)												
Percent Blockage												
Right turn flare (veh)			1									
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
VC , conflicting volume	742	742	176	834	763	180	197			180		
vC1, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	742	742	176	834	763	180	197			180		
tC, single (s)	7.2	6.6	6.3	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.6	4.1	3.4	3.5	4.0	3.3	2.2			2.2		
p0 queue free \%	98	100	79	100	100	100	86			100		
cM capacity (veh/h)	289	289	852	199	284	855	1370			1384		
Direction, Lane\#	EB1	WB1	NB1	SB1								
Volume Total	189	0	373	197								
Volume Left	6	0	193	0								
Volume Right	183	0	0	42								
CSH	880	1700	1370	1384								
Volume to Capacity	0.21	0.00	0.14	0.00								
Queue Length 95th (ft)	20	0	12	0								
Control Delay (s)	10.6	0.0	4.8	0.0								
Lane LOS	B	A	A									
Approach Delay (s)	10.6	0.0	4.8	0.0								
Approach LOS	B	A										
Intersection Summary												
Average Delay			5.0									
Intersection Capacity Utilization			36.1\%		Level of	Service			A			
Analysis Period (min)			15									

Zone 5
18: Tsienneto Rd \& NH 28 Byp S/NH 28 Byp N
HCM Signalized intersection Capacity Analysis

Movement	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	*	ち		7	\uparrow	\%	\dagger	\dagger		7	\uparrow	
Traffic Volume (vph)	0	55	20	20	55	270	85	230	80	75	415	55
Future Volume (vph)	0	55	20	20	55	270	85	230	80	75	415	55
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0		6.0	6.0	6.0	6.0	6.0		6.0	6.0	
Lane Utill. Factor		1.00		1.00	1.00	1.00	. 1.00	1.00		1.00	1.00	
Fit		0.96		1.00	1.00	0.85	1.00	0.96		1.00	0.98	
Flt Protected		1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1772		1736	1827	1553	1770	1790		1787	1848	
Flt Pemitted		1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)		1772		1736	1827	1553	1770	1790		1787	1848	
Peak-hour factor, PHF	0.82	0.82	0.82	0.81	0.81	0.81	0.68	0.68	0.68	0.78	0.78	0.78
Adj. Flow (vph)	0	67	24	25	68	333	125	338	118	96	532	71
RTOR Reduction (vph)	0	15	0	0	0	143	0	15	0	0	6	0
Lane Group Flow (vph)	0	76	0	25	68	190	125	441	0	96	597	0
Heary Vehicles (\%)	3\%	3\%	3\%	4\%	4\%	4\%	2\%	2\%	2\%	1\%	1\%	1\%
Tum Type	Prot	NA		Prot	NA	pt+ov	Prot	NA		Prot	NA	
Protected Phases		6		5		23	3	8				

Permitted Phases

Actuated Green, G (s)	21.6	3.2	30.8	45.6	8.8	23.7	7.5	22.4
Effective Green, $g(s)$	21.6	3.2	30.8	45.6	8.8	23.7	7.5	22.4
Actuated g/C Ratio	0.27	0.04	0.39	0.57	0.11	0.30	0.09	0.28
Clearance Time (s)	6.0	6.0	6.0		6.0	6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	478	69	703	885	194	530	167	517
v/s Ratio Prot	0.04	0.01	0.04	$c 0.12$	$c 0.07$	0.25	0.05	$\mathbf{c o . 3 2}$

v/s Ratio Perm								
V/c Ratio	0.16	0.36	0.10	0.21	0.64	0.83	0.57	1.16
Uniform Delay, d1	22.3	37.4	15.7	8.4	34.1	26.3	34.7	28.8
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.2	3.2	0.3	0.1	7.1	10.8	4.7	90.0
Delay (s)	22.4	40.6	16.0	8.5	41.2	37.0	39.4	118.8
Level of Service	C	D	B	A	D	D	D	F
Approach Delay (s)	22.4		11.6			38.0		107.9
Approach LOS	C		B			D		F

Intersection Summary			
HCM 2000 Control Delay	58.1	HCM 2000 Level of Service	E
HCM 2000 Volume to Capacity ratio	0.69		24.0
Actuated Cycle Length (s)	80.0	Sum of lost time (s)	A
Intersection Capacity Utilization	54.6%	ICU Level of Service	
Analysis Period (min)	15		
c Critical Lane Group			

	\rangle		4	\uparrow	\downarrow	\downarrow	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	\%			\uparrow	\dagger		
Traffic Volume (veh/h)	190	0	10	135	235	465	
Future Volume (Veh/h)	190	0	10	135	235	465	
Sign Control	Stop			Free	Free		
Grade	0\%			0\%	0\%		
Peak Hour Factor	0.94	0.94	0.91	0.91	0.82	0.82	
Hourly flow rate (vph)	202	0	11	148	287	567	
Pedestrians							
Lane Width (ft)							
Walking Speed (tts)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
VC , conflicting volume	740	570	854				
vC1, stage 1 conf vol							
$\mathrm{vC2}$, stage 2 conf vol							
vCu, unblocked vol	740	570	854				
tC , single (s)	6.4	6.2	4.2				
$\mathrm{tC}, 2$ stage (s)							
tF (s)	3.5	3.3	2.3				
p0 queue free \%	47	100	99				
cM capacity (veh/h)	378	521	748				
Direction, Lane \#	EB1	NB1	SB1				
Volume Total	202	159	854				
Volume Left	202	11	0				
Volume Right	0	0	567				
CSH	378	748	1700				
Volume to Capacity	0.53	0.01	0.50				
Queue Length 95th (ft)	76	1	0				
Control Delay (s)	24.9	0.8	0.0				
Lane LOS	C	A					
Approach Delay (s)	24.9	0.8	0.0				
Approach LOS	C						
Intersection Summary							
Average Delay			4.3				
Intersection Capacity Utilization			58.1\%	ICU Level of Service			B
Analysis Period (min)			15				

APPENDIX N-3: 2040 NO-BUILD INTERSECTION CAPACITY ANALYSES - SYNCHRO PRINTOUTS - AM PEAK HOUR

Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		44	44		\%	TV
Traffic Volume (vph)	0	1315	670	0	790	835
Future Volume (vph)	0	1315	670	0	790	835
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	16	12
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	0.88
Frt						0.850
Flt Protected					0.950	
Satd. Flow (prot)	0	3471	3406	0	1930	2682
Flt Permitted					0.950	
Satd. Flow (perm)	0	3471	3406	0	1930	2682
Right Turn on Red				Yes		No
Satd. Flow (RTOR)						
Link Speed (mph)		30	30		25	
Link Distance (ft)		712	388		212	
Travel Time (s)		16.2	8.8		5.8	
Peak Hour Factor	0.93	0.93	0.88	0.88	0.89	0.89
Heavy Vehicles (\%)	4\%	4\%	6\%	6\%	6\%	6\%
Adj. Flow (vph)	0	1414	761	0	888	938
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	0	1414	761	0	888	938
Turn Type		NA	NA		Prot	Prot
Protected Phases		2	6		4	4
Permitted Phases						
Detector Phase		2	6		4	4
Switch Phase						
Minimum Initial (s)		8.0	8.0		5.0	5.0
Minimum Split (s)		14.0	21.0		27.0	27.0
Total Split (s)		29.0	29.0		31.0	31.0
Total Split (\%)		48.3\%	48.3\%		51.7\%	51.7\%
Maximum Green (s)		23.0	23.0		25.0	25.0
Yellow Time (s)		2.0	2.0		2.0	2.0
All-Red Time (s)		4.0	4.0		4.0	4.0
Lost Time Adjust (s)		0.0	0.0		0.0	0.0
Total Lost Time (s)		6.0	6.0		6.0	6.0
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)		3.0	3.0		3.0	3.0
Recall Mode		C-Min	C-Min		None	None
Walk Time (s)			7.0		7.0	7.0
Flash Dont Walk (s)			8.0		14.0	14.0
Pedestrian Calls (\#/hr)			0		0	0
Act Effct Green (s)		23.0	23.0		25.0	25.0
Actuated g/C Ratio		0.38	0.38		0.42	0.42
v/c Ratio		1.06	0.58		1.10	0.84
Control Delay		55.2	13.5		85.5	24.7
Queue Delay		0.0	0.0		0.0	0.0
Total Delay		55.2	13.5		85.5	24.7
LOS		E	B		F	C

Splits and Phases: 7: NH 102 \& Exit 4 SB Off

	\cdots	1	1	\cdots	\rangle	\dagger	-	A	1	\downarrow	c
Lane Group	NBL2	NBL	NBR	SEL	SER	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	${ }^{7} 1$		\% ${ }^{\text {\% }}$			71	种			44	F'
Traffic Volume (vph)	460	0	355	0	0	1190	915	0	0	1260	1125
Future Volume (vph)	460	0	355	0	0	1190	915	0	0	1260	1125
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)		0	0	0	0	550		0	0		0
Storage Lanes		2	2	0	0	2		0	0		1
Taper Length (ft)		25		25		25			25		
Lane Util. Factor	0.97	1.00	0.88	1.00	1.00	0.97	0.95	1.00	1.00	0.95	1.00
Frt			0.850								0.850
Flt Protected	0.950					0.950					
Satd. Flow (prot)	3242	0	2632	0	0	3335	3438	0	0	3505	1568
Fit Permitted	0.950					0.950					
Satd. Flow (perm)	3242	0	2632	0	0	3335	3438	0	0	3505	1568
Right Turn on Red			No					Yes			Yes
Satd. Flow (RTOR)											560
Link Speed (mph)		25		30			30			30	
Link Distance (ft)		856		390			760			857	
Travel Time (s)		23.3		8.9			17.3			19.5	
Peak Hour Factor	0.88	0.88	0.88	0.92	0.92	0.94	0.94	0.94	0.92	0.92	0.92
Heavy Vehicles (\%)	8\%	8\%	8\%	2\%	2\%	5\%	5\%	5\%	3\%	3\%	3\%
Adj. Flow (vph)	523	0	403	0	0	1266	973	0	0	1370	1223
Shared Lane Traffic (\%)											
Lane Group Flow (vph)	523	0	403	0	0	1266	973	0	0	1370	1223
Turn Type	Prot		Prot			Prot	NA			NA	Free
Protected Phases	8		8			5	2			6	
Permitted Phases											Free
Detector Phase	8		2			5	2			6	
Switch Phase											
Minimum Initial (s)	10.0		10.0			5.0	8.0			8.0	
Minimum Split (s)	16.0		16.0			11.0	42.0			31.0	
Total Split (s)	23.0		23.0			47.0	97.0			50.0	
Total Split (\%)	19.2\%		19.2\%			39.2\%	80.8\%			41.7\%	
Maximum Green (s)	17.0		17.0			41.0	91.0			44.0	
Yellow Time (s)	2.0		2.0			2.0	2.0			2.0	
All-Red Time (s)	4.0		4.0			4.0	4.0			4.0	
Lost Time Adjust (s)	0.0		0.0			0.0	0.0			0.0	
Total Lost Time (s)	6.0		6.0			6.0	6.0			6.0	
Lead/Lag						Lead				Lag	
Lead-Lag Optimize?											
Vehicle Extension (s)	3.0		3.0			3.0	3.0			3.0	
Recall Mode	None		None			None	C-Min			C-Min	
Walk Time (s)							7.0			7.0	
Flash Dont Walk (s)							29.0			17.0	
Pedestrian Calls (\#/hr)							0			0	
Act Effct Green (s)	17.0		17.0			41.0	91.0			44.0	120.0
Actuated g/C Ratio	0.14		0.14			0.34	0.76			0.37	1.00
v / c Ratio	1.14		1.08			1.11	0.37			1.07	0.78
Control Delay	132.3		119.1			84.7	5.7			81.8	3.9
Queue Delay	0.0		0.0			0.0	0.0			0.0	0.0

Lane Group	NBL2	NBL	NBR	SEL	SER	NEL	NET	NER	SWL	SWT	SWR
Total Delay	132.3		119.1			84.7	5.7			81.8	3.9
LOS	F		F			F	A			F	A
Approach Delay		126.5					50.4			45.1	
Approach LOS		F					D			D	
Queue Length 50th (ft)	~ 243		~198			~ 569	118			~ 616	0
Queue Length 95th (ft)	\#342		\#300			m\#492	m107			\#755	0
Internal Link Dist (ft)		776		310			680			777	
Turn Bay Length (tt)						550					
Base Capacity (vph)	459		372			1139	2607			1285	1568
Starvation Cap Reductn	0		0			0	0			0	0
Spillback Cap Reductn	0		0			0	0			0	0
Storage Cap Reductn	0		0			0	0			0	0
Reduced v/c Ratio	1.14		1.08			1.11	0.37			1.07	0.78

Intersection Summary

Area Type:
 Other

Cycle Length: 120
Actuated Cycle Length: 120
Offset: $13(11 \%)$, Referenced to phase 2:NET and 6:SWT, Start of Yellow
Natural Cycle: 140
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.14
Intersection Signal Delay: 60.2
Intersection Capacity Utilization 97.9\%
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 8: NH 102 \& Exit 4 NB Off

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		性	7	\%	¢ \uparrow					**		F
Traffic Volume (vph)	0	810	360	390	650	0	0	0	0	550	0	555
Future Volume (vph)	0	810	360	390	650	0	0	0	0	550	0	555
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		350	0		0	0		0	0		0
Storage Lanes	0		1	1		0	0		0	2		1
Taper Length (t)	25			25			25			25		
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	0.97	1.00	1.00
Frt			0.850									0.850
Flt Protected				0.950						0.950		
Satd. Flow (prot)	0	3167	1417	1687	3374	0	0	0	0	3303	0	1524
Flt Permitted				0.950						0.950		
Satd. Flow (perm)	0	3167	1417	1687	3374	0	0	0	0	3303	0	1524
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			326									155
Link Speed (mph)		30			30			30			35	
Link Distance (ft)		851			693			486			581	
Travel Time (s)		19.3			15.8			11.0			11.3	
Peak Hour Factor	0.92	0.92	0.92	0.73	0.73	0.73	0.92	0.92	0.92	0.74	0.74	0.74
Heavy Vehicles (\%)	14\%	14\%	14\%	7\%	7\%	7\%	2\%	2\%	2\%	6\%	6\%	6\%
Adj. Flow (vph)	0	880	391	534	890	0	0	0	0	743	0	750
Shared Lane Traffic (\%) 0												
Lane Group Flow (vph)	0	880	391	534	890	0	0	0	0	743	0	750
Turn Type		NA	Free	Prot	NA					Prot		Prot
Protected Phases		2		1	6					4		4
Permitted Phases			Free									
Detector Phase		2		1	6					4		4
Switch Phase												
Minimum Initial (s)		9.0		4.0	9.0					4.0		4.0
Minimum Split (s)		21.0		10.0	21.0					10.0		10.0
Total Split (s)		46.0		44.0	90.0					50.0		50.0
Total Split (\%)		32.9\%		31.4\%	64.3\%					35.7\%		35.7\%
Maximum Green (s)		40.0		38.0	84.0					44.0		44.0
Yellow Time (s)		4.0		4.0	4.0					4.0		4.0
All-Red Time (s)		2.0		2.0	2.0					2.0		2.0
Lost Time Adjust (s)		0.0		0.0	0.0					0.0		0.0
Total Lost Time (s)		6.0		6.0	6.0					6.0		6.0
Lead/Lag		Lag		Lead								
Lead-Lag Optimize?												
Vehicle Extension (s)		5.0		3.0	5.0					3.0		3.0
Recall Mode		C-Min		None	C-Min					None		None
Walk Time (s)		7.0			7.0							
Flash Dont Walk (s)		8.0			8.0							
Pedestrian Calls (\#/hr)		0			0							
Act Effct Green (s)		40.0	140.0	38.0	84.0					44.0		44.0
Actuatedg/C Ratio		0.29	1.00	0.27	0.60					0.31		0.31
v/c Ratio		0.97	0.28	1.17	0.44					0.72		1.28
Control Delay		73.4	0.5	111.0	1.8					47.1		171.4
Queue Delay		0.0	0.0	0.0	0.0					0.0		0.0

4A Zone 17:30 am 12/22/2016 2040 No Build - AM Peak

Synchro 10 Report
LC

	\rangle	\rightarrow	7	7	\longleftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay		73.4	0.5	111.0	1.8					47.1		171.4
LOS		E	A	F	A					D		F
Approach Delay		51.0			42.7						109.5	
Approach LOS		D			D						F	
Queue Length 50th (ft)		418	0	423	16					308		-765
Queue Length 95th (ft)		\#558	0	m208	m13					295		\#716
Internal Link Dist (ft)		771			613			406			501	
Turn Bay Length (ft)			350									
Base Capacity (vph)		904	1417	457	2024					1038		585
Starvation Cap Reductn		0	0	0	0					0		0
Spillback Cap Reductn		0	0	0	0					0		0
Storage Cap Reductn		0	0	0	0					0		0
Reduced v/c Ratio		0.97	0.28	1.17	0.44					0.72		1.28

Intersection Summary
Area Type: Other

Cycle Length: 140
Actuated Cycle Length: 140
Offset: $75(54 \%$), Referenced to phase 2:EBT and 6:WBT, Start of Yellow
Natural Cycle: 140
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.28
Intersection Signal Delay: 69.1
Intersection Capacity Utilization 89.8\%
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.

Splits and Phases: 2: Exit 5 SB On/Exit 5 SB Off \& NH 28

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	虫			44	F	\%		${ }^{\prime \prime}$			
Traffic Volume (vph)	635	725	0	0	650	775	390	0	165	0	0	0
Future Volume (vph)	635	725	0	0	650	775	390	0	165	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt						0.850			0.850			
Fit Protected	0.950						0.950					
Satd. Flow (prot)	1641	3282	0	0	3438	1538	1656	0	1482	0	0	0
Fit Permitted	0.950						0.950					
Satd. Flow (perm)	1641	3282	0	0	3438	1538	1656	0	1482	0	0	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)						635			165			
Link Speed (mph)		30			30			35			30	
Link Distance (ft)		693			542			867			392	
Travel Time (s)		15.8			12.3			16.9			8.9	
Peak Hour Factor	0.87	0.87	0.87	0.90	0.90	0.90	0.78	0.78	0.78	0.92	0.92	0.92
Heavy Vehicles (\%)	10\%	10\%	10\%	5\%	5\%	5\%	9\%	9\%	9\%	2\%	2\%	2\%
Adj. Flow (vph)	730	833	0	0	722	861	500	0	212	0	0	0
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	730	833	0	0	722	861	500	0	212	0	0	0
Turn Type	Prot	NA			NA	Free	Prot		Prot			
Protected Phases	5	2			6		8		8			
Permitted Phases		2			6	Free						
Detector Phase	5	2			6		8		8			
Switch Phase												
Minimum Initial (s)	4.0	16.0			16.0		4.0		4.0			
Minimum Split (s)	10.0	23.0			23.0		10.0		10.0			
Total Split (s)	62.0	96.0			34.0		44.0		44.0			
Total Split (\%)	44.3\%	68.6\%			24.3\%		31.4\%		31.4\%			
Maximum Green (s)	56.0	90.0			28.0		38.0		38.0			
Yellow Time (s)	4.0	4.0			4.0		4.0		4.0			
All-Red Time (s)	2.0	2.0			2.0		2.0		2.0			
Lost Time Adjust (s)	0.0	0.0			0.0		0.0		0.0			
Total Lost Time (s)	6.0	6.0			6.0		6.0		6.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?												
Vehicle Extension (s)	5.0	5.0			5.0		3.0		3.0			
Recall Mode	None	C-Min			C-Min		None		None			
Walk Time (s)		7.0			7.0							
Flash Dont Walk (s)		10.0			10.0							
Pedestrian Calls (\#/hr)		0			0							
Act Effct Green (s)	56.0	90.0			28.0	140.0	38.0		38.0			
Actuated g/C Ratio	0.40	0.64			0.20	1.00	0.27		0.27			
v/c Ratio	1.11	0.39			1.05	0.56	1.11		0.41			
Control Delay	71.9	0.6			101.6	1.5	123.6		13.1			
Queue Delay	0.4	0.0			0.0	0.0	0.0		0.0			
Total Delay	72.3	0.6			101.6	1.5	123.6		13.1			
LOS	E	A			F	A	F		B			
Approach Delay		34.1			47.1			90.7				

	4	\rightarrow		\checkmark	\longleftarrow	4	4	\dagger	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		C			D			F				
Queue Length 50th (ft)	~291	2			-376	0	-520		32			
Queue Length 95th (ft)	m\#267	m2			\#504	0	\#588		68			
Internal Link Dist (ft)		613			462			787			312	
Turn Bay Length (ft)												
Base Capacity (vph)	656	2109			687	1538	449		522			
Starvation Cap Reductn	38	0			0	0	0		0			
Spillback Cap Reductn	0	0			0	0	0		0			
Storage Cap Reductn	0	0			0	0	0		0			
Reduced v/c Ratio	1.18	0.39			1.05	0.56	1.11		0.41			
Intersection Summary												

Area Type:
Other
Cycle Length: 140
Actuated Cycle Length: 140
Offset: $0(0 \%)$, Referenced to phase 2:EBT and 6:WBT, Start of Yellow, Master Intersection
Natural Cycle: 140
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.11
Intersection Signal Delay: $49.9 \quad$ Intersection LOS: D
Intersection Capacity Utilization 89.8\%
ICU Level of Service E
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.

Splits and Phases: 3: Exit 5 NB Off \& NH 28

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		\uparrow	7		4		\%	車 4		${ }^{7}$	虫	
Traffic Volume (vph)	5	0	240	0	-	0	250	690	5	5	1755	5
Future Volume (vph)	5	0	240	0	0	0	250	690	5	5	1755	5
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		225	0		0	350		0	100		0
Storage Lanes	0		1	0		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt			0.850					0.999				
Flt Protected		0.950					0.950			0.950		
Satd. Flow (prot)	0	1770	1583	0	1900	0	1770	3536	0	1770	3539	0
Flt Permitted							0.950			0.950		
Satd. Flow (perm)	0	1863	1583	0	1900	0	1770	3536	0	1770	3539	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			261					1				
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		593			447			750			330	
Travel Time (s)		13.5			10.2			17.0			7.5	
Peak Hour Factor	0.92	0.92	0.92	0.25	0.25	0.25	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	2\%	2\%	2\%	0\%	0\%	0\%	2\%	2\%	2\%	2\%	2\%	2\%
Adj. Flow (vph)	5	0	261	0	0	0	272	750	5	5	1908	5
Shared Lane Traffic (\%) O 0 (\% 0												
Lane Group Flow (vph)	,	5	261	0	0	0	272	755	0	5	1913	0
Turn Type	Perm	NA	custom				Prot	NA		Prot	NA	
Protected Phases		8			4		5	,		1	6	
Permitted Phases	8		6	4								
Detector Phase	8	8	6	4	4		5	2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	8.0	5.0	5.0		5.0	8.0		5.0	8.0	
Minimum Split (s)	24.0	24.0	24.0	24.0	24.0		24.0	24.0		11.0	24.0	
Total Split (s)	24.0	24.0	62.0	24.0	24.0		24.0	75.0		11.0	62.0	
Total Split (\%)	21.8\%	21.8\%	56.4\%	21.8\%	21.8\%		21.8\%	68.2\%		10.0\%	56.4\%	
Maximum Green (s)	18.0	18.0	56.0	18.0	18.0		18.0	69.0		5.0	56.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		6.0	6.0		6.0		6.0	6.0		6.0	6.0	
Lead/Lag			Lag				Lead	Lag		Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None	Min	None	None		None	Min		None	Min	
Walk Time (s)	7.0	7.0	7.0	7.0	7.0		7.0	7.0			7.0	
Flash Dont Walk (s)	11.0	11.0	11.0	11.0	11.0		11.0	11.0			11.0	
Pedestrian Calls (\#hr)	0	0	0	0	0		0	0			0	
Act Effct Green (s)		6.1	56.2				17.7	82.9		5.0	56.2	
Actuated g/C Ratio		0.07	0.64				0.20	0.94		0.06	0.64	
v/c Ratio		0.04	0.24				0.77	0.23		0.05	0.85	
Control Delay		41.2	1.7				50.1	1.8		43.0	18.6	
Queue Delay		0.0	0.0				0.0	0.0		0.0	0.0	

	\cdots	\}	λ	m	k	(J	\nearrow	\square	4	\times	k
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Total Delay		41.2	1.7				50.1	1.8		43.0	18.6	
LOS		D	A				D	A		D	B	
Approach Delay		2.5						14.6			18.6	
Approach LOS		A						B			B	
Queue Length 50th (t)		3	0				138	0		3	365	
Queue Length 95th (t)		15	33				\#305	110		15	\#772	
Internal Link Dist (ft)		513			367			670			250	
Turn Bay Length (tt)			225				350			100		
Base Capacity (vph)		381	1102				362	3322		100	2253	
Starvation Cap Reductn		0	0				0	0		0	0	
Spillback Cap Reductn		0	0				0	0		0	0	
Storage Cap Reductn		0	0				0	0		0	0	
Reduced v/c Ratio		0.01	0.24				0.75	0.23		0.05	0.85	

Intersection Summary

Area Type: Other

Cycle Length: 110
Actuated Cycle Length: 88.2
Natural Cycle: 110
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.85
Intersection Signal Delay: 16.0 Intersection LOS: B
Intersection Capacity Utilization 85.5\% ICU Level of Service E
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 9: NH 102 \& St. Charles Street/Londonderry Road

	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Group		4			\uparrow			\uparrow			\uparrow	
Lane Configurations	0	15	5	345	0	35	0	453	180	5	790	0
Traffic Volume (vph)	0	15	5	345	0	35	0	453	180	5	790	0
Future Volume (vph)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Ideal Flow (vphpl)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lane Util. Factor		0.967			0.988			0.962				
Frt					0.957							
Flt Protected	0	1801	0	0	1744	0	0	1692	0	0	1810	0

| Fit Permilted | | | | | 0.722 | | | | | 0.996 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Satd. Flow (perm) | 0 | 1801 | 0 | 0 | 1316 | 0 | 0 | 1692 | 0 | 0 | 1802 | 0 |
| Right Turn on Red | | | Yes | | | Yes | | | Yes | | | Yes |

Satd. Flow (RTOR)		8			36			37				
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		356			493			1124			603	
Travel Time (s)		8.1			11.2			25.5			13.7	
Peak Hour Factor	0.60	0.60	0.60	0.96	0.96	0.96	0.89	0.89	0.89	0.86	0.86	0.86
Heavy Vehicles (\%)	2\%	2\%	2\%	3\%	3\%	3\%	8\%	8\%	8\%	5\%	5\%	5\%
Adj. Flow (vph)	0	25	8	359	0	36	0	509	202	6	919	0

Shared Lane Traffic (\%)	0	33	0	0	395	0	0	711	0	0	925	0
Lane Group Flow (vph)		NA	Perm	NA			NA		Perm	NA		
Turn Type	4	4		4				2		2	2	

| Detector Phase | 4 | 4 | 4 | 4 | 2 | 2 | 2 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Switch Phase | | | | | | | |
| Minimum Initial (s) | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 |
| Minimum Split (s) | 24.0 | 24.0 | 24.0 | 24.0 | 24.0 | 24.0 | 24.0 |
| Total Split (s) | 33.0 | 33.0 | 33.0 | 33.0 | 57.0 | 57.0 | 57.0 |
| Total Split (\%) | 36.7% | 36.7% | 36.7% | 36.7% | 63.3% | 63.3% | 63.3% |
| Maximum Green (s) | 27.0 | 27.0 | 27.0 | 27.0 | 51.0 | 51.0 | 51.0 |
| Yellow Time (s) | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 |
| All-Red Time (s) | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 |
| Lost Time Adjust (s) | | 0.0 | | 0.0 | 0.0 | | 0.0 |
| Total Lost Time (s) | | 6.0 | | 6.0 | 6.0 | 6.0 | |

Lead/Lag

Lead-Lag Optimize?							
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	Min	Min	Min
Walk Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)	11.0	11.0	11.0	11.0	11.0	11.0	11.0
Pedestrian Calls (\#/hr)	0	0	0	0	0	0	0
Act Effct Green (s)		26.1		26.1	49.2		49.2
Actuated g/C Ratio		0.30		0.30	0.56		0.56
v/c Ratio		0.06		0.94	0.73		0.91
Control Delay		18.9		61.7	19.1		32.3
Queue Delay		0.0		0.0	0.0		0.0
Total Delay		18.9		61.7	19.1		32.3
LOS		B		E	B		C
Approach Delay		18.9		61.7	19.1		32.3

| Lane Group | SEL | SET | SER | NWL | NWT | NWR | NEL |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | NET | NER |
| :--- |
| SWL | SWT | SWR |
| :--- |
| Approach LOS |
| Queue Length 50th (ft) |

Intersection Summary
Area Type: Other
Cycle Length: 90
Actuated Cycle Length: 87.3
Natural Cycle: 90
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.94
Intersection Signal Delay: 33.2
Intersection LOS: C
Intersection Capacity Utilization 86.1\% ICU Level of Service E
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 10: NH 102 \& Fordway/Madden Hill Road

	\rangle	\rightarrow		1	4		4	\uparrow	p		\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\dagger		\%	$\stackrel{ }{ }$		\%	\dagger		${ }_{7}$	\uparrow	「
Traffic Volume (vph)	80	235	90	35	520	80	90	160	40	70	125	115
Future Volume (vph)	80	235	90	35	520	80	90	160	40	70	125	115
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (ft)	0		0	0		0	0		0	0		0
Storage Lanes	1		0	1		0	1		0	1		1
Taper Length (tt)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.958			0.980			0.970				0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1656	1670	0	1703	1757	0	1719	1755	0	1703	1792	1524
FIt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1656	1670	0	1703	1757	0	1719	1755	0	1703	1792	1524
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		25			10			13				182
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		505			530			361			411	
Travel Time (s)		11.5			12.0			8.2			9.3	
Confl. Peds. (\#hr)												
Confl. Bikes (\#/hr)												
Peak Hour Factor	0.96	0.96	0.96	0.94	0.94	0.94	0.85	0.85	0.85	0.91	0.91	0.91
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	9\%	9\%	9\%	6\%	6\%	6\%	5\%	5\%	5\%	6\%	6\%	6\%
Bus Blockages (\#/hr)	0	0	0	0	0	0	0	0	0	0	,	0
Parking (\#/hr)			0									
Mid-Block Trafic (\%)		0\%			0\%			0\%			0\%	
Adj. Flow (vph)	83	245	94	37	553	85	106	188	47	77	137	126
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	83	339	0	37	638	0	106	235	0	77	137	126
Turn Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases												4
Detector Phase	5	2		1	6		3	8		7	4	4
Switch Phase												
Minimum Initial (s)	4.0	5.0		4.0	10.0		4.0	10.0		4.0	9.0	9.0
Minimum Split (s)	10.0	30.0		10.0	30.0		10.0	25.0		10.0	25.0	25.0
Total Split (s)	11.0	41.0		12.0	42.0		12.0	25.0		12.0	25.0	25.0
Total Split (\%)	12.2\%	45.6\%		13.3\%	46.7\%		13.3\%	27.8\%		13.3\%	27.8\%	27.8\%
Maximum Green (s)	5.0	35.0		6.0	36.0		6.0	19.0		6.0	19.0	19.0
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	6.0
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Recall Mode	None	Min		None	Min		Min	None		Min	None	None
Walk Time (s)		7.0			7.0			7.0			7.0	7.0
Flash Dont Walk (s)		11.0			11.0			11.0			11.0	11.0
Pedestrian Calls (\#hr)		10			10			0			10	10
Act Effct Green (s)	5.1	37.3		5.9	32.9		6.1	15.3		6.1	15.3	15.3
Actuated g/C Ratio	0.06	0.45		0.07	0.39		0.07	0.18		0.07	0.18	0.18
v / C Ratio	0.83	0.45		0.31	0.92		0.85	0.71		0.63	0.42	0.29
Control Delay	97.8	19.2		46.5	44.1		92.7	43.1		63.9	35.0	3.4
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	97.8	19.2		46.5	44.1		92.7	43.1		63.9	35.0	3.4
LOS	F	B		D	D		F	D		E	C	A
Approach Delay		34.7			44.2			58.6			29.8	
Approach LOS		C			D			E			C	
Queue Length 50th (ft)	46	125		20	309		59	115		42	67	0
Queue Length 95th (ft)	\#136	215		51	\#545		\#148	179		\#113	121	17
Internal Link Dist (ft)		425			450			281			331	
Turn Bay Length (ft)												
Base Capacity (vph)	100	758		123	770		124	412		123	411	490
Starvation Cap Reductn	0	0		0	0		0	0		0	0	0
Spillback Cap Reductn	0	0		0	0		0	0		0	0	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	0.83	0.45		0.30	0.83		0.85	0.57		0.63	0.33	0.26

Intersection Summary

Area Type: Other

Cycle Length: 90
Actuated Cycle Length: 83.6
Natural Cycle: 90
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.92
Intersection Signal Delay: 42.0
Intersection Capacity Utilization 71.4\%
Intersection LOS: D
ICU Level of Service C
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 7: Birch St/Crystal Ave \& NH 102 (E Broadway)

Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	7	隹	F	7\%	个 \uparrow	7	7	\uparrow	7	7	\uparrow	F
Traffic Volume (vph)	0	150	120	295	160	0	65	275	0	135	530	295
Future Volume (vph)	0	150	120	295	160	0	65	275	0	135	530	295
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (ft)	150		150	0		0	0		0	0		0
Storage Lanes	1		1	2		1	1		1	1		1
Taper Length (ft)	25			25			25			25		
Lane Utill. Factor	1.00	0.95	1.00	0.97	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Ped Bike Factor

Frt	$0.850 \quad 0.950$					0.950		0.950			0.850			
FIt Protected														
Satd. Flow (prot)	1827	3471	1553	3335	3438			1810	1752	1845	1845	1752	1845	1568
Fit Permitted				0.950			0.950			0.950				
Satd. Flow (perm)	1827	3471	1553	3335	3438	1810	1752	1845	1845	1752	1845	1568		
Right Turn on Red			Yes			Yes			Yes			Yes		
Satd. Flow (RTOR)			255									298		
Link Speed (mph)		30			30			30			30			
Link Distance (ft)		639			394			532			387			
Travel Time (s)		14.5			9.0			12.1			8.8			
Confl. Peds. (\#/hr)														
Confl. Bikes (\#hr)														
Peak Hour Factor	0.84	0.84	0.84	0.79	0.79	0.79	0.86	0.86	0.86	0.99	0.99	0.99		
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%		
Heavy Vehicles (\%)	4\%	4\%	4\%	5\%	5\%	5\%	3\%	3\%	3\%	3\%	3\%	3\%		
Bus Blockages (\#/hr)	0	0	0	0	0	0	0	0	0	0	-	0		
Parking (\#/hr)														
Mid-Block Traffic (\%)		0\%			0\%			0\%			0\%			
Adj. Flow (vph)	0	179	143	373	203	0	76	320	0	136	535	298		
Shared Lane Traffic (\%)														
Lane Group Flow (vph)	0	179	143	373	203	0	76	320	0	136	535	298		
Enter Blocked Intersection	No													
Lane Alignment	Left	Left	Right											
Median Width(t)		24			24			12			12			
Link Offset(ft)		0			0			0			0			
Crosswalk Width(ft)		16			16			16			16			

Two way Left Turn Lane		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Headway Factor	15		9	15		9	15		9	15		9

| | | | | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Number of Detectors | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 1 |
| Detector Template | Left | Thru | Right |
| Leading Detector (ft) | 20 | 100 | 20 | 20 | 100 | 20 | 20 | 100 | 20 | 20 | 100 | 20 |
| Trailing Detector (ft) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Turn Type | Prot | NA | Perm | Prot | NA | Perm | Prot | NA | Free | Prot | NA | pt+ov |
| Protected Phases | 5 | 2 | | 1 | 6 | | 7 | 4 | | 3 | 8 | 81 |
| Permitted Phases | | 2 | 2 | | 6 | 6 | | 4 | Free | | 8 | |
| Detector Phase | 5 | 2 | 2 | 1 | 6 | 6 | 7 | 4 | | 3 | 8 | 81 |

Switch Phase

Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	8.0	6.0	8.0		7.0	8.0	
Minimum Split (s)	14.0	31.0	31.0	14.0	40.0	40.0	12.0	21.0		13.0	21.0	
Total Split (s)	14.0	33.0	33.0	22.0	41.0	41.0	12.0	22.0		13.0	23.0	
Total Split (\%)	15.6\%	36.7\%	36.7\%	24.4\%	45.6\%	45.6\%	13.3\%	24.4\%		14.4\%	25.6\%	
Maximum Green (s)	8.0	27.0	27.0	16.0	35.0	35.0	6.0	16.0		7.0	17.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0		6.0	6.0	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes		Yes	Yes								
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Minimum Gap (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Recall Mode	Max	C-Max	C-Max	None	Max	Max	None	None		None	None	
Walk Time (s)		5.0	5.0		5.0	5.0		5.0			5.0	
Flash Dont Walk (s)		10.0	10.0		10.0	10.0		10.0			10.0	
Pedestrian Calls (\#hr)		0	0		0	0		0			0	
Act Effct Green (s)		28.6	28.6	14.4	35.0		6.0	16.0		7.0	19.4	39.8
Actuated g/C Ratio		0.32	0.32	0.16	0.39		0.07	0.18		0.08	0.22	0.44
v/c Ratio		0.16	0.21	0.70	0.15		0.66	0.98		1.00	1.35	0.35
Control Delay		23.1	0.7	51.0	9.6		68.3	82.9		122.0	204.2	3.2
Queue Delay		0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay		23.1	0.7	51.0	9.6		68.3	82.9		122.0	204.2	3.2
LOS		C	A	D	A		E	F		F	F	A
Approach Delay		13.2			36.4			80.1			130.9	
Approach LOS		B			D			F			F	
Queue Length 50th (ft)		38	0	120	25		43	183		79	~ 431	0
Queue Length 95th (ft)		60	0	112	3		\#102	\#324		\#195	\#626	45
Internal Link Dist (t)		559			314			452			307	
Turn Bay Length (ft)			150									
Base Capacity (vph)		1104	668	592	1337		116	328		136	397	882
Starvation Cap Reductn		0	0	0	0		,	0		0	0	0
Spillback Cap Reductn		0	0	0	0		0	0		0	0	0
Storage Cap Reductn		0	0	0	0		0	0		0	0	0
Reduced v/c Ratio		0.16	0.21	0.63	0.15		0.66	0.98		1.00	1.35	0.34

Intersection Summary

Area Type: Other
Cycle Length: 90
Actuated Cycle Length: 90
Offset: $0(0 \%)$, Referenced to phase 2:NBT, Start of Green
Natural Cycle: 100
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.35
Intersection Signal Delay: 81.2 Intersection LOS: F
Intersection Capacity Utilization 68.0\% ICU Level of Service C
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Splits and Phases: 11: Folsom Rd/Tsienneto Rd \& Crystal Av/NH 28

	\rightarrow	\rightarrow	2	\ldots	\leftarrow	\underline{L}	-	\not	\bigcirc	4	4	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%	个t		\%	雄			\uparrow	\%		\uparrow	F
Traffic Volume (vph)	45	595	0	0	465	30	0	0	0	25	0	400
Future Volume (vph)	45	595	0	0	465	30	0	0	0	25	0	400
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (ft)	75		0	150		150	0		0	0		0
Storage Lanes	1		0	1		0	0		1	0		1
Taper Length (tt)	50			25			25			25		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt					0.991							0.850
FIt Protected	0.950										0.950	
Satd. Flow (prot)	1687	3374	0	1863	3507	0	0	1900	1900	0	1787	1599
FIt Permitted	0.950										0.757	
Satd. Flow (perm)	1687	3374	0	1863	3507	0	0	1900	1900	0	1424	1599
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					9							323
Link Speed (mph)		30			30			30			30	
Link Distance (t)		277			755			218			433	
Travel Time (s)		6.3			17.2			5.0			9.8	
Confl. Peds. (\#hr)												
Confl. Bikes (\#hr)												
Peak Hour Factor	0.83	0.83	0.83	0.92	0.92	0.92	0.50	0.50	0.50	0.90	0.90	0.90
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	7\%	7\%	7\%	2\%	2\%	2\%	0\%	0\%	0\%	1\%	1\%	1\%
Bus Blockages (\#/hr)	0	0	0	0	0	0	0	0	,	0	0	0
Parking (\#hr)												
Mid-Block Traffic (\%)		0\%			0\%			0\%			0\%	
Adj. Flow (vph)	54	717	0	0	505	33	0	0	0	28	0	444
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	54	717	0	0	538	0	0	0	0	0	28	444
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(t)		12			12			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(t)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2		1	2	1	1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	Right
Leading Detector (ft)	20	100		20	100		20	100	20	20	100	20
Trailing Detector (ft)	0	0		0	0		0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA				Perm	Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases					6		8	8	8	4		4
Detector Phase	5	2		1	6		8	8	8	4	4	4
Switch Phase												

	\rightarrow	\rightarrow	7	\ldots		c	3	\ngtr	ρ	4	\checkmark	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
Minimum Initial (s)	8.0	8.0		5.0	8.0		5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	14.0	46.0		11.0	43.0		33.0	33.0	33.0	33.0	33.0	33.0
Total Split (s)	14.0	46.0		11.0	43.0		33.0	33.0	33.0	33.0	33.0	33.0
Total Split (\%)	15.6\%	51.1\%		12.2\%	47.8\%		36.7\%	36.7\%	36.7\%	36.7\%	36.7\%	36.7\%
Maximum Green (s)	8.0	40.0		5.0	37.0		27.0	27.0	27.0	27.0	27.0	27.0
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0		0.0	0.0
Total Lost Time (s)	6.0	6.0		6.0	6.0			6.0	6.0		6.0	6.0
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Minimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Recall Mode	None	C-Max		None	None		None	None	None	None	None	None
Walk Time (s) Now												
Flash Dont Walk (s)												
Pedestrian Calls (\#hr)												
Act Effct Green (s)	8.4	62.9			54.1						15.1	15.1
Actuated g/C Ratio	0.09	0.70			0.60						0.17	0.17
v/c Ratio	0.35	0.30			0.25						0.12	0.83
Control Delay	44.8	8.9			15.0						28.3	22.9
Queue Delay	0.0	0.0			0.0						0.0	0.0
Total Delay	44.8	8.9			15.0						28.3	22.9
LOS	D	A			B						C	C
Approach Delay		11.4			15.0						23.3	
Approach LOS		B			B						C	
Queue Length 50th (ft)	32	52			101						14	63
Queue Length 95th (ft)	66	214			175						31	152
Internal Link Dist (ft)		197			675			138			353	
Turn Bay Length (ft)	75											
Base Capacity (vph)	156	2356			2111						427	705
Starvation Cap Reductn	0	0			0						0	0
Spillback Cap Reductn	0	0			0						0	0
Storage Cap Reductn	0	0			0						0	0
Reduced v/c Ratio	0.35	0.30			0.25						0.07	0.63

Intersection Summary
Area Type: Other
Cycle Length: 90
Actuated Cycle Length: 90
Offset: 63 (70\%), Referenced to phase 2:EBT, Start of Green
Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.83
Intersection Signal Delay: $15.6 \quad$ Intersection LOS: B
Intersection Capacity Utilization 48.6\%
ICU Level of Service A
Analysis Period (min) 15

Splits and Phases: 13: Applebees/Linlew Dr \& NH 28

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％ 17	性		\％	个解		${ }_{1}$	\dagger		\％	\uparrow	7
Traffic Volume（vph）	105	630	5	5	405	215	10	5	5	180	5	100
Future Volume（vph）	105	630	5	5	405	215	10	5	5	180	5	100
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width（ft）	12	12	12	12	12	12	12	12	12	12	12	12
Grade（\％）		0\％			0\％			0\％			0\％	
Storage Length（ft）	150		150	150		150	0		0	0		0
Storage Lanes	2		0	1		0	1		0	1		1
Taper Length（tt）	200			25			25			25		
Lane Util．Factor	0.97	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	0.95	0.95	1.00
Ped Bike Factor												
Frt		0.999			0.948			0.925				0.850
FIt Protected	0.950			0.950			0.950			0.950	0.955	
Satd．Flow（prot）	3303	3402	0	1736	3291	0	1805	1758	0	1665	1674	1568
Flt Permitted	0.950			0.950			0.950			0.950	0.955	
Satd．Flow（perm）	3303	3402	0	1736	3291	0	1805	1758	0	1665	1674	1568
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）		1			151			7				111
Link Speed（mph）		30			30			30			30	
Link Distance（ ft ）		412			486			151			343	
Travel Time（s）		9.4			11.0			3.4			7.8	

Confl．Bikes（\＃／hr）

Peak Hour Factor	0.83	0.83	0.83	0.97	0.97	0.97	0.67	0.67	0.67	0.90	0.90	0.90
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles（\％）	6%	6%	6%	4%	4%	4%	0%	0%	0%	3%	3%	3%

| Bus Blockages（\＃hr） | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Parking（\＃／hr） | | | | | | | | | | | | |

Mid－Block Traffic（\％）		0\％			0\％			0\％			0\％	
Adj．Flow（vph）	127	759	6	5	418	222	15	7	7	200	6	11
Shared Lane Traffic（\％）										49\％		
Lane Group Flow（vph）	127	765	0	5	640	0	15	14	0	102	104	111
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width（ft）		24			24			12			12	
Link Offset（ft）		0			0			0			0	
Crosswalk Width（ft）		16			16			16			16	

Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	O0	
Turning Speed（mph）	15		9	15		9	15		9	15		

| Number of Detectors | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Detector Template | Left | Thru | Left | Thru | Left | Thru | Left | Thru | Right |
| Leading Detector（ft） | 20 | 100 | 20 | 100 | 20 | 100 | 20 | 100 | 20 |
| Trailing Detector（ft） | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Turn Type | Prot | NA | Prot | NA | Split | NA | Split | NA | pt＋ov |
| Protected Phases | 5 | 2 | 1 | 6 | 3 | 3 | 4 | 4 | 45 |
| Permieted Phases | | | | | | | 3 | | |
| Detector Phase | 5 | 2 | 1 | 6 | 3 | 3 | 4 | 4 | 45 |

Switch Phase

	\rangle				\longleftarrow		4	4	p	\checkmark	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	8.0		5.0	8.0		5.0	5.0		8.0	8.0	
Minimum Split (s)	14.0	53.0		11.0	50.0		11.0	11.0		15.0	15.0	
Total Split (s)	14.0	53.0		11.0	50.0		11.0	11.0		15.0	15.0	
Total Split (\%)	15.6\%	58.9\%		12.2\%	55.6\%		12.2\%	12.2\%		16.7\%	16.7\%	
Maximum Green (s)	8.0	47.0		5.0	44.0		5.0	5.0		9.0	9.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lead		Lag	Lag	
Lead-Lag Optimize?	Yes	Yes										
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Minimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Recall Mode	None	Min		None	C-Min		None	None		None	None	
Walk Time (s)		5.0			5.0		5.0	5.0		5.0	5.0	
Flash Dont Walk (s)		11.0			11.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (\#/hr)		0			0		0	0		0	0	
Act Effit Green (s)	8.8	56.3		5.9	44.0		6.3	6.3		11.5	11.5	26.3
Actuated g/C Ratio	0.10	0.63		0.07	0.49		0.07	0.07		0.13	0.13	0.29
v/c Ratio	0.39	0.36		0.04	0.38		0.12	0.11		0.48	0.49	0.21
Control Delay	41.3	11.5		46.8	8.4		40.8	30.0		43.5	43.7	5.2
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	41.3	11.5		46.8	8.4		40.8	30.0		43.5	43.7	5.2
LOS	D	B		D	A		D	C		D	D	A
Approach Delay		15.7			8.7			35.6			30.1	
Approach LOS		B			A			D			C	
Queue Length 50th (ft)	35	105		3	53		8	4		57	58	0
Queue Length 95th (ft)	56	206		m8	77		20	16		104	106	33
Internal Link Dist (t)		332			406			71			263	
Turn Bay Length (ft)	150			150								
Base Capacity (vph)	336	2212		113	1856		127	130		215	216	525
Starvation Cap Reductn	0	0		0	0		0	0		0	0	0
Spillback Cap Reductn	0	0		0	0		0	0		0	0	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	0.38	0.35		0.04	0.34		0.12	0.11		0.47	0.48	0.21

Intersection Summary
Area Type: Other
Cycle Length: 90
Actuated Cycle Length: 90
Offset: $0(0 \%)$, Referenced to phase 6:WBT, Start of Green
Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.49
Intersection Signal Delay: $16.0 \quad$ Intersection LOS: B
Intersection Capacity Utilization 49.0\%
ICU Level of Service A
Analysis Period (min) 15
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 14: VIP Dr/Ashleigh Dr \& NH 28

Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%	f		7	\uparrow	7	7	\dagger		\%	\dagger	
Trafic Volume (vph)	100	55	20	20	55	270	85	230	80	75	415	55
Future Volume (vph)	100	55	20	20	55	270	85	230	80	75	415	55
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (ft)	150		150	150		150	150		150	150		150
Storage Lanes	1		0	1		1	1		0	1		0
Taper Length (tt)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Fit		0.960				0.850		0.961			0.982	
FIt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1752	1771	0	1736	1827	1553	1770	1790	0	1787	1847	0
FIt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1752	1771	0	1736	1827	1553	1770	1790	0	1787	1847	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		20				148		23			9	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		481			347			479			371	
Travel Time (s)		10.9			7.9			10.9			8.4	
Confl. Peds. (\#hr)												
Confl. Bikes (\#/hr)												
Peak Hour Factor	0.82	0.82	0.82	0.81	0.81	0.81	0.68	0.68	0.68	0.78	0.78	0.78
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	3\%	3\%	3\%	4\%	4\%	4\%	2\%	2\%	2\%	1\%	1\%	1\%
Bus Blockages (\#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (\#/hr)												
Mid-Block Traffic (\%)		0\%			0\%			0\%			0\%	
Adj. Flow (vph)	122	67	24	25	68	333	125	338	118	96	532	71
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	122	91	0	25	68	333	125	456	0	96	603	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(t)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2	1	1	2		1	2	
Detector Template	Left	Thru		Left	Thru	Right	Left	Thru		Left	Thru	
Leading Detector (ft)	20	100		20	100	20	20	100		20	100	
Trailing Detector (ft)	0	0		0	0	0	0	0		0	0	
Turn Type	Prot	NA		Prot	NA	$\mathrm{pt}+\mathrm{v}$	Prot	NA		Prot	NA	
Protected Phases	1	6		5	2	23	3	8		7	4	
Permitted Phases												
Detector Phase	1	6		5	2	23	3	8		7	4	
Switch Phase												

Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Minimum Initial (s)	8.0	8.0		8.0	8.0		8.0	8.0		8.0	8.0	
Minimum Split (s)	14.0	20.0		14.0	20.0		14.0	20.0		14.0	20.0	
Total Split (s)	14.0	20.0		14.0	20.0		14.0	32.0		14.0	32.0	
Total Split (\%)	17.5\%	25.0\%		17.5\%	25.0\%		17.5\%	40.0\%		17.5\%	40.0\%	
Maximum Green (s)	8.0	14.0		8.0	14.0		8.0	26.0		8.0	26.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Lead/Lag	Lead	Lag										
Lead-Lag Optimize?	Yes	Yes										
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Minimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Recall Mode	None	None		None	C-Max		None	None		None	None	
Walk Time (s)												
Flash Dont Walk (s)												
Pedestrian Calls (\#/hr)												
Act Effit Green (s)	8.0	22.4		8.0	14.0	28.0	8.0	28.8		8.0	26.0	
Actuated g/C Ratio	0.10	0.28		0.10	0.18	0.35	0.10	0.36		0.10	0.32	
v/c Ratio	0.70	0.18		0.14	0.21	0.52	0.71	0.69		0.54	1.00	
Control Delay	57.5	21.6		35.1	30.3	14.5	58.0	28.9		46.3	64.3	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	57.5	21.6		35.1	30.3	14.5	58.0	28.9		46.3	64.3	
LOS	E	C		D	C	B	E	C		D	E	
Approach Delay		42.2			18.2			35.2			61.8	
Approach LOS		D			B			D			E	
Queue Length 50th (ft)	60	24		12	29	67	62	193		46	293	
Queue Length 95th (ft)	\#119	64		31	58	118	86	202		80	\#399	
Internal Link Dist (ft)		401			267			399			291	
Turn Bay Length (ft)	150			150		150	150			150		
Base Capacity (vph)	175	510		173	319	639	177	659		178	606	
Starvation Cap Reductn	0	0		0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0		0	-	0	0	0		0	0	
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	
Reduced v/c Ratio	0.70	0.18		0.14	0.21	0.52	0.71	0.69		0.54	1.00	

Intersection Summary

Area Type: Other

Cycle Length: 80
Actuated Cycle Length: 80
Offset: $0(0 \%)$, Referenced to phase 2:SBT, Start of Green
Natural Cycle: 80
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.00
Intersection Signal Delay: 41.9 Intersection LOS: D
Intersection Capacity Utilization 63.6\%
ICU Level of Service B
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 18: Tsienneto Rd \& NH 28 Byp S/NH 28 Byp N

APPENDIX N-4: 2040 NO-BUILD INTERSECTION CAPACITY ANALYSES - SYNCHRO PRINTOUTS - PM PEAK HOUR

Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		个个	个4		＊	「17
Trafic Volume（vph）	0	1260	1320	0	925	1175
Future Volume（vph）	0	1260	1320	0	925	1175
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900
Lane Width（ft）	12	12	12	12	16	12
Lane Util．Factor	1.00	0.95	0.95	1.00	1.00	0.88
Frt						0.850
Flt Protected					0.950	
Satd．Flow（prot）	0	3471	3406	0	1930	2682
Flt Permitted					0.950	
Satd．Flow（perm）	0	3471	3406	0	1930	2682
Right Turn on Red				Yes		No

Satd．Flow（RTOR）

Link Speed（mph）		30	30		25	
Link Distance（ft）		712	388		212	
Travel Time（s）		16.2	8.8		5.8	
Peak Hour Factor	0.93	0.93	0.88	0.88	0.89	0.89
Heavy Vehicles（\％）	4\％	4\％	6\％	6\％	6\％	6\％
Adj．Flow（vph）	0	1355	1500	0	1039	1320
Shared Lane Traffic（\％）						
Lane Group Flow（vph）	0	1355	1500	0	1039	1320
Turn Type		NA	NA		Prot	Prot
Protected Phases		2	6		4	4
Permitted Phases						
Detector Phase		2	6		4	4
Switch Phase						
Minimum Initial（s）		8.0	8.0		5.0	5.0
Minimum Split（s）		14.0	21.0		27.0	27.0
Total Split（s）		27.0	27.0		33.0	33.0
Total Split（\％）		45．0\％	45．0\％		55．0\％	55．0\％
Maximum Green（s）		21.0	21.0		27.0	27.0
Yellow Time（s）		2.0	2.0		2.0	2.0
All－Red Time（s）		4.0	4.0		4.0	4.0
Lost Time Adjust（s）		0.0	0.0		0.0	0.0
Total Lost Time（s）		6.0	6.0		6.0	6.0

Lead／Lag
Lead－Lag Optimize？

Vehicle Extension（s）	3.0	3.0	3.0	3.0
Recall Mode	C－Min	C－Min	None	None
Walk Time（s）		7.0	7.0	7.0
Flash Dont Walk（s）		8.0	14.0	14.0
Pedestrian Calls（\＃hr）		0	0	0
Act Effct Green（s）	21.0	21.0	27.0	27.0
Actuated g／C Ratio	0.35	0.35	0.45	0.45
v／c Ratio	1.12	1.26	1.20	1.09
Control Delay	87.7	146.0	120.4	75.5
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	87.7	146.0	120.4	75.5
LOS	F	F	F	E

Splits and Phases: 7: NH 102 \& Exit 4 SB Off

2

8：NH 102 \＆Exit 4 NB Off

	\cdots	1	1	\cdots	\rangle	\％	7	\wedge	\％	\downarrow	k
Lane Group	NBL2	NBL	NBR	SEL	SER	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	${ }^{7} 1$		「゙「			\％	緤			絞	「
Traffic Volume（vph）	1265	0	1070	0	0	1000	1185	0	0	540	780
Future Volume（vph）	1265	0	1070	0	0	1000	1185	0	0	540	780
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ft）		0	0	0	0	550		0	0		0
Storage Lanes		2	2	0	0	2		0	0		1
Taper Length（ft）		25		25		25			25		
Lane Util．Factor	0.97	1.00	0.88	1.00	1.00	0.97	0.95	1.00	1.00	0.95	1.00
Frt			0.850								0.850
Flt Protected	0.950					0.950					
Satd．Flow（prot）	3242	0	2632	0	0	3335	3438	0	0	3505	1568
Flt Permitted	0.950					0.950					
Satd．Flow（perm）	3242	0	2632	0	0	3335	3438	0	0	3505	1568
Right Turn on Red			No					Yes			Yes
Satd．Flow（RTOR）											750
Link Speed（mph）		25		30			30			30	
Link Distance（ft）		856		390			760			857	
Travel Time（s）		23.3		8.9			17.3			19.5	
Peak Hour Factor	0.88	0.88	0.88	0.92	0.92	0.94	0.94	0.94	0.92	0.92	0.92
Heavy Vehicles（\％）	8\％	8\％	8\％	2\％	2\％	5\％	5\％	5\％	3\％	3\％	3\％
Adj．Flow（vph）	1438	0	1216	0	0	1064	1261	0	0	587	848
Shared Lane Traffic（\％）											
Lane Group Flow（vph）	1438	0	1216	0	0	1064	1261	0	0	587	848
Turn Type	Prot		Prot			Prot	NA			NA	Free
Protected Phases	8		8			5	2			6	
Permitted Phases											Free
Detector Phase	8		2			5	2			6	
Switch Phase											
Minimum Initial（s）	10.0		10.0			5.0	8.0			8.0	
Minimum Split（s）	16.0		16.0			11.0	42.0			31.0	
Total Split（s）	50.0		50.0			38.0	70.0			32.0	
Total Split（\％）	41．7\％		41．7\％			31．7\％	58．3\％			26．7\％	
Maximum Green（s）	44.0		44.0			32.0	64.0			26.0	
Yellow Time（s）	2.0		2.0			2.0	2.0			2.0	
All－Red Time（s）	4.0		4.0			4.0	4.0			4.0	
Lost Time Adjust（s）	0.0		0.0			0.0	0.0			0.0	
Total Lost Time（s）	6.0		6.0			6.0	6.0			6.0	
Lead／Lag						Lead				Lag	
Lead－Lag Optimize？											
Vehicle Extension（s）	3.0		3.0			3.0	3.0			3.0	
Recall Mode	None		None			None	C－Min			C－Min	
Walk Time（s）							7.0			7.0	
Flash Dont Walk（s）							29.0			17.0	
Pedestrian Calls（\＃／hr）							0			0	
Act Effct Green（s）	44.0		44.0			32.0	64.0			26.0	120.0
Actuated g／C Ratio	0.37		0.37			0.27	0.53			0.22	1.00
v／c Ratio	1.21		1.26			1.20	0.69			0.77	0.54
Control Delay	137.3		159.2			124.5	21.6			52.2	1.3
Queue Delay	0.0		0.0			0.0	0.0			0.0	0.0

4A Zone 27：30 am 08／03／2016 2040 No－Build－PM Peak
LC

	4	\cdots	「	\cdots	\rangle	\%	\nearrow	\uparrow	7	4	\cdots
Lane Group	NBL2	NBL	NBR	SEL	SER	NEL	NET	NER	SWL	SWT	SWR
Total Delay	137.3		159.2			124.5	21.6			52.2	1.3
LOS	F		F			F	C			D	A
Approach Delay		147,3					68.7			22.1	
Approach LOS		F					E			C	
Queue Length 50th (ft)	~ 701		~ 671			~ 508	378			226	0
Queue Length 95th (ft)	\#807		\#790			m\#393	m277			294	0
Internal Link Dist (ft)		776		310			680			777	
Turn Bay Length (ft)						550					
Base Capacity (vph)	1188		965			889	1833			759	1568
Starvation Cap Reductn	0		0			0	0			,	0
Spillback Cap Reductn	0		0			0	0			0	0
Storage Cap Reductn	0		0			0	0			0	0
Reduced v/c Ratio	1.21		1.26			1.20	0.69			0.77	0.54

Intersection Summary

Area Type: Other

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 118 (98%), Referenced to phase 2:NET and 6:SWT, Start of Yellow
Natural Cycle: 150
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.26
Intersection Signal Delay: 90.8
Intersection Capacity Utilization 95.5\%
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 8: NH 102 \& Exit 4 NB Off

	\rangle			\checkmark	\leftarrow		4	\uparrow	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		个4	\＃	\％	个个					\％\％		F
Traffic Volume（vph）	0	935	390	240	550	0	0	0	0	820	0	535
Future Volume（vph）	0	935	390	240	550	0	0	0	0	820	0	535
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ t ）	0		350	0		0	0		0	0		0
Storage Lanes	0		1	1		0	0		0	2		1
Taper Length（ft）	25			25			25			25		
Lane Util．Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	0.97	1.00	1.00
Frt			0.850									0.850
Flt Protected				0.950						0.950		
Satd．Flow（prot）	0	3471	1553	1719	3438	0	0	0	0	3367	0	1553
Flt Permitted				0.950						0.950		
Satd．Flow（perm）	0	3471	1553	1719	3438	0	0	0	0	3367	0	1553
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）			427									266
Link Speed（mph）		30			30			30			35	
Link Distance（ft）		851			693			486			581	
Travel Time（s）		19.3			15.8			11.0			11.3	
Peak Hour Factor	0.87	0.87	0.87	0.86	0.86	0.86	0.92	0.92	0.92	0.91	0.91	0.91
Heavy Vehicles（\％）	4\％	4\％	4\％	5\％	5\％	5\％	2\％	2\％	2\％	4\％	4\％	4\％
Adj．Flow（vph）	0	1075	448	279	640	0	0	0	0	901	0	588
Shared Lane Traffic（\％） 0												
Lane Group Flow（vph）	0	1075	448	279	640	0	0	0	0	901	0	588
Turn Type		NA	Free	Prot	NA					Prot		Prot
Protected Phases		2		1	6					4		4
Permitted Phases			Free									
Detector Phase		2		1	6					4		4
Switch Phase												
Minimum Initial（s）		9.0		4.0	9.0					4.0		4.0
Minimum Split（s）		21.0		10.0	21.0					10.0		10.0
Total Split（s）		41.0		24.0	65.0					35.0		35.0
Total Split（\％）		41．0\％		24．0\％	65．0\％					35．0\％		35．0\％
Maximum Green（s）		35.0		18.0	59.0					29.0		29.0
Yellow Time（s）		4.0		4.0	4.0					4.0		4.0
All－Red Time（s）		2.0		2.0	2.0					2.0		2.0
Lost Time Adjust（s）		0.0		0.0	0.0					0.0		0.0
Total Lost Time（s）		6.0		6.0	6.0					6.0		6.0
Lead／Lag		Lag		Lead								
Lead－Lag Optimize？												
Vehicle Extension（s）		5.0		3.0	5.0					3.0		3.0
Recall Mode		C－Min		None	C－Min					None		None
Walk Time（s）		7.0			7.0							
Flash Dont Walk（s）		8.0			8.0							
Pedestrian Calls（\＃／hr）		0			0							
Act Effct Green（s）		35.3	100.0	17.7	59.0					29.0		29.0
Actuated g／C Ratio		0.35	1.00	0.18	0.59					0.29		0.29
v / C Ratio		0.88	0.29	0.91	0.32					0.92		0.92
Control Delay		40.2	0.5	27.1	0.2					50.5		40.5
Queue Delay		0.0	0.0	0.0	0.0					0.0		0.0

	$\stackrel{ }{ }$	\rightarrow	7	1	\longleftarrow	4	4	\uparrow	p	\checkmark	\ddagger	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay		40.2	0.5	27.1	0.2					50.5		40.5
LOS		D	A	C	A					D		D
Approach Delay		28.5			8.3						46.6	
Approach LOS		C			A						D	
Queue Length 50th (ft)		336	0	5	0					286		216
Queue Length 95th (ft)		\#405	0	m16	m0					\#404		\#438
Internal Link Dist (ft)		771			613			406			501	
Turn Bay Length (ft)			350									
Base Capacity (vph)		1223	1553	309	2028					976		639
Starvation Cap Reductn		0	0	0	0					0		0
Spillback Cap Reductn		0	0	0	0					0		0
Storage Cap Reductn		0	0	0	0					0		0
Reduced v/c Ratio		0.88	0.29	0.90	0.32					0.92		0.92

Intersection Summary
Area Type: Other
Cycle Length: 100
Actuated Cycle Length: 100
Offset: 56 (56%), Referenced to phase 2:EBT and 6:WBT, Start of Yellow
Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.92

Intersection Signal Delay: 30.6	Intersection LOS: C
Intersection Capacity Utilization 78.5%	ICU Level of Service D

Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.

Splits and Phases: 2: Exit 5 SB On/Exit 5 SB Off \& NH 28

	3	\rightarrow		7		4	4	4	p		\downarrow	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	坐4			半4	${ }^{7}$	＊		「			
Traffic Volume（vph）	605	1150	0	0	495	545	295	0	375	0	0	0
Future Volume（vph）	605	1150	0	0	495	545	295	0	375	0	0	0
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util．Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt						0.850			0.850			
Fit Protected	0.950						0.950					
Satd．Flow（prot）	1752	3505	0	0	3505	1568	1703	0	1524	0	0	0
Flt Permitted	0.950						0.950					
Satd．Flow（perm）	1752	3505	0	0	3505	1568	1703	0	1524	0	0	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）						599			98			
Link Speed（mph）		30			30			35			30	
Link Distance（ ft ）		693			542			867			392	
Travel Time（s）		15.8			12.3			16.9			8.9	
Peak Hour Factor	0.92	0.92	0.92	0.91	0.91	0.91	0.67	0.67	0.67	0.92	0.92	0.92
Heavy Vehicles（\％）	3\％	3\％	3\％	3\％	3\％	3\％	6\％	6\％	6\％	2\％	2\％	2\％
Adj．Flow（vph）	658	1250	0	0	544	599	440	0	560	0	0	0
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	658	1250	0	0	544	599	440	0	560	0	0	0
Turn Type	Prot	NA			NA	Free	Prot		Prot			
Protected Phases	5	2			6		8		8			
Permitted Phases		2			6	Free						
Detector Phase	5	2			6		8		8			
Switch Phase												
Minimum Initial（s）	4.0	16.0			16.0		4.0		4.0			
Minimum Split（s）	10.0	23.0			23.0		11.0		11.0			
Total Split（s）	41.0	64.0			23.0		36.0		36.0			
Total Split（\％）	41．0\％	64．0\％			23．0\％		36．0\％		36．0\％			
Maximum Green（s）	35.0	58.0			17.0		30.0		30.0			
Yellow Time（s）	4.0	4.0			4.0		4.0		4.0			
All－Red Time（s）	2.0	2.0			2.0		2.0		2.0			
Lost Time Adjust（s）	0.0	0.0			0.0		0.0		0.0			
Total Lost Time（s）	6.0	6.0			6.0		6.0		6.0			
Lead／Lag	Lead				Lag							
Lead－Lag Optimize？												
Vehicle Extension（s）	5.0	5.0			5.0		3.0		3.0			
Recall Mode	None	C－Min			C－Min		None		None			
Walk Time（s）		7.0			7.0							
Flash Dont Walk（s）		10.0			10.0							
Pedestrian Calls（\＃／hr）		0			0							
Act Effct Green（s）	35.0	58.0			17.0	100.0	30.0		30.0			
Actuated g／C Ratio	0.35	0.58			0.17	1.00	0.30		0.30			
v / c Ratio	1.07	0.62			0.91	0.38	0.86		1.07			
Control Delay	59.0	6.2			62.6	0.7	51.6		87.7			
Queue Delay	0.0	0.0			0.0	0.0	0.0		0.0			
Total Delay	59.0	6.2			62.6	0.7	51.6		87.7			
LOS	E	A			E	A	D		F			
Approach Delay		24.4			30.1			71.8				

Splits and Phases: 3: Exit 5 NB Off \& NH 28

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		\uparrow	${ }^{7}$		4		*	4t		${ }^{*}$	中 ${ }_{\text {a }}$	
Traffic Volume (vph)	5	0	295	0	0	0	955	1260	0	5	1160	10
Future Volume (vph)	5	0	295	0	0	0	955	1260	0	5	1160	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		225	0		0	350		0	100		0
Storage Lanes	0		1	0		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt			0.850								0.999	
Flt Protected		0.950					0.950			0.950		
Satd. Flow (prot)	0	1770	1583	0	1900	0	1770	3539	0	1770	3536	0
Flt Permitted							0.950			0.950		
Satd. Flow (perm)	0	1863	1583	0	1900	0	1770	3539	0	1770	3536	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			321								1	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		593			447			750			330	
Travel Time (s)		13.5			10.2			17.0			7.5	
Peak Hour Factor	0.92	0.92	0.92	0.25	0.25	0.25	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	2\%	2\%	2\%	0\%	0\%	0\%	2\%	2\%	2\%	2\%	2\%	2\%
Adj. Flow (vph)	5	0	321	0	0	0	1038	1370	0	5	1261	11
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	5	321	0	0	0	1038	1370	0	5	1272	0
Turn Type	Perm	NA	custom				Prot	NA		Prot	NA	
Protected Phases		8			4		5	2		1	6	
Permitted Phases	8		6	4								
Detector Phase	8	8	6	4	4		5	2		1	6	
Minimum Initial (s)	5.0	5.0	8.0	5.0	5.0		5.0	8.0		5.0	8.0	
Minimum Split (s)	24.0	24.0	24.0	24.0	24.0		24.0	24.0		11.0	24.0	
Total Split (s)	24.0	24.0	36.0	24.0	24.0		50.0	75.0		11.0	36.0	
Total Split (\%)	21.8\%	21.8\%	32.7\%	21.8\%	21.8\%		45.5\%	68.2\%		10.0\%	32.7\%	
Maximum Green (s)	18.0	18.0	30.0	18.0	18.0		44.0	69.0		5.0	30.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		6.0	6.0		6.0		6.0	6.0		6.0	6.0	
Lead/Lag			Lag				Lead	Lag		Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None	Min	None	None		None	Min		None	Min	
Walk Time (s)	7.0	7.0	7.0	7.0	7.0		7.0	7.0			7.0	
Flash Dont Walk (s)	11.0	11.0	11.0	11.0	11.0		11.0	11.0			11.0	
Pedestrian Calls (\#/hr)	0	0	0	0	0		0	0			0	
Act Effct Green (s)		6.1	30.1				44.1	83.2		5.0	30.1	
Actuated g/C Ratio		0.07	0.34				0.50	0.94		0.06	0.34	
v/c Ratio		0.04	0.43				1.18	0.41		0.05	1.06	
Control Delay		41.2	4.9				115.9	2.4		43.0	73.1	
Queue Delay		0.0	0.0				0.0	0.0		0.0	0.0	

Lane Group SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Total Delay	41.2	4.9				115.9	2.4		43.0	73.1	
LOS	D	A				F	A		D	E	
Approach Delay	5.4						51.4			72.9	
Approach LOS	A						D			E	
Queue Length 50th (ft)	3	0				~ 667	0		3	~393	
Queue Length 95th (ft)	15	61				\#1094	245		15	\#649	
Internal Link Dist (ft)	513			367			670			250	
Turn Bay Length (ft)		225				350			100		
Base Capacity (vph)	379	749				881	3324		99	1202	
Starvation Cap Reductn	0	0				0	0		0	0	
Spillback Cap Reductn	0	0				0	0		0	0	
Storage Cap Reductn	0	0				0	0		0	0	
Reduced v/c Ratio	0.01	0.43				1.18	0.41		0.05	1.06	
Intersection Summary											
Area Type: Other											
Cycle Length: 110											
Actuated Cycle Length: 88.6											
Natural Cycle: 150											
Control Type: Actuated-Uncoordinated											
Maximum v/c Ratio: 1.18											
Intersection Signal Delay: 54.5				Intersection LOS: D							
Intersection Capacity Utilization 108.3\%				ICU Level of Service G							
Analysis Period (min) 15											
~ Volume exceeds capacity, queue is theoretically infinite.											
Queue shown is maximum after two cycles.											
\# 95th percentile volume exceeds capacity, queue may be longer.											
Queue shown is maximum after two colo	cles.										

Splits and Phases: 9: NH 102 \& St. Charles Street/Londonderry Road

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		*			4			\uparrow			\uparrow	
Traffic Volume (vph)	5	30	0	230	0	50	0	860	215	5	555	0
Future Volume (vph)	5	30	0	230	0	50	0	860	215	5	555	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt					0.976			0.973				
Flt Protected		0.993			0.961							
Satd. Flow (prot)	0	1850	0	0	1730	0	0	1712	0	0	1810	0
Flt Permitted		0.957			0.724						0.754	
Satd. Flow (perm)	0	1783	0	0	1303	0	0	1712	0	0	1364	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					36			30				
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		356			493			1124			603	
Travel Time (s)		8.1			11.2			25.5			13.7	
Peak Hour Factor	0.60	0.60	0.60	0.96	0.96	0.96	0.89	0.89	0.89	0.86	0.86	0.86
Heavy Vehicles (\%)	2\%	2\%	2\%	3\%	3\%	3\%	8\%	8\%	8\%	5\%	5\%	5\%
Adj. Flow (vph)	8	50	0	240	0	52	0	966	242	6	645	0
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	58	0	0	292	0	0	1208	0	0	651	0
Turn Type	Perm	NA		Perm	NA			NA		Perm	NA	
Protected Phases		4			4			2			2	
Permitted Phases	4			4						2		
Detector Phase	4	4		4	4			2		2	2	
Switch Phase 2												
Minimum Initial (s)	5.0	5.0		5.0	5.0			5.0		5.0	5.0	
Minimum Split (s)	24.0	24.0		24.0	24.0			24.0		24.0	24.0	
Total Split (s)	24.0	24.0		24.0	24.0			66.0		66.0	66.0	
Total Split (\%)	26.7\%	26.7\%		26.7\%	26.7\%			73.3\%		73.3\%	73.3\%	
Maximum Green (s)	18.0	18.0		18.0	18.0			60.0		60.0	60.0	
Yellow Time (s)	4.0	4.0		4.0	4.0			4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0			2.0		2.0	2.0	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		6.0			6.0			6.0			6.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0		3.0	3.0	
Recall Mode	None	None		None	None			Min		Min	Min	
Walk Time (s)	7.0	7.0		7.0	7.0			7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0			11.0		11.0	11.0	
Pedestrian Calls (\#/hr)	0	0		0	0			0		0	0	
Act Effet Green (s)		18.0			18.0			60.4			60.4	
Actuated g/C Ratio		0.20			0.20			0.67			0.67	
v/c Ratio		0.16			1.01			1.05			0.71	
Control Delay		31.3			90.7			56.8			15.2	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		31.3			90.7			56.8			15.2	
LOS		C			F			E			B	
Approach Delay		31.3			90.7			56.8			15.1	

| Lane Group | SEL | SET | SER | NWL | NWT | NWR | NEL |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | NET | NER |
| :---: |
| SWL | SWT | SWR |
| :--- |
| Approach LOS |
| Queue Length 50th (ft) |

Area Type: Other
Cycle Length: 90
Actuated Cycle Length: 90.4
Natural Cycle: 110
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 1.05
Intersection Signal Delay: 48.4 Intersection LOS: D
Intersection Capacity Utilization 94.1% ICU Level of Service F
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 10: NH 102 \& Fordway/Madden Hill Road

Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	7	\dagger		\%	4	「	${ }^{7}$	t		${ }^{7}$	t	
Traffic Volume (vph)	105	180	35	135	180	160	100	470	60	70	335	65
Future Volume (vph)	105	180	35	135	180	160	100	470	60	70	335	65
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.976				0.850		0.983			0.976	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1752	1800	0	1752	1845	1568	1787	1849	0	1787	1836	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1752	1800	0	1752	1845	1568	1787	1849	0	1787	1836	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		10				172		8			11	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		361			411			477			530	
Travel Time (s)		8.2			9.3			10.8			12.0	
Peak Hour Factor	0.91	0.91	0.91	0.93	0.93	0.93	0.95	0.95	0.95	0.94	0.94	0.94
Heavy Vehicles (\%)	3\%	3\%	3\%	3\%	3\%	3\%	1\%	1\%	1\%	1\%	1\%	1\%
Adj. Flow (vph)	115	198	38	145	194	172	105	495	63	74	356	69
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	115	236	0	145	194	172	105	558	0	74	425	0
Turn Type	Prot	NA		Prot	NA	pm+ov	Prot	NA		Prot	NA	
Protected Phases	3	8		7	4	5	5	2		1	6	
Permitted Phases						4						
Detector Phase	3	8		7	4	5	5	2		1	6	
Switch Phase												
Minimum Initial (s)	4.0	5.0		4.0	10.0	4.0	4.0	10.0		4.0	9.0	
Minimum Split (s)	17.0	24.0		11.0	24.0	16.0	16.0	24.0		11.0	24.0	
Total Split (s)	17.0	25.0		16.0	24.0	16.0	16.0	33.0		11.0	28.0	
Total Split (\%)	20.0\%	29.4\%		18.8\%	28.2\%	18.8\%	18.8\%	38.8\%		12.9\%	32.9\%	
Maximum Green (s)	11.0	19.0		10.0	18.0	10.0	10.0	27.0		5.0	22.0	
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0		6.0	6.0	
Lead/Lag	Lead	Lag		Lead	Lag	Lead	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None	None	None	C-Max		None	None	
Act Effct Green (s)	9.7	15.3		9.6	17.7	33.0	9.2	31.9		6.6	26.8	
Actuated g/C Ratio	0.11	0.18		0.11	0.21	0.39	0.11	0.38		0.08	0.32	
v/c Ratio	0.57	0.71		0.73	0.51	0.24	0.54	0.80		0.53	0.72	
Control Delay	47.2	43.0		59.2	35.6	3.7	46.3	36.8		54.4	36.0	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	47.2	43.0		59.2	35.6	3.7	46.3	36.8		54.4	36.0	
LOS	D	D		E	D	A	D	D		D	D	
Approach Delay		44.4			31.6			38.3			38.7	
Approach LOS		D			C			D			D	
Queue Length 50th (ft)	58	113		76	96	0	53	284		38	202	
Queue Length 95th (ft)	111	182		\#162	157	37	104	\#489		\#109	\#380	

Splits and Phases: 7: NH 102 (E Broadway) \& Birch St/Crystal Av

Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%	44	「	**	4	\%	\%	4	F	7	4	"
Traffic Volume (vph)	0	235	135	495	310	0	115	520	0	165	400	300
Future Volume (vph)	0	235	135	495	310	0	115	520	0	165	400	300
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	150		150	0		0	0		0	0		0
Storage Lanes	1		1	2		1	1		1	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	1.00	0.97	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850									0.850
Flt Protected				0.950			0.950			0.950		
Satd. Flow (prot)	1863	3539	1583	3433	1863	1863	1770	1863	1863	1787	1881	1599
Flt Permitted				0.950			0.950			0.950		
Satd. Flow (perm)	1863	3539	1583	3433	1863	1863	1770	1863	1863	1787	1881	1599
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			208									134
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		639			394			532			387	
Travel Time (s)		14.5			9.0			12.1			8.8	
Peak Hour Factor	0.92	0.92	0.92	0.94	0.94	0.94	0.96	0.96	0.96	0.95	0.95	0.95
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	1\%	1\%	1\%
Adj. Flow (vph)	0	255	147	527	330	0	120	542	0	174	421	316
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	255	147	527	330	0	120	542	0	174	421	316
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	pm+ov
Protected Phases	5	2		1	6		7	4		3	8	1
Permitted Phases			2			6			4			8
Detector Phase	5	2	2	1	6	6	7	4	4	3	8	1
Switch Phase												
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
Minimum Split (s)	15.0	25.0	25.0	35.0	45.0	45.0	14.0	40.0	40.0	15.0	25.0	35.0
Total Split (s)	14.0	23.0	23.0	34.0	43.0	43.0	15.0	39.0	39.0	14.0	38.0	34.0
Total Split (\%)	12.7\%	20.9\%	20.9\%	30.9\%	39.1\%	39.1\%	13.6\%	35.5\%	35.5\%	12.7\%	34.5\%	30.9\%
Maximum Green (s)	8.0	17.0	17.0	28.0	37.0	37.0	9.0	33.0	33.0	8.0	32.0	28.0
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lead
Lead-Lag Optimize?	Yes											
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	C-Max	C-Max	None								
Walk Time (s)		5.0	5.0		5.0	5.0		5.0	5.0		5.0	
Flash Dont Walk (s)		11.0	11.0		11.0	11.0		11.0	11.0		11.0	
Pedestrian Calls (\#/hr)		0	0		0	0		0	0		0	
Act Effct Green (s)		22.3	22.3	22.7	51.0		9.0	33.0		8.0	32.0	60.7
Actuated g/C Ratio		0.20	0.20	0.21	0.46		0.08	0.30		0.07	0.29	0.55
v/c Ratio		0.36	0.30	0.74	0.38		0.83	0.97		1.35	0.77	0.34
Control Delay		40.5	3.1	56.3	23.0		91.5	70.6		239.2	46.5	7.9
Queue Delay		0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0

	\cdots	\uparrow	\%	6	\downarrow	\downarrow	4	λ	解	1	4	4
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Total Delay		40.5	3.1	56.3	23.0		91.5	70.6		239.2	46.5	7.9
LOS		D	A	E	C		F	E		F	D	A
Approach Delay		26.8			43.5			74.4			69.9	
Approach LOS		C			D			E			E	
Queue Length 50th (ft)		82	0	189	160		85	377		~161	271	62
Queue Length 95th (ft)		129	17	262	206		\#189	\#597		\#299	\#398	102
Internal Link Dist (ft)		559			314			452			307	
Turn Bay Length (ft)			150									
Base Capacity (vph)		717	486	873	863		144	558		129	547	1013
Starvation Cap Reductn		0	0	0	0		0	0		0	0	0
Spillback Cap Reductn		0	0	0	0		0	0		0	0	0
Storage Cap Reductn		0	0	0	0		0	0		0	0	0
Reduced v/c Ratio		0.36	0.30	0.60	0.38		0.83	0.97		1.35	0.77	0.31

Intersection Summary

Area Type: Other

Cycle Length: 110
Actuated Cycle Length: 110
Offset: 0 (0\%), Referenced to phase 2:NBT, Start of Green
Natural Cycle: 115
Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.35

Intersection Signal Delay: $56.9 \quad$ Intersection LOS: E
Intersection Capacity Utilization $79.5 \% \quad$ ICU Level of Service D
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 11: Folsom Rd/Tsienneto Rd \& NH 28 S/NH 28

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	7	性		\%	性			\uparrow	7		\uparrow	F
Traffic Volume (vph)	150	1050	0	0	605	80	0	0	0	25	0	350
Future Volume (vph)	150	1050	0	0	605	80	0	0	0	25	0	350
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Frt					0.983							0.850
FIt Protected	0.950										0.950	
Satd. Flow (prot)	1787	3574	0	1881	3513	0	0	1900	1900	0	1787	1599
Flt Permitted	0.950										0.757	
Satd. Flow (perm)	1787	3574	0	1881	3513	0	0	1900	1900	0	1424	1599
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					16							366
Link Speed (mph)		30			30			30			30	
Link Distance (t)		277			755			230			387	
Travel Time (s)		6.3			17.2			5.2			8.8	
Peak Hour Factor	0.97	0.97	0.97	0.95	0.95	0.95	0.90	0.90	0.90	0.80	0.80	0.80
Heavy Vehicles (\%)	1\%	1\%	1\%	1\%	1\%	1\%	0\%	0\%	0\%	1\%	1\%	1\%
Adj. Flow (vph)	155	1082	0	0	637	84	0	0	0	31	0	438
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	155	1082	0		721	0	0	0	0	0	31	438
Turn Type	Prot	NA		Prot	NA				Perm	Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases							8		8	4	4	4
Detector Phase	5	2		1	6		8	8	8	4	4	4
Switch Phase												
Minimum Initial (s)	5.0	8.0		5.0	8.0		5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	26.0	63.0		11.0	48.0		21.0	21.0	21.0	21.0	21.0	21.0
Total Split (s)	26.0	66.0		11.0	51.0		33.0	33.0	33.0	33.0	33.0	33.0
Total Split (\%)	23.6\%	60.0\%		10.0\%	46.4\%		30.0\%	30.0\%	30.0\%	30.0\%	30.0\%	30.0\%
Maximum Green (s)	20.0	60.0		5.0	45.0		27.0	27.0	27.0	27.0	27.0	27.0
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0		0.0	0.0
Total Lost Time (s)	6.0	6.0		6.0	6.0			6.0	6.0		6.0	6.0
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	C-Max		None	C-Max		None	None	None	None	None	None
Walk Time (s)		7.0			7.0		7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)		11.0			11.0		8.0	8.0	8.0	8.0	8.0	8.0
Pedestrian Calls (\#/hr)		0			0		0	0	,	,	0	0
Act Effct Green (s)	14.8	84.1			63.3						13.9	13.9
Actuated g/C Ratio	0.13	0.76			0.58						0.13	0.13
V/c Ratio	0.65	0.40			0.36						0.17	0.84
Control Delay	65.5	4.8			16.4						40.6	23.3
Queue Delay	0.0	0.0			0.0						0.0	0.0
Total Delay	65.5	4.8			16.4						40.6	23.3
LOS	E	A			B						D	C
Approach Delay		12.4			16.4						24.5	

| | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 13: Applebee's/Linlew Dr \& NH 28

	\rangle	\rightarrow	7	\checkmark	\longleftarrow	4	4	\uparrow	p		\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7\%	性		\%	性		${ }^{7}$	\dagger		\%	\uparrow	F
Traffic Volume (vph)	115	815	5	5	530	255	35	10	10	350	5	135
Future Volume (vph)	115	815	5	5	530	255	35	10	10	350	5	135
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	150		150	150		150	0		0	0		0
Storage Lanes	2		0	1		0	1		0	1		1
Taper Length (tt)	150			25			25			25		
Lane Util. Factor	0.97	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	0.95	0.95	1.00
Frt		0.999			0.951			0.925				0.850
Flt Protected	0.950			0.950			0.950			0.950	0.954	
Satd. Flow (prot)	3467	3571	0	1770	3366	0	1805	1758	0	1715	1722	1615
FIt Permitted	0.950			0.950			0.950			0.950	0.954	
Satd. Flow (perm)	3467	3571	0	1770	3366	0	1805	1758	0	1715	1722	1615
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		1			88			13				157
Link Speed (mph)		30			30			30			30	
Link Distance (tt)		877			261			151			343	
Travel Time (s)		19.9			5.9			3.4			7.8	
Peak Hour Factor	0.84	0.84	0.84	0.90	0.90	0.90	0.78	0.78	0.78	0.86	0.86	0.86
Heavy Vehicles (\%)	1\%	1\%	1\%	2\%	2\%	2\%	0\%	0\%	0\%	0\%	0\%	0\%
Adj. Flow (vph)	137	970	6	6	589	283	45	13	13	407	6	157
Shared Lane Traffic (\%)										49\%		
Lane Group Flow (vph)	137	976	0	6	872	0	45	26	0	208	205	157
Turn Type	Prot	NA		Prot	NA		Split	NA		Split	NA	ptoov
Protected Phases	5	2		1	6		3	3		4	4	45
Permitted Phases		2			6							
Detector Phase	5	2		1	6		3	3		4	4	45
Switch Phase 80												
Minimum Initial (s)	5.0	8.0		5.0	8.0		5.0	5.0		8.0	8.0	
Minimum Split (s)	11.0	53.0		11.0	50.0		22.0	22.0		22.0	22.0	
Total Split (s)	14.0	53.0		11.0	50.0		22.0	22.0		24.0	24.0	
Total Split (\%)	12.7\%	48.2\%		10.0\%	45.5\%		20.0\%	20.0\%		21.8\%	21.8\%	
Maximum Green (s)	8.0	47.0		5.0	44.0		16.0	16.0		18.0	18.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lead		Lag	Lag	
Lead-Lag Optimize?	Yes	Yes										
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	C-Max		None	None		None	None		None	None	
Walk Time (s)		5.0			5.0		5.0	5.0		5.0	5.0	
Flash Dont Walk (s)		11.0			11.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (\#/hr)		0			0		0	0		0	0	
Act Effct Green (s)	8.6	65.0		5.6	52.6		8.2	8.2		18.9	18.9	33.5
Actuated g/C Ratio	0.08	0.59		0.05	0.48		0.07	0.07		0.17	0.17	0.30
v/c Ratio	0.51	0.46		0.07	0.53		0.34	0.18		0.71	0.69	0.26
Control Delay	55.6	16.1		55.0	20.8		54.4	32.8		55.6	54.7	5.2
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0

	4	\rightarrow	7	7		4	4	4	p	-	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay	55.6	16.1		55.0	20.8		54.4	32.8		55.6	54.7	5.2
LOS	E	B		D	C		D	C		E	D	A
Approach Delay		20.9			21.1			46.5			41.4	
Approach LOS		C			C			D			D	
Queue Length 50th (ft)	47	195		4	150		31	9		145	143	0
Queue Length 95th (ft)	75	316		m10	215		57	30		211	208	39
Internal Link Dist (ft)		797			181			71			263	
Turn Bay Length (ft)	150			150								
Base Capacity (vph)	276	2110		90	1656		262	266		317	319	591
Starvation Cap Reductn	0	0		0	0		0	0		0	0	0
Spillback Cap Reductn	0	0		0	0		0	0		0	0	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	0.50	0.46		0.07	0.53		0.17	0.10		0.66	0.64	0.27

Intersection Summary
Area Type: Other
Cycle Length: 110
Actuated Cycle Length: 110
Offset: $0(0 \%)$, Referenced to phase 2:EBT, Start of Green
Natural Cycle: 110
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.71
Intersection Signal Delay: 26.1
Intersection LOS: C
Intersection Capacity Utilization 58.5\% ICU Level of Service B
Analysis Period (min) 15
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 14: VIP Dr/Ashleigh Dr \& NH 28

Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	${ }^{7}$	\uparrow		${ }^{*}$	4	\%	${ }^{1}$	\dagger		${ }^{*}$	\uparrow	
Traffic Volume (vph)	100	80	25	55	50	195	195	800	75	25	265	40
Future Volume (vph)	100	80	25	55	50	195	195	800	75	25	265	40
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	150		150	150		150	150		150	150		150
Storage Lanes	1		0	1		1	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.965				0.850		0.987			0.980	
Fit Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1798	0	1787	1881	1599	1805	1875	0	1805	1862	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1770	1798	0	1787	1881	1599	1805	1875	0	1805	1862	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		17				205		6			9	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		481			347			479			371	
Travel Time (s)		10.9			7.9			10.9			8.4	
Peak Hour Factor	0.99	0.99	0.99	0.95	0.95	0.95	0.89	0.89	0.89	0.93	0.93	0.93
Heavy Vehicles (\%)	2\%	2\%	2\%	1\%	1\%	1\%	0\%	0\%	0\%	0\%	0\%	0\%
Adj. Flow (vph)	101	81	25	58	53	205	219	899	84	27	285	43
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	101	106	0	58	53	205	219	983	0	27	328	0
Turn Type	Prot	NA		Prot	NA	$\mathrm{pt}+\mathrm{ov}$	Prot	NA		Prot	NA	
Protected Phases	1	6		5	2	23	3	8		7	4	
Permitted Phases		6			2							
Detector Phase	1	6		5	2	23	3	8		7	4	
Switch Phase												
Minimum Initial (s)	8.0	8.0		8.0	8.0		8.0	8.0		8.0	8.0	
Minimum Split (s)	14.0	20.0		14.0	20.0		14.0	28.0		14.0	14.0	
Total Split (s)	14.0	20.0		14.0	20.0		19.0	32.0		14.0	27.0	
Total Split (\%)	17.5\%	25.0\%		17.5\%	25.0\%		23.8\%	40.0\%		17.5\%	33.8\%	
Maximum Green (s)	8.0	14.0		8.0	14.0		13.0	26.0		8.0	21.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Lead/Lag	Lead	Lag										
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	C-Max		None	None		None	None	
Walk Time (s)								7.0				
Flash Dont Walk (s)								15.0				
Pedestrian Calls (\#/hr)								0				
Act Effct Green (s)	8.0	19.6		8.0	16.8	35.2	12.4	34.4		8.0	21.6	
Actuated g/C Ratio	0.10	0.24		0.10	0.21	0.44	0.16	0.43		0.10	0.27	
v/c Ratio	0.57	0.23		0.33	0.13	0.25	0.78	1.22		0.15	0.64	
Control Delay	48.2	24.8		38.9	29.2	3.2	53.3	132.8		35.1	32.2	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	

Splits and Phases: 18: Tsienneto Rd \& NH 28 Byp NB/NH 28 Byp SB

APPENDIX O-1: 2040 ALTERNATIVE A INTERSECTION CAPACITY ANALYSES - HCM 2000 PRINTOUTS - AM PEAK HOUR

HCM Signalized Intersection Capacity Analysis
7: NH 102 \& Exit 4 SB Off

C Critical Lane Group

HCM Signalized Intersection Capacity Analysis
8: NH 102 \& Exit 4 NB Off
12/28/2017

	4	\cdots	1	\cdots	\rangle	Y	\nearrow	\downarrow	\downarrow	4	k
Movement	NBL2	NBL	NBR	SEL	SER	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	$7{ }^{1 \%}$		F\%			Y\%	个个			¢ \uparrow	7
Traffic Volume (vph)	490	0	235	0	0	1470	245	0	0	885	175
Future Volume (vph)	490	0	235	0	0	1470	245	0	0	885	175
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0		6.0			6.0	6.0			6.0	4.0
Lane Util. Factor	0.97		0.88			0.97	0.95			0.95	1.00
Fit	1.00		0.85			1.00	1.00			1.00	0.85
FIt Protected	0.95		1.00			0.95	1.00			1.00	1.00
Satd. Flow (prot)	3242		2632			3335	3438			3505	1568
Flt Permitted	0.95		1.00			0.95	1.00			1.00	1.00
Satd. Flow (perm)	3242		2632			3335	3438			3505	1568
Peak-hour factor, PHF	0.88	0.88	0.88	0.92	0.92	0.94	0.94	0.94	0.92	0.92	0.92
Adj. Flow (vph)	557	0	267	0	0	1564	261	0	0	962	190
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	557	0	267	0	0	1564	261	0	0	962	190
Heavy Vehicles (\%)	8\%	8\%	8\%	2\%	2\%	5\%	5\%	5\%	3\%	3\%	3\%
Turn Type	Prot		Prot			Prot	NA			NA	Free
Protected Phases	8		8			5	2			6	
Permitted Phases											Free
Actuated Green, G (s)	25.0		25.0			67.0	113.0			40.0	150.0
Effective Green, g (s)	25.0		25.0			67.0	113.0			40.0	150.0
Actuated g/C Ratio	0.17		0.17			0.45	0.75			0.27	1.00
Clearance Time (s)	6.0		6.0			6.0	6.0			6.0	
Vehicle Extension (s)	3.0		3.0			3.0	3.0			3.0	
Lane Grp Cap (vph)	540		438			1489	2589			934	1568
v/s Ratio Prot	c0.17		0.10			c0.47	0.08			c0.27	
v/s Ratio Perm											0.12
V/c Ratio	1.03		0.61			1.05	0.10			1.03	0.12
Uniform Delay, d1	62.5		58.0			41.5	4.9			55.0	0.0
Progression Factor	1.00		1.00			0.80	1.82			1.00	1.00
Incremental Delay, d2	47.1		2.4			32.0	0.0			37.4	0.2
Delay (s)	109.6		60.4			65.4	9.0			92.4	0.2
Level of Service	F		E			E	A			F	A
Approach Delay (s)		93.6		0.0			57.3			77.2	
Approach LOS		F		A			E			E	

Intersection Summary			
HCM 2000 Control Delay	71.2	HCM 2000 Level of Service	E
HCM 2000 Volume to Capacity ratio	1.04		18.0
Acctuated Cycle Length (s)	150.0	Sum of lost time (s)	F
Intersection Capacity Utilization	96.4%	ICU Level of Service	
Analysis Period (min)	15		
C Critical Lane Group			

HCM Signalized Intersection Capacity Analysis
2: Exit 5 SB On/Exit 5 SB Off \& NH 28
01/02/2018

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\uparrow \uparrow$	F	\%	$\uparrow \uparrow$					717		7
Traffic Volume (vph)	0	660	455	420	790	0	0	0	0	180	0	445
Future Volume (vph)	0	660	455	420	790	0	0	0	0	180	0	445
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0	4.0	6.0	6.0					6.0		6.0
Lane Util. Factor		0.95	1.00	1.00	0.95					0.97		1.00
Fit		1.00	0.85	1.00	1.00					1.00		0.85
Flt Protected		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (prot)		3167	1417	1687	3374					3303		1524
Flt Permitted		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (perm)		3167	1417	1687	3374					3303		1524
Peak-hour factor, PHF	0.92	0.92	0.92	0.73	0.73	0.73	0.92	0.92	0.92	0.74	0.74	0.74
Adj. Flow (vph)	0	717	495	575	1082	,	0	0	0	243	0	601
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	72
Lane Group Flow (vph)	0	717	495	575	1082	0	0	0	0	243	0	529
Heavy Vehicles (\%)	14\%	14\%	14\%	7\%	7\%	7\%	2\%	2\%	2\%	6\%	6\%	6\%
Turn Type		NA	Free	Prot	NA					Prot		Prot
Protected Phases		2		1	6					4		4
Permitted Phases			Free									
Actuated Green, G (s)		31.0	130.0	42.0	79.0					39.0		39.0
Effective Green, $\mathrm{g}(\mathrm{s})$		31.0	130.0	42.0	79.0					39.0		39.0
Actuated g/C Ratio		0.24	1.00	0.32	0.61					0.30		0.30
Clearance Time (s)		6.0		6.0	6.0					6.0		6.0
Vehicle Extension (s)		5.0		3.0	5.0					3.0		3.0
Lane Grp Cap (vph)		755	1417	545	2050					990		457
v / s Ratio Prot		c0.23		c0.34	0.32					0.07		c0.35
v / s Ratio Perm			0.35									
v/c Ratio		0.95	0.35	1.06	0.53					0.25		1.16
Uniform Delay, d1		48.7	0.0	44.0	14.7					34.4		45.5
Progression Factor		1.00	1.00	0.39	0.09					1.00		1.00
Incremental Delay, d2		22.5	0.7	49.0	0.4					0.1		92.9
Delay (s)		71.3	0.7	66.0	1.8					34.5		138.4
Level of Service		E	A	E	A					C		
Approach Delay (s)		42.4			24.1			0.0			108.5	
Approach LOS		D			C			A			F	

Intersection Summary			
HCM 2000 Control Delay	49.3	HCM 2000 Level of Service	D
HCM 2000 Volume to Capacity ratio	1.06		18.0
Actuated Cycle Length (s)	130.0	Sum of lost time (s)	E
Intersection Capacity Utilization	86.0%	ICU Level of Service	
Analysis Period (min)	15		
C Critical Lane Group			

HCM Signalized Intersection Capacity Analysis
3; Exit 5 NB Off \& NH 28

	4	\rightarrow		\checkmark	\downarrow	4	4	\dagger	p	,	$\frac{1}{7}$	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	舟			44	「	${ }^{*}$		7			
Traffic Volume (vph)	505	335	0	0	740	630	470	0	180	0	0	0
Future Volume (vph)	505	335	0	0	740	630	470	0	180	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0			6.0	4.0	6.0		6.0			
Lane Util. Factor	1.00	0.95			0.95	1.00	1.00		1.00			
Fit	1.00	1.00			1.00	0.85	1.00		0.85			
Flt Protected	0.95	1.00			1.00	1.00	0.95		1.00			
Satd. Flow (prot)	1641	3282			3438	1538	1656		1482			
Flt Permitted	0.95	1.00			1.00	1.00	0.95		1.00			
Satd. Flow (perm)	1641	3282			3438	1538	1656		1482			
Peak-hour factor, PHF	0.87	0.87	0.87	0.90	0.90	0.90	0.78	0.78	0.78	0.92	0.92	0.92
Adj. Flow (vph)	580	385	0	0	822	700	603	0	231	0	0	0
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	116	0	0	0
Lane Group Flow (vph)	580	385	0	0	822	700	603	0	115	0	0	0
Heavy Vehicles (\%)	10\%	10\%	10\%	5\%	5\%	5\%	9\%	9\%	9\%	2\%	2\%	2\%
Turn Type	Prot	NA			NA	Free	Prot		Prot			
Protected Phases	5	2			6		8		8			
Permitted Phases		2			6	Free						
Actuated Green, G (s)	41.0	76.0			29.0	130.0	42.0		42.0			
Effective Green, g (s)	41.0	76.0			29.0	130.0	42.0		42.0			
Actuated g/C Ratio	0.32	0.58			0.22	1.00	0.32		0.32			
Clearance Time (s)	6.0	6.0			6.0		6.0		6.0			
Vehicle Extension (s)	5.0	5.0			5.0		3.0		3.0			
Lane Grp Cap (vph)	517	1918			766	1538	535		478			
v/s Ratio Prot	c0.35	0.12			c0.24		c0.36		0.08			
v/s Ratio Perm						0.46						
v/c Ratio	1.12	0.20			1.07	0.46	1.13		0.24			
Uniform Delay, d1	44.5	12.7			50.5	0.0	44.0		32.3			
Progression Factor	0.14	0.01			1.00	1.00	1.00		1.00			
Incremental Delay, d2	64.7	0.2			53.9	1.0	78.8		0.3			
Delay (s)	70.9	0.3			104.4	1.0	122.8		32.5			
Level of Service	E	A			F	A	F		C			
Approach Delay (s)		42.7			56.9			97.8			0.0	
Approach LOS		D			E			F			A	

Intersection Summary			
HCM 2000 Control Delay	63.0	HCM 2000 Level of Service	E
HCM 2000 Volume to Capacity ratio	1.11	Sum of lost time (s)	18.0
Actuated Cycle Length (s)	130.0	E	
Intersection Capacity Utilization	86.0%	ICU Level of Service	
Analysis Period (min)	15		
C Critical Lane Group			

HCM Signalized Intersection Capacity Analysis
9: NH 102 \& St. Charles Street/Londonderry Road
12/28/2017
Movement SEL SET SER NWL NWT NWR NEL NET NER SWL SWT SWR

Lane Configurations		\uparrow	F		¢		9	$\uparrow{ }^{\text {¢ }}$		7	$\uparrow \uparrow$	
Traffic Volume (vph)	80	0	25	0	1	0	60	430	0	5	930	20
Future Volume (vph)	80	0	25	0	1	0	60	430	0	5	930	20
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900

Total Lost time (s)
Lane Util. Factor
Fit

Frt	1.00	0.85	1.00	1.00	1.00		1.00	1.00
Flt Protected	0.95	1.00	1.00	0.95	1.00	0.95	1.00	
Satd. Flow (prot)	1777	1583	1900	1770	3539	1770	3528	
FIt Permitted	0.76	1.00	1.00	0.95	1.00	0.95	1.00	
Satd. Flow (perm)	1407	1583	1900	1770	3539	1770	3528	
Peak-hour factor, PHF	0.92	0.92	0.92	0.25	0.25	0.25	0.92	0.92

Adj. Flow (vph)	87	0	27	0
RTOR Reduction (vph)	0	0	12	0
Lane Group Flow (vph)	0	87	15	0
Heavy Vehicles (\%)	2%	2%	2%	0%

Turn Type	Perm	NA custo
Protected Phases	8	

Permitted Phases	8		6	4
Actuated Green, G (s)		7.9	40.1	

Effective Green, $\mathrm{g}(\mathrm{s})$	7.9	40.1	7.9	6.4	45.7	0.8	40.1
Actuated g / C Ratio	0.11	0.55	0.11	0.09	0.63	0.01	0.55
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	153	876	207	156	2233	19	1954
V/s Ratio Prot			0.00	$c 0.04$	$c 0.13$	0.00	$c 0.29$

	$c 0.06$	0.01					0.00
v/s Ratio Perm	0.57	0.02	0.02	0.42	0.21	0.26	0.53
V/C Ratio	30.6	7.3	28.8	31.2	5.7	35.5	10.2
Uniform Delay, d1	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Progressian Factor	4.8	0.0	0.0	1.8	0.0	7.3	0.3
Incremental Delay, d2	35.4	7.3	28.8	33.0	5.7	42.8	10.4
Delay (s)	D	A	C	C	A	D	B
Level of Service	28.8		28.8		9.1		10.6
Approach Delay (s)	C		C		A		B
Approach LOS							

Intersection Summary			
HCM 2000 Control Delay	11.4	HCM 2000 Level of Service	B
HCM 2000 Volume to Capacity ratio	0.52		18.0
Actuated Cycle Length (s)	72.4	Sum of lost time (s)	B
Intersection Capacity Utilization	61.8%	ICU Level of Service	
Analysis Period (min)	15		
C Critical Lane Group			

HCM Signalized Intersection Capacity Analysis
10: NH 102 \& Fordway/Madden Hill Road
12/28/2017

Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		$\boldsymbol{\$}$			\AA			\uparrow			\uparrow	
Traffic Volume (vph)	10	70	10	370	0	50	0	370	110	15	495	0
Future Volume (vph)	10	70	10	370	0	50	0	370	110	15	495	0

\|deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0			6.0			6.0			6.0	
Lane Util. Factor		1.00			1.00			1.00			1.00	
Fit		0.98			0.98			0.97			1.00	
Flt Protected		0.99			0.96			1.00			1.00	
Satd. Flow (prot)		1824			1738			1705			1807	
Flt Permitted		0.94			0.68			1.00			0.98	
Satd. Flow (perm)		1716			1243			1705			1772	
Peak-hour factor, PHF	0.60	0.60	0.60	0.96	0.96	0.96	0.89	0.89	0.89	0.86	0.86	0.86
Adj. Flow (vph)	17	117	17	385	0	52	0	416	124	17	576	0
RTOR Reduction (vph)	0	5	0	0	22	0	0	12	0	0	0	
Lane Group Flow (vph)	0	146	0	0	415	0	0	528	0	0	593	0
Heary Vehicles (\%)	2\%	2\%	2\%	3\%	3\%	3\%	8\%	8\%	8\%	5\%	5\%	5\%
Turn Type	Perm	NA		Perm	NA			NA		Perm	NA	
Protected Phases		4			4			2			2	

Permitted Phases	4	4		2
Actuated Green, G (s)	30.7	30.7	33.9	33.9
Effective Green, g (s)	30.7	30.7	33.9	33.9
Actuated g/C Ratio	0.40	0.40	0.44	0.44
Clearance Time (s)	6.0	6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	687	498	754	784
v / s Ratio Prot			0.31	
v / s Ratio Perm	0.08	c0.33		c0.33
V/C Ratio	0.21	0.83	0.70	0.76
Uniform Delay, d1	15.0	20.7	17.2	17.9
Progression Factor	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.2	11.5	2.9	4.2
Delay (s)	15.2	32.1	20.1	22.1
Level of Service	B	C	C	C
Approach Delay (s)	15.2	32.1	20.1	22.1
Approach LOS	B	C	C	C

| Intersection Summary | | | |
| :--- | ---: | :--- | ---: | :--- |
| HCM 2000 Control Delay | 23.4 | HCM 2000 Level of Service | C |
| HCM 2000 Volume to Capacity ratio | 0.79 | | 12.0 |
| Actuated Cycle Length (s) | 76.6 | Sum of lost time (s) | D |
| Intersection Capacity Utilization | 79.7% | ICU Level of Service | |
| Analysis Period (min) | 15 | | |
| C Critical Lane Group | | | |

	4		4	4	$\frac{1}{\downarrow}$	4
tane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	7	${ }^{\text {F }}$		\uparrow	\dagger	
Traffic Volume (vph)	240	10	5	240	260	190
Future Volume (vph)	240	10	5	240	260	190
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.850			0.943	
Flt Protected	0.950			0.999		
Satd. Flow (prot)	1719	1538	0	1825	1757	0
Flt Permitted	0.950			0.999		
Satd. Flow (perm)	1719	1538	0	1825	1757	0
Link Speed (mph)	30			30	30	
Link Distance (ft)	322			309	249	
Travel Time (s)	7.3			7.0	5.7	
Peak Hour Factor	0.89	0.89	0.91	0.91	0.93	0.93
Heavy Vehicles (\%)	5\%	5\%	4\%	4\%	2\%	2\%
Adj. Flow (vph)	270	11	5	264	280	204
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	270	11	0	269	484	0
Sign Control	Stop			Stop	Stop	
Intersection Summary						
Area Type: Other						
Control Type: Unsignalized						
Intersection Capacity Utilization 45.2\%					Level	Service A
Analysis Period (min) 15						

Intersection	
Intersection Delay, s/veh	16.9
Intersection LOS	C

Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	7	*		\uparrow	\dagger	
Traffic Vol, veh/h	240	10	5	240	260	190
Future Vol, veh/h	240	10	5	240	260	190
Peak Hour Factor	0.89	0.89	0.91	0.91	0.93	0.93
Heavy Vehicles, \%	5	5	4	4	2	2
Mvmt Flow	270	11	5	264	280	204
Number of Lanes	1	1	0	1	1	0
Approach	EB		NB		SB	
Opposing Approach			SB		NB	
Opposing Lanes	0		1		1	
Conflicting Approach Left	SB		EB			
Conflicting Lanes Left	1		2		0	
Conflicting Approach Right	NB				EB	
Conflicting Lanes Right	1		0		2	
HCM Control Delay	17.1		13		18.9	
HCM LOS	C		B		C	

Lane	NBLn1	EBLn1	EBLn2	SBLn1
Vol Left, \%	2%	100%	0%	0%
Vol Thru, \%	98%	0%	0%	58%
Vol Right, \%	0%	0%	100%	42%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	245	240	10	450
LT Vol	5	240	0	0
Through Vol	240	0	0	260
RT Vol	0	0	10	190
Lane Flow Rate	269	270	11	484
Geometry Grp	2	7	7	2
Degree of Util (X)	0.427	0.527	0.018	0.69
Departure Headway (Hd)	5.703	7.036	5.816	5.131
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	630	512	614	702
Service Time	3.758	4.786	3.565	3.18
HCM Lane VIC Ratio	0.427	0.527	0.018	0.689
HCM Control Delay	13	17.4	8.7	18.9
HCM Lane LOS	B	C	A	C
HCM 95th-tile Q	2.1	3	0.1	5.5

HCM Signalized Intersection Capacity Analysis
9: N. High St \& Connector Road

11: Folsom Rd/Tsienneto Rd \& Crystal Av/NH 28

	\cdots	\uparrow	Γ	\checkmark	$\frac{1}{7}$	\downarrow	4	8	\bigcirc	\downarrow	\checkmark	4
Movement	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	*	¢ \uparrow	F	M ${ }^{1 /}$	$\uparrow \uparrow$		**	¢4	7	*	个 \uparrow	7
Traffic Volume (vph)	100	70	40	50	100	0	130	820	320	30	935	220
Future Volume (vph)	100	70	40	50	100	0	130	820	320	30	935	220
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0		6.0	6.0	4.0	6.0	6.0	6.0
Lane Utill. Factor	1.00	0.95	1.00	0.97	0.95		0.97	0.95	1.00	1.00	0.95	1.00
Fit	1.00	1.00	0.85	1.00	1.00		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1736	3471	1553	3335	3438		3400	3505	1568	1752	3505	1568
FIt Permitted	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1736	3471	1553	3335	3438		3400	3505	1568	1752	3505	1568
Peak-hour factor, PHF	0.84	0.84	0.84	0.79	0.79	0.79	0.86	0.86	0.86	0.99	0.99	0.99
Adj. Flow (vph)	119	83	48	63	127	-	151	953	372	30	944	222
RTOR Reduction (vph)	0	0	35	0	0	0	0	0	0	0	0	73
Lane Group Flow (vph)	119	83	13	63	127	0	151	953	372	30	944	149
Heavy Vehicles (\%)	4\%	4\%	4\%	5\%	5\%	5\%	3\%	3\%	3\%	3\%	3\%	3\%
Turn Type	Prot	NA	pm+ov	Prot	NA		Prot	NA	Free	Prot	NA	pt+ov
Protected Phases	1	6	7	5	2		3	8		7	4	45
Permitted Phases		6	6		2			8	Free		4	
Actuated Green, G (s)	14.2	25.0	30.5	7.0	17.8		10.0	49.5	111.0	5.5	45.0	58.0
Effective Green, $\mathrm{g}(\mathrm{s})$	14.2	25.0	30.5	7.0	17.8		10.0	49.5	111.0	5.5	45.0	58.0
Actuated g/C Ratio	0.13	0.23	0.27	0.06	0.16		0.09	0.45	1.00	0.05	0.41	0.52
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0		6.0	6.0		6.0	6.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	222	781	510	210	551		306	1563	1568	86	1420	819
v/s Ratio Prot	c0.07	0.02	0.00	0.02	0.04		c0.04	c0.27		0.02	c0.27	0.10
v / s Ratio Perm			0.01						c0.24			
v/c Ratio	0.54	0.11	0.03	0.30	0.23		0.49	0.61	0.24	0.35	0.66	0.18
Uniform Delay, d1	45.3	34.1	29.4	49.7	40.6		48.1	23.4	0.0	51.0	26.9	14.0
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.43	0.64	0.28
Incremental Delay, d2	2.5	0.3	0.0	0.8	1.0		1.3	0.7	0.4	2.0	1.0	0.1
Delay (s)	47.8	34.4	29.4	50.5	41.6		49.3	24.1	0.4	75.2	18.2	4.1
Level of Service	D	C	C	D	D		D	c	A	E	B	A
Approach Delay (s)		39.8			44.5			20.7			17.0	
Approach LOS		D			D			c			B	
Intersection Summary												
HCM 2000 Control Delay			22.3		CM 2000	evel of S	Service		C			
HCM 2000 Volume to Capacity ratio			0.56									
Actuated Cycle Length (s)			111.0		um of lost	time (s)			24.0			
Intersection Capacity Utilization			58.9\%		CU Level o	Service			B			
Analysis Period (min)			15									
c Critical Lane Group												

	\rightarrow	\rightarrow	2	\ldots	\longleftarrow	1	3	λ	ρ	ζ	\checkmark	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	*	性		*	个t			\uparrow	7		\uparrow	F
Traffic Volume (vph)	20	240	0	,	330	10	5	0	5	20		180
Future Volume (vph)	20	240	0	0	330	10	5	0	5	20	0	180
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0			6.0			6.0	6.0		6.0	6.0
Lane Util. Factor	1.00	0.95			0.95			1.00	1.00		1.00	1.00
Fit	1.00	1.00			1.00			1.00	0.85		1.00	0.85
FIt Protected	0.95	1.00			1.00			0.95	1.00		0.95	1.00
Satd. Flow (prot)	1687	3374			3523			1805	1615		1787	1599
Flt Permitted	0.95	1.00			1.00			0.74	1.00		0.75	1.00
Satd. Flow (perm)	1687	3374			3523			1412	1615		1413	1599
Peak-hour factor, PHF	0.83	0.83	0.83	0.92	0.92	0.92	0.50	0.50	0.50	0.90	0.90	0.90
Adj. Flow (vph)	24	289	0	0	359	11	10	0	10	22	0	200
RTOR Reduction (vph)	0	0	0	0	2	0	0	0		,	O	178
Lane Group Flow (vph)	24	289	0	0	368	0	0	10	1	0	22	22
Heavy Vehicles (\%)	7\%	7\%	7\%	2\%	2\%	2\%	0\%	0\%	0\%	1\%	1\%	1\%
Turn Type	Prot	NA		Prot	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases					6		8	8	8	4		4
Actuated Green, G (s)	1.5	44.9			37.4			7.0	7.0		7.0	7.0
Effective Green, $\mathrm{g}(\mathrm{s})$	1.5	44.9			37.4			7.0	7.0		7.0	7.0
Actuated g/C Ratio	0.02	0.70			0.59			0.11	0.11		0.11	0.11
Clearance Time (s)	6.0	6.0			6.0			6.0	6.0		6.0	6.0
Vehicle Extension (s)	3.0	3.0			3.0			3.0	3.0		3.0	3.0
Lane Grp Cap (vph)	39	2370			2061			154	176		154	175
v / s Ratio Prot	c0.01	0.09			c0.10							
v/s Ratio Perm								0.01	0.00		c0.02	0.01
v/c Ratio	0.62	0.12			0.18			0.06	0.01		0.14	0.13
Uniform Delay, d1	30.9	3.1			6.1			25.5	25.4		25.7	25.7
Progression Factor	1.00	1.00			1.00			1.00	1.00		1.00	1.00
Incremental Delay, d2	25.5	0.1			0.0			0.2	0.0		0.4	0.3
Delay (s)	56.4	3.2			6.2			25.7	25.4		26.2	26.0
Level of Service	E	A			A			C	C		C	C
Approach Delay (s)		7.3			6.2			25.5			26.0	
Approach LOS		A			A			C			C	
Intersection Summary												
HCM 2000 Control Delay			11.7	HCM 2000 Level of Service					B			
HCM 2000 Volume to Capacity ratio			0.19									
Actuated Cycle Length (s)			63.9	Sum of lost time (s)					18.0			
Intersection Capacity Utilization			39.8\%	ICU Level of Service					A			
Analysis Period (min)			15									
c Critical Lane Group												

	$\stackrel{ }{ }$	\rightarrow	7	\checkmark	4	4	4	\dagger	p	\checkmark	\downarrow	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7} 1$	㤢		${ }^{7}$	个t		7	\ddagger		${ }^{7}$	\uparrow	\%
Traffic Volume (vph)	30	200	5	5	330	120	10	5	5	170	5	110
Future Volume (vph)	30	200	5	5	330	120	10	5	5	170	5	110
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	60		6.0	6.0		6.0	6.0	6.0
Lane Util. Factor	0.97	0.95		1.00	0.95		1.00	1.00		0.95	0.95	1.00
Fit	1.00	1.00		1.00	0.96		1.00	0.93		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.96	1.00
Satd. Flow (prot)	3303	3393		1736	3332		1805	1758		1665	1674	1568
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.96	1.00
Satd. Flow (perm)	3303	3393		1736	3332		1805	1758		1665	1674	1568
Peak-hour factor, PHF	0.83	0.83	0.83	0.97	0.97	0.97	0.67	0.67	0.67	0.90	0.90	0.90
Adj. Flow (vph)	36	241	6	5	340	124	15	7	7	189	6	122
RTOR Reduction (vph)	0	2	0	0	39	0	0	7	0	0	0	80
Lane Group Flow (vph)	36	245	0	5	425	0	15	7	0	98	97	42
Heavy Vehicles (\%)	6\%	6\%	6\%	4\%	4\%	4\%	0\%	0\%	0\%	3\%	3\%	3\%
Turn Type	Prot	NA		Prot	NA		Split	NA		Split	NA	pt+ov
Protected Phases	5	2		1	6		3	3		4	4	45
Permitted Phases								3				
Actuated Green, G (s)	5.0	23.9		0.9	19.8		2.1	2.1		9.8	9.8	20.8
Effective Green, g(s)	5.0	23.9		0.9	19.8		2.1	2.1		9.8	9.8	20.8
Actuated g/C Ratio	0.08	0.39		0.01	0.33		0.03	0.03		0.16	0.16	0.34
Clearance Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	272	1335		25	1086		62	60		268	270	537
v/s Ratio Prot	c0.01	c0.07		0.00	c0.13		c0. 01	0.00		c0.06	0.06	0.03
v / s Ratio Perm $0.00{ }^{\text {a }}$												
v/c Ratio	0.13	0.18		0.20	0.39		0.24	0.12		0.37	0.36	0.08
Uniform Delay, d1	25.8	12.0		29.5	15.8		28.5	28.4		22.7	22.7	13.5
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	0.2	0.1		3.9	0.2		2.0	0.9		0.8	0.8	0.1
Delay (s)	26.1	12.1		33.5	16.0		30.6	29.3		23.5	23.5	13.5
Level of Service	C	B		C	B		C	C		C	C	B
Approach Delay (s)		13.9			16.2			30.0			19.7	
Approach LOS		B			B			C			B	

Intersection Summary			
HCM 2000 Control Delay	17.0	HCM 2000 Level of Service	B
HCM 2000 Volume to Capacity ratio	0.35		24.0
Actuated Cycle Length (s)	60.7	Sum of lost time (s)	A
Intersection Capacity Utilization	38.9%	ICU Level of Service	
Analysis Period (min)	15		

c Critical Lane Group

Intersection						

16: NH 102 W/NH 102 E \& NH 28 Byp S \& E Derry Rd Lanes, Volumes. Timings

	\checkmark	\checkmark	4	を	\cdots	\uparrow	「	p	G	\checkmark	\downarrow	\}
Lane Group	WBL2	WBL	WBR	WBR2	NBL	NBT	NBR	NBR2	SBL2	SBL	SBT	SBR
Lane Configurations		M				4					4	
Traffic Volume (vph)	10	325	325	20	100	100	40	10	10	150	130	50
Future Volume (vph)	10	325	325	20	100	100	40	10	10	150	130	50
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (t)		0	150		0		150			0		0
Storage Lanes		1	0		0		0			0		0
Taper Length (tt)		25			25					25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.932				0.973					0.980	
Fit Protected		0.976				0.980					0.977	
Satd. Flow (prot)	0	1678	0	0	0	1759	0	0	0	0	1700	0
Flt Permitted		0.976				0.980					0.977	
Satd. Flow (perm)	0	1678	0	0	0	1759	0	0	0	0	1700	0
Link Speed (mph)		30				30					30	
Link Distance (t)		465				456					371	
Travel Time (s)		10.6				10.4					8.4	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.86	0.86	0.86	0.86	0.80	0.80	0.80	0.80
Heavy Vehicles (\%)	3\%	3\%	3\%	3\%	3\%	3\%	3\%	3\%	7\%	7\%	7\%	7\%
Adj. Flow (vph)	11	357	357	22	116	116	47	12	13	188	163	63
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	747	0	0	0	291	0	0	0	0	427	0
Sign Control		Yield				Yield					Yield	

Intersection Summary Other
Area Type:Control Type: Roundabout Intersection Capacity Utilization 112.5\% Analysis Period (min) 15\quad ICU Level of Service H

	$\xlongequal{ }$	\nearrow	\bigcirc	\downarrow	\checkmark	\checkmark	\star	4
Lane Group	NEL	NET	NER	NER2	SWL2	SWL	SWT	SWR
Lane Configurations		4					4	
Traffic Volume (vph)	70	140	120	120	5	30	230	10
Future Volume (vph)	70	140	120	120	5	30	230	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (tt)	0		150			150		0
Storage Lanes	0		0			0		0
Taper Length (t)	25					25		
Lane Utili. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.928					0.995	
Flt Protected		0.992					0.994	
Satd. Flow (prot)	0	1620	0	0	0	0	1756	0
Fit Permitted		0.992					0.994	
Satd. Flow (perm)	0	1620	0	0	0	0	1756	0
Link Speed (mph)		30					30	
Link Distance (t)		400					528	
Travel Time (s)		9.1					12.0	
Peak Hour Factor	0.60	0.60	0.60	0.60	0.83	0.83	0.83	0.83
Heavy Vehicles (\%)	8\%	8\%	8\%	8\%	7\%	7\%	7\%	7\%
Adj. Flow (vph)	117	233	200	200	6	36	277	12
Shared Lane Traffic (\%)								
Lane Group Flow (vph)	0	750	0	0	0	0	331	0
Sign Control		Yield					Yield	
Intersection Summary								

Intersection					
Intersection Delay, s/veh50.5					
Intersection LOS F					
Approach	WB	NB	SB	NE	SW
Entry Lanes	1	1	1	1	1
Conflicting Circle Lanes	1	1	1	1	1
Adj Approach Flow, veh/h	747	291	427	750	331
Demand Flow Rate, veh/h	770	298	456	810	354
Vehicles Circulating, veh/h	678	815	839	445	1111
Vehicles Exiting, veh/h	435	440	626	850	337
Ped Vol Crossing Leg, \#h	0	0	0	0	0
Ped Cap Adj	1.000	1.000	1.000	1.000	1.000
Approach Delay, s/veh	94.0	14.5	29.7	38.2	39.1
Approach LOS	F	B	D		E

Lane	Left	Left	Left	Left	Left
Designated Moves	LR	LTR	LTR	LTR	LTR
Assumed Moves	LR	LTR	LTR	LTR	LTR
RT Channelized					
Lane Util	1.000	1.000	1.000	1.000	1.000
Follow-Up Headway, s 2.609	2.609	2.609	2.609	2.609	
Critical Headway,	4.976	4.976	4.976	4.976	4.976
Entry Flow, veh/h	770	298	456	810	354
Cap Entry Lane, veh/h	691	601	586	876	444
Entry HV Adj Factor	0.970	0.975	0.936	0.926	0.933
Flow Entry, veh/h	747	291	427	750	330
Cap Entry, veh/h	670	586	549	812	415
VIC Ratio	1.114	0.496	0.778	0.924	0.797
Control Delay, s/veh	94.0	F	14.5	29.7	38.2
LOS	B	0	E	39.1	
95th \%tile Queue, veh	22	3	7	7	13
		3			7

	7	\rightarrow	\rangle	\checkmark	\leftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	7		4			4			4	
Traffic Volume (vph)	10	20	260	10	40	50	280	160	10	10	90	20
Future Volume (vph)	10	20	260	10	40	50	280	160	10	10	90	20
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ti)	0		30	0		0	0		0	0		0
Storage Lanes	0		1	0		0	0		0	0		0
Taper Length (t)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Fit			0.850		0.932			0.997			0.978	
Flt Protected		0.984			0.995			0.970			0.996	
Satd. Flow (prot)	0	1731	1495	0	1678	0	0	1784	0	0	1780	0
Flt Permitted		0.984			0.995			0.970			0.996	
Satd. Flow (perm)	0	1731	1495	0	1678	0	0	1784	0	0	1780	0
Link Speed (mph)		30			30			30			30	
Link Distance (t)		113			453			475			436	
Travel Time (s)		2.6			10.3			10.8			9.9	
Confl. Peds. (\#/hr)			155									
Peak Hour Factor	0.82	0.82	0.82	0.70	0.70	0.70	0.75	0.75	0.75	0.71	0.71	0.71
Heavy Vehicles (\%)	8\%	8\%	8\%	5\%	5\%	5\%	3\%	3\%	3\%	4\%	4\%	4\%
Adj. Flow (vph)	12	24	317	14	57	71	373	213	13	14	127	28
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	36	317	0	142	0	0	599	0	0	169	0
Sign Control		Stop			Stop			Free			Free	

Intersection Summary

Area Type:
Other
Control Type: Unsignalized
Intersection Capacity Utilization 51.1\%
ICU Level of Service A
Analysis Period (min) 15

	\rangle	\rightarrow	7	6	\leftarrow	4	1	\checkmark	4	\pm
Movement	EBL	EBT	EBR	WBL	WBT	WBR	SBL	SBR	NWL	NWR
Lane Configurations		\dagger^{*}			$4 \uparrow$	F"10			*	$\overline{7}$
Traffic Volume (vph)	0	1730	0	0	980	1390	0	0	0	795
Future Volume (vph)	0	1730	0	0	980	1390	0	0	0	795
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0			6.0	6.0			6.0	6.0
Lane Util. Factor		0.95			0.95	0.88			1.00	0.95
Fit		1.00			1.00	0.85			0.85	0.85
Fit Protected		1.00			1.00	1.00			1.00	1.00
Satd. Flow (prot)		3539			3539	2787			1583	1504
Flt Permitted		1.00			1.00	1.00			1.00	1.00
Satd. Flow (perm)		3539			3539	2787			1583	1504
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	0	1840	0	0	1043	1479	0	0	0	846
RTOR Reduction (vph)	0	0	0	0	0	18	0	0	0	0
Lane Group Flow (vph)	0	1840	0	0	1043	1461	0	0	423	423
Turn Type		NA			NA	Perm			Prot	Prot
Protected Phases		2			2				4	4
Permitted Phases	2					2				
Actuated Green, G (s)		51.0			51.0	51.0			27.0	27.0
Effective Green, g (s)		51.0			51.0	51.0			27.0	27.0
Actuated g/C Ratio		0.57			0.57	0.57			0.30	0.30
Clearance Time (s)		6.0			6.0	6.0			6.0	6.0
Vehicle Extension (s)		3.0			3.0	3.0			3.0	3.0
Lane Grp Cap (vph)		2005			2005	1579			474	451
v/s Ratio Prot		0.52			0.29				0.27	c0. 28
v/s Ratio Perm						c0.52				
v / c Ratio		0.92			0.52	0.93			0.89	0.94
Uniform Delay, d1		17.6			12.0	17.8			30.1	30.7
Progression Factor		0.01			1.00	1.00			1.00	1.00
Incremental Delay, d2		2.7			1.0	10.7			18.7	27.2
Delay (s)		3.0			13.0	28.5			48.8	57.8
Level of Service		A			B	C			D	E
Approach Delay (s)		3.0			22.0		0.0		53.3	
Approach LOS		A			C		A		D	
Intersection Summary										
HCM 2000 Control Delay			20.4	HCM 2000 Level of Service				C		
HCM 2000 Volume to Capacity ratio			0.93							
Actuated Cycle Length (s)			90.0		Sum of los	time (s)			12.0	
Intersection Capacity Utilization			131.6\%		CU Level	Service			H	
Analysis Period (min)			15							
c Critical Lane Group										

	\geqslant	7	4	\uparrow	\downarrow	\checkmark	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Y		\%	\uparrow	F		
Traffic Volume (vph)	5	30	30	300	690	20	
Future Volume (vph)	5	30	30	300	690	20	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Storage Length (t)	0	0	100			0	
Storage Lanes	1	0	1			0	
Taper Length (t)	25		25				
Lane Utill. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Fit	0.888				0.995		
Flt Protected	0.992		0.950				
Satd. Flow (prot)	1674	0	1787	1900	1872	0	
Flt Permitted	0.992		0.950				
Satd. Flow (perm)	1674	0	1787	1900	1872	0	
Link Speed (mph)	30			30	30		
Link Distance (t)	332			288	365		
Travel Time (s)	7.5			6.5	8.3		
Peak Hour Factor	0.64	0.77	0.71	0.90	0.75	0.55	
Heavy Vehicles (\%)	0\%	0\%	1\%	0\%	1\%	0\%	
Adj. Flow (vph)	,	39	42	333	920	36	
Shared Lane Traffic (\%)							
Lane Group Flow (vph)	47	0	42	333	956	0	
Sign Control	Stop			Free	Free		

Intersection Summary

Area Type: Other

Control Type: Unsignalized
Intersection Capacity Utilization 47.5\% ICU Level of Service A
Analysis Period (min) 15

APPENDIX O-2: 2040 ALTERNATIVE A INTERSECTION CAPACITY ANALYSES - HCM 2000 PRINTOUTS - PM PEAK HOUR

HCM Signalized Intersection Capacity Analysis
7: NH 102 \& Exit 4 SB Off

c Critical Lane Group

	\cdots	1	1	\checkmark	\rangle	\%	7	\cdots	1	\prime	\cdots
Movement	NBL2	NBL	NBR	SEL	SER	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%*		Tir			\% 17	4众			个4	7
Traffic Volume (vph)	1360	0	725	0	0	1155	460	0	0	370	110
Future Volume (vph)	1360	0	725	0	0	1155	460	0	0	370	110
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0		6.0			6.0	6.0			6.0	4.0
Lane Util. Factor	0.97		0.88			0.97	0.95			0.95	1.00
Fit	1.00		0.85			1.00	1.00			1.00	0.85
Flt Protected	0.95		1.00			0.95	1.00			1.00	1.00
Satd. Flow (prot)	3242		2632			3335	3438			3505	1568
Flt Permitted	0.95		1.00			0.95	1.00			1.00	1.00
Satd. Flow (perm)	3242		2632			3335	3438			3505	1568
Peak-hour factor, PHF	0.88	0.88	0.88	0.92	0.92	0.94	0.94	0.94	0.92	0.92	0.92
Adj. Flow (vph)	1545	0	824	0	0	1229	489	0	0	402	120
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	1545	0	824	0	0	1229	489	0	0	402	120
Heavy Vehicles (\%)	8\%	8\%	8\%	2\%	2\%	5\%	5\%	5\%	3\%	3\%	3\%
Turn Type	Prot		Prot			Prot	NA			NA	Free
Protected Phases	8		8			5	2			6	
Permitted Phases											Free
Actuated Green, G (s)	48.0		48.0			38.0	70.0			26.0	130.0
Effective Green, $\mathrm{g}(\mathrm{s})$	48.0		48.0			38.0	70.0			26.0	130.0
Actuated g/C Ratio	0.37		0.37			0.29	0.54			0.20	1.00
Clearance Time (s)	6.0		6.0			6.0	6.0			6.0	
Vehicle Extension (s)	3.0		3.0			3.0	3.0			3.0	
Lane Grp Cap (vph)	1197		971			974	1851			701	1568
v/s Ratio Prot	c0.48		0.31			c0.37	0.14			c0.11	
v/s Ratio Perm											0.08
v / c Ratio	1.29		0.85			1.26	0.26			0.57	0.08
Uniform Delay, d1	41.0		37.7			46.0	16.1			47.0	0.0
Progression Factor	1.00		1.00			0.76	0.46			1.00	1.00
Incremental Delay, d2	137.2		7.0			123.2	0.2			3.4	0.1
Delay (s)	178.2		44.7			158.2	7.7			50.4	0.1
Level of Service	F		D			F	A			D	A
Approach Delay (s)		131.8		0.0			115.3			38.8	
Approach LOS		F		A			F			D	

| Intersection Summary | | | |
| :--- | ---: | :--- | ---: | :--- |
| HCM 2000 Control Delay | 115.1 | HCM 2000 Level of Service | F |
| HCM 2000 Volume to Capacity ratio | 1.11 | | 18.0 |
| Actuated Cycle Length (s) | 130.0 | Sum of lost time (s) | F |
| Intersection Capacity Utilization | 98.0% | ICU Level of Service | |
| Analysis Period (min) | 15 | | |
| c Critical Lane Group | | | |

HCM Signalized Intersection Capacity Analysis
2: Exit 5 SB On/Exit 5 SB Off \& NH 28

	4	\rightarrow	V	6	*	4	4	\dagger	p	\checkmark	\downarrow	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢4	7	${ }^{*}$	44					7\%		F
Traffic Volume (vph)	0	755	480	255	665	0	0	0	0	295	0	470
Future Volume (vph)	0	755	480	255	665	0	0	0	0	295	0	470
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0	4.0	6.0	6.0					6.0		6.0
Lane Util. Factor		0.95	1.00	1.00	0.95					0.97		1.00
Fit		1.00	0.85	1.00	1.00					1.00		0.85
Flt Protected		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (prot)		3471	1553	1719	3438					3367		1553
Flt Permitted		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (perm)		3471	1553	1719	3438					3367		1553
Peak-hour factor, PHF	0.87	0.87	0.87	0.86	0.86	0.86	0.92	0.92	0.92	0.91	0.91	0.91
Adj. Flow (vph)	0	868	552	297	773	0	0	0	0	324	0	516
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	137
Lane Group Flow (vph)	0	868	552	297	773	0	0	0	0	324	0	379
Heavy Vehicles (\%)	4\%	4\%	4\%	5\%	5\%	5\%	2\%	2\%	2\%	4\%	4\%	4\%
Turn Type		NA	Free	Prot	NA					Prot		Prot
Protected Phases		2		1	6					4		4
Permitted Phases			Free									
Actuated Green, G (s)		29.1	90.0	18.1	53.2					24.8		24.8
Effective Green, g (s)		29.1	90.0	18.1	53.2					24.8		24.8
Actuated g/C Ratio		0.32	1.00	0.20	0.59					0.28		0.28
Clearance Time (s)		6.0		6.0	6.0					6.0		6.0
Vehicle Extension (s)		5.0		3.0	5.0					3.0		3.0
Lane Grp Cap (vph)		1122	1553	345	2032					927		427
v / s Ratio Prot		c0.25		c0.17	0.22					0.10		c0. 24
v/s Ratio Perm			0.36									
v / c Ratio		0.77	0.36	0.86	0.38					0.35		0.89
Uniform Delay, d1		27.5	0.0	34.7	9.7					26.1		31.3
Progression Factor		1.00	1.00	0.04	0.00					1.00		1.00
Incremental Delay, d2		5.2	0.6	10.1	0.2					0.2		19.5
Delay (s)		32.7	0.6	11.6	0.2					26.4		50.7
Level of Service		C	A	B	A					C		D
Approach Delay (s)		20.2			3.3			0.0			41.3	
Approach LOS		C			A			A			D	

Intersection Summary			
HCM 2000 Control Delay	20.1	HCM 2000 Level of Service	C
HCM 2000 Volume to Capacity ratio	0.83		18.0
Actuated Cycle Length (s)	90.0	Sum of lost time (s)	D
Intersection Capacity Utilization	77.2%	ICU Level of Service	
Analysis Period (min)	15		
C Critical Lane Group			

HCM Signalized Intersection Capacity Analysis
3: Exit 5 NB Off \& NH 28
12/28/2017

	4			\checkmark	\leftarrow	4	4	4	p	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个个			¢ \uparrow	7	${ }^{7}$		7			
Traffic Volume (vph)	480	570	0	0	555	445	365	0	420	0	0	0
Future Volume (vph)	480	570	0	0	555	445	365	0	420	0	0	0
\|deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0			6.0	4.0	6.0		6.0			
Lane Util. Factor	1.00	0.95			0.95	1.00	1.00		1.00			
Fit	1.00	1.00			1.00	0.85	1.00		0.85			
Flt Protected	0.95	1.00			1.00	1.00	0.95		1.00			
Satd. Flow (prot)	1752	3505			3505	1568	1703		1524			
Flt Permitted	0.95	1.00			1.00	1.00	0.95		1.00			
Satd. Flow (perm)	1752	3505			3505	1568	1703		1524			
Peak-hour factor, PHF	0.92	0.92	0.92	0.91	0.91	0.91	0.67	0.67	0.67	0.92	0.92	0.92
Adj. Flow (vph)	522	620	0	0	610	489	545	0	627	0	0	0
RTOR Reduction (vph)	0	0	0	0	0	,	0	0	176	0	0	0
Lane Group Flow (vph)	522	620	0	0	610	489	545	0	451	0	0	0
Heary Vehicles (\%)	3\%	3\%	3\%	3\%	3\%	3\%	6\%	6\%	6\%	2\%	2\%	2\%
Turn Type	Prot	NA			NA	Free	Prot		Prot			
Protected Phases	5	2			6		8		8			
Permitted Phases		2			6	Free						
Actuated Green, G (s)	26.0	50.0			18.0	90.0	28.0		28.0			
Effective Green, $\mathrm{g}(\mathrm{s})$	26.0	50.0			18.0	90.0	28.0		28.0			
Actuated g/C Ratio	0.29	0.56			0.20	1.00	0.31		0.31			
Clearance Time (s)	6.0	6.0			6.0		6.0		6.0			
Vehicle Extension (s)	5.0	5.0			5.0		3.0		3.0			
Lane Grp Cap (vph)	506	1947			701	1568	529		474			
v / s Ratio Prot	c0.30	0.18			c0.17		c0.32		0.30			
v/s Ratio Perm						0.31						
V/c Ratio	1.03	0.32			0.87	0.31	1.03		0.95			
Uniform Delay, d1	32.0	10.8			34.9	0.0	31.0		30.3			
Progression Factor	0.10	0.17			1.00	1.00	1.00		1.00			
Incremental Delay, d2	39.7	0.4			13.9	0.5	47.1		29.4			
Delay (s)	42.8	2.2			48.8	0.5	78.1		59.7			
Level of Service	D	A			D	A	E		E			
Approach Delay (s)		20.7			27.3			68.3			0.0	
Approach LOS		C			C			E			A	

Intersection Summary			
HCM 2000 Control Delay	39.2	HCM 2000 Level of Service	D
HCM 2000 Volume to Capacity ratio	0.99		
Actuated Cycle Length (s)	90.0	Sum of lost time (s)	18.0
Intersection Capacity Utilization	77.2%	ICU Level of Service	D
Analysis Period (min)	15		
c Critical Lane Group			

HCM Signalized Intersection Capacity Analysis
9; NH 102 \& St. Charles Street/Londonderry Road

Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		4	\%		*		\%	性		${ }^{7}$	怆	
Traffic Volume (vph)	100	5	90	10	0	10	210	880	120	5	520	140
Future Volume (vph)	100	5	90	10	0	10	210	880	120	5	520	140
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0	6.0		6.0		6.0	6.0		6.0	6.0	
Lane Util. Factor		1.00	1.00		1.00		1.00	0.95		1.00	0.95	
Fit		1.00	0.85		0.93		1.00	0.98		1.00	0.97	
Fit Protected		0.95	1.00		0.98		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1778	1583		1729		1770	3476		1770	3427	
Flt Permitted		0.78	1.00		0.78		0.95	1.00		0.95	1.00	
Satd. Flow (perm)		1461	1583		1388		1770	3476		1770	3427	
Peak-hour factor, PHF	0.92	0.92	0.92	0.25	0.25	0.25	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	109	5	98	40	0	40	228	957	130	5	565	152
RTOR Reduction (vph)	0	0	57	0	70	0	0	10	0	0	24	0
Lane Group Flow (vph)	0	114	41	0	10	0	228	1077	0	5	693	0
Heavy Vehicles (\%)	2\%	2\%	2\%	0\%	0\%	0\%	2\%	2\%	2\%	2\%	2\%	2\%
Turn Type	Perm	NA	custom	Perm	NA		Prot	NA		Prot	NA	
Protected Phases		8			4		5	2		1	6	

Permitted Phases	8	6	4				
Actuated Green, G (s)	9.3	30.8	9.3	14.7	44.7	0.8	30.8
Effective Green, g (s)	9.3	30.8	9.3	14.7	44.7	0.8	30.8
Actuated g/C Ratio	0.13	0.42	0.13	0.20	0.61	0.01	0.42
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	186	669	177	357	2134	19	1449
v/s Ratio Prot				c0.13	c0.31	0.00	0.20
v/s Ratio Perm	c0.08	0.03	0.01				
v/c Ratio	0.61	0.06	0.06	0.64	0.50	0.26	0.48
Uniform Delay, d1	30.0	12.4	27.9	26.6	7.9	35.7	15.2
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	5.9	0.0	0.1	3.7	0.2	7.3	0.3
Delay (s)	35.9	12.5	28.0	30.3	8.0	43.0	15.4
Level of Service	D	B	C	C	A	D	B
Approach Delay (s)	25.1		28.0		11.9		15.6
Approach LOS	C		C		B		B

Intersection Summary			
HCM 2000 Control Delay	14.8	HCM 2000 Level of Service	B
HCM 2000 Volume to Capacity ratio	0.58		18.0
Actuated Cycle Length (s)	72.8	Sum of lost time (s)	B
Intersection Capacity Utilization	60.9%	ICU Level of Service	
Analysis Period (min)	15		
C Critical Lane Group			

HCM Signalized Intersection Capacity Analysis
10: NH 102 \& Fordway/Madden Hill Road

Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		\uparrow			\uparrow			t			\uparrow	
Traffic Volume (vph)	20	110	5	270	0	70	0	710	130	15	345	0
Future Volume (vph)	20	110	5	270	0	70	0	710	130	15	345	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0			6.0			6.0			6.0	
Lane Util. Factor		1.00			1.00			1.00			1.00	
Fit		1.00			0.97			0.98			1.00	
Fit Protected		0.99			0.96			1.00			1.00	
Satd. Flow (prot)		1840			1725			1723			1806	
Flt Permitted		0.92			0.58			1.00			0.70	
Satd. Flow (perm)		1706			1046			1723			1268	
Peak-hour factor, PHF	0.60	0.60	0.60	0.96	0.96	0.96	0.89	0.89	0.89	0.86	0.86	0.86
Adj. Flow (vph)	33	183	8	281	0	73	0	798	146	17	401	0
RTOR Reduction (vph)	0	1	0	0	25	0	0	7	0	0	0	0
Lane Group Flow (vph)	0	223	0	0	329	0	0	937	0	0	418	0
Heavy Vehicles (\%)	2\%	2\%	2\%	3\%	3\%	3\%	8\%	8\%	8\%	5\%	5\%	5\%
Turn Type	Perm	NA		Perm	NA			NA		Perm	NA	
Protected Phases		4			4			2			2	
Permitted Phases	4			4						2		
Actuated Green, G (s)		28.0			28.0			50.0			50.0	
Effective Green, g (s)		28.0			28.0			50.0			50.0	
Actuated g/C Ratio		0.31			0.31			0.56			0.56	
Clearance Time (s)		6.0			6.0			6.0			6.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		530			325			957			704	
v / s Ratio Prot								c0.54				
v/s Ratio Perm		0.13			c0.31						0.33	
v/c Ratio		0.42			1.01			0.98			0.59	
Uniform Delay, d1		24.6			31.0			19.5			13.3	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		0.5			53.2			23.8			1.4	
Delay (s)		25.1			84.2			43.2			14.6	
Level of Service		C			F			D			B	
Approach Delay (s)		25.1			84.2			43.2			14.6	
Approach LOS		C			F			D			B	

Intersection Summary			
HCM 2000 Control Delay	42.5	HCM 2000 Level of Service	D
HCM 2000 Volume to Capacity ratio	0.99		12.0
Actuated Cycle Length (s)	90.0	Sum of lost time (s)	E
Intersection Capacity Utilization	84.5%	ICU Level of Service	
Analysis Period (min)	15		
C Critical Lane Group			

HCM Signalized Intersection Capacity Analysis

7: Birch St/Crystal Ave \& NH 102

	4	\rightarrow		\checkmark	-	4	4	\uparrow	p	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	F		${ }^{1}$	\dagger		${ }^{7}$	†		${ }^{7}$	\uparrow	7
Traffic Volume (vph)	20	520	40	60	360	195	170	180	20	80	260	20
Future Volume (vph)	20	520	40	60	360	195	170	180	20	80	260	20
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	6.0
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Fit	1.00	0.99		1.00	0.95		1.00	0.98		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1656	1724		1703	1698		1719	1782		1703	1792	1524
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	1656	1724		1703	1698		1719	1782		1703	1792	1524
Peak-hour factor, PHF	0.96	0.96	0.96	0.94	0.94	0.94	0.85	0.85	0.85	0.91	0.91	0.91
Adj. Flow (vph)	21	542	42	64	383	207	200	212	24	88	286	22
RTOR Reduction (vph)	0	2	0	0	15	0	0	4	0	0	0	17
Lane Group Flow (vph)	21	582	0	64	575	0	200	232	0	88	286	5
Heavy Vehicles (\%)	9\%	9\%	9\%	6\%	6\%	6\%	5\%	5\%	5\%	6\%	6\%	6\%
Parking (\#/hr)			0									
Turn Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	pm+ov
Protected Phases	5	2		1	6		3	8		7	4	5
Permitted Phases												4
Actuated Green, G (s)	2.2	42.8		4.1	44.7		17.6	29.1		9.2	20.7	22.9
Effective Green, $\mathrm{g}(\mathrm{s})$	2.2	42.8		4.1	44.7		17.6	29.1		9.2	20.7	22.9
Actuated g/C Ratio	0.02	0.39		0.04	0.41		0.16	0.27		0.08	0.19	0.21
Clearance Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	33	675		63	695		277	474		143	339	403
v/s Ratio Prot	0.01	0.34		c0.04	c0.34		c0.12	0.13		0.05	c0.16	0.00
v / s Ratio Perm												0.00
v/c Ratio	0.64	0.86		1.02	0.83		0.72	0.49		0.62	0.84	0.01
Uniform Delay, d1	53.1	30.5		52.6	28.8		43.5	33.8		48.3	42.7	34.2
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	33.9	11.0		117.9	8.0		8.9	0.8		7.6	17.1	0.0
Delay (s)	87.0	41.4		170.5	36.8		52.4	34.6		55.9	59.8	34.2
Level of Service	F	D		F	D		D	C		E	E	C
Approach Delay (s)		43.0			49.9			42.8			57.5	
Approach LOS		D			D			D			E	

Intersection Summary			
HCM 2000 Control Delay	47.9	HCM 2000 Level of Service	D
HCM 2000 Volume to Capacity ratio	0.84		24.0
Actuated Cycle Length (s)	109.2	Sum of lost time (s)	D
Intersection Capacity Utilization	77.3%	ICU Level of Service	
Analysis Period (min)	15		
c Critical Lane Group			

8: N. High St \& Ash St Ext Lanes. Volumes. Timings

	4		4	4	\ddagger	Δ
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	7	${ }^{*}$		\uparrow	ち	
Traffic Volume (vph)	560	10	5	555	270	220
Future Volume (vph)	560	10	5	555	270	220
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util Factor	1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.850			0.939	
Flt Protected	0.950					
Satd. Flow (prot)	1719	1538	0	1827	1749	0
Flt Permitted	0.950					
Satd. Flow (perm)	1719	1538	0	1827	1749	0
Link Speed (mph)	30			30	30	
Link Distance (ft)	322			309	450	
Travel Time (s)	7.3			7.0	10.2	
Peak Hour Factor	0.89	0.89	0.91	0.91	0.93	0.93
Heavy Vehicles (\%)	5\%	5\%	4\%	4\%	2\%	2\%
Adj. Flow (vph)	629	11	5	610	290	237
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	629	11	0	615	527	0
Sign Control	Stop			Stop	Stop	
Intersection Summary						
Area Type: Other						
Control Type: Unsignalized						
Intersection Capacity Utilization 70.9\% ICU Level of Service C						
Analysis Period (min) 15						

8: N. High St \& Ash St Ext

Intersection						
Intersection Delay s/veh	148.5					
Intersection LOS	F					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	7	7		\uparrow	\dagger	
Traffic Vol, veh/h	560	10	5	555	270	220
Future Vol, veh/h	560	10	5	555	270	220
Peak Hour Factor	0.89	0.89	0.91	0.91	0.93	0.93
Heavy Vehicles, \%	5	5	4	4	2	2
Mvut Flow	629	11	5	610	290	237
Number of Lanes	1	1	0	1	1	0
Approach	EB		NB		SB	
Opposing Approach			SB		NB	
Opposing Lanes	0		1		1	
Conflicting Approach Left	SB		EB			
Conflicting Lanes Left	1		2		0	
Conflicting Approach Right	NB				EB	
Conflicting Lanes Right	1		0		2	
HCM Control Delay	225		138.3		67.4	
HCM LOS	F		F		F	

Lane	NBLn1	EBLn1	EBLn2	SBLn1
Vol Left, \%	1%	100%	0%	0%
Vol Thru, \%	99%	0%	0%	55%
Vol Right, \%	0%	0%	100%	45%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	560	560	10	490
LT Vol	5	560	0	0
Through Vol	555	0	0	270
RT Vol	0	0	10	220
Lane Flow Rate	615	629	11	527
Geometry Grp	2	7	7	2
Degree of Util (X)	1.205	1.427	0.022	0.982
Departure Headway (Hd)	8.184	8.587	7.347	8.193
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	449	428	490	448
Service Time	6.184	6.287	5.047	6.193
HCM Lane VIC Ratio	1.37	1.47	0.022	1.176
HCM Control Delay	138.3	228.8	10.2	67.4
HCM Lane LOS	F	F	B	F
HCM 95th-tile Q	20.8	29.9	0.1	12.2

	V	\rightarrow	7	5	4	1-	-	-	4	4	k	$\stackrel{+}{ }$
Movement	EBL	EBT	EBR	WBL	WBT	WBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations	${ }^{*}$	蚛		7	㻢			\uparrow	7	${ }^{7}$	\uparrow	
Traffic Volume (vph)	70	2075	30	120	960	80	20	10	90	200	30	60
Future Volume (vph)	70	2075	30	120	960	80	20	10	90	200	30	60
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0			6.0	6.0	6.0	6.0	
Lane Util, Factor	1.00	0.91		1.00	0.95			1.00	1.00	1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00			1.00	1.00	1.00	1.00	
Flpb, ped/bikes	1.00	1.00		1.00	1.00			0.97	1.00	1.00	1.00	
Fit	1.00	1.00		1.00	0.99			1.00	0.85	1.00	0.90	
Fit Protected	0.95	1.00		0.95	1.00			0.97	1.00	0.95	1.00	
Satd. Flow (prot)	1687	4837		1719	3399			1746	1583	1805	1710	
Flt Permitted	0.95	1.00		0.95	1.00			0.77	1.00	0.73	1.00	
Satd. Flow (perm)	1687	4837		1719	3399			1390	1583	1381	1710	
Peak-hour factor, PHF	0.89	0.89	0.89	0.96	0.96	0.96	0.65	0.65	0.65	0.67	0.67	0.67
Adj. Flow (vph)	79	2331	34	125	1000	83	31	15	138	299	45	90
RTOR Reduction (vph)	0	1	0	0	4	0	0	0	31	0	60	0
Lane Group Flow (vph)	79	2364	0	125	1079	0	0	46	107	299	75	0
Confl. Peds. (\#/hr)							40					
Heavy Vehicles (\%)	7\%	7\%	7\%	5\%	5\%	5\%	2\%	2\%	2\%	0\%	0\%	0\%
Turn Type	Prot	NA		Prot	NA		Perm	NA	pm+ov	Perm	NA	
Protected Phases	1	6		5	2			4	1		8	
Permitted Phases							4		4	8		
Actuated Green, G (s)	11.0	61.5		14.0	64.5			26.5	37.5	26.5	26.5	
Effective Green, $\mathrm{g}(\mathrm{s})$	11.0	61.5		14.0	64.5			26.5	37.5	26.5	26.5	
Actuated g/C Ratio	0.09	0.51		0.12	0.54			0.22	0.31	0.22	0.22	
Clearance Time (s)	6.0	6.0		6.0	6.0			6.0	6.0	6.0	6.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	154	2478		200	1826			306	573	304	377	
v/s Ratio Prot	0.05	c0.49		c0.07	c0.32				0.02		0.04	
v/s Ratio Perm								0.03	0.05	c0.22		
v/c Ratio	0.51	0.95		0.62	0.59			0.15	0.19	0.98	0.20	
Uniform Delay, d1	51.9	27.9		50.5	18.8			37.7	30.1	46.5	38.1	
Progression Factor	1.22	0.80		1.00	1.00			1.00	1.00	1.00	1.00	
Incremental Delay, d2	1.2	4.9		6.0	1.4			0.2	0.2	46.8	0.3	
Delay (s)	64.4	27.3		56.5	20.2			37.9	30.3	93.3	38.4	
Level of Service	E	C		E	C			D	C	F	D	
Approach Delay (s)		28.5			24.0			32.2			76.2	
Approach LOS		C			C			C			E	
Intersection Summary												
HCM 2000 Control Delay			32.2	HCM 2000 Level of Service					C			
HCM 2000 Volume to Capacity ratio			0.92									
Actuated Cycle Length (s)			120.0	Sum of lost time (s)					18.0			
Intersection Capacity Utilization			80.2\%	ICU Level of Service					D			
Analysis Period (min)			15									

Analysis Period (min) 15
C Critical Lane Group

Movement	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	${ }^{7}$	$\uparrow \uparrow$	${ }^{7}$	\% ${ }^{\text {\% }}$	个 \uparrow		97	¢ \uparrow	\%	7	¢ \uparrow	$\overline{7}$
Traffic Volume (vph)	40	240	40	50	200	0	230	1380	340	45	820	235
Future Volume (vph)	40	240	40	50	200	0	230	1380	340	45	820	235
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0		6.0	6.0	4.0	6.0	6.0	6.0
Lane Util. Factor	1.00	0.95	1.00	0.97	0.95		0.97	0.95	1.00	1.00	0.95	1.00
Fit	1.00	1.00	0.85	1.00	1.00		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1736	3471	1553	3335	3438		3400	3505	1568	1752	3505	1568
Fit Pemitted	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1736	3471	1553	3335	3438		3400	3505	1568	1752	3505	1568
Peak-hour factor, PHF	0.84	0.84	0.84	0.79	0.79	0.79	0.86	0.86	0.86	0.99	0.99	0.99
Adj. Flow (vph)	48	286	48	63	253	0	267	1605	395	45	828	237
RTOR Reduction (vph)	,	,	35	0	,	0	,	0	0	0	0	62
Lane Group Flow (vph)	48	286	13	63	253	0	267	1605	395	45	828	175
Heavy Vehicles (\%)	4\%	4\%	4\%	5\%	5\%	5\%	3\%	3\%	3\%	3\%	3\%	3\%
Turn Type	Prot	NA	pm+ov	Prot	NA		Prot	NA	Free	Prot	NA	pt+ov
Protected Phases	1	6	7	5	2		,	8		7	4	45
Permitted Phases		6	6		2			8	Free		4	
Actuated Green, G (s)	9.0	24.0	32.6	5.0	20.0		15.0	57.5	119.1	8.6	51.1	62.1
Effective Green, $\mathrm{g}(\mathrm{s})$	9.0	24.0	32.6	5.0	20.0		150	57.5	119.1	8.6	51.1	62.1
Actuated g/C Ratio	0.08	0.20	0.27	0.04	0.17		0.13	0.48	1.00	0.07	0.43	0.52
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0		6.0	6.0		6.0	6.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	131	699	503	140	577		428	1692	1568	126	1503	817
v / s Ratio Prot	c0.03	c0.08	0.00	0.02	0.07		c0,08	c0.46		0.03	0.24	0.11
v/s Ratio Perm			0.01						c0. 25			
v/c Ratio	0.37	0.41	0.03	0.45	0.44		0.62	0.95	0.25	0.36	0.55	0.21
Uniform Delay, d1	52.3	41.4	31.6	55.7	44.5		49.4	29.4	0.0	52.6	25.4	15.4
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.39	0.72	0.45
Incremental Delay, d2	1.7	1.8	0.0	2.3	2.4		2.8	12.7	0.4	1.4	0.4	0.1
Delay (s)	54.1	43.2	31.7	58.0	46.9		52.2	42.1	0.4	74.8	18.7	7.0
Level of Service	D	D	C	E	D		D	D	A	E	B	A
Approach Delay (s)		43.1			49.1			36.0			18.5	
Approach LOS		D			D			D			B	

Intersection Summary

HCM 2000 Control Delay	32.9	HCM 2000 Level of Service	C
HCM 2000 Volume to Capacity ratio	0.79	Sum of lost time (s)	24.0
Actuated Cycle Length (s)	119.1	($)$	D
Intersection Capacity Utilization	74.8%	ICU Level of Service	
Analysis Period (min)	15		

Analysis Period (min) 15

C Critical Lane Group

	\ldots	厄	\not	-	5	\checkmark	
Movement	NWL	NWR	NET	NER	SWL	SWT	
Lane Configurations	\%	\#	$\uparrow \uparrow$	「	7	$\uparrow \uparrow$	
Traffic Volume (vph)	205	90	920	550	80	1010	
Future Volume (vph)	205	90	920	550	80	1010	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	6.0	6.0	6.0	4.0	6.0	6.0	
Lane Util. Factor	1.00	1.00	0.95	1.00	1.00	0.95	
Fit	1.00	0.85	1.00	0.85	1.00	1.00	
Fit Protected	0.95	1.00	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1770	1583	3505	1568	1770	3539	
FIt Permitted	0.95	1.00	1.00	1.00	0.15	1.00	
Satd. Flow (perm)	1770	1583	3505	1568	278	3539	
Peak-hour factor, PHF	0.83	0.83	0.86	0.86	0.81	0.81	
Adj. Flow (vph)	247	108	1070	640	99	1247	
RTOR Reduction (vph)	0	33	0	0	0	0	
Lane Group Flow (vph)	247	75	1070	640	99	1247	
Heavy Vehicles (\%)	2\%	2\%	3\%	3\%	2\%	2\%	
Turn Type	Prot	pm+ov	NA	Free	pm+pt	NA	
Protected Phases	1256	7	8		7	34	
Permitted Phases		1256		Free	34		
Actuated Green, G (s)	33.0	41.6	57.5	119.1	72.1	72.1	
Effective Green, $\mathrm{g}(\mathrm{s}$)	33.0	41.6	57.5	119.1	72.1	72.1	
Actuated g/C Ratio	0.28	0.35	0.48	1.00	0.61	0.61	
Clearance Time (s)		6.0	6.0		6.0		
Vehicle Extension (s)		3.0	3.0		3.0		
Lane Grp Cap (vph)	490	632	1692	1568	276	2142	
v / s Ratio Prot	c0.14	0.01	c0.31		0.03	c0.35	
v/s Ratio Perm		0.04		c0.41	0.19		
v/c Ratio	0.50	0.12	0.63	0.41	0.36	0.58	
Uniform Delay, d1	36.2	26.3	22.9	0.0	13.9	14.3	
Progression Factor	1.00	1.00	0.40	1.00	1.00	1.00	
Incremental Delay, d2	0.8	0.1	0.7	0.3	0.8	0.4	
Delay (s)	37.0	26.4	10.0	0.3	14.7	14.7	
Level of Service	D	C	B	A	B	B	
Approach Delay (s)	33.8		6.4			14.7	
Approach LOS	C		A			B	
Intersection Summary							
HCM 2000 Control Delay			12.5		HCM 2000	Level of Service	B
HCM 2000 Volume to Capacity ratio			0.65				
Actuated Cycle Length (s)			119.1		Sum of lost	time (s)	24.0
Intersection Capacity Utilization			56.2\%		CU Level of	Service	B
Analysis Period (min)			15				
c Critical Lane Group							

HCM Signalized Intersection Capacity Analysis

13: Applebees/Linlew Dr \& NH 28

	\rightarrow	\rightarrow	7	\square	\leftarrow	1	\%	\nearrow	ρ	¢	4	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%	$\uparrow{ }^{\text {¢ }}$		\%	中t			\uparrow	7		\uparrow	7
Traffic Volume (vph)	170	300	5	20	550	40	15	10	15	20	10	170
Future Volume (vph)	170	300	5	20	550	40	15	10	15	20	10	170
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0			6.0	6.0		6.0	6.0
Lane Utill. Factor	1.00	0.95		1.00	0.95			1.00	1.00		1.00	1.00
Frt	1.00	1.00		1.00	0.99			1.00	0.85		1.00	0.85
FIt Protected	0.95	1.00		0.95	1.00			0.97	1.00		0.97	1.00
Satd. Flow (prot)	1687	3366		1770	3504			1845	1615		1821	1599
Flt Permitted	0.95	1.00		0.95	1.00			0.80	1.00		0.77	1.00
Satd. Flow (perm)	1687	3366		1770	3504			1514	1615		1446	1599
Peak-hour factor, PHF	0.83	0.83	0.83	0.92	0.92	0.92	0.50	0.50	0.50	0.90	0.90	0.90
Adj. Flow (vph)	205	361		22	598	43	30	20	30	22	11	189
RTOR Reduction (vph)	0	1	0	0	5	0	0	0	27	,	0	168
Lane Group Flow (vph)	205	366	,	22	636	0	0	50	3	0	33	21
Heavy Vehicles (\%)	7\%	7\%	7\%	2\%	2\%	2\%	0\%	0\%	0\%	1\%	1\%	1\%
Turn Type	Prot	NA		Prot	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases					6		8		8	4		4
Actuated Green, G (s)	8.1	40.5		1.8	34.2			7.6	7.6		7.6	7.6
Effective Green, $\mathrm{g}(\mathrm{s})$	8.1	40.5		1.8	34.2			7.6	7.6		7.6	7.6
Actuated g/C Ratio	0.12	0.60		0.03	0.50			0.11	0.11		0.11	0.11
Clearance Time (s)	6.0	6.0		6.0	6.0			6.0	6.0		6.0	6.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0	3.0		3.0	3.0
Lane Grp Cap (vph)	201	2007		46	1764			169	180		161	178
v / s Ratio Prot	c0.12	0.11		0.01	c0.18							
v/s Ratio Perm								c0.03	0.00		0.02	0.01
v/c Ratio	1.02	0.18		0.48	0.36			0.30	0.02		0.20	0.12
Uniform Delay, d1	29.9	6.2		32.6	10.2			27.7	26.8		27.4	27.1
Progression Factor	1.00	1.00		1.00	1.00			1.00	1.00		1.00	1.00
Incremental Delay, d2	68.7	0.2		7.6	0.1			1.0	0.0		0.6	0.3
Delay (s)	98.6	6.4		40.2	10.3			28.7	26.9		28.0	27.4
Level of Service	F	A		D	B			c	c		C	C
Approach Delay (s)		39.5			11.3			28.0			27.5	
Approach LOS		D			B			C			C	
Intersection Summary												
HCM 2000 Control Delay HCM 2000 Volume to Capacity ratio			25.0	HCM 2000 Level of Service					C			
			0.46	Sum of lost time (s)								
HCM 2000 Volume to Capacity ratio Actuated Cycle Length (s)			67.9						18.0			
Intersection Capacity Utilization			49.2\%	ICU Level of Service					A			
Analysis Period (min) C Critical Lane Group		15										

	\checkmark	\rightarrow		\checkmark	\leftarrow		4	\uparrow	p		\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％＊	性		\％	个t		\％	F		＊	\uparrow	「
Traffic Volume（vph）	30	330	5		430	140	30	10	10	320	5	150
Future Volume（vph）	30	330	5	5	430	140	30	10	10	320	5	150
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	6.0
Lane Util．Factor	0.97	0.95		1.00	0.95		1.00	1.00		0.95	0.95	1.00
Fit	1.00	1.00		1.00	0.96		1.00	0.93		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.95	1.00
Satd．Flow（prot）	3303	3398		1736	3343		1805	1758		1665	1672	1568
FIt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	0.95	1.00
Satd．Flow（perm）	3303	3398		1736	3343		1805	1758		1665	1672	1568
Peak－hour factor，PHF	0.83	0.83	0.83	0.97	0.97	0.97	0.67	0.67	0.67	0.90	0.90	0.90
Adj．Flow（vph）	36	398	6	5	443	144	45	15	15	356	6	167
RTOR Reduction（vph）	0	1	0	0	34	0	0	14	0	0	0	108
Lane Group Flow（vph）	36	403	0	5	553	0	45	16	0	182	180	59
Heavy Vehicles（\％）	6\％	6\％	6\％	4\％	4\％	4\％	0\％	0\％	0\％	3\％	3\％	3\％
Turn Type	Prot	NA		Prot	NA		Split	NA		Split	NA	pt＋ov
Protected Phases	5	2		1	6		3	3		4	4	45
Permitted Phases								3				
Actuated Green，G（s）	6.5	28.3		1.0	22.8		5.7	5.7		13.2	13.2	25.7
Effective Green， $\mathrm{g}(\mathrm{s})$	6.5	28.3		1.0	22.8		5.7	5.7		13.2	13.2	25.7
Actuated g／C Ratio	0.09	0.39		0.01	0.32		0.08	0.08		0.18	0.18	0.36
Clearance Time（s）	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Vehicle Extension（s）	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap（vph）	297	1331		24	1055		142	138		304	305	558
v / s Ratio Prot	0.01	c0．12		0.00	c0．17		c0．02	0.01		c0．11	0.11	c0．04
v／s Ratio Perm												
v／c Ratio	0.12	0.30		0.21	0.52		0.32	0.12		0.60	0.59	0.11
Uniform Delay．d1	30.2	15.1		35.2	20.3		31.4	30.9		27.1	27.0	15.6
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Incremental Delay，d2	0.2	0.1		4.3	0.5		1.3	0.4		3.2	3.0	0.1
Delay（s）	30.4	15.3		39.5	20.7		32.7	31.3		30.2	30.1	15.6
Level of Service	C	B		D	C		C	C		C	C	B
Approach Delay（s）		16.5			20.9			32.1			25.6	
Approach LOS		B			C			C			C	
Intersection Summary												
HCM 2000 Control Delay			21.7		HCM 2000	evel of S	ervice		C			
HCM 2000 Volume to Capacity ratio			0.48									
Actuated Cycle Length（s）			72.2		Sum of lost	time（s）			24.0			
Intersection Capacity Utilization			44．8\％		CU Level or	Service			A			
			15									
Analysis Period（min） c Critical Lane Group												

Intersection							
Int Delay, s/veh	1.2						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	1	4	F		r		
Traffic Vol, veh/h	10	400	360	60	30	30	
Future Vol, veh/h	10	400	360	60	30	30	
Conflicting Peds, \#/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	-	-	0	-	
Veh in Median Storage, \#	-	0	0	-	0	-	
Grade, \%	-	0	0	-	0	-	
Peak Hour Factor	84	84	89	89	83	83	
Heavy Vehicles, \%	7	7	4	4	6	6	
Mvmt Flow	12	476	404	67	36	36	

Minor Lane/Major Mvmt	EBL	EBT	WBT WBR SBLn1	
Capacity (veh/h)	1065	-	-	389
HCM Lane V/C Ratio	0.011	-	-	-0.186
HCM Control Delay (s)	8.4	-	-	-16.4
HCM Lane LOS	A	-	-	-
HCM 95th \%tile Q(veh)	0	-	-	-0

Zone 5
16: NH 102 W/NH 102 E \& Bypass 28 S/Bypass 28 N \& E Derry Rd
2040 Alt A (R) PM Peak

| | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

Intersection									
Intersection Delay, s/veh63.2									
Intersection LOS									
Approach	WB		NB		SB		NE		SW
Entry Lanes	1		1		1		1		1
Conflicting Circle Lanes	1		1		1		1		1
Adj Approach Flow, veh/h	615		321		620		845		242
Demand Flow Rate, veh/h	621		327		626		854		247
Vehicles Circulating, veh/h	698		1181		635		649		878
Vehicles Exiting, veh/h	810		322		490		612		441
Ped Vol Crossing Leg, \#/h	0		0		0		0		0
Ped Cap Adj	1.000		1.000		1.000		1.000		1.000
Approach Delay, s/veh	41.9		39.0		32.9		124.2		13.7
Approach LOS	E		E		D		F		B
Lane Le		Left		Left		Left		Left	
Designated Moves		LTR		LTR		LTR		LTR	
Assumed Moves		LTR		LTR		LTR		LTR	
RT Channelized									
Lane Util 1.00		1.000		1.000		1.000		1.000	
Follow-Up Headway, s 2.60		2.609		2.609		2.609		2.609	
Critical Headway, s 4.97		4.976		4.976		4.976		4.976	
Entry Flow, veh/h 62		327		626		854		247	
Cap Entry Lane, veh/h 67		414		722		712		564	
Entry HV Adj Factor 0.99		0.981		0.991		0.989		0.981	
Flow Entry, veh/h 61		321		620		845		242	
Cap Entry, veh/h 67		406		715		704		553	
VIC Ratio 0.91		0.790		0.867		1.200		0.438	
Control Delay, s/veh 41.		39.0		32.9		124.2		13.7	
LOS		E		D		F		B	
95th \%tile Queue, veh 1		7		10		29		2	

Zone 5

2040 Alt A (R) PM Peak
17: NH Byp 28 NB/NH Byp 28 SB \& Pinkerton St/Nesmith Rd Lanes, Volumes, Timings

	\Rightarrow	\rightarrow	∇	\checkmark	\leftarrow	${ }^{4}$	4	\uparrow	\rangle	\checkmark	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	$\overline{ }$		4			4			4	
Traffic Volume (vph)	10	50	580	10	30	20	215	145	10	25	110	10
Future Volume (vph)	10	50	580	10	30	20	215	145	10	25	110	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Utill. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit			0.850		0.956			0.996			0.991	
FIt Protected		0.992			0.992			0.972			0.992	
Satd. Flow (prot)	0	1848	1583	0	1802	0	0	1821	0	0	1849	0
FIt Permitted		0.992			0.992			0.972			0.992	
Satd. Flow (perm)	0	1848	1583	0	1802	0	0	1821	0	0	1849	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		113			453			475			436	
Travel Time (s)		2.6			10.3			10.8			9.9	
Peak Hour Factor	0.88	0.88	0.88	0.82	0.82	0.82	0.93	0.93	0.93	0.91	0.91	0.91
Heavy Vehicles (\%)	2\%	2\%	2\%	0\%	0\%	0\%	1\%	1\%	1\%	1\%	1\%	1\%
Adj. Flow (vph)	11	57	659	12	37	24	231	156	11	27	121	11
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	68	659	0	73	0	0	398	0	0	159	0
Sign Control		Stop			Stop			Free			Free	
Intersection Summary												
Area Type:												
Control Type: Unsignalized												
			ICU Level of Service B									
Analysis Period (min) 15												

Approach	EB	WB	NB	SB
HCM Control Delay, S	18.7	55.3	4.6	1.3
HCM LOS	C	F		

Minor Lane/Major Mvmt	NBL	NBT	NBR EBLn1	EBLn2WBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1459	-	-246	923	141	1417	-	-
HCM Lane V/C Ratio	0.158	-	-0.277	0.714	0.519	0.019	-	-
HCM Control Delay (s)	7.9	0	-	25.2	18	55.3	7.6	0

Movement	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%	F		\%	\uparrow	7	\%	个t		\%	$\uparrow{ }_{\text {个 }}$	
Traffic Volume (vph)	30	70	30	40	40	140	190	1010	60	20	340	70
Future Volume (vph)	30	70	30	40	40	140	190	1010	60	20	340	70
\|deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0		6.0	6.0	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	-1.00	0.95		1.00	0.95	
Fit	1.00	0.96		1.00	1.00	0.85	1.00	0.99		1.00	0.97	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	1780		1787	1881	1599	1805	3580		1805	3518	
Fit Permitted	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1770	1780		1787	1881	1599	1805	3580		1805	3518	
Peak-hour factor, PHF	0.99	0.99	0.99	0.95	0.95	0.95	0.89	0.89	0.89	0.93	0.93	0.93
Adj. Flow (vph)	30	71	30	42	42	147	213	1135	67	22	366	75
RTOR Reduction (vph)	0	25	0	,	,	91	0	5	0	0	27	0
Lane Group Flow (vph)	30	76	0	42	42	56	213	1197	0	22	414	0
Heary Vehicles (\%)	2\%	2\%	2\%	1\%	1\%	1\%	0\%	0\%	0\%	0\%	0\%	0\%
Turn Type	Prot	NA		Prot	NA	pt+ov	Prot	NA		Prot	NA	
Protected Phases	1	6		5	2	23	3	-		7	4	

Actuated Green, G (s)	1.7	8.2	1.7	8.2	22.4	8.2	23.2	1.3	16.3
Effective Green, $\mathrm{g}(\mathrm{s})$	1.7	8.2	1.7	8.2	22.4	8.2	23.2	1.3	16.3
Actuated g/C Ratio	0.03	0.14	0.03	0.14	0.38	0.14	0.40	0.02	0.28
Clearance Time (s)	6.0	6.0	6.0	6.0		6.0	6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	51	249	52	264	613	253	1422	40	981
v/s Ratio Prot	0.02	c0.04	c0.02	0.02	0.04	c0. 12	c0.33	0.01	0.12
V / s Ratio Perm 0									
V/c Ratio	0.59	0.31	0.81	0.16	0.09	0.84	0.84	0.55	0.42
Uniform Delay, d1	28.0	22.5	28.2	22.1	11.5	24.5	15.9	28.3	17.2
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	16.1	0.7	58.8	1.3	0.1	21.6	4.7	15.3	0.3
Delay (s)	44.1	23.2	87.0	23.4	11.6	46.1	20.6	43.6	17.5
Level of Service	D	C	F	C	B	D	C	D	B
Approach Delay (s)		28.0		27.4			24.5		18.7
Approach LOS		C		C			C		B

ntersection Summary HCM 2000 Control Delay 23.8 HCM 2000 Level of Service HCM 2000 Volume to Capacity ratio 0.80 Actuated Cycle Length (s) 58.4 Sum of lost time (s) Intersection Capacity Utilization 60.4% ICU Level of Service			
Analysis Period (min)	15		24.0
C Critical Lane Group			B

| | | | | L | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| | | | | | |

Intersection Summary			
HCM 2000 Control Delay	19.6	HCM 2000 Level of Service	B
HCM 2000 Volume to Capacity ratio	0.76		22.0
Actuated Cycle Length (s)	84.9	Sum of lost time (s)	B
Intersection Capacity Utilization	57.9%	ICU Level of Service	
Analysis Period (min)	15		
C Critical Lane Group			

	\dagger	\rightarrow	7	6	\leftarrow	4	4	\checkmark	4	\uparrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	SBL	SBR	NWL	NWR
Lane Configurations		$\uparrow \uparrow$			$\uparrow \uparrow$	F^{\prime}			Y	7
Traffic Volume (vph)	0	1545	0	0	875	1240	0	0	0	710
Future Volume (vph)	0	1545	0	0	875	1240	0	0	0	710
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0			6.0	6.0			6.0	6.0
Lane Util. Factor		0.95			0.95	0.88			1.00	0.95
Fit		1.00			1.00	0.85			0.85	0.85
Flt Protected		1.00			1.00	1.00			1.00	1.00
Satd. Flow (prot)		3539			3539	2787			1583	1504
FIt Permitted		1.00			1.00	1.00			1.00	1.00
Satd. Flow (perm)		3539			3539	2787			1583	1504
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	0	1644	0	0	931	1319	0	0	0	755
RTOR Reduction (vph)	0	0	0	0	0	34	0	0	0	0
Lane Group Flow (vph)	0	1644	0	0	931	1285	0	0	378	377
Turn Type		NA			NA	Perm			Prot	Prot
Protected Phases		2			2				4	4
Permitted Phases						2				
Actuated Green, G (s)		43.0			43.0	43.0			25.0	25.0
Effective Green, $\mathrm{g}(\mathrm{s}$)		43.0			43.0	43.0			25.0	25.0
Actuated g/C Ratio		0.54			0.54	0.54			0.31	0.31
Clearance Time (s)		6.0			6.0	6.0			6.0	6.0
Vehicle Extension (s)		3.0			3.0	3.0			3.0	3.0
Lane Grp Cap (vph)		1902			1902	1498			494	470
v/s Ratio Prot		c0.46			0.26				0.24	c0.25
v / s Ratio Perm						0.46				
v/c Ratio		0.86			0.49	0.86			0.77	0.80
Uniform Delay, d1		16.0			11.6	15.9			24.8	25.2
Progression Factor		0.07			1.00	1.00			1.00	1.00
Incremental Delay, d2		2.3			0.9	6.6			10.8	13.5
Delay (s)		3.5			12.5	22.4			35.6	38.7
Level of Service		A			B	c			D	D
Approach Delay (s)		3.5			18.3		0.0		37.2	
Approach LOS		A			B		A		D	
Intersection Summary										
HCM 2000 Control Delay			16.1		HCM 2000	Level of S	ervice		B	
HCM 2000 Volume to Capacity ratio			0.84							
Actuated Cycle Length (s)			80.0		Sum of lost	time (s)			12.0	
Intersection Capacity Utilization			117.6\%		CU Level	f Service			H	
Analysis Period (min)			15							
c Critical Lane Group										

26: NH 102 \& North Shore Road

	7	7	4	\uparrow	\downarrow	\checkmark
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M		\%	\uparrow	F	
Traffic Volume (vph)	10	10	40	720	470	10
Future Volume (vph)	10	10	40	720	470	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (t)	0	0	100			0
Storage Lanes	1	0	1			0
Taper Length (t)	25		25			
Lane Utill. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Fit	0.939				0.996	
Flt Protected	0.973		0.950			
Satd. Flow (prot)	1736	0	1787	1900	1874	0
Flt Permitted	0.973		0.950			
Satd. Flow (perm)	1736	0	1787	1900	1874	0
Link Speed (mph)	30			30	30	
Link Distance (t)	332			288	365	
Travel Time (s)	7.5			6.5	8.3	
Peak Hour Factor	0.64	0.77	0.71	0.90	0.75	0.55
Heavy Vehicles (\%)	0\%	0\%	1\%	0\%	1\%	0\%
Adj. Flow (vph)	16	13	56	800	627	18
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	29	0	56	800	645	0
Sign Control	Stop			Free	Free	

Intersection Summary Other
Area Type:Control Type: Unsignalized Intersection Capacity Utilization 47.9\% Analysis Period (min) 15\quad ICU Level of Service A

Intersection							
Int Delay, s/veh	0.9						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations			1	\uparrow	F		
Traffic Vol, veh/h	10	10	40	720	470	10	
Future Vol, veh/h	10	10	40	720	470	10	
Conflicting Peds, \#/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	100	-	-	-	
Veh in Median Storage,	0	-	-	0	0	-	
Grade, \%	0	-	-	0	0	-	
Peak Hour Factor	64	77	71	90	75	55	
Heavy Vehicles, \%	0	0	1	0	1	0	
Mvmt Flow	16	13	56	800	627	18	

APPENDIX O-3: 2040 ALTERNATIVE A INTERSECTION CAPACITY ANALYSES - SYNCHRO PRINTOUTS - AM PEAK HOUR

Lane Group	EBL	EBT	WBT	WBR	SBL
Detector 3 Extend (s)	0.0	0.0	0.0	0.0	
Turn Type	NA	NA	Prot	Prot	
Protected Phases	2	6	4	4	
Permitted Phases					
Detector Phase		6	4	4	
Switch Phase					
Minimum Initial (s)	14.0	8.0	5.0	5.0	
Minimum Split (s)	40.0	21.0	27.0	27.0	
Total Split (s)	43.0	35.0	35.0		
Total Split (\%)	34.0	34.3%	46.7%	46.7%	
Maximum Green (s)	2.0	2.0	29.0	29.0	
Yellow Time (s)	4.0	4.0	2.0	2.0	
All-Red Time (s)	0.0	0.0	4.0	4.0	
Lost Time Adjust (s)	6.0	6.0	0.0	0.0	
Total Lost Time (s)			6.0	6.0	

Lead/Lag
Lead-Lag Optimize?

Vehicle Extension (s)	3.0	3.0	3.0	3.0
Recall Mode	C-Min	C-Min	None	None
Walk Time (s)		7.0	7.0	7.0
Flash Dont Walk (s)		8.0	14.0	14.0
Pedestrian Calls (\#hr)		0	0	0
Act Effct Green (s)	34.0	34.0	29.0	29.0
Actuated g/C Ratio	0.45	0.45	0.39	0.39
V/c Ratio	0.92	0.61	0.56	0.92
Control Delay	25.0	22.2	21.7	37.9
Queue Delay	0.0	0.0	0.0	0.0
Total Delay	25.0	22.2	21.7	37.9
LOS	C	C	C	D
Approach Delay	25.0	22.2	32.9	
Approach LOS	C	C	C	
Queue Length 50th (t)	354	397	150	234
Queue Length 95th (tt)	m373	m385	232	\#361
Internal Link Dist (t)	632	308	132	
Turn Bay Length (t)				
Base Capacity (vph)	1573	1544	746	1037
Starvation Cap Reductn	0	0	0	0
Spillback Cap Reductn	0	0	0	0
Storage Cap Reductn	0	0	0	0
Reduced v/c Ratio	0.92	0.61	0.56	0.92

Intersection Summary

Area Type: Other

Cycle Length: 75
Actuated Cycle Length: 75
Offset: $0(0 \%)$, Referenced to phase 2:EBT and $6: W B T$, Start of Yellow, Master Intersection
Natural Cycle: 80
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.92

Intersection Signal Delay: $27.2 \quad$ Intersection LOS: C
Intersection Capacity Utilization 69.8\% ICU Level of Service C
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 7: NH 102 \& Exit 4 SB Off

	\cdots	1	1	\cdots	\geqslant	3	\bigcirc	A	1	\downarrow	\cdots
Lane Group	NBL2	NBL	NBR	SEL	SER	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	${ }^{7 \%}$		あ			$7{ }^{7}$				44	T
Traffic Volume (vph)	490	0	235	0	0	1470	245	0	0	885	175
Future Volume (vph)	490	0	235	0	0	1470	245	0	0	885	175
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)		0	0	0	0	550		0	0		0
Storage Lanes		2	2	0	0	2		0	0		1
Taper Length (ft)		25		25		25			25		
Lane Util. Factor	0.97	1.00	0.88	1.00	1.00	0.97	0.95	1.00	1.00	0.95	1.00
Frt			0.850								0.850
Flt Protected	0.950					0.950					
Satd. Flow (prot)	3242	0	2632	0	0	3335	3438	0	0	3505	1568
Flt Permitted	0.950					0.950					
Satd. Flow (perm)	3242	0	2632	0	0	3335	3438	0	0	3505	1568
Right Turn on Red			No					Yes			Yes
Satd. Flow (RTOR)											109
Link Speed (mph)		25		30			30			30	
Link Distance (ft)		856		390			760			857	
Travel Time (s)		23.3		8.9			17.3			19.5	
Peak Hour Factor	0.88	0.88	0.88	0.92	0.92	0.94	0.94	0.94	0.92	0.92	0.92
Heavy Vehicles (\%)	8\%	8\%	8\%	2\%	2\%	5\%	5\%	5\%	3\%	3\%	3\%
Adj. Flow (vph)	557	0	267	0	0	1564	261	0	0	962	190
Shared Lane Traffic (\%)											
Lane Group Flow (vph)	557	0	267	0	0	1564	261	0	0	962	190
Enter Blocked Intersection	No										
Lane Alignment	Left	Left	Right	Left	Right	Left	Left	Right	Left	Right	Right
Median Width(ft)		24		0			24			24	
Link Offset(ft)		12		0			0			0	
Crosswalk Width(ft)		16		16			16			16	
Two way Left Turn Lane											
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	4.00	1.00	1.00	1.00
Turning Speed (mph)	15	15	25	15	9	15		9	15		25
Number of Detectors	3		3			3	3			3	0
Detector Template											
Leading Detector (ft)	256		256			256	256			256	0
Trailing Detector (ft)	-5		-5			-5	-5			-5	0
Detector 1 Position(ft)	-5		-5			-5	-5			-5	-5
Detector 1 Size(ft)	55		55			55	55			55	50
Detector 1 Type	Cl+Ex		Cl+Ex			CI+Ex	$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$
Detector 1 Channel											
Detector 1 Extend (s)	0.0		0.0			0.0	0.0			0.0	0.0
Detector 1 Queue (s)	0.0		0.0			0.0	0.0			0.0	0.0
Detector 1 Delay (s)	0.0		0.0			0.0	0.0			0.0	0.0
Detector 2 Position(ft)	125		125			125	125			125	
Detector 2 Size(ft)	6		6			6	6			6	
Detector 2 Type	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$	
Detector 2 Channel											
Detector 2 Extend (s)	0.0		0.0			0.0	0.0			0.0	
Detector 3 Position(ft)	250		250			250	250			250	
Detector 3 Size(ft)	6		6			6	6			6	

	\cdots	\cdots	1		\rangle	y	7	\square	7	\downarrow	\cdots
Lane Group	NBL2	NBL	NBR	SEL	SER	NEL	NET	NER	SWL	SWT	SWR
Detector 3 Type	CI+Ex		Cl+Ex			Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$	
Detector 3 Channel											
Detector 3 Extend (s)	0.0		0.0			0.0	0.0			0.0	
Turn Type	Prot		Prot			Prot	NA			NA	Free
Protected Phases	8		8			5	2			6	
Permitted Phases											Free
Detector Phase	8		2			5	2			6	
Switch Phase											
Minimum Initial (s)	10.0		10.0			5.0	8.0			8.0	
Minimum Split (s)	16.0		16.0			11.0	42.0			31.0	
Total Split (s)	31.0		31.0			73.0	119.0			46.0	
Total Split (\%)	20.7\%		20.7\%			48.7\%	79.3\%			30.7\%	
Maximum Green (s)	25.0		25.0			67.0	113.0			40.0	
Yellow Time (s)	2.0		2.0			2.0	2.0			2.0	
All-Red Time (s)	4.0		4.0			4.0	4.0			4.0	
Lost Time Adjust (s)	0.0		0.0			0.0	0.0			0.0	
Total Lost Time (s)	6.0		6.0			6.0	6.0			6.0	
Lead/Lag						Lead				Lag	
Lead-Lag Optimize?											
Vehicle Extension (s)	3.0		3.0			3.0	3.0			3.0	
Recall Mode	None		None			None	C-Min			C-Min	
Walk Time (s)							7.0			7.0	
Flash Dont Walk (s)							29.0			17.0	
Pedestrian Calls (\#/hr)							0			0	
Act Effct Green (s)	25.0		25.0			67.0	113.0			40.0	150.0
Actuated g/C Ratio	0.17		0.17			0.45	0.75			0.27	1.00
v / c Ratio	1.03		0.61			1.05	0.10			1.03	0.12
Control Delay	106.8		64.7			65.1	9.1			90.4	0.2
Queue Delay	0.0		0.0			0.0	0.0			0.0	0.0
Total Delay	106.8		64.7			65.1	9.1			90.4	0.2
LOS	F		E			E	A			F	A
Approach Delay		93.1					57.1			75.5	
Approach LOS		F					E			E	
Queue Length 50th (ft)	~300		139			~849	55			~ 527	0
Queue Length 95th (ft)	\#404		190			\#980	m63			\#665	0
Internal Link Dist (ft)		776		310			680			777	
Turn Bay Length (ft)						550					
Base Capacity (vph)	540		438			1489	2589			934	1568
Starvation Cap Reductn	0		0			0	0			0	0
Spillback Cap Reductn	0		0			0	0			0	0
Storage Cap Reductn	0		0			0	0			0	0
Reduced v/c Ratio	1.03		0.61			1.05	0.10			1.03	0.12
Intersection Summary											
Area Type: Other											
Cycle Length: 150											
Actuated Cycle Length: 150											
Offset: 67 (45\%), Referenced to phase 2:NET and 6:SWT, Start of Yellow											
Natural Cycle: 150											

Lanes, Volumes, Timings

8: NH 102 \& Exit 4 NB Off
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.05
Intersection Signal Delay: 70.5 Intersection LOS: E
Intersection Capacity Utilization 96.4\% ICU Level of Service F
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 8: NH 102 \& Exit 4 NB Off

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢ \uparrow	F	\%	4 \uparrow					97		F
Traffic Volume (vph)	0	660	455	420	790	0	0	0	0	180	0	445
Future Volume (vph)	0	660	455	420	790	0	0	0	0	180	0	445
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (tt)	0		350	0		0	0		0	0		
Storage Lanes	0		1	1		0	0		0	2		
Taper Length (t)	25			25			25			25		
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	0.97	1.00	1.00
Fit			0.850									0.850
Flt Protected				0.950						0.950		
Satd. Flow (prot)	0	3167	1417	1687	3374	0	0	0	0	3303	0	1524
Flt Permitted				0.950						0.950		
Satd. Flow (perm)	0	3167	1417	1687	3374	0	0	0	0	3303	0	1524
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			495									

Link Speed (mph)		30			30			30			35	
Link Distance (tt)		851			693			486			581	
Travel Time (s)		19.3			15.8			11.0			11.3	
Peak Hour Factor	0.92	0.92	0.92	0.73	0.73	0.73	0.92	0.92	0.92	0.74	0.74	0.74
Heavy Vehicles (\%)	14\%	14\%	14\%	7\%	7\%	7\%	2\%	2\%	2\%	6\%	6\%	6\%
Adj. Flow (vph)	0	717	495	575	1082	0	0	0	0	243	0	601
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	717	495	575	1082	0	0	0	0	243	0	601
Enter Blocked Intersection	No											
Lane Alignment	Left	Right	Right	Left	Left	Right	Left	Left	Right	RNA	Left	Right
Median Width(t)		36			36			24			24	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(f)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		

Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		25	15		9	15		9	15		9
Number of Detectors		3	2	3	3					3		2
Detector Template		Thru	Right	Left	Thru					Left		
Leading Detector (ft)		256	131	256	256					256		206
Trailing Detector (ft)		-5	-5	-5	-5					-5		-5
Detector 1 Position(tt)		-5	-5	-5	-5					-5		-5
Detector 1 Size(tt)		50	50	50	50					50		50
Detector 1 Type		Cl+Ex	Cl+Ex	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$					Cl+Ex		CItEx
Detector 1 Channel												
Detector 1 Extend (s)		0.0	0.0	0.0	0.0					0.0		0.0
Detector 1 Queue (s)		0.0	0.0	0.0	0.0					0.0		0.0
Detector 1 Delay (s)		0.0	0.0	0.0	0.0					0.0		0.0
Detector 2 Position(tt)		125	125	125	125					125		200
Detector 2 Size(tt)		6	6	6	6					,		6
Detector 2 Type		Cl+Ex	Cl+Ex	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$					Cl+Ex		Cl+Ex
Detector 2 Channel												
Detector 2 Extend (s)		0.0	0.0	0.0	0.0					0.0		0.0
Detector 3 Position(tt)		250		250	250					250		
Detector 3 Size(tt)		6		6	6					6		

3 2: Exit 5 SB On/Exit 5 SB Off \& NH 28

		\rightarrow		\checkmark			4	\dagger	p		$\frac{1}{7}$	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector 3 Type		$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$					$\mathrm{Cl}+\mathrm{Ex}$		
Detector 3 Channel												
Detector 3 Extend (s)		0.0		0.0	0.0					0.0		
Turn Type		NA	Free	Prot	NA					Prot		Prot
Protected Phases		2		1	6					4		4
Permitted Phases			Free									
Detector Phase		2		1	6					4		4
Switch Phase												
Minimum Initial (s)		9.0		4.0	9.0					4.0		4.0
Minimum Split (s)		21.0		10.0	21.0					10.0		10.0
Total Split (s)		37.0		48.0	85.0					45.0		45.0
Total Split (\%)		28.5\%		36.9\%	65.4\%					34.6\%		34.6\%
Maximum Green (s)		31.0		42.0	79.0					39.0		39.0
Yellow Time (s)		4.0		4.0	4.0					4.0		4.0
All-Red Time (s)		2.0		2.0	2.0					2.0		2.0
Lost Time Adjust (s)		0.0		0.0	0.0					0.0		0.0
Total Lost Time (s)		6.0		6.0	6.0					6.0		6.0
Lead/Lag		Lag		Lead								
Lead-Lag Optimize?												
Vehicle Extension (s)		5.0		3.0	5.0					3.0		3.0
Recall Mode		C-Min		None	C-Min					None		None
Walk Time (s)		7.0			7.0							
Flash Dont Walk (s)		8.0			8.0							
Pedestrian Calls (\#/hr)		0			0							
Act Effit Green (s)		31.0	130.0	42.0	79.0					39.0		39.0
Actuated g/C Ratio		0.24	1.00	0.32	0.61					0.30		0.30
v/c Ratio		0.95	0.35	1.06	0.53					0.25		1.14
Control Delay		71.4	0.7	65.8	1.8					35.2		117.1
Queue Delay		0.0	0.0	0.0	0.4					0.0		0.0
Total Delay		71.4	0.7	65.8	2.2					35.2		117.1
LOS		E	A	E	A					D		F
Approach Delay		42.5			24.3						93.5	
Approach LOS		D			C						F	
Queue Length 50th (ft)		315	0	418	17					79		~ 526
Queue Length 95th (ft)		\#438	0	m150	m14					93		\#528
Internal Link Dist (ft)		771			613			406			501	
Turn Bay Length (ft)			350									
Base Capacity (vph)		755	1417	545	2050					990		529
Starvation Cap Reductn		0	0	0	443					0		0
Spillback Cap Reductn		0	0	0	0					0		0
Storage Cap Reductn		0	0	0	0					0		0
Reduced v/c Ratio		0.95	0.35	1.06	0.67					0.25		1.14
Intersection Summary												
Area Type: Other												
Cycle Length: 130												
Actuated Cycle Length: 130												
Offset: 69 (53\%), Referenced to phase 2:EBT and 6:WBT, Start of Yellow												
Natural Cycle: 130												

Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.14
Intersection Signal Delay: $46.0 \quad$ Intersection LOS: D
Intersection Capacity Utilization $86.0 \% \quad$ ICU Level of Service E
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 2: Exit 5 SB On/Exit 5 SB Off \& NH 28

Lanes, Volumes, Timings
3: Exit 5 NB Off \& NH 28
01/23/2018

	4	\rightarrow		1		4	4	4	p		$\frac{1}{1}$	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }_{1}$	鞉			平4	7	\%		7			
Traffic Volume (vph)	505	335	0	0	740	630	470	0	180	0	0	
Future Volume (vph)	505	335	0	0	740	630	470	0	180	0	0	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit						0.850			0.850			
Flt Protected	0.950						0.950					
Satd. Flow (prot)	1641	3282	0	0	3438	1538	1656	0	1482	0	0	0
Flt Permitted	0.950						0.950					
Satd. Flow (perm)	1641	3282	0	0	3438	1538	1656	0	1482	0	0	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)						492			172			
Link Speed (mph)		30			30			35			30	
Link Distance (ft)		693			542			867			392	
Travel Time (s)		15.8			12.3			16.9			8.9	
Peak Hour Factor	0.87	0.87	0.87	0.90	0.90	0.90	0.78	0.78	0.78	0.92	0.92	0.92
Heavy Vehicles (\%)	10\%	10\%	10\%	5\%	5\%	5\%	9\%	9\%	9\%	2\%	2\%	2\%
Adj. Flow (vph)	580	385	0	0	822	700	603	0	231	0	0	0
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	580	385	0	0	822	700	603	0	231	0	0	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right	Left	Right	Right	Right	Left	Right	Left	Left	Right
Median Width(ft)		36			42			12			12	
Link Offset(ft)		0			0			0			36	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		25	15		9	15		9
Number of Detectors	3	3			3	2	3		0			
Detector Template	Left	Thru			Thru	Right	Left					
Leading Detector (ft)	256	256			256	131	256		0			
Trailing Detector (ft)	-5	-5			-5	-5	-5		0			
Detector 1 Position(ft)	-5	-5			-5	-5	-5		-5			
Detector 1 Size(ft)	50	50			50	50	50		50			
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex		$\mathrm{Cl}+\mathrm{Ex}$			
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0			0.0	0.0	0.0		0.0			
Detector 1 Queue (s)	0.0	0.0			0.0	0.0	0.0		0.0			
Detector 1 Delay (s)	0.0	0.0			0.0	0.0	0.0		0.0			
Detector 2 Position(ft)	125	125			125	125	125					
Detector 2 Size(ft)	6	6			6	6	6					
Detector 2 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$			Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$					
Detector 2 Channel												
Detector 2 Extend (s)	0.0	0.0			0.0	0.0	0.0					
Detector 3 Position(ft)	250	250			250		250					
Detector 3 Size(ft)	6	6			6		6					
Detector 3 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$			Cl+Ex		$\mathrm{Cl}+\mathrm{Ex}$					
Detector 3 Channel												
Detector 3 Extend (s)	0.0	0.0			0.0		0.0					

Lanes, Volumes, Timings
3: Exit 5 NB Off \& NH 28

	4	\rightarrow		7	-		4	4	1	\pm	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Prot	NA			NA	Free	Prot		Prot			
Protected Phases	5	2			6		8		8			
Permitted Phases		2			6	Free						
Detector Phase	5	2			6		8		8			
Switch Phase												
Minimum Initial (s)	4.0	16.0			16.0		4.0		4.0			
Minimum Split (s)	10.0	23.0			23.0		10.0		10.0			
Total Split (s)	47.0	82.0			35.0		48.0		48.0			
Total Split (\%)	36.2\%	63.1\%			26.9\%		36.9\%		36.9\%			
Maximum Green (s)	41.0	76.0			29.0		42.0		42.0			
Yellow Time (s)	4.0	4.0			4.0		4.0		4.0			
All-Red Time (s)	2.0	2.0			2.0		2.0		2.0			
Lost Time Adjust (s)	0.0	0.0			0.0		0.0		0.0			
Total Lost Time (s)	6.0	6.0			6.0		6.0		6.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?												
Vehicle Extension (s)	5.0	5.0			5.0		3.0		3.0			
Recall Mode	None	C-Min			C-Min		None		None			
Walk Time (s)		7.0			7.0							
Flash Dont Walk (s)		10.0			10.0							
Pedestrian Calls (\#/hr)		0			0							
Act Effct Green (s)	41.0	76.0			29.0	130.0	42.0		42.0			
Actuated g/C Ratio	0.32	0.58			0.22	1.00	0.32		0.32			
v/c Ratio	1.12	0.20			1.07	0.46	1.13		0.39			
Control Delay	76.7	0.3			101.5	1.0	119.5		11.5			
Queue Delay	0.0	0.0			0.0	0.0	0.0		0.0			
Total Delay	76.7	0.3			101.5	1.0	119.5		11.5			
LOS	E	A			F	A	F		B			
Approach Delay		46.2			55.3			89.6				
Approach LOS		D			E			F				
Queue Length 50th (ft)	~ 567	1			~ 404	0	~ 587		35			
Queue Length 95th (ft)	m\#607	m1			\#534	0	\#645		69			
Internal Link Dist (ft)		613			462			787			312	
Turn Bay Length (ft)												
Base Capacity (vph)	517	1918			766	1538	535		595			
Starvation Cap Reductn	0	0			0	0	0		0			
Spillback Cap Reductn	0	0			0	0	0		0			
Storage Cap Reductn	0	0			0	0	0		0			
Reduced v/c Ratio	1.12	0.20			1.07	0.46	1.13		0.39			

Intersection Summary
Area Type: Other
Cycle Length: 130
Actuated Cycle Length: 130
Offset: $0(0 \%)$, Referenced to phase 2:EBT and 6:WBT, Start of Yellow, Master Intersection
Natural Cycle: 150
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.13
Intersection Signal Delay: $61.2 \quad$ Intersection LOS: E

Intersection Capacity Utilization 86.0% ICU Level of Service E
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: $\quad 3$: Exit 5 NB Off \& NH 28

	\cdots	*)	\cdots	k	5	3	7	T	5	\cdots	k
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		\uparrow	7		\dagger		${ }^{*}$	中 ${ }^{2}$		\%	綰	
Traffic Volume (vph)	80	0	25	0	1	0	60	430	0	5	930	20
Future Volume (vph)	80	0	25	0	1	0	60	430	0	5	930	20
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		225	0		0	350		0	100		
Storage Lanes	0		1	0		0	1		0	1		
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Fit			0.850								0.997	
Flt Protected		0.950					0.950			0.950		
Satd. Flow (prot)	0	1770	1583	0	1900	0	1770	3539	0	1770	3529	0
Flt Permitted		0.755					0.950			0.950		
Satd. Flow (perm)	0	1406	1583	0	1900	0	1770	3539	0	1770	3529	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			182								3	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		593			447			750			330	
Travel Time (s)		13.5			10.2			17.0			7.5	
Peak Hour Factor	0.92	0.92	0.92	0.25	0.25	0.25	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	2\%	2\%	2\%	0\%	0\%	0\%	2\%	2\%	2\%	2\%	2\%	2\%
Adj. Flow (vph)	87	0	27	0	4	0	65	467	0	5	1011	22
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	87	27	0	4	0	65	467	0	5	1033	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		0			0			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	3	3	1	3	1		3	3		3	3	
Detector Template	Left	Thru	Right	Left			Left	Thru		Left	Thru	
Leading Detector (ft)	256	256	45	256	45		256	256		256	256	
Trailing Detector (ft)	-5	-5	-5	-5	-5		-5	-5		-5	-5	
Detector 1 Position(ft)	-5	-5	-5	-5	-5		-5	-5		-5	-5	
Detector 1 Size(ft)	50	50	50	50	50		50	50		50	50	
Detector 1 Type	CI+Ex	$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex	$\mathrm{Cl}+\mathrm{EX}$	$\mathrm{Cl}+\mathrm{Ex}$		Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)	125	125		125			125	125		125	125	
Detector 2 Size(ft)	6	6		6			6	6		6	6	
Detector 2 Type	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$			Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	
Detector 2 Channel												
Detector 2 Extend (s)	0.0	0.0		0.0			0.0	0.0		0.0	0.0	
Detector 3 Position(ft)	250	250		250			250	250		250	250	
Detector 3 Size(ft)	6	6		6			6	6		6	6	

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Detector 3 Type	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$		Cl+Ex			$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	
Detector 3 Channel												
Detector 3 Extend (s)	0.0	0.0		0.0			0.0	0.0		0.0	0.0	
Turn Type	Perm	NA	custom		NA		Prot	NA		Prot	NA	
Protected Phases		8			4		5	2		1	6	
Permitted Phases	8		6	4								
Detector Phase	8	8	6	4	4		5	2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	8.0	5.0	5.0		5.0	8.0		5.0	8.0	
Minimum Split (s)	24.0	24.0	24.0	24.0	24.0		24.0	24.0		11.0	24.0	
Total Split (s)	24.0	24.0	42.0	24.0	24.0		24.0	55.0		11.0	42.0	
Total Split (\%)	26.7\%	26.7\%	46.7\%	26.7\%	26.7\%		26.7\%	61.1\%		12.2\%	46.7\%	
Maximum Green (s)	18.0	18.0	36.0	18.0	18.0		18.0	49.0		5.0	36.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		6.0	6.0		6.0		6.0	6.0		6.0	6.0	
Lead/Lag			Lag				Lead	Lag		Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None	Min	None	None		None	Min		None	Min	
Walk Time (s)	7.0	7.0	7.0	7.0	7.0		7.0	7.0			7.0	
Flash Dont Walk (s)	11.0	11.0	11.0	11.0	11.0		11.0	11.0			11.0	
Pedestrian Calls (\#/hr)	0	0	0	0	0		0	0			0	
Act Effct Green (s)		10.0	38.9		9.8		8.3	47.8		5.4	38.9	
Actuated g/C Ratio		0.15	0.59		0.15		0.13	0.72		0.08	0.59	
v / c Ratio		0.41	0.03		0.01		0.29	0.18		0.03	0.50	
Control Delay		35.0	0.0		27.0		33.7	5.7		34.6	13.8	
Queue Delay		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Delay		35.0	0.0		27.0		33.7	5.7		34.6	13.8	
LOS		D	A		C		C	A		C	B	
Approach Delay		26.8			27.0			9.1			13.9	
Approach LOS		C			C			A			B	
Queue Length 50th (ft)		36	0		2		27	31		2	159	
Queue Length 95th (ft)		80	0		3		66	88		13	265	
Internal Link Dist (t)		513			367			670			250	
Turn Bay Length (ft)			225				350			100		
Base Capacity (vph)		409	999		554		516	2641		143	2059	
Starvation Cap Reductn		0	0		0		0	0		0	0	
Spillback Cap Reductn		0	0		0		0	0		0	0	
Storage Cap Reductn		0	0		0		0	0		0	0	
Reduced v/c Ratio		0.21	0.03		0.01		0.13	0.18		0.03	0.50	
Intersection Summary												
Area Type: Other												
Cycle Length: 90												
Actuated Cycle Length: 66.3												
Natural Cycle: 75												
Control Type: Actuated-U	rdinated											

Maximum v/c Ratio: 0.50
Intersection Signal Delay: 13.3 Intersection LOS: B
Intersection Capacity Utilization 61.8\% ICU Level of Service B
Analysis Period (min) 15
Splits and Phases: 9: NH 102 \& St. Charles StreetLondonderry Road

Lanes, Volumes, Timings
10: NH 102 \& Fordway/Madden Hill Road

	\cdots	+	3	\ldots	*	5	y	\nearrow	T	5	*	k
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		4			*			\uparrow			\uparrow	
Traffic Volume (vph)	10	70	10	370	0	50	0	370	110	15	495	0
Future Volume (vph)	10	70	10	370	0	50	0	370	110	15	495	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.985			0.984			0.969				
Flt Protected		0.994			0.958						0.999	
Satd. Flow (prot)	0	1824	0	0	1739	0	0	1705	0	0	1808	0
Flt Permitted		0.935			0.685						0.979	
Satd. Flow (perm)	0	1716	0	0	1243	0	0	1705	0	0	1772	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		9			36			22				
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		356			493			1124			603	
Travel Time (s)		8.1			11.2			25.5			13.7	
Peak Hour Factor	0.60	0.60	0.60	0.96	0.96	0.96	0.89	0.89	0.89	0.86	0.86	0.86
Heavy Vehicles (\%)	2\%	2\%	2\%	3\%	3\%	3\%	8\%	8\%	8\%	5\%	5\%	5\%
Adj. Flow (vph)	17	117	17	385	0	52	0	416	124	17	576	0
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	151	0	0	437	0	0	540	0	0	593	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		0			0			0			0	
Link Offset(ft)		-22			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	3	1		3	2			2		3	2	
Detector Template	Left			Left						Left		
Leading Detector (ft)	256	45		256	131			131		256	131	
Trailing Detector (ft)	-5	-5		-5	-5			-5		-5	-5	
Detector 1 Position(ft)	-5	-5		-5	-5			-5		-5	-5	
Detector 1 Size(ft)	50	50		50	50			50		50	50	
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0			0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0			0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0			0.0		0.0	0.0	
Detector 2 Position(ft)	125			125	125			125		125	125	
Detector 2 Size(ft)	6			6	6			6		6	6	
Detector 2 Type	$\mathrm{Cl}+\mathrm{Ex}$			Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$			Cl+Ex		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	
Detector 2 Channel 0												
Detector 2 Extend (s)	0.0			0.0	0.0			0.0		0.0	0.0	
Detector 3 Position(ft)	250			250						250		
Detector 3 Size(ft)	6			6						6		
Detector 3 Type	Cl+Ex			$\mathrm{Cl}+\mathrm{Ex}$						$\mathrm{Cl}+\mathrm{Ex}$		
Detector 3 Channel												
Detector 3 Extend (s)	0.0			0.0						0.0		

10: NH 102 \& Fordway/Madden Hill Road

Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 10: NH 102 \& Fordway/Madden Hill Road

7: Birch St/Crystal Ave \& NH 102

	\Rightarrow	\rightarrow		t		4	4	\uparrow	p		\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	F		\%	\dagger		\%	今		${ }^{7}$	\uparrow	「
Trafic Volume (vph)	20	280	80	20	430	265	170	180	20	90	240	30
Future Volume (vph)	20	280	80	20	430	265	170	180	20	90	240	30
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.967			0.943			0.985				0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1656	1686	0	1703	1690	0	1719	1782	0	1703	1792	1524
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1656	1686	0	1703	1690	0	1719	1782	0	1703	1792	1524
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		14			30			5				136
Link Speed (mph)		30			30			30			30	
Link Distance (tt)		505			530			361			411	
Travel Time (s)		11.5			12.0			8.2			9.3	
Peak Hour Factor	0.96	0.96	0.96	0.94	0.94	0.94	0.85	0.85	0.85	0.91	0.91	0.91
Heavy Vehicles (\%)	9\%	9\%	9\%	6\%	6\%	6\%	5\%	5\%	5\%	6\%	6\%	6\%
Parking (\#/hr)			0									
Adj. Flow (vph)	21	292	83	21	457	282	200	212	24	99	264	33
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	21	375	0	21	739	0	200	236	0	99	264	33
Turn Type	Prot	NA		Prot	NA		Prot	NA		Prot		pm+ov
Protected Phases	5	2		1	6		3	8		7	4	5
Permitted Phases												4
Detector Phase	5	2		1	6		3	8		7	4	5
Switch Phase												
Minimum Initial (s)	4.0	5.0		4.0	10.0		4.0	10.0		4.0	9.0	4.0
Minimum Split (s)	10.0	30.0		10.0	30.0		10.0	25.0		10.0	25.0	10.0
Total Split (s)	10.0	53.0		10.0	53.0		32.0	44.0		13.0	25.0	10.0
Total Split (\%)	8.3\%	44.2\%		8.3\%	44.2\%		26.7\%	36.7\%		10.8\%	20.8\%	8.3\%
Maximum Green (s)	4.0	47.0		4.0	47.0		26.0	38.0		7.0	19.0	4.0
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	6.0
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	Lead
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	Min		None	Min		Min	None		Min	None	None
Walk Time (s)		7.0			7.0			7.0			7.0	
Flash Dont Walk (s)		11.0			11.0			11.0			11.0	
Pedestrian Calls (\#hr)		10			10			0			10	
Act Effict Green (s)	4.0	51.4		4.0	47.4		18.0	29.5		7.1	18.6	28.7
Actuated g/C Ratio	0.04	0.47		0.04	0.43		0.16	0.27		0.06	0.17	0.26
v/c Ratio	0.35	0.47		0.34	0.99		0.71	0.49		0.91	0.87	0.07
Control Delay	70.7	23.8		69.8	62.7		58.2	36.9		117.8	74.1	0.3
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	70.7	23.8		69.8	62.7		58.2	36.9		117.8	74.1	0.3
LOS	E	C		E	E		E	D		F	E	A

	\dagger	\rightarrow	7	\checkmark	\leftarrow	4	4	4	p	\checkmark	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach Delay		26.2			62.9			46.7			78.9	
Approach LOS		C			E			D			E	
Queue Length 50th (ft)	15	158		15	~ 553		138	140		72	188	0
Queue Length 95th (ft)	\#45	315		44	\#868		204	202		\#194	\#367	0
Internal Link Dist (ft)		425			450			281			331	
Turn Bay Length (t)												
Base Capacity (vph)	60	796		62	746		410	625		109	312	498
Starvation Cap Reductn	0	0		0	0		0	0		0	0	0
Spillback Cap Reductn	0	0		0	0		0	0		0	0	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	0.35	0.47		0.34	0.99		0.49	0.38		0.91	0.85	0.07

Intersection Summary

Area Type: Other

Cycle Length: 120
Actuated Cycle Length: 109.8
Natural Cycle: 100
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.99
Intersection Signal Delay: $55.2 \quad$ Intersection LOS: E
Intersection Capacity Utilization 75.8\% ICU Level of Service D
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 7: Birch St/Crystal Ave \& NH 102

9: N. High St \& Connector Road

	\rightarrow		7		4	p
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	44	7	${ }^{7}$	44	\%	F
Traffic Volume (vph)	1090	270	180	1110	280	200
Future Volume (vph)	1090	270	180	1110	280	200
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)		0	250		0	400
Storage Lanes		1	1		2	1
Taper Length (ft)			25		25	
Lane Util. Factor	0.95	1.00	1.00	0.95	0.97	1.00
Fit		0.850				0.850
Flt Protected			0.950		0.950	
Satd. Flow (prot)	3539	1583	1770	3539	3433	1583
Flt Permitted			0.086		0.950	
Satd. Flow (perm)	3539	1583	160	3539	3433	1583
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		293				30
Link Speed (mph)	30			30	30	
Link Distance (ft)	511			427	520	
Travel Time (s)	11.6			9.7	11.8	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	1185	293	196	1207	304	217
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	1185	293	196	1207	304	217
Turn Type	NA	Perm	pm+pt	NA	Prot	pm+ov
Protected Phases	4		3	8	2	3
Permitted Phases		4	8			2
Detector Phase	4	4	3	8	2	3
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	29.5	29.5	9.5	29.5	29.5	9.5
Total Split (s)	49.0	49.0	20.3	69.3	30.7	20.3
Total Split (\%)	49.0\%	49.0\%	20.3\%	69.3\%	30.7\%	20.3\%
Maximum Green (s)	44.5	44.5	15.8	64.8	26.2	15.8
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5
Lead/Lag	Lag	Lag	Lead			Lead
Lead-Lag Optimize?	Yes	Yes	Yes			Yes
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	C-Max	None
Walk Time (s)	5.0	5.0		5.0	5.0	
Flash Dont Walk (s)	20.0	20.0		20.0	20.0	
Pedestrian Calls (\#/hr)	0	0		0	0	
Act Effct Green (s)	42.9	42.9	59.1	59.1	31.9	48.1
Actuated g/C Ratio	0.43	0.43	0.59	0.59	0.32	0.48
v/c Ratio	0.78	0.35	0.70	0.58	0.28	0.28
Control Delay	28.4	3.2	28.7	25.2	27.9	15.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	28.4	3.2	28.7	25.2	27.9	15.3

9: N. High St \& Connector Road

	\rightarrow	\checkmark	\downarrow		4	p
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
LOS	C	A	C	C	C	B
Approach Delay	23.4			25.7	22.6	
Approach LOS	C			C	C	
Queue Length 50th (ft)	315	0	5	388	76	72
Queue Length 95th (ft)	406	46	145	457	119	121
Internal Link Dist (ft)	431			347	440	
Turn Bay Length (ft)			250			400
Base Capacity (vph)	1600	876	349	2293	1095	840
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.74	0.33	0.56	0.53	0.28	0.26
Intersection Summary						
Area Type: Other						
Cycle Length: 100						
Actuated Cycle Length: 100						
Offset: 0 (0\%), Referenced to phase 2:NBL and 6:, Start of Yellow						
Natural Cycle: 75						
Control Type: Actuated-Coordinated						
Maximum v/c Ratio: 0.78						
Intersection Signal Delay: 24.3				Intersection LOS: C		
Intersection Capacity Utilization 59.3\%				ICU Level of Service		
Analysis Period (min) 15						

Splits and Phases: 9: N. High St \& Connector Road

	\rangle	\rightarrow	T	5	\longleftarrow	k	\longrightarrow	，	4	\checkmark	k	＋
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations	7	性家		${ }^{*}$	个\％			\uparrow	${ }^{7}$	${ }^{7}$	\uparrow	
Traffic Volume（vph）	60	1200	30	50	1100	10	5	5	40	150	20	40
Future Volume（vph）	60	1200	30	50	1100	10	5	5	40	150	20	40
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ft）	50		100	100		0	0		200	100		0
Storage Lanes	1		0	1		0	0		1	1		0
Taper Length（ft）	25			25			25			25		
Lane Util．Factor	1.00	0.91	0.91	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor								0.98				
Fit		0.996			0.999				0.850		0.900	
Flt Protected	0.950			0.950				0.976		0.950		
Satd．Flow（prot）	1687	4828	0	1719	3435	0	0	1818	1583	1805	1710	0
FIt Permitted	0.950			0.950				0.882		0.747		
Satd．Flow（perm）	1687	4828	0	1719	3435	0	0	1608	1583	1419	1710	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）		4			1				33		60	
Link Speed（mph）		30			30			30			30	
Link Distance（ft）		333			347			309			251	
Travel Time（s）		7.6			7.9			7.0			5.7	
Confl．Peds．（\＃／hr）							40					
Peak Hour Factor	0.89	0.89	0.89	0.96	0.96	0.96	0.65	0.65	0.65	0.67	0.67	0.67
Heavy Vehicles（\％）	7\％	7\％	7\％	5\％	5\％	5\％	2\％	2\％	2\％	0\％	0\％	0\％
Adj．Flow（vph）	67	1348	34	52	1146	10	8	8	62	224	30	60
Shared Lane Traffic（\％） 30												
Lane Group Flow（vph）	67	1382	0	52	1156	0	0	16	62	224	90	0
Turn Type	Prot	NA		Prot	NA		Perm	NA	pm＋ov	Perm	NA	
Protected Phases	1	6		5	2			4	1		8	
Permitted Phases							4		4	8		
Detector Phase	1	6		5	2		4	4	1	8	8	
Switch Phase												
Minimum Initial（s）	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	
Minimum Split（s）	31.0	31.0		31.0	31.0		31.0	31.0	31.0	32.5	32.5	
Total Split（s）	31.0	36.4		31.0	36.4		32.6	32.6	31.0	32.6	32.6	
Total Split（\％）	31．0\％	36．4\％		31．0\％	36．4\％		32．6\％	32．6\％	31．0\％	32．6\％	32．6\％	
Maximum Green（s）	25.0	30.4		25.0	30.4		26.6	26.6	25.0	26.6	26.6	
Yellow Time（s）	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
All－Red Time（s）	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust（s）	0.0	0.0		0.0	0.0			0.0	0.0	0.0	0.0	
Total Lost Time（s）	6.0	6.0		6.0	6.0			6.0	6.0	6.0	6.0	
Lead／Lag	Lead	Lag		Lead	Lag				Lead			
Lead－Lag Optimize？	Yes	Yes		Yes	Yes				Yes			
Vehicle Extension（s）	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	C－Max		None	C－Max		None	None	None	None	None	
Walk Time（s）	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	
Flash Dont Walk（s）	20.0	20.0		20.0	20.0		20.0	20.0	20.0	20.0	20.0	
Pedestrian Calls（\＃／hr）	0	0		0	0		0	0	0	0	0	
Act Effct Green（s）	9.3	55.4		8.5	54.5			20.5	35.8	20.5	20.5	
Actuated g／C Ratio	0.09	0.55		0.08	0.54			0.20	0.36	0.20	0.20	
v / c Ratio	0.43	0.52		0.36	0.62			0.05	0.11	0.77	0.23	

10: Franklin St/Franklin St Ext \& Folsom Road

	3	\rightarrow	7	5			\longrightarrow	\	4	4	K	$\stackrel{ }{ }$
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	SEL	SET	SER	NWL	NWT	NWR
Control Delay	64.2	8.4		49.3	19.9			29.3	10.3	54.8	14.0	
Queue Delay	0.0	0.0		0.0	0.0			0.0	0.0	0.0	0.0	
Total Delay	64.2	8.4		49.3	19.9			29.3	10.3	54.8	14.0	
LOS	E	A		D	B			C	B	D	B	
Approach Delay		11.0			21.2			14.2			43.1	
Approach LOS		B			C			B			D	
Queue Length 50th (ft)	40	205		32	268			8	12	135	16	
Queue Length 95th (ft)	m55	299		68	415			17	20	141	31	
Internal Link Dist (t)		253			267			229			171	
Turn Bay Length (tt)	50			100					200	100		
Base Capacity (vph)	421	2674		429	1874			427	831	377	498	
Starvation Cap Reductn	0	0		0	0			0	0	0	0	
Spillback Cap Reductn	0	0		0	0			0	0	0	0	
Storage Cap Reductn	0	0		0	0			0	0	0	0	
Reduced v/c Ratio	0.16	0.52		0.12	0.62			0.04	0.07	0.59	0.18	
Intersection Summary												
Area Type: Other												
Cycle Length: 100												
Actuated Cycle Length: 100												
Offset: $0(0 \%)$, Referenced to phase 2:WBT and 6:EBT, Start of YellowNatural Cycle: 95												
Control Type: Actuated-Coordinated												
Maximum v/c Ratio: 0.77												
Intersection Signal Delay: 18.4				Intersection LOS: B								
Intersection Capacity Utilization 64.9\%				ICU Level of Service C								
Analysis Period (min) 15												
m Volume for 95 th percentile queue is metered by upstream signal.												

Splits and Phases: 10: Franklin St/Franklin St Ext \& Folsom Road

	4	\uparrow	「	\cdots	\downarrow	\downarrow	$\stackrel{4}{ }$	\nearrow	－	\dagger	\checkmark	4
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	7	个 \uparrow	「	\％${ }^{\text {\％}}$	个个		\％${ }^{1 / 2}$	$\uparrow \uparrow$	F	${ }^{7}$	$\uparrow \uparrow$	\％
Traffic Volume（vph）	100	70	40	50	100	0	130	820	320	30	935	220
Future Volume（vph）	100	70	40	50	100	0	130	820	320	30	935	220
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ft）	150		150	360		400	250		100	0		100
Storage Lanes	1		0	2		0	2		1	1		
Taper Length（tt）	25			25			25			25		
Lane Util．Factor	1.00	0.95	1.00	0.97	0.95	1.00	0.97	0.95	1.00	1.00	0.95	1.00
Fit			0.850						0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd．Flow（prot）	1736	3471	1553	3335	3438	0	3400	3505	1568	1752	3505	1568
Flt Pemitted	0.950			0.950			0.950			0.950		
Satd．Flow（perm）	1736	3471	1553	3335	3438	0	3400	3505	1568	1752	3505	1568
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）			89						268			152
Link Speed（mph）		30			30			30			30	
Link Distance（tt）		639			1148			921			387	
Travel Time（s）		14.5			26.1			20.9			8.8	
Peak Hour Factor	0.84	0.84	0.84	0.79	0.79	0.79	0.86	0.86	0.86	0.99	0.99	0.99
Heavy Vehicles（\％）	4\％	4\％	4\％	5\％	5\％	5\％	3\％	3\％	3\％	3\％	3\％	3\％
Adj．Flow（vph）	119	83	48	63	127	0	151	953	372	30	944	222
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	119	83	48	63	127	0	151	953	372	30	944	222
Turn Type	Prot	NA	pm＋ov	Prot	NA		Prot	NA	Free	Prot	NA	pt＋ov
Protected Phases	1	6	7	5	2		3	8		7		45
Permitted Phases		6	6		2			8	Free		4	
Detector Phase	1	6	7	5	2		3	8		7	4	45
Switch Phase												
Minimum Initial（s）	8.0	8.0	6.0	7.0	8.0		7.0	8.0		6.0	8.0	
Minimum Split（s）	14.0	40.0	12.0	13.0	31.0		13.0	21.0		12.0	21.0	
Total Split（s）	21.0	31.0	13.0	13.0	23.0		16.0	53.0		13.0	50.0	
Total Split（\％）	19．1\％	28．2\％	11．8\％	11．8\％	20．9\％		14．5\％	48．2\％		11．8\％	45．5\％	
Maximum Green（s）	15.0	25.0	7.0	7.0	17.0		10.0	47.0		7.0	44.0	
Yellow Time（s）	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	
All－Red Time（s）	2.0	2.0	2.0	2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust（s）	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time（s）	6.0	6.0	6.0	6.0	6.0		6.0	6.0		6.0	6.0	
Lead／Lag	Lead	Lag	Lead	Lead	Lag		Lead	Lag		Lead	Lag	
Lead－Lag Optimize？	Yes	Yes	Yes	Yes	Yes		Yes	Yes		Yes	Yes	
Vehicle Extension（s）	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	Max	None	None	Max		None	None		None	None	
Act Effict Green（s）	14.2	25.0	37.7	7.0	17.8		10.0	49.5	109.8	6.7	43.8	56.8
Actuated g／C Ratio	0.13	0.23	0.34	0.06	0.16		0.09	0.45	1.00	0.06	0.40	0.52
v / C Ratio	0.53	0.11	0.08	0.30	0.23		0.49	0.60	0.24	0.28	0.68	0.25
Control Delay	53.8	34.1	1.2	53.0	41.8		53.3	25.5	0.4	76.5	19.8	2.0
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.9	0.0
Total Delay	53.8	34.1	1.2	53.0	41.8		53.3	25.5	0.4	76.5	20.7	2.0
LOS	D	C	A	D	D		D	C	A	E	C	A
Approach Delay		37.2			45.5			22.0			18.6	

	4	\dagger	${ }^{7}$	\%	\downarrow	\downarrow	4	7	\cdots	7	\cdots	4
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Approach LOS		D			D			C			B	
Queue Length 50th (ft)	79	24	0	22	42		53	273	0	23	291	5
Queue Length 95th (ft)	129	42	3	39	62		82	321	0	m40	316	11
Internal Link Dist (ft)		559			1068			841			307	
Turn Bay Length (ft)	150		150	360			250		100			100
Base Capacity (vph)	236	789	595	212	558		309	1580	1568	111	1404	871
Starvation Cap Reductn	0	0	0	0	0		0	0	0	0	209	0
Spillback Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Reduced v/c Ratio	0.50	0.11	0.08	0.30	0.23		0.49	0.60	0.24	0.27	0.79	0.25
Intersection Summary												

Area Type: Other
Cycle Length: 110
Actuated Cycle Length: 109.8
Natural Cycle: 90
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.68
Intersection Signal Delay: 23.3
Intersection LOS: C
Intersection Capacity Utilization 58.9\%
ICU Level of Service B
Analysis Period (min) 15
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 11: Folsom Rd/Tsienneto Rd \& Crystal Av/NH 28

	n	5	7	T*	5	\downarrow						
Lane Group	NWL	NWR	NET	NER	SWL	SWT	$\varnothing 1$	$\varnothing 2$	$\varnothing 3$	04	$\varnothing 5$	$\varnothing 6$
Lane Configurations	\%	「	44	F	${ }^{*}$	番						
Traffic Volume (vph)	205	60	580	330	50	980						
Future Volume (vph)	205	60	580	330	50	980						
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900						
Storage Length (ft)	180	0		0	220							
Storage Lanes	1	1		1	1							
Taper Length (ft)	25				25							
Lane Util. Factor	1.00	1.00	0.95	1.00	1.00	0.95						
Fit		0.850		0.850								
Fit Protected	0.950				0.950							
Satd. Flow (prot)	1770	1583	3505	1568	1770	3539						
Flt Permitted	0.950				0.288							
Satd. Flow (perm)	1770	1583	3505	1568	536	3539						
Right Turn on Red		Yes		Yes								
Satd. Flow (RTOR)		72		384								
Link Speed (mph)	30		30			30						
Link Distance (ft)	408		387			376						
Travel Time (s)	9.3		8.8			8.5						
Peak Hour Factor	0.83	0.83	0.86	0.86	0.81	0.81						
Heavy Vehicles (\%)	2\%	2\%	3\%	3\%	2\%	2\%						
Adj. Flow (vph)	247	72	674	384	62	1210						
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	247	72	674	384	62	1210						
Turn Type	Prot	pm+ov	NA	Free	pm+pt	NA						
Protected Phases	1256	7	8		7	34	1	2	3	4	5	6
Permitted Phases		1256		Free	34							
Detector Phase	1256	7	8		7	34						
Switch Phase												
Minimum Initial (s)		6.0	8.0		6.0		8.0	8.0	7.0	8.0	7.0	8.0
Minimum Split (s)		12.0	21.0		12.0		14.0	31.0	13.0	21.0	13.0	40.0
Total Split (s)		13.0	53.0		13.0		21.0	23.0	16.0	50.0	13.0	31.0
Total Split (\%)		11.8\%	48.2\%		11.8\%		19\%	21\%	15\%	45\%	12\%	28\%
Maximum Green (s)		7.0	47.0		7.0		15.0	17.0	10.0	44.0	7.0	25.0
Yellow Time (s)		4.0	4.0		4.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)		2.0	2.0		2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		0.0	0.0		0.0							
Total Lost Time (s)		6.0	6.0		6.0							
Lead/Lag		Lead	Lag		Lead		Lead	Lag	Lead	Lag	Lead	Lag
Lead-Lag Optimize?		Yes	Yes		Yes		Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)		3.0	3.0		3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode		None	None		None		None	Max	None	None	None	Max
Act Effct Green (s)	37.6	50.3	49.5	109.8	59.8	59.8						
Actuated g/C Ratio	0.34	0.46	0.45	1.00	0.54	0.54						
v/c Ratio	0.41	0.09	0.43	0.24	0.17	0.63						
Control Delay	29.9	4.2	8.5	0.3	12.9	19.1						
Queue Delay	0.0	0.0	0.2	0.0	0.0	0.1						
Total Delay	29.9	4.2	8.7	0.3	12.9	19.2						
LOS	C	A	A	A	B	B						
Approach Delay	24.1		5.7			18.9						

Splits and Phases: 12: Tsienneto Rd \& Pinkerton St

	\rightarrow	\rightarrow	2	\cdots	-	1]	\nearrow	ρ	4	λ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	${ }^{7}$	㻢		${ }^{1}$	个t			\uparrow	F		\uparrow	\%
Traffic Volume (vph)	20	240	0	0	330	10	5	0	5	20	0	180
Future Volume (vph)	20	240	0	0	330	10	5	0	5	20	0	180
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	75		0	150		150	0		0	0		0
Storage Lanes	1		0	1		0	0		1	0		1
Taper Length (ft)	50			25			25			25		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Fit					0.996				0.850			0.850
Fit Protected	0.950							0.950			0.950	
Satd. Flow (prot)	1687	3374	0	1863	3525	0	0	1805	1615	0	1787	1599
Flt Permitted	0.950							0.743			0.751	
Satd. Flow (perm)	1687	3374	0	1863	3525	0	0	1412	1615	0	1413	1599
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					4				109			200
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		277			1148			218			433	
Travel Time (s)		6.3			26.1			5.0			9.8	
Peak Hour Factor	0.83	0.83	0.83	0.92	0.92	0.92	0.50	0.50	0.50	0.90	0.90	0.90
Heavy Vehicles (\%)	7\%	7\%	7\%	2\%	2\%	2\%	0\%	0\%	0\%	1\%	1\%	1\%
Adj. Flow (vph)	24	289	0	0	359	11	10	0	10	22	0	200
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	24	289	0	0	370	0	0	10	10	0	22	200
Turn Type	Prot	NA		Prot	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases					6		8	8	8	4		4
Detector Phase	5	2		1	6		8	8	8	4	4	4
Switch Phase												
Minimum Initial (s)	8.0	8.0		5.0	8.0		5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	14.0	46.0		11.0	43.0		33.0	33.0	33.0	33.0	33.0	33.0
Total Split (s)	14.0	46.0		11.0	43.0		33.0	33.0	33.0	33.0	33.0	33.0
Total Split (\%)	15.6\%	51.1\%		12.2\%	47.8\%		36.7\%	36.7\%	36.7\%	36.7\%	36.7\%	36.7\%
Maximum Green (s)	8.0	40.0		5.0	37.0		27.0	27.0	27.0	27.0	27.0	27.0
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0		0.0	0.0
Total Lost Time (s)	6.0	6.0		6.0	6.0			6.0	6.0		6.0	6.0
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	Max		None	None		None	None	None	None	None	None
Act Effct Green (s)	8.0	40.0			37.4			7.0	7.0		7.0	7.0
Actuated g/C Ratio	0.14	0.68			0.63			0.12	0.12		0.12	0.12
v / c Ratio	0.11	0.13			0.17			0.06	0.03		0.13	0.55
Control Delay	24.5	3.7			6.1			23.4	0.2		24.8	10.5
Queue Delay	0.0	0.0			0.0			0.0	0.0		0.0	0.0
Total Delay	24.5	3.7			6.1			23.4	0.2		24.8	10.5
LOS	C	A			A			C	A		C	B
Approach Delay		5.3			6.1			11.8			11.9	

13: Applebees/Linlew $\operatorname{Dr} \& N H 28$ Lanes, Volumes, Timings

	\rightarrow	\rightarrow	2	\cdots	\leftarrow	¢	*	\ngtr	\cdots	ζ	\star	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
Approach LOS		A			A			B			B	
Queue Length 50th (ft)	8	14			18			3	0		7	0
Queue Length 95th (ft)	25	28			71			8	0		25	49
Internal Link Dist (ft)		197			1068			138			353	
Turn Bay Length (t)	75											
Base Capacity (vph)	228	2288			2358			646	798		647	840
Starvation Cap Reductn	0	0			0			0	0		0	0
Spillback Cap Reductn	0	0			0			0	0		0	0
Storage Cap Reductn	0	0			0			0	0		0	0
Reduced v/c Ratio	0.11	0.13			0.16			0.02	0.01		0.03	0.24

Intersection Summary	
Areat Type:	
Cycle Length: 90	
Actuated Cycle Length: 59	
Natural Cycle: 90	
Control Type: Actuated-Uncoordinated	
Maximum v/c Ratio: 0.55	Intersection LOS: A
Intersection Signal Delay 7.4	ICU Level of Service A
Intersecion Capacity Ytilization 39.8\%	
Analysis Period (min) 15	

Splits and Phases: 13: Applebees/Linlew Dr \& NH 28

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7\％	个穴		\％	个 \uparrow		7	今		${ }^{7}$	\uparrow	F
Traffic Volume（vph）	30	200	5	5	330	120	10	5	5	170	5	10
Future Volume（vph）	30	200	5	5	330	120	10	5	5	170	5	110
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900

Storage Length（ft）	150	150	150	150	0	0	0
Storage Lanes	2	0	1	0	1	0	1
Taper Length（ft）	200		25		25		25

Frt

Satd．Flow（RTOR）		3			58			7				122
Link Speed（mph）		30			30			30			30	
Link Distance（ t ）		412			486			151			343	
Travel Time（s）		9.4			11.0			3.4			7.8	
Peak Hour Factor	0.83	0.83	0.83	0.97	0.97	0.97	0.67	0.67	0.67	0.90	0.90	0.90
Heavy Vehicles（\％）	6\％	6\％	6\％	4\％	4\％	4\％	0\％	0\％	0\％	3\％	3\％	3\％
Adj．Flow（vph）	36	241	6	5	340	124	15	7	7	189	6	122
Shared Lane Traffic（\％）										48\％		
Lane Group Flow（vph）	36	247	0	5	464	0	15	14	0	98	97	122
Turn Type	Prot	NA		Prot	NA		Split	NA		Split	NA	pt＋o
Protected Phases	5	2		1	6		3	3				

Permitted Phases

Detector Phase	5	2	1	6	3	3	4	4	45
Switch Phase									
Minimum Initial（s）	5.0	8.0	5.0	8.0	5.0	5.0	8.0	8.0	
Minimum Split（s）	14.0	53.0	11.0	50.0	22.0	22.0	22.0	22.0	
Total Split（s）	14.0	53.0	13.0	52.0	22.0	22.0	22.0	22.0	
Total Split（\％）	12．7\％	48．2\％	11．8\％	47．3\％	20．0\％	20．0\％	20．0\％	20．0\％	
Maximum Green（s）	8.0	47.0	7.0	46.0	16.0	16.0	16.0	16.0	
Yellow Time（s）	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
All－Red Time（s）	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time（s）	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	
Lead／Lag	Lead	Lag	Lead	Lag	Lead	Lead	Lag	Lag	
Lead－Lag Optimize？	Yes								
Vehicle Extension（s）	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	Min	None	Min	None	None	None	None	
Walk Time（s）		5.0		5.0	5.0	5.0	5.0	5.0	
Flash Dont Walk（s）		11.0		11.0	11.0	11.0	11.0	11.0	
Pedestrian Calls（\＃hr）		0		0	0	0	O	，	
Act Effct Green（s）	6.4	23.8	6.0	15.9	6.3	6.3	9.8	9.8	22.5
Actuated g／C Ratio	0.12	0.46	0.12	0.31	0.12	0.12	0.19	0.19	0.43
v／c Ratio	0.09	0.16	0.03	0.44	0.07	0.06	0.31	0.31	0.16
Control Delay	25.8	11.9	27.4	16.8	26.9	21.2	24.6	24.4	4.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

	\rangle	\rightarrow	∇	\checkmark		*	4	\uparrow	p		\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay	25.8	11.9		27.4	16.8		26.9	21.2		24.6	24.4	4.0
LOS	C	B		C	B		C	C		C	C	A
Approach Delay		13.7			16.9			24.2			16.6	
Approach LOS		B			B			C			B	
Queue Length 50th (ti)	4	14		1	45		4	2		23	23	0
Queue Length 95th (ti)	18	65		12	121		16	13		81	81	30
Internal Link Dist (ft)		332			406			71			263	
Turn Bay Length (t)	150			150								
Base Capacity (vph)	533	2996		245	2929		583	572		537	540	786
Starvation Cap Reductn	0	0		0	0		0	0		0	0	0
Spillback Cap Reductn	0	0		0	0		0	0		0	0	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	0.07	0.08		0.02	0.16		0.03	0.02		0.18	0.18	0.16
Intersection Summary												
Area Type: Other												
Cycle Length: 110												
Actuated Cycle Length: 52.1												
Natural Cycle: 110												
Control Type: Actuated-Uncoordinated												
Maximum v/c Ratio: 0.44												
Intersection Signal Delay: 16.2				Intersection LOS: B								
Intersection Capacity Utilization 38.9\%				ICU Level of Service A								
Analysis Period (min) 15												

Splits and Phases: $\quad 14:$ VIP Dr/Ashleigh Dr \& NH 28

Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	7	\dagger		${ }^{7}$	4	F	7	个 \uparrow		1	个t	
Traffic Volume (vph)	30	50	20	10	40	180	150	320	70	60	470	170
Future Volume (vph)	30	50	20	10	40	180	150	320	70	60	470	170
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	150		150	150		150	150		150	150		150
Storage Lanes	1		0	1		1	1		0	1		
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Fit		0.958				0.850		0.973			0.960	
Fit Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1752	1767	0	1736	1827	1553	1770	3444	0	1787	3431	
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1752	1767	0	1736	1827	1553	1770	3444	0	1787	3431	
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		24				222		35			68	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		481			347			479			371	
Travel Time (s)		10.9			7.9			10.9			8.4	
Peak Hour Factor	0.82	0.82	0.82	0.81	0.81	0.81	0.68	0.68	0.68	0.78	0.78	0.78
Heavy Vehicles (\%)	3\%	3\%	3\%	4\%	4\%	4\%	2\%	2\%	2\%	1\%	1\%	1\%
Adj. Flow (vph)	37	61	24	12	49	222	221	471	103	77	603	218
Shared Lane Traffic (\%) 210												
Lane Group Flow (vph)	37	85	0	12	49	222	221	574	0	77	821	0
Turn Type	Prot	NA		Prot	NA	pt+ov	Prot	NA		Prot	NA	
Protected Phases	1	6		5	2	23	3	8		7	4	
Permitted Phases												
Detector Phase	1	6		5	2	23	3	8		7	4	
Switch Phase 8												
Minimum Initial (s)	8.0	8.0		8.0	8.0		8.0	8.0		8.0	8.0	
Minimum Split (s)	14.0	20.0		14.0	20.0		14.0	20.0		14.0	20.0	
Total Split (s)	14.0	20.0		14.0	20.0		14.0	22.0		14.0	22.0	
Total Split (\%)	20.0\%	28.6\%		20.0\%	28.6\%		20.0\%	31.4\%		20.0\%	31.4\%	
Maximum Green (s)	8.0	14.0		8.0	14.0		8.0	16.0		8.0	16.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Lead/Lag	Lead	Lag										
Lead-Lag Optimize?	Yes	Yes										
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	Max		None	None		None	None	
Act Effct Green (s)	8.1	16.6		8.1	14.2	28.3	8.1	22.4		8.1	16.2	
Actuated g/C Ratio	0.13	0.27		0.13	0.23	0.46	0.13	0.36		0.13	0.26	
v / c Ratio	0.16	0.17		0.05	0.12	0.27	0.95	0.45		0.33	0.86	
Control Delay	28.4	15.5		27.4	22.2	3.2	81.8	19.0		30.9	33.5	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	28.4	15.5		27.4	22.2	3.2	81.8	19.0		30.9	33.5	
LOS	C	B		C	C	A	F	B		C	C	
Approach Delay		19.4			7.5			36.4			33.3	

	\cdots	\uparrow	1	\checkmark	\downarrow	\}	9	\star	\downarrow	\checkmark	\star	4									
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR									
Approach LOS		B			A			D			C										
Queue Length 50th (ft)	11	16		4	13	0	74	79		23	121										
Queue Length 95th (ft)	37	51		17	39	27	\#154	114		60	\#222										
Internal Link Dist (ft)		401			267			399			291										
Turn Bay Length (tt)	150			150		150	150			150											
Base Capacity (vph)	230	494		228	420	834	232	1272		235	951										
Starvation Cap Reductn	0	0		0	0	0	0	0		0	0										
Spillback Cap Reductn	0	0		0	0	0	0	0		0	0										
Storage Cap Reductn	0	0		0	0	0	0			0	0										
Reduced v/c Ratio	0.16	0.17		0.05	0.12	0.27	0.95	0.45		0.33	0.86										
Intersection Summary																					
Area Type: Other																					
Cycle Length: 70																					
Actuated Cycle Length: 61.6																					
Natural Cycle: 75																					
Control Type: Actuated-Uncoordinated																					
Maximum v/c Ratio: 0.95																					
Intersection Signal Delay: 30.2				Intersection LOS: C																	
Intersection Capacity Utilization 51.2\%				ICU Level of Service A																	
Analysis Period (min) 15																					
\# 95th percentile volume exceeds capacity, queue may be longer.Queue shown is maximum after two cycles.																					

Splits and Phases: 18: Tsienneto Rd \& NH 28 Byp S

Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	$\varnothing 2$	$\varnothing 5$	$\emptyset 6$	$\varnothing 7$
Lane Configurations	M		7	\uparrow	\uparrow	7				
Traffic Volume (vph)	220	0	10	130	240	530				
Future Volume (vph)	220	0	10	130	240	530				
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900				
Storage Length (ft)	200	0	100			90				
Storage Lanes	0	0	1			1				
Taper Length (ft)	25		25							
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00				
Fit						0.850				
Flt Protected	0.950		0.950							
Satd. Flow (prot)	1787	0	1770	1863	1845	1568				
Flt Permitted	0.950		0.528							
Satd. Flow (perm)	1787	0	984	1863	1845	1568				
Right Turn on Red		Yes				Yes				
Satd. Flow (RTOR)						596				
Link Speed (mph)	30			30	30					
Link Distance (ft)	392			704	263					
Travel Time (s)	8.9			16.0	6.0					
Peak Hour Factor	0.90	0.90	0.87	0.87	0.89	0.89				
Heavy Vehicles (\%)	1\%	1\%	2\%	2\%	3\%	3\%				
Adj. Flow (vph)	244	0	11	149	270	596				
Shared Lane Traffic (\%)										
Lane Group Flow (vph)	244	0	11	149	270	596				
Turn Type	Prot		pm+pt	NA	NA	custom				
Protected Phases	8		1	67	27	78	2	5	6	7
Permitted Phases			67			2				
Detector Phase	8		1	67	27	78				
Switch Phase										
Minimum Initial (s)	5.0		5.0				5.0	5.0	5.0	5.0
Minimum Split (s)	26.5		11.0				9.0	11.0	9.0	11.0
Total Split (s)	27.0		11.0				32.0	11.0	32.0	20.0
Total Split (\%)	30.0\%		12.2\%				36\%	12\%	36\%	22\%
Maximum Green (s)	21.0		5.0				28.0	5.0	28.0	14.0
Yellow Time (s)	4.0		4.0				3.0	4.0	3.0	4.0
All-Red Time (s)	2.0		2.0				1.0	2.0	1.0	2.0
Lost Time Adjust (s)	0.0		0.0							
Total Lost Time (s)	6.0		6.0							
Lead/Lag	Lag		Lead				Lag	Lead	Lag	Lead
Lead-Lag Optimize?	Yes		Yes				Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0		3.0				3.0	3.0	3.0	3.0
Recall Mode	None		None				Min	None	Min	None
Act Effct Green (s)	21.2		32.8	34.1	34.1	64.8				
Actuated g/C Ratio	0.32		0.49	0.51	0.51	0.96				
v/c Ratio	0.43		0.02	0.16	0.29	0.39				
Control Delay	24.7		7.2	9.5	11.1	0.9				
Queue Delay	0.0		0.0	0.0	1.0	0.1				
Total Delay	24.7		7.2	9.5	12.1	1.0				
LOS	C		A	A	B	A				
Approach Delay	24.7			9.3	4.5					

Splits and Phases: 19: NH 102 EB/NH 102 \& Tsienneto Rd

Zone 6 - Exit 4A Ramps
20: Exit 4A SB On/Exit 4A SB Off \& Connector Road

Splits and Phases: 20: Exit 4A SB On/Exit 4A SB Off \& Connector Road

	\Rightarrow	\rightarrow	7	5	\leftarrow	4	\checkmark	\downarrow	4	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	SBL	SBR	NWL	NWR	
Lane Configurations		¢4			个4	F7			Y	「	
Traffic Volume (vph)	0	1730	0	0	980	1390	0	0	0	795	
Future Volume (vph)	0	1730	0	0	980	1390	0	0	0	795	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Storage Length (ft)	0		0	0		200	0	0	0	0	
Storage Lanes	0		0	0		2	0	0	1	1	
Taper Length (ft)	25			25			25		25		
Lane Util. Factor	0.95	0.95	1.00	1.00	0.95	0.88	1.00	1.00	1.00	0.95	
Fit						0.850			0.850	0.850	
Fit Protected											
Satd. Flow (prot)	0	3539	0	0	3539	2787	0	0	1583	1504	
Flt Permitted											
Satd. Flow (perm)	0	3539	0	0	3539	2787	0	0	1583	1504	
Right Turn on Red			Yes			Yes		Yes			
Satd. Flow (RTOR)						42					
Link Speed (mph)		30			30		30		30		
Link Distance (ft)		372			394		598		519		
Travel Time (s)		8.5			9.0		13.6		11.8		
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	
Adj. Flow (vph)	0	1840	0	0	1043	1479	0	0	0	846	
Shared Lane Traffic (\%)										50\%	
Lane Group Flow (vph)	0	1840	0	0	1043	1479	0	0	423	423	
Turn Type		NA			NA	Perm			Prot	Prot	
Protected Phases		2			2				4	4	
Permitted Phases	2					2					
Detector Phase	2	2			2	2			4	4	
Switch Phase											
Minimum Initial (s)	5.0	5.0			5.0	5.0			9.0	9.0	
Minimum Split (s)	24.0	24.0			24.0	24.0			24.0	24.0	
Total Split (s)	57.0	57.0			57.0	57.0			33.0	33.0	
Total Split (\%)	63.3\%	63.3\%			63.3\%	63.3\%			36.7\%	36.7\%	
Maximum Green (s)	51.0	51.0			51.0	51.0			27.0	27.0	
Yellow Time (s)	4.0	4.0			4.0	4.0			4.0	4.0	
All-Red Time (s)	2.0	2.0			2.0	2.0			2.0	2.0	
Lost Time Adjust (s)		0.0			0.0	0.0			0.0	0.0	
Total Lost Time (s)		6.0			6.0	6.0			6.0	6.0	
Lead/Lag											
Lead-Lag Optimize?											
Vehicle Extension (s)	3.0	3.0			3.0	3.0			3.0	3.0	
Recall Mode	C-Max	C-Max			C-Max	C-Max			Min	Min	
Act Effct Green (s)		51.0			51.0	51.0			27.0	27.0	
Actuated g/C Ratio		0.57			0.57	0.57			0.30	0.30	
v/c Ratio		0.92			0.52	0.93			0.89	0.94	
Control Delay		4.2			13.1	29.0			53.6	62.1	
Queue Delay		1.1			1.7	0.0			0.0	0.0	
Total Delay		5.3			14.8	29.0			53.6	62.1	
LOS		A			B	C			D	E	
Approach Delay		5.3			23.1				57.8		
Approach LOS		A			C				E		
$\begin{aligned} & 12 / 21 / 2017 \\ & \text { MSM } \end{aligned}$											Synchro 9 Report Page 5

21: Exit 4A NB Off \& Connector Road \& Exit 4A NB On

Lanes, Volumes, Timings

Splits and Phases: 21: Exit 4A NB Off \& Connector Road \& Exit 4A NB On

Zone 5
2040 Alt A (R) AM Peak
26: NH 102 \& North Shore Road

	\checkmark	4	\uparrow	p	,	\downarrow				
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	$\varnothing 1$	$\varnothing 2$	$\emptyset 6$	$\emptyset 8$
Lane Configurations	\%		\uparrow	「	\%	\uparrow				
Traffic Volume (vph)	60	10	320	30	10	710				
Future Volume (vph)	60	10	320	30	10	710				
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900				
Storage Length (ft)	0	0		90	100					
Storage Lanes	1	0		1	1					
Taper Length (ft)	25				25					
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00				
Fit	0.976			0.850						
Flt Protected	0.961				0.950					
Satd. Flow (prot)	1768	0	1900	1615	1805	1900				
Flt Permitted	0.961				0.424					
Satd. Flow (perm)	1768	0	1900	1615	806	1900				
Right Turn on Red		Yes		Yes						
Satd. Flow (RTOR)	10			36						
Link Speed (mph)	30		30			30				
Link Distance (ft)	524		263			288				
Travel Time (s)	11.9		6.0			6.5				
Peak Hour Factor	0.87	0.67	0.95	0.84	0.73	0.96				
Heavy Vehicles (\%)	1\%	0\%	0\%	0\%	0\%	0\%				
Adj. Flow (vph)	69	15	337	36	14	740				
Shared Lane Traffic (\%)										
Lane Group Flow (vph)	84	0	337	36	14	740				
Turn Type	Prot		NA	Perm	custom	NA				
Protected Phases	7		68		5	28	1	2	6	8
Permitted Phases				68	2					
Detector Phase	7		68	68	5	28				
Switch Phase										
Minimum Initial (s)	5.0				5.0		5.0	5.0	5.0	5.0
Minimum Split (s)	11.0				11.0		11.0	9.0	9.0	26.5
Total Split (s)	20.0				11.0		11.0	32.0	32.0	27.0
Total Split (\%)	22.2\%				12.2\%		12\%	36\%	36\%	30\%
Maximum Green (s)	14.0				5.0		5.0	28.0	28.0	21.0
Yellow Time (s)	4.0				4.0		4.0	3.0	3.0	4.0
All-Red Time (s)	2.0				2.0		2.0	1.0	1.0	2.0
Lost Time Adjust (s)	0.0				0.0					
Total Lost Time (s)	6.0				6.0					
Lead/Lag	Lead				Lead		Lead	Lag	Lag	Lag
Lead-Lag Optimize?	Yes				Yes		Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0				3.0		3.0	3.0	3.0	3.0
Recall Mode	None				None		None	Min	Min	None
Act Effct Green (s)	11.6		43.1	43.1	15.0	43.1				
Actuated g/C Ratio	0.17		0.64	0.64	0.22	0.64				
v/c Ratio	0.27		0.28	0.03	0.05	0.61				
Control Delay	26.9		2.3	0.2	18.9	9.3				
Queue Delay	0.0		0.1	0.0	0.0	0.0				
Total Delay	26.9		2.4	0.2	18.9	9.3				
LOS	C		A	A	B	A				
Approach Delay	26.9		2.2			9.5				

26: NH 102 \& North Shore Road

	\checkmark	4	\uparrow	p		\downarrow				
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	$\varnothing 1$	$\varnothing 2$	$\varnothing 6$	$\emptyset 8$
Approach LOS	C		A			A				
Queue Length 50th (ft)	25		17	0	5	151				
Queue Length 95th (ft)	77		25	0	13	224				
Internal Link Dist (ft)	444		183			208				
Turn Bay Length (ft)				90	100					
Base Capacity (vph)	388		1550	1324	256	1550				
Starvation Cap Reductn	0		428	0	0	0				
Spillback Cap Reductn	0		0	0	0	0				
Storage Cap Reductn	0		0	0	0	0				
Reduced v/c Ratio	0.22		0.30	0.03	0.05	0.48				
Intersection Summary										
Area Type: Other										
Cycle Length: 90										
Actuated Cycle Length: 67.3										
Natural Cycle: 60										
Control Type: Actuated-Uncoordinated										
Maximum v/c Ratio: 0.61										
Intersection Signal Delay: 8.4				Intersection LOS: A						
Intersection Capacity Utilization 49.9\%				ICU Level of Service A						
Analysis Period (min) 15										

Splits and Phases: 26: NH 102 \& North Shore Road

APPENDIX O-4: 2040 ALTERNATIVE A INTERSECTION CAPACITY ANALYSES - SYNCHRO PRINTOUTS - PM PEAK HOUR

Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		性	坐个		\％	「7
Traffic Volume（vph）	0	1230	1475	0	385	1195
Future Volume（vph）	0	1230	1475	0	385	1195
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900
Lane Width（ft）	12	12	12	12	16	12
Lane Util．Factor	1.00	0.95	0.95	1.00	1.00	0.88
Fit						0.850
Flt Protected					0.950	
Satd．Flow（prot）	0	3471	3406	0	1930	2682
Flt Permitted					0.950	
Satd．Flow（perm）	0	3471	3406	0	1930	2682
Right Turn on Red				Yes		No

Satd．Flow（RTOR）						
Link Speed（mph）		30	30		25	
Link Distance（ft）		712	388		212	
Travel Time（s）	16.2	8.8		5.8		
Peak Hour Factor	0.93	0.93	0.88	0.88	0.89	0.89
Heavy Vehicles（\％）	4%	4%	6%	6%	6%	6%
Adj．Flow（vph）	0	1323	1676	0	433	1343
Shared Lane Traffic（\％）						
Lane Group Flow（vph）	0	1323	1676	0	433	1343
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right

| Median Width（ft） | 24 | 24 | 16 |
| :--- | ---: | ---: | ---: | ---: |
| Link Offset（ft） | 0 | 0 | 0 |
| Crosswalk Width（ft） | 16 | 16 | 16 |

Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	0.85	1.00
Turning Speed（mph）	15			9	15	9
Number of Detectors		3	3		3	3
Detector Template		Thru	Thru		Left	
Leading Detector（ ft$)$		256	256		256	256
Trailing Detector (ft)	-5	-5		-5	-5	
Detector 1 Position（ft）		-5	-5	-5	-5	
Detector 1 Size（ft）		50	50	50	50	

Detector 1 Type $\quad \mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$
$\mathrm{Cl}+\mathrm{Ex}$		

Detector 1 Channel				0.0
Detector 1 Extend（s）	0.0	0.0	0.0	
Detector 1 Queue（s）	0.0	0.0	0.0	0.0
Detector 1 Delay（s）	0.0	0.0	0.0	0.0
Detector 2 Position（ft）	125	125	125	125
Detector 2 Size（ft）	6	6	6	6
Detector 2 Type	Cl＋Ex	Cl＋Ex	Cl＋Ex	Cl＋Ex
Detector 2 Channel				
Detector 2 Extend（s）	0.0	0.0	0.0	0.0
Detector 3 Position（ft）	250	250	250	250
Detector 3 Size（ft）	6	6	6	6
Detector 3 Type	Cl＋Ex	Cl＋Ex	Cl＋Ex	Cl＋Ex

Area Type: Other

Cycle Length: 130
Actuated Cycle Length: 130
Offset: $0(0 \%)$, Referenced to phase 2:EBT and 6:WBT, Start of Yellow, Master Intersection
Natural Cycle: 130
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.10

Lanes, Volumes, Timings
7. NH 102 \& Exit 4 SB Off

Intersection Signal Delay: 52.5 Intersection LOS: D
Intersection Capacity Utilization 94.6\% ICU Level of Service F
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 7: NH 102 \& Exit 4 SB Off

Lane Group	NBL2	NBL	NBR	SEL	SER	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	${ }^{7 \%}$		「7\％			\％＊	番			尣4	F
Traffic Volume（vph）	1360	0	725	0	0	1155	460	0	0	370	110
Future Volume（vph）	1360	0	725	0	0	1155	460	0	0	370	110
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ft）		0	0	0	0	550		0	0		0
Storage Lanes		2	2	0	0	2		0	0		1
Taper Length（ft）		25		25		25			25		
Lane Util．Factor	0.97	1.00	0.88	1.00	1.00	0.97	0.95	1.00	1.00	0.95	1.00
Fit			0.850								0.850
Flt Protected	0.950					0.950					
Satd．Flow（prot）	3242	0	2632	0	0	3335	3438	0	0	3505	1568
Flt Permitted	0.950					0.950					
Satd．Flow（perm）	3242	0	2632	0	0	3335	3438	0	0	3505	1568
Right Turn on Red			No					Yes			Yes
Satd．Flow（RTOR）											126
Link Speed（mph）		25		30			30			30	
Link Distance（ft）		856		390			760			857	
Travel Time（s）		23.3		8.9			17.3			19.5	
Peak Hour Factor	0.88	0.88	0.88	0.92	0.92	0.94	0.94	0.94	0.92	0.92	0.92
Heavy Vehicles（\％）	8\％	8\％	8\％	2\％	2\％	5\％	5\％	5\％	3\％	3\％	3\％
Adj．Flow（vph）	1545	0	824	0	0	1229	489	0	0	402	120
Shared Lane Traffic（\％）											
Lane Group Flow（vph）	1545	0	824	0	0	1229	489	0	0	402	120
Enter Blocked Intersection	No										
Lane Alignment	Left	Left	Right	Left	Right	Left	Left	Right	Left	Right	Right
Median Width（ft）		24		0			24			24	
Link Offset（ft）		12		0			0			0	
Crosswalk Width（ft）		16		16			16			16	
Two way Left Turn Lane											
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed（mph）	15	15	25	15	9	15		9	15		25
Number of Detectors	3		3			3	3			3	0
Detector Template											
Leading Detector（ft）	256		256			256	256			256	0
Trailing Detector（ft）	－5		－5			－5	－5			－5	0
Detector 1 Position（ft）	－5		－5			－5	－5			－5	－5
Detector 1 Size（ft）	55		55			55	55			55	50
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$			Cl＋Ex	$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$
Detector 1 Channel											
Detector 1 Extend（s）	0.0		0.0			0.0	0.0			0.0	0.0
Detector 1 Queue（s）	0.0		0.0			0.0	0.0			0.0	0.0
Detector 1 Delay（s）	0.0		0.0			0.0	0.0			0.0	0.0
Detector 2 Position（ft）	125		125			125	125			125	
Detector 2 Size（ft）	6		6			6	6			6	
Detector 2 Type	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$			Cl＋Ex	$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$	
Detector 2 Channel											
Detector 2 Extend（s）	0.0		0.0			0.0	0.0			0.0	
Detector 3 Position（t）	250		250			250	250			250	
Detector 3 Size（ft）	6		6			6	6			6	

Lane Group	NBL2	NBL	NBR	SEL	SER	NEL	NET	NER	SWL	SWT	SWR
Detector 3 Type	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$			Cl+Ex	
Detector 3 Channel											
Detector 3 Extend (s)	0.0		0.0			0.0	0.0			0.0	
Turn Type	Prot		Prot			Prot	NA			NA	Free
Protected Phases	8		8			5	2			6	
Permitted Phases											Free
Detector Phase	8		2			5	2			6	
Switch Phase											
Minimum Initial (s)	10.0		10.0			5.0	8.0			8.0	
Minimum Split (s)	16.0		16.0			11.0	42.0			31.0	
Total Split (s)	54.0		54.0			44.0	76.0			32.0	
Total Split (\%)	41.5\%		41.5\%			33.8\%	58.5\%			24.6\%	
Maximum Green (s)	48.0		48.0			38.0	70.0			26.0	
Yellow Time (s)	2.0		2.0			2.0	2.0			2.0	
All-Red Time (s)	4.0		4.0			4.0	4.0			4.0	
Lost Time Adjust (s)	0.0		0.0			0.0	0.0			0.0	
Total Lost Time (s)	6.0		6.0			6.0	6.0			6.0	
Lead/Lag						Lead				Lag	
Lead-Lag Optimize?											
Vehicle Extension (s)	3.0		3.0			3.0	3.0			3.0	
Recall Mode	None		None			None	C-Min			C-Min	
Walk Time (s)							7.0			7.0	
Flash Dont Walk (s)							29.0			17.0	
Pedestrian Calls (\#/hr)							0			0	
Act Effct Green (s)	48.0		48.0			38.0	70.0			26.0	130.0
Actuated g/C Ratio	0.37		0.37			0.29	0.54			0.20	1.00
v / c Ratio	1.29		0.85			1.26	0.26			0.57	0.08
Control Delay	172.3		47.4			155.0	7.7			50.7	0.1
Queue Delay	0.0		0.0			0.0	0.0			0.0	0.0
Total Delay	172.3		47.4			155.0	7.7			50.7	0.1
LOS	F		D			F	A			D	A
Approach Delay		128.8					113.1			39.1	
Approach LOS		F					F			D	
Queue Length 50th (ft)	~854		359			~670	51			162	0
Queue Length 95th (ft)	\#957		440			\#797	m71			217	0
Internal Link Dist (ft)		776		310			680			777	
Turn Bay Length (ft)						550					
Base Capacity (vph)	1197		971			974	1851			701	1568
Starvation Cap Reductn	0		0			0	0			0	0
Spillback Cap Reductn	0		0			0	0			0	0
Storage Cap Reductn	0		0			0	0			0	0
Reduced v/c Ratio	1.29		0.85			1.26	0.26			0.57	0.08
Intersection Summary											
Area Type: Other											
Cycle Length: 130											
Actuated Cycle Length: 130											
Offset: 44 (34\%), Referenced to phase 2:NET and 6:SWT, Start of Yellow											
Natural Cycle: 150											

Lanes, Volumes, Timings

8: NH 102 \& Exit 4 NB Off
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.29
Intersection Signal Delay: $112.8 \quad$ Intersection LOS: F
Intersection Capacity Utilization 98.0\% ICU Level of Service F
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 8: NH 102 \& Exit 4 NB Off

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\uparrow \uparrow$	7	${ }^{7}$	$\uparrow \uparrow$					9		7
Traffic Volume (vph)	0	755	480	255	665	0	0	0	0	295	0	470
Future Volume (vph)	0	755	480	255	665	0	0	0	0	295	0	470
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (t)	0		350	0		0	0		0	0		0
Storage Lanes	0		1	1		0	0		0	2		
Taper Length (t)	25			25			25			25		
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	0.97	1.00	1.00
Fit			0.850									0.850
Flt Protected				0.950						0.950		
Satd. Flow (prot)	0	3471	1553	1719	3438	0	0	0	0	3367	0	1553
Flt Permitted				0.950						0.950		
Satd. Flow (perm)	0	3471	1553	1719	3438	0	0	0	0	3367	0	1553
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			552									189
Link Speed (mph)		30			30			30			35	
Link Distance (t)		851			693			486			581	
Travel Time (s)		19.3			15.8			11.0			11.3	
Peak Hour Factor	0.87	0.87	0.87	0.86	0.86	0.86	0.92	0.92	0.92	0.91	0.91	0.91
Heavy Vehicles (\%)	4\%	4\%	4\%	5\%	5\%	5\%	2\%	2\%	2\%	4\%	4\%	4\%
Adj. Flow (vph)	0	868	552	297	773	0	0	0	0	324	0	516
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	868	552	297	773	0	0	0	0	324	0	516
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Right	Left	Right
Median Width(t)		36			36			24			24	
Link Offset(t)		0			0			0			0	
Crosswalk Width(t)		16			16			16			16	

Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		25	15		9	15		9	15		25
Number of Detectors		3	3	3	3					3		3
Detector Template		Thru	Right	Left	Thru					Left		Right
Leading Detector (t)		256	256	256	256					256		256
Trailing Detector (ft)		-5	-5	-5	-5					-5		-5
Detector 1 Position(tt)		-5	-5	-5	-5					-5		-5
Detector 1 Size(ft)		50	50	50	50					50		50
Detector 1 Type		Cl+Ex	CliEx	Cl+Ex	Cl+Ex					Cl+Ex		$\mathrm{Cl}+\mathrm{Ex}$
Detector 1 Channel												
Detector 1 Extend (s)		0.0	0.0	0.0	0.0					0.0		0.0
Detector 1 Queue (s)		0.0	0.0	0.0	0.0					0.0		0.0
Detector 1 Delay (s)		0.0	0.0	0.0	0.0					0.0		0.0
Detector 2 Position(t)		125	125	125	125					125		125
Detector 2 Size(ft)		6	6	6	6					6		6
Detector 2 Type		Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex	Cl+Ex					Cl+Ex		$\mathrm{Cl}+\mathrm{Ex}$
Detector 2 Channel												
Detector 2 Extend (s)		0.0	0.0	0.0	0.0					0.0		0.0
Detector 3 Position(t)		250	250	250	250					250		250
Detector 3 Size(ft)		6	6	6	6					6		6

Lanes, Volumes, Timings

2: Exit 5 SB On/Exit 5 SB Off \& NH 28
01/23/2018

	4	\rightarrow		1	\longleftarrow		4	\dagger	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector 3 Type		Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$					Cl+Ex		$\mathrm{Cl}+\mathrm{Ex}$
Detector 3 Channel												
Detector 3 Extend (s)		0.0	0.0	0.0	0.0					0.0		0.0
Turn Type		NA	Free	Prot	NA					Prot		Prot
Protected Phases		2		1	6					4		
Permitted Phases			Free									
Detector Phase		2		1	6					4		4
Switch Phase												
Minimum Initial (s)		9.0		4.0	9.0					4.0		4.0
Minimum Split (s)		21.0		10.0	21.0					10.0		10.0
Total Split (s)		33.0		25.0	58.0					32.0		32.0
Total Split (\%)		36.7\%		27.8\%	64.4\%					35.6\%		35.6\%
Maximum Green (s)		27.0		19.0	52.0					26.0		26.0
Yellow Time (s)		4.0		4.0	4.0					4.0		4.0
All-Red Time (s)		2.0		2.0	2.0					2.0		2.0
Lost Time Adjust (s)		0.0		0.0	0.0					0.0		0.0
Total Lost Time (s)		6.0		6.0	6.0					6.0		6.0
Lead/Lag		Lag		Lead								
Lead-Lag Optimize?												
Vehicle Extension (s)		5.0		3.0	5.0					3.0		3.0
Recall Mode		C-Min		None	C-Min					None		None
Walk Time (s)		7.0			7.0							
Flash Dont Walk (s)		8.0			8.0							
Pedestrian Calls (\#/hr)		0			0							
Act Effct Green (s)		29.0	90.0	18.1	53.2					24.8		24.8
Actuated g/C Ratio		0.32	1.00	0.20	0.59					0.28		0.28
v/c Ratio		0.78	0.36	0.86	0.38					0.35		0.91
Control Delay		34.2	0.6	16.9	0.2					27.0		42.4
Queue Delay		0.0	0.0	0.0	0.0					0.0		0.0
Total Delay		34.2	0.6	16.9	0.2					27.0		42.4
LOS		C	A	B	A					C		D
Approach Delay		21.1			4.8						36.4	
Approach LOS		C			A						D	
Queue Length 50th (ft)		241	0	0	0					74		185
Queue Length 95th (ft)		301	0	m0	m0					110		\#379
Internal Link Dist (ft)		771			613			406			501	
Turn Bay Length (ft)			350									
Base Capacity (vph)		1120	1553	362	2030					972		583
Starvation Cap Reductn		0	0	0	0					0		0
Spillback Cap Reductn		0	0	0	0					0		0
Storage Cap Reductn		0	0	0	0					0		0
Reduced v/c Ratio		0.78	0.36	0.82	0.38					0.33		0.89
Intersection Summary												

Area Type:

Other
Cycle Length: 90
Actuated Cycle Length: 90
Offset: $50(56 \%)$, Referenced to phase 2:EBT and 6:WBT, Start of Yellow
Natural Cycle: 80

Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.91
Intersection Signal Delay: 19.7
Intersection Capacity Utilization 77.2\%
Intersection LOS: B
Analysis Period (min) 15
ICU Level of Service D
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 2: Exit 5 SB On/Exit 5 SB Off \& NH 28

Lanes, Volumes, Timings
3: Exit 5 NB Off \& NH 28
01/23/2018

	4	\rightarrow		1		4	4	4	p	\%	\downarrow	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }_{7}$	44			44	7	\%		${ }^{7}$			
Traffic Volume (vph)	480	570	0	0	555	445	365	0	420	0	0	0
Future Volume (vph)	480	570	0	0	555	445	365	0	420	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit						0.850			0.850			
Flt Protected	0.950						0.950					
Satd. Flow (prot)	1752	3505	0	0	3505	1568	1703	0	1524	0	0	0
Flt Permitted	0.950						0.950					
Satd. Flow (perm)	1752	3505	0	0	3505	1568	1703	0	1524	0	0	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)						489			255			
Link Speed (mph)		30			30			35			30	
Link Distance (ft)		693			542			867			392	
Travel Time (s)		15.8			12.3			16.9			8.9	
Peak Hour Factor	0.92	0.92	0.92	0.91	0.91	0.91	0.67	0.67	0.67	0.92	0.92	0.92
Heavy Vehicles (\%)	3\%	3\%	3\%	3\%	3\%	3\%	6\%	6\%	6\%	2\%	2\%	2\%
Adj. Flow (vph)	522	620	0	0	610	489	545	0	627	0	0	0
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	522	620	0	0	610	489	545	0	627	0	0	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right	Left	Left	Right	Right	Left	Right	Left	Left	Right
Median Width(ft)		36			42			12			12	
Link Offset(ft)		0			0			0			36	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		25	15		25	15		9
Number of Detectors	3	3			3	3	3		0			
Detector Template	Left					Right	Left					
Leading Detector (ft)	256	256			256	256	256		0			
Trailing Detector (ft)	-5	-5			-5	-5	-5		0			
Detector 1 Position(ft)	-5	-5			-5	-5	-5		-5			
Detector 1 Size(ft)	50	50			50	50	50		50			
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$			
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0			0.0	0.0	0.0		0.0			
Detector 1 Queue (s)	0.0	0.0			0.0	0.0	0.0		0.0			
Detector 1 Delay (s)	0.0	0.0			0.0	0.0	0.0		0.0			
Detector 2 Position(ft)	125	125			125	125	125					
Detector 2 Size(ft)	6	6			6	6	6					
Detector 2 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$					
Detector 2 Channel												
Detector 2 Extend (s)	0.0	0.0			0.0	0.0	0.0					
Detector 3 Position(ft)	250	250			250	250	250					
Detector 3 Size(ft)	6	6			6	6	6					
Detector 3 Type	Cl+Ex	Cl+Ex			$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$					
Detector 3 Channel												
Detector 3 Extend (s)	0.0	0.0			0.0	0.0	0.0					

Lanes, Volumes, Timings
3: Exit 5 NB Off \& NH 28

	\Rightarrow						4	\uparrow	1		\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Prot	NA			NA	Free	Prot		Prot			
Protected Phases	5	2			6		8		8			
Permitted Phases		2			6	Free						
Detector Phase	5	2			6		8		8			
Switch Phase												
Minimum Initial (s)	4.0	16.0			16.0		4.0		4.0			
Minimum Split (s)	10.0	23.0			23.0		11.0		11.0			
Total Split (s)	32.0	56.0			24.0		34.0		34.0			
Total Split (\%)	35.6\%	62.2\%			26.7\%		37.8\%		37.8\%			
Maximum Green (s)	26.0	50.0			18.0		28.0		28.0			
Yellow Time (s)	4.0	4.0			4.0		4.0		4.0			
All-Red Time (s)	2.0	2.0			2.0		2.0		2.0			
Lost Time Adjust (s)	0.0	0.0			0.0		0.0		0.0			
Total Lost Time (s)	6.0	6.0			6.0		6.0		6.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?												
Vehicle Extension (s)	5.0	5.0			5.0		3.0		3.0			
Recall Mode	None	C-Min			C-Min		None		None			
Walk Time (s)		7.0			7.0							
Flash Dont Walk (s)		10.0			10.0							
Pedestrian Calls (\#hr)		0			0							
Act Effict Green (s)	26.0	50.0			18.0	90.0	28.0		28.0			
Actuated g/C Ratio	0.29	0.56			0.20	1.00	0.31		0.31			
v / C Ratio	1.03	0.32			0.87	0.31	1.03		0.97			
Control Delay	49.0	2.2			49.7	0.5	79.7		47.8			
Queue Delay	0.0	0.0			0.0	0.0	0.0		0.0			
Total Delay	49.0	2.2			49.7	0.5	79.7		47.8			
LOS	D	A			D	A	E		D			
Approach Delay		23.6			27.8			62.6				
Approach LOS		C			c			E				
Queue Length 50th (ft)	~ 321	8			177	0	~ 335		228			
Queue Length 95th (tt)	m\#449	11			\#270	0	298		199			
Internal Link Dist (ft)		613			462			787			312	
Turn Bay Length (ft)												
Base Capacity (vph)	506	1947			701	1568	529		649			
Starvation Cap Reductn	0	0			0	0	0		0			
Spillback Cap Reductn	0	0			0	0	0		0			
Storage Cap Reductn	0	0			0	0	0		0			
Reduced v/c Ratio	1.03	0.32			0.87	0.31	1.03		0.97			
Intersection Summary												
Area Type: Other												
Cycle Length: 90												
Actuated Cycle Length: 90												
Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Yellow, Master IntersectionNatural Cycle: 90												
Natural Cycle: 90												
Control Type: Actuated-Coordinated												
Maximum v/c Ratio: 1.03												
Intersection Signal Delay					ersection	LOS: D						

Lanes, Volumes, Timings
3: Exit 5 NB Off \& NH 28
Intersection Capacity Utilization $77.2 \% \quad$ ICU Level of Service D
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 3: Exit 5 NB Off \& NH 28

Lanes, Volumes, Timings
9: NH 102 \& St. Charles Street/Londonderry Road
01/23/2018

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		\uparrow	7		*		${ }^{*}$	㻢		\%	㻢	
Traffic Volume (vph)	100	5	90	10	0	10	210	880	120	5	520	140
Future Volume (vph)	100	5	90	10	0	10	210	880	120	5	520	140
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		225	0		0	350		0	100		0
Storage Lanes	0		1	0		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt			0.850		0.932			0.982			0.968	
Flt Protected		0.954			0.976		0.950			0.950		
Satd. Flow (prot)	0	1777	1583	0	1728	0	1770	3476	0	1770	3426	0
Fit Permitted		0.784			0.784		0.950			0.950		
Satd. Flow (perm)	0	1460	1583	0	1388	0	1770	3476	0	1770	3426	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			182		182			25			41	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		593			447			750			330	
Travel Time (s)		13.5			10.2			17.0			7.5	
Peak Hour Factor	0.92	0.92	0.92	0.25	0.25	0.25	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	2\%	2\%	2\%	0\%	0\%	0\%	2\%	2\%	2\%	2\%	2\%	2\%
Adj. Flow (vph)	109	5	98	40	0	40	228	957	130	5	565	152
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	114	98	0	80	0	228	1087	0	5	717	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		0			0			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	3	3	1	3	1		3	3		3	3	
Detector Template	Left	Thru	Right	Left			Left	Thru		Left	Thru	
Leading Detector (ft)	256	256	45	256	45		256	256		256	256	
Trailing Detector (ft)	-5	-5	-5	-5	-5		-5	-5		-5	-5	
Detector 1 Position(ft)	-5	-5	-5	-5	-5		-5	-5		-5	-5	
Detector 1 Size(ft)	50	50	50	50	50		50	50		50	50	
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)	125	125		125			125	125		125	125	
Detector 2 Size(ft)	6	6		6			6	6		6	6	
Detector 2 Type	$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex		$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	
Detector 2 Channel												
Detector 2 Extend (s)	0.0	0.0		0.0			0.0	0.0		0.0	0.0	
Detector 3 Position(ft)	250	250		250			250	250		250	250	
Detector 3 Size(ft)	6	6		6			6	6		6	6	

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Detector 3 Type	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$		Cl+Ex			Cl+Ex	Cl+Ex		Cl+Ex	CI+Ex	
Detector 3 Channel												
Detector 3 Extend (s)	0.0	0.0		0.0			0.0	0.0		0.0	0.0	
Turn Type	Perm	NA	custom	Perm	NA		Prot	NA		Prot	NA	
Protected Phases		8			4		5	2		1	6	
Permitted Phases	8		6	4								
Detector Phase	8	8	6	4	4		5	2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	8.0	5.0	5.0		5.0	8.0		5.0	8.0	
Minimum Split (s)	24.0	24.0	24.0	24.0	24.0		24.0	24.0		11.0	24.0	
Total Split (s)	26.0	26.0	36.0	26.0	26.0		28.0	53.0		11.0	36.0	
Total Split (\%)	28.9\%	28.9\%	40.0\%	28.9\%	28.9\%		31.1\%	58.9\%		12.2\%	40.0\%	
Maximum Green (s)	20.0	20.0	30.0	20.0	20.0		22.0	47.0		5.0	30.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		6.0	6.0		6.0		6.0	6.0		6.0	6.0	
Lead/Lag			Lag				Lead	Lag		Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None	Min	None	None		None	Min		None	Min	
Walk Time (s)	7.0	7.0	7.0	7.0	7.0		7.0	7.0			7.0	
Flash Dont Walk (s)	11.0	11.0	11.0	11.0	11.0		11.0	11.0			11.0	
Pedestrian Calls (\#hr)	0		0	0	0		0	0			0	
Act Effict Green (s)		11.8	24.9		11.5		14.7	47.1		5.6	24.9	
Actuated g/C Ratio		0.18	0.37		0.17		0.22	0.71		0.08	0.37	
v / C Ratio		0.44	0.14		0.21		0.58	0.44		0.03	0.55	
Control Delay		34.9	0.4		1.2		33.3	7.9		37.6	19.3	
Queue Delay		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Delay		34.9	0.4		1.2		33.3	7.9		37.6	19.3	
LOS		C	A		A		C	A		D	B	
Approach Delay		18.9			1.2			12.4			19.4	
Approach LOS		B			A			B			B	
Queue Length 50th (ft)		47	0		0		93	98		2	118	
Queue Length 95th (ft)		105	0		0		181	257		14	220	
Internal Link Dist (t)		513			367			670			250	
Turn Bay Length (t)			225				350			100		
Base Capacity (vph)		493	891		589		657	2546		149	1755	
Starvation Cap Reductn		0	0		0		0	0		0	0	
Spillback Cap Reductn		0	0		0		0	0		0	0	
Storage Cap Reductn		0	0		0		0	0		0	0	
Reduced v/c Ratio		0.23	0.11		0.14		0.35	0.43		0.03	0.41	

Intersection Summary

Area Type: Other

Cycle Length: 90
Actuated Cycle Length: 66.7
Natural Cycle: 75
Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.58
Intersection Signal Delay: $14.8 \quad$ Intersection LOS: B
Intersection Capacity Utilization 60.9\% ICU Level of Service B
Analysis Period (min) 15
Splits and Phases: 9: NH 102 \& St. Charles StreetLondonderry Road

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		*			\uparrow			\dagger			\uparrow	
Traffic Volume (vph)	20	110	5	270	0	70	0	710	130	15	345	0
Future Volume (vph)	20	110	5	270	0	70	0	710	130	15	345	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.995			0.972			0.979				
Flt Protected		0.993			0.962						0.998	
Satd. Flow (prot)	0	1840	0	0	1725	0	0	1722	0	0	1806	0
Flt Permitted		0.920			0.583						0.701	
Satd. Flow (perm)	0	1705	0	0	1045	0	0	1722	0	0	1268	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		2			36			16				
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		356			493			1124			603	
Travel Time (s)		8.1			11.2			25.5			13.7	
Peak Hour Factor	0.60	0.60	0.60	0.96	0.96	0.96	0.89	0.89	0.89	0.86	0.86	0.86
Heavy Vehicles (\%)	2\%	2\%	2\%	3\%	3\%	3\%	8\%	8\%	8\%	5\%	5\%	5\%
Adj. Flow (vph)	33	183	8	281	0	73	0	798	146	17	401	0
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	224	0	0	354	0	0	944	0	0	418	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		0			0			0			0	
Link Offset(ft)		-22			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	3	1		3	2			2		3	2	
Detector Template	Left			Left						Left		
Leading Detector (ft)	256	45		256	131			131		256	131	
Trailing Detector (ft)	-5	-5		-5	-5			-5		-5	-5	
Detector 1 Position(ft)	-5	-5		-5	-5			-5		-5	-5	
Detector 1 Size(ft)	50	50		50	50			50		50	50	
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex		$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex			$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0			0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0			0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0			0.0		0.0	0.0	
Detector 2 Position(ft)	125			125	125			125		125	125	
Detector 2 Size(ft)	6			6	6			6		6	6	
Detector 2 Type	$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex			$\mathrm{Cl}+\mathrm{EX}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	
Detector 2 Channel												
Detector 2 Extend (s)	0.0			0.0	0.0			0.0		0.0	0.0	
Detector 3 Position(ft)	250			250						250		
Detector 3 Size(ft)	6			6						6		
Detector 3 Type	Cl+Ex			Cl+Ex						$\mathrm{Cl}+\mathrm{Ex}$		
Detector 3 Channel												
Detector 3 Extend (s)	0.0			0.0						0.0		

Lanes, Volumes, Timings
10: NH 102 \& Fordway/Madden Hill Road
01/23/2018

	\cdots	+	3	\cdots	k	5	7	\nsim	T*	5	\downarrow	k
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Turn Type	Perm	NA		Perm	NA			NA		Perm	NA	
Protected Phases		4			4			2			2	
Permitted Phases	4			4						2		
Detector Phase	4	4		4	4			2		2	2	
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0			5.0		5.0	5.0	
Minimum Split (s)	24.0	24.0		24.0	24.0			24.0		24.0	24.0	
Total Split (s)	34.0	34.0		34.0	34.0			56.0		56.0	56.0	
Total Split (\%)	37.8\%	37.8\%		37.8\%	37.8\%			2.2\%		62.2\%	62.2\%	
Maximum Green (s)	28.0	28.0		28.0	28.0			50.0		50.0	50.0	
Yellow Time (s)	4.0	4.0		4.0	4.0			4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0			2.0		2.0	2.0	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		6.0			6.0			6.0			6.0	
Lead/Lag 0.0												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0		3.0	3.0	
Recall Mode	None	None		None	None			Min		Min	Min	
Walk Time (s)	7.0	7.0		7.0	7.0			7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0			11.0		11.0	11.0	
Pedestrian Calls (\#/hr)	0	0		0	0			0		0	0	
Act Effct Green (s)		28.0			28.0			50.0			50.0	
Actuated g/C Ratio		0.31			0.31			0.56			0.56	
v/c Ratio		0.42			1.01			0.98			0.59	
Control Delay		27.4			82.1			45.6			17.7	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		27.4			82.1			45.6			17.7	
LOS		C			F			D			B	
Approach Delay		27.4			82.1			45.6			17.7	
Approach LOS		C			F			D			B	
Queue Length 50th (ft)		99			~ 189			484			147	
Queue Length 95th (ft)		101			\#371			\#769			224	
Internal Link Dist (ft)		276			413			1044			523	
Turn Bay Length (ft)												
Base Capacity (vph)		531			349			963			704	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.42			1.01			0.98			0.59	
Intersection Summary												
Area Type: Other												
Cycle Length: 90												
Actuated Cycle Length: 90												
Natural Cycle: 80												
Control Type: Actuated-Uncoordinated												
Maximum v/c Ratio: 1.01												
Intersection Signal Delay: 44.1				Intersection LOS: D								
Intersection Capacity Utilization 84.5\%				ICU Level of Service E								

Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 10: NH 102 \& Fordway/Madden Hill Road

7: Birch St/Crystal Ave \& NH 102

	4	\rightarrow		1		4	4	4	p		$\frac{1}{7}$	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow		${ }^{*}$	\dagger		*	\uparrow		${ }^{\top}$	\uparrow	T
Traffic Volume (vph)	20	520	40	60	360	195	170	180	20	80	260	20
Future Volume (vph)	20	520	40	60	360	195	170	180	20	80	260	20
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.989			0.947			0.985				0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1656	1724	0	1703	1697	0	1719	1782	0	1703	1792	1524
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1656	1724	0	1703	1697	0	1719	1782	0	1703	1792	1524
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		4			26			5				136
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		505			530			361			411	
Travel Time (s)		11.5			12.0			8.2			9.3	
Peak Hour Factor	0.96	0.96	0.96	0.94	0.94	0.94	0.85	0.85	0.85	0.91	0.91	0.91
Heavy Vehicles (\%)	9\%	9\%	9\%	6\%	6\%	6\%	5\%	5\%	5\%	6\%	6\%	6\%
Parking (\#/hr)			0									
Adj. Flow (vph)	21	542	42	64	383	207	200	212	24	88	286	22
Shared Lane Traffic (\%) 280												
Lane Group Flow (vph)	21	584	0	64	590	0	200	236	0	88	286	22
Turn Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	pm+ov
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases 7												
Detector Phase	5	2		1	6		3	8		7	4	5
Switch Phase												
Minimum Initial (s)	4.0	5.0		4.0	10.0		4.0	10.0		4.0	9.0	4.0
Minimum Split (s)	10.0	30.0		10.0	30.0		10.0	25.0		10.0	25.0	10.0
Total Split (s)	10.0	51.0		10.0	51.0		30.0	43.0		16.0	29.0	10.0
Total Split (\%)	8.3\%	42.5\%		8.3\%	42.5\%		25.0\%	35.8\%		13.3\%	24.2\%	8.3\%
Maximum Green (s)	4.0	45.0		4.0	45.0		24.0	37.0		10.0	23.0	4.0
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	6.0
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	Lead
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	Min		None	Min		Min	None		Min	None	None
Walk Time (s)		7.0			7.0			7.0			7.0	
Flash Dont Walk (s)		11.0			11.0			11.0			11.0	
Pedestrian Calls (\#/hr)		10			10			0			10	
Act Effct Green (s)	4.1	40.0		4.1	44.7		17.6	29.1		9.2	20.7	30.9
Actuated g/C Ratio	0.04	0.37		0.04	0.42		0.16	0.27		0.09	0.19	0.29
v/c Ratio	0.33	0.90		1.00	0.81		0.71	0.48		0.60	0.82	0.04
Control Delay	69.8	51.2		167.1	39.2		58.0	36.3		68.5	63.4	0.1
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	69.8	51.2		167.1	39.2		58.0	36.3		68.5	63.4	0.1
LOS	E	D		F	D		E	D		E	E	A

7: Birch St/Crystal Ave \& NH 102

	4	\rightarrow	\%	t	\longleftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach Delay		51.8			51.7			46.2			61.0	
Approach LOS		D			D			D			E	
Queue Length 50th (tt)	15	386		~ 53	379		141	142		63	202	0
Queue Length 95th (tt)	\#45	\#641		\#151	\#636		208	204		\#137	\#358	0
Internal Link Dist (ft)		425			450			281			331	
Turn Bay Length (ft)												
Base Capacity (vph)	63	743		64	757		394	633		162	394	537
Starvation Cap Reductn	0	0		0	0		0	0		0	0	0
Spillback Cap Reductn	0	0		0	0		0	0		0	0	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	0.33	0.79		1.00	0.78		0.51	0.37		0.54	0.73	0.04

Intersection Summary

Area Type:
 Other

Cycle Length: 120
Actuated Cycle Length: 106.9
Natural Cycle: 90
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 1.00
Intersection Signal Delay: $52.4 \quad$ Intersection LOS: D
Intersection Capacity Utilization 77.3\% ICU Level of Service D
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 7: Birch St/Crystal Ave \& NH 102

	\rightarrow	\cdots	1	4	4	\%
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	44	7	\%	个4	7	「
Traffic Volume (vph)	1715	265	225	1025	660	460
Future Volume (vph)	1715	265	225	1025	660	460
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)		0	250		0	400
Storage Lanes		1	1		2	1
Taper Length (ft)			25		25	
Lane Util. Factor	0.95	1.00	1.00	0.95	0.97	1.00
Fit		0.850				0.850
Flt Protected			0.950		0.950	
Satd. Flow (prot)	3539	1583	1770	3539	3433	1583
Flt Permitted			0.058		0.950	
Satd. Flow (perm)	3539	1583	108	3539	3433	1583
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		209				9
Link Speed (mph)	30			30	30	
Link Distance (ft)	511			427	520	
Travel Time (s)	11.6			9.7	11.8	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	1864	288	245	1114	717	500
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	1864	288	245	1114	717	500
Turn Type	NA	Perm	pm+pt	NA	Prot	pm+ov
Protected Phases	4		3	8	2	3
Permitted Phases		4	8			2
Detector Phase	4	4	3	8	2	3
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	29.5	29.5	9.5	29.5	29.5	9.5
Total Split (s)	69.0	69.0	19.0	88.0	32.0	19.0
Total Split (\%)	57.5\%	57.5\%	15.8\%	73.3\%	26.7\%	15.8\%
Maximum Green (s)	64.5	64.5	14.5	83.5	27.5	14.5
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5
Lead/Lag	Lag	Lag	Lead			Lead
Lead-Lag Optimize?	Yes	Yes	Yes			Yes
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	C-Max	None
Walk Time (s)	5.0	5.0		5.0	5.0	
Flash Dont Walk (s)	20.0	20.0		20.0	20.0	
Pedestrian Calls (\#/hr)	0	0		0	0	
Act Effct Green (s)	65.0	65.0	83.5	83.5	27.5	46.0
Actuated g/C Ratio	0.54	0.54	0.70	0.70	0.23	0.38
v / c Ratio	0.97	0.30	0.91	0.45	0.91	0.82
Control Delay	42.3	5.2	64.8	11.9	62.2	44.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	42.3	5.2	64.8	11.9	62.2	44.9

Zone 3
9: N. High St \& Connector Road

	\rightarrow		7	4	4	p
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
LOS	D	A	E	B	E	D
Approach Delay	37.3			21.4	55.1	
Approach LOS	D			C	E	
Queue Length 50th (ft)	713	29	147	200	280	336
Queue Length 95th (ft)	\#913	75	m\#258	m294	\#389	\#514
Internal Link Dist (tt)	431			347	440	
Turn Bay Length (tt)			250			400
Base Capacity (vph)	1916	953	275	2462	786	618
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.97	0.30	0.89	0.45	0.91	0.81
Intersection Summary						
Area Type: Other						
Cycle Length: 120						
Actuated Cycle Length: 120						
Offset: $0(0 \%)$, Referenced to phase 2:NBL and 6:, Start of YellowNatural Cycle: 100						
Control Type: Actuated-Coordinated						
Maximum v/c Ratio: 0.97						
Intersection Signal Delay: 37.3				Intersection LOS: D		
Intersection Capacity Utilization 90.0\% ICU Level of Service E						
Analysis Period (min) 15						
\# 95th percentile volume exceeds capacity, queue may be longer.						
Queue shown is maximum after two cycles.						
m Volume for 95 th percentile queue is metered by upstream signal						

Splits and Phases: 9: N. High St \& Connector Road

	3	\rightarrow	7	5	4		4	－	4	4	k	\rightarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations	＊	个㤽		${ }^{*}$	个 \uparrow			\uparrow	F	\％	\uparrow	
Traffic Volume（vph）	70	2075	30	120	960	80	20	10	90	200	30	60
Future Volume（vph）	70	2075	30	120	960	80	20	10	90	200	30	60
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ft）	50		100	100		0	0		200	100		0
Storage Lanes	1		0	1		0	0		1	1		0
Taper Length（ft）	25			25			25			25		
Lane Util．Factor	1.00	0.91	0.91	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor								0.97				
Fit		0.998			0.989				0.850		0.900	
Flt Protected	0.950			0.950				0.967		0.950		
Satd．Flow（prot）	1687	4838	0	1719	3400	0	0	1801	1583	1805	1710	0
Flt Permitted	0.950			0.950				0.770		0.727		
Satd．Flow（perm）	1687	4838	0	1719	3400	0	0	1390	1583	1381	1710	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）		2			9				45		77	
Link Speed（mph）		30			30			30			30	
Link Distance（ft）		333			347			309			251	
Travel Time（s）		7.6			7.9			7.0			5.7	
Confl．Peds．（\＃／hr）							40					
Peak Hour Factor	0.89	0.89	0.89	0.96	0.96	0.96	0.65	0.65	0.65	0.67	0.67	0.67
Heavy Vehicles（\％）	7\％	7\％	7\％	5\％	5\％	5\％	2\％	2\％	2\％	0\％	0\％	0\％
Adj．Flow（vph）	79	2331	34	125	1000	83	31	15	138	299	45	90
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	79	2365	0	125	1083	0	0	46	138	299	135	0
Turn Type	Prot	NA		Prot	NA		Perm	NA	pm＋ov	Perm	NA	
Protected Phases	1	6		5	2			4	1		8	
Permitted Phases							4		4	8		
Detector Phase	1	6		5	2		4	4	1	8	8	
Switch Phase												
Minimum Initial（s）	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	
Minimum Split（s）	31.0	31.0		31.0	31.0		31.0	31.0	31.0	32.5	32.5	
Total Split（s）	31.0	56.5		31.0	56.5		32.5	32.5	31.0	32.5	32.5	
Total Split（\％）	25．8\％	47．1\％		25．8\％	47．1\％		27．1\％	27．1\％	25．8\％	27．1\％	27．1\％	
Maximum Green（s）	25.0	50.5		25.0	50.5		26.5	26.5	25.0	26.5	26.5	
Yellow Time（s）	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
All－Red Time（s）	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust（s）	0.0	0.0		0.0	0.0			0.0	0.0	0.0	0.0	
Total Lost Time（s）	6.0	6.0		6.0	6.0			6.0	6.0	6.0	6.0	
Lead／Lag	Lead	Lag		Lead	Lag				Lead			
Lead－Lag Optimize？	Yes	Yes		Yes	Yes				Yes			
Vehicle Extension（s）	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	C－Max		None	C－Max		None	None	None	None	None	
Walk Time（s）	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	
Flash Dont Walk（s）	20.0	20.0		20.0	20.0		20.0	20.0	20.0	20.0	20.0	
Pedestrian Calls（\＃／hr）	0	0		0	0		0	0	0	0	0	
Act Effct Green（s）	11.0	61.5		14.0	64.5			26.5	43.5	26.5	26.5	
Actuated g／C Ratio	0.09	0.51		0.12	0.54			0.22	0.36	0.22	0.22	
v / c Ratio	0.52	0.95		0.62	0.59			0.15	0.23	0.98	0.31	

10／16／2017

Zone 3
10: Franklin St/Franklin St Ext \& Folsom Road

	3	\rightarrow	T	而	4	\cdots		-	4	4	*	+
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	SEL	SET	SER	NWL	NWT	NWR
Control Delay	67.1	28.4		63.5	20.8			39.3	18.0	94.7	19.9	
Queue Delay	0.0	0.0		0.0	0.0			0.0	0.0	0.0	0.0	
Total Delay	67.1	28.4		63.5	20.8			39.3	18.0	94.7	19.9	
LOS	E	C		E	C			D	B	F	B	
Approach Delay		29.7			25.2			23.3			71.5	
Approach LOS		C			C			C			E	
Queue Length 50th (ft)	59	679		94	284			29	48	232	36	
Queue Length 95th (ft)	m61	m\#789		151	382			45	56	\#238	54	
Internal Link Dist (ft)		253			267			229			171	
Turn Bay Length (ft)	50			100					200	100		
Base Capacity (vph)	351	2480		358	1832			306	781	304	437	
Starvation Cap Reductn	0	0		0	0			0	0	0	0	
Spillback Cap Reductn	0	0		0	0			0	0	0	0	
Storage Cap Reductn	0	0		0	0			0	0	0	0	
Reduced v/c Ratio	0.23	0.95		0.35	0.59			0.15	0.18	0.98	0.31	
Intersection Summary												
Area Type: Other												
Cycle Length: 120												
Actuated Cycle Length: 120												
Offset: $0(0 \%$), Referenced to phase 2:WBT and 6:EBT, Start of Yellow												
Natural Cycle: 145												
Control Type: Actuated-Coordinated												
Maximum v/c Ratio: 0.98												
Intersection Signal Delay: 32.4					Intersection LOS: C							
Intersection Capacity Utilization 80.2\% ICU Level of Service D												
Analysis Period (min) 15												
\# 95th percentile volume exceeds capacity, queue may be longer.												
Queue shown is maximum after two cycles.												
m Volume for 95 th percentile queue is metered by upstream signal.												

Splits and Phases: 10: Franklin St/Franklin St Ext \& Folsom Road

Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	${ }^{1}$	緤	「	${ }^{7} 1$	个4		＊＊	舟	「	7	44	＊
Traffic Volume（vph）	40	240	40	50	200	0	230	1380	340	45	820	235
Future Volume（vph）	40	240	40	50	200	0	230	1380	340	45	820	235
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ft）	150		150	360		300	250		100	0		100
Storage Lanes	1		0	2		0	2		1	1		1
Taper Length（ t ）	25			25			25			25		
Lane Util．Factor	1.00	0.95	1.00	0.97	0.95	1.00	0.97	0.95	1.00	1.00	0.95	1.00
Fit			0.850						0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd．Flow（prot）	1736	3471	1553	3335	3438	0	3400	3505	1568	1752	3505	1568
Flt Permitted	0.950			0.950			0.950			0.950		
Satd．Flow（perm）	1736	3471	1553	3335	3438	0	3400	3505	1568	1752	3505	1568
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）			82						191			130
Link Speed（mph）		30			30			30			30	
Link Distance（ft）		622			1162			532			412	
Travel Time（s）		14.1			26.4			12.1			9.4	
Peak Hour Factor	0.84	0.84	0.84	0.79	0.79	0.79	0.86	0.86	0.86	0.99	0.99	0.99
Heavy Vehicles（\％）	4\％	4\％	4\％	5\％	5\％	5\％	3\％	3\％	3\％	3\％	3\％	3\％
Adj．Flow（vph）	48	286	48	63	253	0	267	1605	395	45	828	237
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	48	286	48	63	253	0	267	1605	395	45	828	237
Turn Type	Prot	NA	$p m+o v$	Prot	NA		Prot	NA	Free	Prot	NA	pt＋ov
Protected Phases	1	6	7	5	2		3	8		7	4	45
Permitted Phases		6	6		2			8	Free		4	
Detector Phase	1	6	7	5	2		3	8		7	4	45
Switch Phase												
Minimum Initial（s）	6.0	8.0	5.0	7.0	8.0		7.0	8.0		5.0	8.0	
Minimum Split（s）	12.0	40.0	11.0	13.0	31.0		13.0	40.0		11.0	21.0	
Total Split（s）	15.0	30.0	17.0	11.0	26.0		21.0	62.0		17.0	58.0	
Total Split（\％）	12．5\％	25．0\％	14．2\％	9．2\％	21．7\％		17．5\％	51．7\％		14．2\％	48．3\％	
Maximum Green（s）	9.0	24.0	11.0	5.0	20.0		15.0	56.0		11.0	52.0	
Yellow Time（s）	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	
All－Red Time（s）	2.0	2.0	2.0	2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust（s）	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time（s）	6.0	6.0	6.0	6.0	6.0		6.0	6.0		6.0	6.0	
Lead／Lag	Lead	Lag	Lead	Lead	Lag		Lead	Lag		Lead	Lag	
Lead－Lag Optimize？	Yes	Yes	Yes	Yes	Yes		Yes	Yes		Yes	Yes	
Vehicle Extension（s）	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	Max	None	None	Max		None	Max		None	None	
Act Effct Green（s）	9.0	24.0	38.6	5.0	20.0		15.0	57.5	119.1	8.6	51.1	62.1
Actuated g／C Ratio	0.08	0.20	0.32	0.04	0.17		0.13	0.48	1.00	0.07	0.43	0.52
v / c Ratio	0.37	0.41	0.09	0.45	0.44		0.62	0.95	0.25	0.36	0.55	0.27
Control Delay	61.2	43.7	1.9	66.8	47.5		56.7	42.8	0.4	79.9	19.7	3.7
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.5	0.0
Total Delay	61.2	43.7	1.9	66.8	47.5		56.7	42.8	0.4	79.9	20.2	3.7
LOS	E	D	A	E	D		E	D	A	E	C	A
Approach Delay		40.6			51.3			37.0			19.1	

	\cdots	\uparrow	「	\cdots	\downarrow	\downarrow	4	\nearrow	\downarrow	\downarrow	\checkmark	4
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Approach LOS		D			D			D			B	
Queue Length 50th (ft)	36	102	0	25	93		102	601	0	37	270	23
Queue Length 95th (ft)	71	135	5	43	118		140	\#740	0	m65	310	45
Internal Link Dist (ft)		542			1082			452			332	
Turn Bay Length (ft)	150		150	360			250		100			100
Base Capacity (vph)	131	699	588	139	577		428	1691	1568	161	1530	875
Starvation Cap Reductn	0	0	0	0	0		0	0	,	0	319	
Spillback Cap Reductn	0	0	0	0	0		0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0		0	0	0	0	0	
Reduced v/c Ratio	0.37	0.41	0.08	0.45	0.44		0.62	0.95	0.25	0.28	0.68	0.27
Intersection Summary												

Area Type: Other

Cycle Length: 120
Actuated Cycle Length: 119.1
Natural Cycle: 125
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.95
Intersection Signal Delay: 33.6 Intersection LOS: C
Intersection Capacity Utilization 74.8\% ICU Level of Service D
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 11: Folsom Rd/Tsienneto Rd \& Crystal Av/NH 28

	\ldots	5	7	7	6	\checkmark						
Lane Group	NWL	NWR	NET	NER	SWL	SWT	$\varnothing 1$	$\varnothing 2$	$\emptyset 3$	$\emptyset 4$	$\varnothing 5$	$\emptyset 6$
Lane Configurations	${ }^{*}$	F	夹	F	${ }^{*}$	4㐱						
Traffic Volume (vph)	205	90	920	550	80	1010						
Future Volume (vph)	205	90	920	550	80	1010						
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900						
Storage Length (ft)	150	150		100	220							
Storage Lanes	0	1		1	1							
Taper Length (ft)	25				25							
Lane Util. Factor	1.00	1.00	0.95	1.00	1.00	0.95						
Fit		0.850		0.850								
Flt Protected	0.950				0.950							
Satd. Flow (prot)	1770	1583	3505	1568	1770	3539						
Fil Permitted	0.950				0.149							
Satd. Flow (perm)	1770	1583	3505	1568	278	3539						
Right Turn on Red		Yes		Yes								
Satd. Flow (RTOR)		50		171								
Link Speed (mph)	30		30			30						
Link Distance (ft)	408		412			410						
Travel Time (s)	9.3		9.4			9.3						
Peak Hour Factor	0.83	0.83	0.86	0.86	0.81	0.81						
Heavy Vehicles (\%)	2\%	2\%	3\%	3\%	2\%	2\%						
Adj. Flow (vph)	247	108	1070	640	99	1247						
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	247	108	1070	640	99	1247						
Turn Type	Prot	pm+ov	NA	Free	pm+pt	NA						
Protected Phases	1256	7	8		7	34	1	2	3	4	5	6
Permitted Phases		1256		Free	34							
Detector Phase	1256	7	8		7	34						
Switch Phase												
Minimum Initial (s)		5.0	8.0		5.0		6.0	8.0	7.0	8.0	7.0	8.0
Minimum Split (s)		11.0	40.0		11.0		12.0	31.0	13.0	21.0	13.0	40.0
Total Split (s)		17.0	62.0		17.0		15.0	26.0	21.0	58.0	11.0	30.0
Total Split (\%)		14.2\%	51.7\%		14.2\%		13\%	22\%	18\%	48\%	9\%	25\%
Maximum Green (s)		11.0	56.0		11.0		9.0	20.0	15.0	52.0	5.0	24.0
Yellow Time (s)		4.0	4.0		4.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)		2.0	2.0		2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		0.0	0.0		0.0							
Total Lost Time (s)		6.0	6.0		6.0							
Lead/Lag		Lead	Lag		Lead		Lead	Lag	Lead	Lag	Lead	Lag
Lead-Lag Optimize?		Yes	Yes		Yes		Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)		3.0	3.0		3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode		None	Max		None		None	Max	None	None	None	Max
Act Effct Green (s)	33.0	47.6	57.5	119.1	72.1	72.1						
Actuated g/C Ratio	0.28	0.40	0.48	1.00	0.61	0.61						
v/c Ratio	0.50	0.16	0.63	0.41	0.36	0.58						
Control Delay	39.7	12.6	10.2	0.7	13.5	15.7						
Queue Delay	0.0	0.0	0.9	0.0	0.0	0.0						
Total Delay	39.7	12.6	11.1	0.7	13.5	15.7						
LOS	D	B	B	A	B	B						
Approach Delay	31.4		7.2			15.5						

Lane Group	NWL	NWR	NET	NER	SWL	SWT	$\varnothing 1$	$\varnothing 2$	$\varnothing 3$	$\emptyset 4$	$\varnothing 5$	$\varnothing 6$
Approach LOS	C		A			B						
Queue Length 50th (ft)	158	27	70	0	30	288						
Queue Length 95th (ft)	217	55	m104	m0	48	296						
Internal Link Dist (ft)	328		332			330						
Turn Bay Length (ft)	150	150		100	220							
Base Capacity (vph)	490	693	1691	1568	305	2169						
Starvation Cap Reductn	0	0	332	0	0	0						
Spillback Cap Reductn	0	0	0	0	0	41						
Storage Cap Reductn	0	0	0	0	0	0						
Reduced v/c Ratio	0.50	0.16	0.79	0.41	0.32	0.59						

Intersection Summary
Area Type: Other
Cycle Length: 120
Actuated Cycle Length: 119.1
Natural Cycle: 125
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.95
Intersection Signal Delay: 13.0
Intersection Capacity Utilization 56.2\%
Intersection LOS: B
ICU Level of Service B
Analysis Period (min) 15
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 12: Tsienneto Rd \& Pinkerton St

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	*	4 ${ }^{2}$		7	4t			\uparrow	「		\uparrow	「
Traffic Volume (vph)	170	300	5	20	550	40	15	10	15	20	10	170
Future Volume (vph)	170	300	5	20	550	40	15	10	15	20	10	170
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	75		0	150		150	0		0	0		0
Storage Lanes	1		0	1		0	0		1	0		1
Taper Length (ft)	50			25			25			25		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.998			0.990				0.850			0.850
Flt Protected	0.950			0.950				0.971			0.968	
Satd. Flow (prot)	1687	3367	0	1770	3504	0	0	1845	1615	0	1821	1599
Flt Permitted	0.950			0.950				0.797			0.769	
Satd. Flow (perm)	1687	3367	0	1770	3504	0	0	1514	1615	0	1447	1599
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		2			10				109			189
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		277			1162			218			433	
Travel Time (s)		6.3			26.4			5.0			9.8	
Peak Hour Factor	0.83	0.83	0.83	0.92	0.92	0.92	0.50	0.50	0.50	0.90	0.90	0.90
Heavy Vehicles (\%)	7\%	7\%	7\%	2\%	2\%	2\%	0\%	0\%	0\%	1\%	1\%	1\%
Adj. Flow (vph)	205	361	6	22	598	43	30	20	30	22	11	189
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	205	367	0	22	641	0	0	50	30	0	33	189
Turn Type	Prot	NA		Prot	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases					6		8	8	8	4		4
Detector Phase	5	2		1	6		8	8	8	4	4	4
Switch Phase												
Minimum Initial (s)	8.0	8.0		5.0	8.0		5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	14.0	46.0		11.0	43.0		33.0	33.0	33.0	33.0	33.0	33.0
Total Split (s)	14.0	46.0		11.0	43.0		33.0	33.0	33.0	33.0	33.0	33.0
Total Split (\%)	15.6\%	51.1\%		12.2\%	47.8\%		36.7\%	36.7\%	36.7\%	36.7\%	36.7\%	36.7\%
Maximum Green (s)	8.0	40.0		5.0	37.0		27.0	27.0	27.0	27.0	27.0	27.0
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0		0.0	0.0
Total Lost Time (s)	6.0	6.0		6.0	6.0			6.0	6.0		6.0	6.0
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	Max		None	None		None	None	None	None	None	None
Act Effct Green (s)	8.1	40.5		5.1	30.2			7.6	7.6		7.6	7.6
Actuated g/C Ratio	0.13	0.63		0.08	0.47			0.12	0.12		0.12	0.12
v / c Ratio	0.97	0.17		0.16	0.39			0.28	0.10		0.19	0.53
Control Delay	88.4	6.3		33.6	11.6			31.4	0.7		29.8	11.1
Queue Delay	0.0	0.0		0.0	0.0			0.0	0.0		0.0	0.0
Total Delay	88.4	6.3		33.6	11.6			31.4	0.7		29.8	11.1
LOS	F	A		C	B			C	A		C	B
Approach Delay		35.8			12.3			19.9			13.9	

	-	\rightarrow	2	\cdots	4	1	b	7	ρ	4	\downarrow	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
Approach LOS		D			B			B			B	
Queue Length 50th (ft)	73	20		7	76			17	0		11	
Queue Length 95th (ft)	\#209	57		31	123			27	0		38	53
Internal Link Dist (ft)		197			1082			138			353	
Turn Bay Length (ft)	75			150								
Base Capacity (vph)	212	2125		139	2050			644	750		616	789
Starvation Cap Reductn	0	0		0	0			0	0		0	0
Spillback Cap Reductn	0	0		0	0			0	0		0	
Storage Cap Reductn	0	0		0	0			0	0		0	0
Reduced v/c Ratio	0.97	0.17		0.16	0.31			0.08	0.04		0.05	0.24
Intersection Summary												
Area Type: Other												
Cycle Length: 90												
Actuated Cycle Length: 64.1												
Natural Cycle: 90												
Control Type: Actuated-Uncoordinated												
Maximum v/c Ratio: 0.97												
Intersection Signal Delay: 21.7				Intersection LOS: C								
Intersection Capacity Utilization 49.2\%				ICU Level of Service A								
Analysis Period (min) 15												
\# 95th percentile volume exceeds capacity, queue may be longer.												
Queue shown is maximum after two cycles.												

Splits and Phases: 13: Applebees/Linlew Dr \& NH 28

	4	\rightarrow		\checkmark	4	4	4	4	p	\checkmark	$\frac{1}{\dagger}$	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7%	个 \uparrow		*	个 ${ }^{\circ}$		\%	\hat{H}		${ }^{7}$	\uparrow	*
Traffic Volume (vph)	30	330	5	5	430	140	30	10	10	320	5	150
Future Volume (vph)	30	330	5	5	430	140	30	10	10	320	5	150
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	150		150	150		150	0		0	0		0
Storage Lanes	2		0	1		0	1		0	1		1
Taper Length (ft)	200			25			25			25		
Lane Util. Factor	0.97	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	0.95	0.95	1.00
Fit		0.998			0.963			0.925				0.850
Fit Protected	0.950			0.950			0.950			0.950	0.954	
Satd. Flow (prot)	3303	3399	0	1736	3343	0	1805	1758	0	1665	1672	1568
Flt Permitted	0.950			0.950			0.950			0.950	0.954	
Satd. Flow (perm)	3303	3399	0	1736	3343	0	1805	1758	0	1665	1672	1568
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		2			49			15				167
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		412			486			151			343	
Travel Time (s)		9.4			11.0			3.4			7.8	
Peak Hour Factor	0.83	0.83	0.83	0.97	0.97	0.97	0.67	0.67	0.67	0.90	0.90	0.90
Heavy Vehicles (\%)	6\%	6\%	6\%	4\%	4\%	4\%	0\%	0\%	0\%	3\%	3\%	3\%
Adj. Flow (vph)	36	398	6	5	443	144	45	15	15	356	6	167
Shared Lane Traffic (\%)										49\%		
Lane Group Flow (vph)	36	404	0	5	587	0	45	30	0	182	180	167
Turn Type	Prot	NA		Prot	NA		Split	NA		Split	NA	pttov
Protected Phases	5	2		1	6		3	3		4	4	45
Permitted Phases								3				
Detector Phase	5	2		1	6		3	3		4	4	45
Switch Phase 80.0												
Minimum Initial (s)	5.0	8.0		5.0	8.0		5.0	5.0		8.0	8.0	
Minimum Split (s)	14.0	53.0		11.0	50.0		22.0	22.0		22.0	22.0	
Total Split (s)	14.0	53.0		13.0	52.0		22.0	22.0		22.0	22.0	
Total Split (\%)	12.7\%	48.2\%		11.8\%	47.3\%		20.0\%	20.0\%		20.0\%	20.0\%	
Maximum Green (s)	8.0	47.0		7.0	46.0		16.0	16.0		16.0	16.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lead		Lag	Lag	
Lead-Lag Optimize?	Yes	Yes										
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	Min		None	Min		None	None		None	None	
Walk Time (s)		5.0			5.0		5.0	5.0		5.0	5.0	
Flash Dont Walk (s)		11.0			11.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (\#/hr)		0			0		0	0		0	0	
Act Effct Green (s)	6.5	28.3		6.1	17.4		7.5	7.5		13.2	13.2	26.1
Actuated g/C Ratio	0.10	0.43		0.09	0.26		0.11	0.11		0.20	0.20	0.39
v/c Ratio	0.11	0.28		0.03	0.64		0.22	0.14		0.55	0.54	0.23
Control Delay	33.0	15.6		33.8	24.4		33.9	22.9		33.8	33.5	4.2
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0

14: VIP Dr/Ashleigh Dr \& NH 28									Lanes, Volumes, Timings			
	\rangle	\rightarrow	7	\checkmark	↔	4	4	\uparrow	p	\checkmark	\downarrow	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay	33.0	15.6		33.8	24.4		33.9	22.9		33.8	33.5	4.2
LOS	C	B			C		C	C		C	C	A
Approach Delay		17.0			24.4			29.5			24.3	
Approach LOS		B			C			C			C	
Queue Length 50th (tt)	7	56		2	108		18	6		73	72	0
Queue Length 95th (tt)	21	111		13	172		38	21		156	154	38
Internal Link Dist (ft)		332			406			71			263	
Turn Bay Length (t)	150			150								
Base Capacity (vph)	421	2460		193	2396		460	459		424	426	733
Starvation Cap Reductn	0	0		0	0		0	0		0	0	0
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	0.09	0.16		0.03	0.24		0.10	0.07		0.43	0.42	0.23

Intersection Summary

Area Type: Other

Cycle Length: 110
Actuated Cycle Length: 66.3
Natural Cycle: 110
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.64

Intersection Signal Delay: 22.6
Intersection Capacity Utilization 44.8\%
Analysis Period (min) 15

Intersection LOS: C
ICU Level of Service A

Splits and Phases: 14: VIP Dr/Ashleigh Dr \& NH 28

	9	\uparrow	Γ	\cdots	\downarrow	\downarrow	4	π	\uparrow	\downarrow	\checkmark	4
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	7	¢		\%	\uparrow	7	7	个t		\%		
Traffic Volume (vph)	30	70	30	40	40	140	190	1010	60	20	340	70
Future Volume (vph)	30	70	30	40	40	140	190	1010	60	20	340	70
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	150		150	150		150	150		0	150		150
Storage Lanes	1		0	1		1	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Fit		0.955				0.850		0.992			0.974	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1779	0	1787	1881	1599	1805	3581	0	1805	3516	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1770	1779	0	1787	1881	1599	1805	3581	0	1805	3516	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		29				164		9			38	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		481			347			479			371	
Travel Time (s)		10.9			7.9			10.9			8.4	
Peak Hour Factor	0.99	0.99	0.99	0.95	0.95	0.95	0.89	0.89	0.89	0.93	0.93	0.93
Heavy Vehicles (\%)	2\%	2\%	2\%	1\%	1\%	1\%	0\%	0\%	0\%	0\%	0\%	0\%
Adj. Flow (vph)	30	71	30	42	42	147	213	1135	67	22	366	75
Shared Lane Traffic (\%) $\%$ (\%) 30												
Lane Group Flow (vph)	30	101	0	42	42	147	213	1202	0	22	441	0
Turn Type	Prot	NA		Prot	NA	pt+ov	Prot	NA		Prot	NA	
Protected Phases	1	6		5	2	23	3	8		7	4	
Permitted Phases		6			2							
Detector Phase	1	6		5	2	23	3	8		7	4	
Switch Phase 8												
Minimum Initial (s)	5.0	8.0		5.0	8.0		8.0	8.0		8.0	8.0	
Minimum Split (s)	11.0	14.0		11.0	14.0		14.0	14.0		14.0	14.0	
Total Split (s)	11.0	14.0		11.0	14.0		14.0	21.0		14.0	21.0	
Total Split (\%)	18.3\%	23.3\%		18.3\%	23.3\%		23.3\%	35.0\%		23.3\%	35.0\%	
Maximum Green (s)	5.0	8.0		5.0	8.0		8.0	15.0		8.0	15.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Lead/Lag	Lead	Lag										
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	Max		None	None		None	None	
Act Effct Green (s)	5.1	8.2		5.1	8.2	22.6	8.2	23.2		8.2	11.2	
Actuated g/C Ratio	0.10	0.16		0.10	0.16	0.45	0.16	0.47		0.16	0.23	
v/c Ratio	0.16	0.32		0.23	0.14	0.18	0.72	0.72		0.07	0.54	
Control Delay	26.3	19.6		27.2	22.4	2.9	40.7	18.8		22.2	18.7	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	26.3	19.6		27.2	22.4	2.9	40.7	18.8		22.2	18.7	
LOS	C	B		C	C	A	D	B		C	B	
Approach Delay		21.1			10.9			22.1			18.9	

Zone 5
2040 Alt A (R) PM Peak
18: Tsienneto Rd \& NH 28 Byp NB/NH 28 Byp SB

	\cdots	\uparrow	「	\checkmark	\downarrow	\downarrow	9	λ	\downarrow	\downarrow	\star	4
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Approach LOS		C			B			C			B	
Queue Length 50th (tt)	7	16		10	9	0	51	92		5	46	
Queue Length 95th (ft)	32	63		41	38	26	\#183	\#421		25	103	
Internal Link Dist (ft)		401			267			399			291	
Turn Bay Length (t)	150			150		150	150			150		
Base Capacity (vph)	182	317		184	310	815	297	1676		297	1114	
Starvation Cap Reductn	0	0		0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0		0	0	0	0	0		0	0	
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	
Reduced v/c Ratio	0.16	0.32		0.23	0.14	0.18	0.72	0.72		0.07	0.40	
Intersection Summary												
Area Type: Other												
Cycle Length: 60												
Actuated Cycle Length: 49.7												
Natural Cycle: 70												
Control Type: Actuated-Uncoordinated												
Maximum v/c Ratio: 0.72												
Intersection Signal Delay: 20.2				Intersection LOS: C								
Intersection Capacity Utilization 60.4\%				ICU Level of Service B								
Analysis Period (min) 15												
\# 95th percentile volume exceeds capacity, queue may be longer.												

Splits and Phases: 18: Tsienneto Rd \& NH 28 Byp NB/NH 28 Byp SB

	\rangle	\checkmark	4	\uparrow	\downarrow	\checkmark				
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	$\varnothing 2$	$\varnothing 5$	$\emptyset 6$	$\emptyset 7$
Lane Configurations	Y		\%	\uparrow	\uparrow	F				
Traffic Volume (vph)	620	0	10	290	180	350				
Future Volume (vph)	620	0	10	290	180	350				
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900				
Storage Length (ft)	200	0	100			90				
Storage Lanes	0	0	1			1				
Taper Length (ft)	25		25							
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00				
Fit						0.850				
Fit Protected	0.950		0.950							
Satd. Flow (prot)	1787	0	1770	1863	1845	1568				
Flt Permitted	0.950		0.530							
Satd. Flow (perm)	1787	0	987	1863	1845	1568				
Right Turn on Red		Yes				Yes				
Satd. Flow (RTOR)						393				
Link Speed (mph)	30			30	30					
Link Distance (ft)	392			704	263					
Travel Time (s)	8.9			16.0	6.0					
Peak Hour Factor	0.90	0.90	0.87	0.87	0.89	0.89				
Heavy Vehicles (\%)	1\%	1\%	2\%	2\%	3\%	3\%				
Adj. Flow (vph)	689	0	11	333	202	393				
Shared Lane Traffic (\%)										
Lane Group Flow (vph)	689	0	11	333	202	393				
Turn Type	Prot		pm+pt	NA	NA	custom				
Protected Phases	8		1	67	27	78	2	5	6	7
Permitted Phases			67			2				
Detector Phase	8		1	67	27	78				
Switch Phase										
Minimum Initial (s)	5.0		5.0				5.0	5.0	5.0	5.0
Minimum Split (s)	26.5		11.0				9.0	11.0	9.0	11.0
Total Split (s)	47.0		11.0				20.0	11.0	20.0	12.0
Total Split (\%)	52.2\%		12.2\%				22\%	12\%	22\%	13\%
Maximum Green (s)	41.0		5.0				16.0	5.0	16.0	6.0
Yellow Time (s)	4.0		4.0				3.0	4.0	3.0	4.0
All-Red Time (s)	2.0		2.0				1.0	2.0	1.0	2.0
Lost Time Adjust (s)	0.0		0.0							
Total Lost Time (s)	6.0		6.0							
Lead/Lag	Lag		Lead				Lag	Lead	Lag	Lead
Lead-Lag Optimize?	Yes		Yes				Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0		3.0				3.0	3.0	3.0	3.0
Recall Mode	None		None				Min	None	Min	None
Act Effct Green (s)	40.3		26.6	27.7	27.7	77.0				
Actuated g/C Ratio	0.50		0.33	0.35	0.35	0.96				
v / c Ratio	0.77		0.03	0.52	0.32	0.26				
Control Delay	24.2		17.1	25.2	24.3	0.4				
Queue Delay	0.1		0.0	0.0	1.4	0.0				
Total Delay	24.3		17.1	25.2	25.6	0.5				
LOS	C		B	C	C	A				
Approach Delay	24.3			25.0	9.0					

	\dagger	7	4	\uparrow	\downarrow	\downarrow				
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	$\emptyset 2$	$\varnothing 5$	$\emptyset 6$	$\emptyset 7$
Approach LOS	C			C	A					
Queue Length 50th (ft)	250		4	127	76	0				
Queue Length 95th (ft)	\#549		13	234	129	1				
Internal Link Dist (ft)	312			624	183					
Turn Bay Length (ft)	200		100			90				
Base Capacity (vph)	919		377	634	628	1517				
Starvation Cap Reductn	0		0	0	259	164				
Spillback Cap Reductn	12		0	0	0	0				
Storage Cap Reductn	0		0	0	0	0				
Reduced v/c Ratio	0.76		0.03	0.53	0.55	0.29				

Intersection Summary

Area Type: Other
Cycle Length: 90
Actuated Cycle Length: 80
Natural Cycle: 80
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.77
Intersection Signal Delay: 18.9 Intersection LOS: B
Intersection Capacity Utilization 57.9% ICU Level of Service B
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 19: NH 102 EB/NH 102 \& Tsienneto Rd

	\checkmark	4				\downarrow
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Turn Bay Length (ft)						
Base Capacity (vph)	1115				1802	
Starvation Cap Reductn	124				0	
Spillback Cap Reductn	0				0	
Storage Cap Reductn	0				0	
Reduced v/c Ratio	0.94				0.91	
Intersection Summary						
Area Type: Other						
Cycle Length: 80						
Actuated Cycle Length: 80						
Offset: 25 (31\%), Referenced to phase 2:WBL, Start of Yellow						
Natural Cycle: 70						
Control Type: Actuated-Coordinated						
Maximum v/c Ratio: 0.91						
Intersection Signal Delay: 32.1					sectio	OS:
Intersection Capacity Utilization 131.8\%					Level	Servic
Analysis Period (min) 15						
\# 95th percentile volume exceeds capacity, queue may be longer.						
Queue shown is maximum after two cycles.						

Splits and Phases: 20: Exit 4A SB On/Exit 4A SB Off \& Connector Road

Zone 6 - Exit 4A Ramps
20: Exit 4A SB On/Exit 4A SB Off \& Connector Road

2040 Alternative A - PM Peak
HCM 2010 Signalized Intersection Summary

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	SBL	SBR	NWL	NWR
Lane Configurations		44			个 \uparrow	F7			\%	F
Traffic Volume (vph)	0	1545	0	0	875	1240	0	0	0	710
Future Volume (vph)	0	1545	0	0	875	1240	0	0	0	710
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		200	0	0	0	0
Storage Lanes	0		0	0		2	0	0	1	1
Taper Length (ft)	25			25			25		25	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	0.88	1.00	1.00	1.00	0.95
Frt						0.850			0.850	0.850
Flt Protected										
Satd. Flow (prot)	0	3539	0	0	3539	2787	0	0	1583	1504
Fit Permitted										
Satd. Flow (perm)	0	3539	0	0	3539	2787	0	0	1583	1504
Right Turn on Red			Yes			Yes		Yes		
Satd. Flow (RTOR)						74				
Link Speed (mph)		30			30		30		30	
Link Distance (ft)		372			394		598		519	
Travel Time (s)		8.5			9.0		13.6		11.8	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	0	1644	0	0	931	1319	0	0	0	755
Shared Lane Traffic (\%)										50\%
Lane Group Flow (vph)	0	1644	0	0	931	1319	0	0	378	377
Turn Type		NA			NA	Perm			Prot	Prot
Protected Phases		2			2				4	4
Permitted Phases						2				
Detector Phase		2			2	2			4	4
Switch Phase										
Minimum Initial (s)		5.0			5.0	5.0			9.0	9.0
Minimum Split (s)		24.0			24.0	24.0			24.0	24.0
Total Split (s)		49.0			49.0	49.0			31.0	31.0
Total Split (\%)		61.3\%			61.3\%	61.3\%			38.8\%	38.8\%
Maximum Green (s)		43.0			43.0	43.0			25.0	25.0
Yellow Time (s)		4.0			4.0	4.0			4.0	4.0
All-Red Time (s)		2.0			2.0	2.0			2.0	2.0
Lost Time Adjust (s)		0.0			0.0	0.0			0.0	0.0
Total Lost Time (s)		6.0			6.0	6.0			6.0	6.0
Lead/Lag										
Lead-Lag Optimize?										
Vehicle Extension (s)		3.0			3.0	3.0			3.0	3.0
Recall Mode		C-Max			C-Max	C-Max			Max	Max
Act Effct Green (s)		43.0			43.0	43.0			25.0	25.0
Actuated g/C Ratio		0.54			0.54	0.54			0.31	0.31
v / c Ratio		0.86			0.49	0.86			0.77	0.80
Control Delay		4.1			12.7	22.5			37.0	40.4
Queue Delay		0.2			0.1	0.0			0.0	0.0
Total Delay		4.4			12.8	22.5			37.0	40.4
LOS		A			B	C			D	D
Approach Delay		4.4			18.5				38.7	
Approach LOS		A			B				D	

Splits and Phases: 21: Exit 4A NB Off \& Connector Road \& Exit 4A NB On

Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	$\varnothing 1$	$\varnothing 2$	$\varnothing 6$	$\varnothing 8$
Lane Configurations	M		\uparrow	F	\%	\uparrow				
Traffic Volume (vph)	60	10	750	160	10	470				
Future Volume (vph)	60	10	750	160	10	470				
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900				
Storage Length (ft)	0	0		90	100					
Storage Lanes	1	0		1	1					
Taper Length (ft)	25				25					
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00				
Frt	0.976			0.850						
Flt Protected	0.961				0.950					
Satd. Flow (prot)	1768	0	1900	1615	1805	1900				
Flt Permitted	0.961				0.255					
Satd. Flow (perm)	1768	0	1900	1615	484	1900				
Right Turn on Red		Yes		Yes						
Satd. Flow (RTOR)	9			129						
Link Speed (mph)	30		30			30				
Link Distance (ft)	524		263			288				
Travel Time (s)	11.9		6.0			6.5				
Peak Hour Factor	0.87	0.67	0.95	0.84	0.73	0.96				
Heavy Vehicles (\%)	1\%	0\%	0\%	0\%	0\%	0\%				
Adj. Flow (vph)	69	15	789	190	14	490				
Shared Lane Traffic (\%)										
Lane Group Flow (vph)	84	0	789	190	14	490				
Turn Type	Prot		NA	Perm	custom	NA				
Protected Phases	7		68		5	28	1	2	6	8
Permitted Phases				68	2					
Detector Phase	7		68	68	5	28				
Switch Phase										
Minimum Initial (s)	5.0				5.0		5.0	5.0	5.0	5.0
Minimum Split (s)	11.0				11.0		11.0	9.0	9.0	26.5
Total Split (s)	12.0				11.0		11.0	20.0	20.0	47.0
Total Split (\%)	13.3\%				12.2\%		12\%	22\%	22\%	52\%
Maximum Green (s)	6.0				5.0		5.0	16.0	16.0	41.0
Yellow Time (s)	4.0				4.0		4.0	3.0	3.0	4.0
All-Red Time (s)	2.0				2.0		2.0	1.0	1.0	2.0
Lost Time Adjust (s)	0.0				0.0					
Total Lost Time (s)	6.0				6.0					
Lead/Lag	Lead				Lead		Lead	Lag	Lag	Lag
Lead-Lag Optimize?	Yes				Yes		Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0				3.0		3.0	3.0	3.0	3.0
Recall Mode	None				None		None	Min	Min	None
Act Effct Green (s)	6.0		61.3	61.3	14.5	61.3				
Actuated g/C Ratio	0.08		0.77	0.77	0.18	0.77				
v/c Ratio	0.60		0.54	0.15	0.08	0.34				
Control Delay	53.1		2.8	0.8	26.6	3.3				
Queue Delay	0.0		0.7	0.3	0.0	0.0				
Total Delay	53.1		3.5	1.1	26.6	3.3				
LOS	D		A	A	C	A				
Approach Delay	53.1		3.1			4.0				

01/09/2018

Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	$\varnothing 1$	$\varnothing 2$	$\varnothing 6$	$\varnothing 8$
Approach LOS	D	A			A					
Queue Length 50th (ft)	36	31	0	6	46					
Queue Length 95th (ft)	\#107	113	m 9	16	69					
Internal Link Dist (ft)	444		183			208				
Turn Bay Length (ft)			90	100						
Base Capacity (vph)	141	1465	1275	170	1465					
Starvation Cap Reductn	0	349	659	0	0					
Spillback Cap Reductn	0	0	0	0	0					
Storage Cap Reductn	0	0	0	0	0					
Reduced v/c Ratio	0.60	0.71	0.31	0.08	0.33					

Intersection Summary

Area Type:
 Other

Cycle Length: 90
Actuated Cycle Length: 80
Natural Cycle: 80
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.77
Intersection Signal Delay: 6.0
Intersection LOS: A
Intersection Capacity Utilization 52.0\% ICU Level of Service A
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 26: NH 102 \& North Shore Road

APPENDIX P-1: 2040 ALTERNATIVE B INTERSECTION CAPACITY ANALYSES - HCM 2000 PRINOUTS - AM PEAK HOUR

HCM Signalized Intersection Capacity Analysis

1. 又: NH 102 \& Exit 4 SB Off

C Critical Lane Group

HCM Signalized Intersection Capacity Analysis
2．8：NH 102 \＆Exit 4 NB Off

Movement	NBL2	NBL	NBR	SEL	SER	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	17		『「			7	舟			來坐	「
Traffic Volume（vph）	485	0	245	0	0	1415	250	0	0	820	500
Future Volume（vph）	485	0	245	0	0	1415	250	0	0	820	500
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）	6.0		6.0			6.0	6.0			6.0	4.0
Lane Util．Factor	0.97		0.88			0.97	0.95			0.95	1.00
Fit	1.00		0.85			1.00	1.00			1.00	0.85
Flt Protected	0.95		1.00			0.95	1.00			1.00	1.00
Satd．Flow（prot）	3242		2632			3335	3438			3505	1568
Flt Permitted	0.95		1.00			0.95	1.00			1.00	1.00
Satd．Flow（perm）	3242		2632			3335	3438			3505	1568
Peak－hour factor，PHF	0.88	0.88	0.88	0.92	0.92	0.94	0.94	0.94	0.92	0.92	0.92
Adj．Flow（vph）	551	0	278	0	0	1505	266	0	0	891	543
RTOR Reduction（vph）	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow（vph）	551	0	278	0	0	1505	266	0	0	891	543
Heavy Vehicles（\％）	8\％	8\％	8\％	2\％	2\％	5\％	5\％	5\％	3\％	3\％	3\％
Turn Type	Prot		Prot			Prot	NA			NA	Free
Protected Phases	8		8			5	2			6	
Permitted Phases											Free
Actuated Green，G（s）	25.0		25.0			67.0	113.0			40.0	150.0
Effective Green，g（s）	25.0		25.0			67.0	113.0			40.0	150.0
Actuated g／C Ratio	0.17		0.17			0.45	0.75			0.27	1.00
Clearance Time（s）	6.0		6.0			6.0	6.0			6.0	
Vehicle Extension（s）	3.0		3.0			3.0	3.0			3.0	
Lane Grp Cap（vph）	540		438			1489	2589			934	1568
v／s Ratio Prot	c0．17		0.11			c0．45	0.08			c0．25	
v／s Ratio Perm											0.35
v／c Ratio	1.02		0.63			1.01	0.10			0.95	0.35
Uniform Delay，d1	62.5		58.2			41.5	4.9			54.1	0.0
Progression Factor	1.00		1.00			0.75	1.80			1.00	1.00
Incremental Delay，d2	44.0		3.0			19.5	0.0			20.2	0.6
Delay（s）	106.5		61.2			50.8	8.9			74.3	0.6
Level of Service	F		E			D	A			E	A
Approach Delay（s）		91.3		0.0			44.5			46.4	
Approach LOS		F		A			D			D	

Intersection Summary			
HCM 2000 Control Delay	54.8	HCM 2000 Level of Service	D
HCM 2000 Volume to Capacity ratio	0.99		18.0
Actuated Cycle Length（s）	150.0	Sum of lost time（s）	F
Intersection Capacity Utilization	92.9%	ICU Level of Service	
Analysis Period（min）	15		
C Critical Lane Group			

HCM Signalized Intersection Capacity Analysis
3
3 : Exit 5 SB On/Exit 5 SB Off \& NH 28

	4	\rightarrow	\%	\checkmark	\longleftarrow	4	4	\dagger	p	\pm	$\frac{1}{7}$	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		平4	7	${ }^{7}$	44					${ }^{*}{ }^{\text {\% }}$		\%
Traffic Volume (vph)	0	690	420	260	730	0	0	0	0	105	0	385
Future Volume (vph)	0	690	420	260	730	0	0	0	0	105	0	385
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0	4.0	6.0	6.0					6.0		6.0
Lane Util. Factor		0.95	1.00	1.00	0.95					0.97		1.00
Fit		1.00	0.85	1.00	1.00					1.00		0.85
Flt Protected		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (prot)		3167	1417	1687	3374					3303		1524
Flt Permitted		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (perm)		3167	1417	1687	3374					3303		1524
Peak-hour factor, PHF	0.92	0.92	0.92	0.73	0.73	0.73	0.92	0.92	0.92	0.74	0.74	0.74
Adj. Flow (vph)	0	750	457	356	1000	0	0	0	0	142	0	520
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	75
Lane Group Flow (vph)	0	750	457	356	1000	0	0	0	0	142	0	445
Heavy Vehicles (\%)	14\%	14\%	14\%	7\%	7\%	7\%	2\%	2\%	2\%	6\%	6\%	6\%
Turn Type		NA	Free	Prot	NA					Prot		Prot
Protected Phases		2		1	6					4		4
Permitted Phases			Free									
Actuated Green, G (s)		40.3	130.0	30.7	77.0					41.0		41.0
Effective Green, g (s)		40.3	130.0	30.7	77.0					41.0		41.0
Actuated g/C Ratio		0.31	1.00	0.24	0.59					0.32		0.32
Clearance Time (s)		6.0		6.0	6.0					6.0		6.0
Vehicle Extension (s)		5.0		3.0	5.0					3.0		3.0
Lane Grp Cap (vph)		981	1417	398	1998					1041		480
v/s Ratio Prot		c0.24		c0. 21	0.30					0.04		c0.29
v/s Ratio Perm			0.32									
v/c Ratio		0.76	0.32	0.89	0.50					0.14		0.93
Uniform Delay, d1		40.6	0.0	48.1	15.4					31.8		43.0
Progression Factor		1.00	1.00	0.38	0.15					1.00		1.00
Incremental Delay, d2		5.7	0.6	18.4	0.5					0.1		23.9
Delay (s)		46.2	0.6	36.9	2.7					31.9		67.0
Level of Service		D	A	D	A					C		E
Approach Delay (s)		28.9			11.7			0.0			59.4	
Approach LOS		C			B			A			E	

Intersection Summary			
HCM 2000 Control Delay	28.0	HCM 2000 Level of Service	C
HCM 2000 Volume to Capacity ratio	0.86		18.0
Actuated Cycle Length (s)	130.0	Sum of lost time (s)	D
Intersection Capacity Utilization	76.3%	ICU Level of Service	
Analysis Period (min)	15		
C Critical Lane Group			

HCM Signalized Intersection Capacity Analysis
4. Exit 5 NB Off \& NH 28

	$\stackrel{ }{ }$	\rightarrow		\checkmark	\leftarrow	4		\uparrow	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	¢4			个 \uparrow	F	\%		\%			
Traffic Volume (vph)	525	270	0	0	545	570	445	0	165	0	0	0
Future Volume (vph)	525	270	0	0	545	570	445	0	165	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0			6.0	4.0	6.0		6.0			
Lane Util. Factor	1.00	0.95			0.95	1.00	1.00		1.00			
Fit	1.00	1.00			1.00	0.85	1.00		0.85			
Flt Protected	0.95	1.00			1.00	1.00	0.95		1.00			
Satd. Flow (prot)	1641	3282			3438	1538	1656		1482			
Flt Permitted	0.95	1.00			1.00	1.00	0.95		1.00			
Satd. Flow (perm)	1641	3282			3438	1538	1656		1482			
Peak-hour factor, PHF	0.87	0.87	0.87	0.90	0.90	0.90	0.78	0.78	0.78	0.92	0.92	0.92
Adj. Flow (vph)	603	310	0	0	606	633	571	0	212	0	0	
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	113	0	0	0
Lane Group Flow (vph)	603	310	0	0	606	633	571	0	99	0	0	0
Heary Vehicles (\%)	10\%	10\%	10\%	5\%	5\%	5\%	9\%	9\%	9\%	2\%	2\%	2\%
Turn Type	Prot	NA			NA	Free	Prot		Prot			
Protected Phases	5	2			-		8		8			
Permitted Phases		2			6	Free						
Actuated Green, G (s)	46.0	75.0			23.0	130.0	43.0		43.0			
Effective Green, $\mathrm{g}(\mathrm{s})$	46.0	75.0			23.0	130.0	43.0		43.0			
Actuated g/C Ratio	0.35	0.58			0.18	1.00	0.33		0.33			
Clearance Time (s)	6.0	6.0			6.0		6.0		6.0			
Vehicle Extension (s)	5.0	5.0			5.0		3.0		3.0			
Lane Grp Cap (vph)	580	1893			608	1538	547		490			
v/s Ratio Prot	c0.37	0.09			c0.18		c0.34		0.07			
v/s Ratio Perm						0.41						
vic Ratio	1.04	0.16			1.00	0.41	1.04		0.20			
Uniform Delay, d1	42.0	12.8			53.5	0.0	43.5		31.2			
Progression Factor	0.26	0.20			1.00	1.00	1.00		1.00			
Incremental Delay, d2	41.6	0.2			35.7	0.8	50.4		0.2			
Delay (s)	52.6	2.7			89.2	0.8	93.9		31.4			
Level of Service	D	A			F	A	F		C			
Approach Delay (s)		35.7			44.0			77.0			0.0	
Approach LOS		D			D			E			A	

Intersection Summary			
HCM 2000 Control Delay	50.2	HCM 2000 Level of Service	D
HCM 2000 Volume to Capacity ratio	1.03		18.0
Actuated Cycle Length (s)	130.0	Sum of lost time (s)	D
Intersection Capacity Utilization	76.3%	ICU Level of Service	
Analysis Period (min)	15		
C Critical Lane Group			

Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		$\hat{*}$	「		＊		${ }^{1}$	虫		7	个 ${ }_{6}$	
Traffic Volume（vph）	10	0	150	0	1	0	60	410	0	5	1030	20
Future Volume（vph）	10	0	150	0	1	0	60	410	0	5	1030	20
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）		6.0	6.0		6.0		6.0	6.0		6.0	6.0	
Lane Util．Factor		1.00	1.00		1.00		1.00	0.95		1.00	0.95	
Fit		1.00	0.85		1.00		1.00	1.00		1.00	1.00	
Fit Protected		0.95	1.00		1.00		0.95	1.00		0.95	1.00	
Satd．Flow（prot）		1770	1583		1900		1770	3539		1770	3529	
Flt Permitted		1.00	1.00		1.00		0.95	1.00		0.95	1.00	
Satd．Flow（perm）		1863	1583		1900		1770	3539		1770	3529	
Peak－hour factor，PHF	0.92	0.92	0.92	0.25	0.25	0.25	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	11	0	163	0	4	0	65	446	0	5	1120	22
RTOR Reduction（vph）	0	0	59	0	0	0	0	0	0	0	1	0
Lane Group Flow（vph）	0	11	104	0	4	0	65	446	0	5	1141	0
Heavy Vehicles（\％）	2\％	2\％	2\％	0\％	0\％	0\％	2\％	2\％	2\％	2\％	2\％	2\％
Turn Type	Perm	NA	custom		NA		Prot	NA		Prot	NA	
Protected Phases		8			4		5	2		1	6	

Permitted Phases	8	6	4				
Actuated Green，G（s）	1.3	45.3	1.3	6.3	50.8	0.8	45.3
Effective Green， g （s）	1.3	45.3	1.3	6.3	50.8	0.8	45.3
Actuated g／C Ratio	0.02	0.64	0.02	0.09	0.72	0.01	0.64
Clearance Time（s）	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension（s）	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap（vph）	34	1011	34	157	2535	19	2254
v／s Ratio Prot			0.00	c0．04	c0．13	0.00	c0．32
v／s Ratio Perm	c0．01	0.07					
v／c Ratio	0.32	0.10	0.12	0.41	0.18	0.26	0.51
Uniform Delay，d1	34.4	4.9	34.2	30.6	3.3	34.8	6.8
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay，d2	5.5	0.0	1.5	1.8	0.0	7.3	0.2
Delay（s）	39.8	5.0	35.8	32.3	3.3	42.0	7.0
Level of Service	D	A	D	C	A	D	A
Approach Delay（s）	7.2		35.8		7.0		7.2
Approach LOS	A		D		A		A

Intersection Summary			
HCM 2000 Control Delay	7.2	HCM 2000 Level of Service	A
HCM 2000 Volume to Capacity ratio	0.48		18.0
Actuated Cycle Length（s）	70.9	Sum of lost time（s）	B
Intersection Capacity Utilization	61.4%	ICU Level of Service	
Analysis Period（min）	15		
C Critical Lane Group			

HCM Signalized Intersection Capacity Analysis
6. 1\&: NH 102 \& Fordway/Madden Hill Road

12/28/2017

Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		\uparrow			\leftrightarrow			\uparrow			\uparrow	
Traffic Volume (vph)	10	50	0	350	0	40	0	360	110	15	545	0
Future Volume (vph)	10	50	0	350	0	40	0	360	110	15	545	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0			6.0			6.0			6.0	
Lane Util. Factor		1.00			1.00			1.00			1.00	
Frt		1.00			0.99			0.97			1.00	
Flt Protected		0.99			0.96			1.00			1.00	
Satd. Flow (prot)		1847			1741			1703			1807	
Flt Permitted		0.91			0.68			1.00			0.98	
Satd. Flow (perm)		1694			1233			1703			1776	
Peak-hour factor, PHF	0.60	0.60	0.60	0.96	0.96	0.96	0.89	0.89	0.89	0.86	0.86	0.86
Adj. Flow (vph)	17	83	0	365	0	42	0	404	124	17	634	0
RTOR Reduction (vph)	0	0	0	0	23	0	0	13	0	0	0	0
Lane Group Flow (vph)	0	100	0	0	384	0	0	515	0	0	651	0
Heavy Vehicles (\%)	2\%	2\%	2\%	3\%	3\%	3\%	8\%	8\%	8\%	5\%	5\%	5\%
Turn Type	Perm	NA		Perm	NA			NA		Perm	NA	
Protected Phases		4			4			2			2	
Permitted Phases	4			4						2		
Actuated Green, G (s)		28.5			28.5			36.1			36.1	
Effective Green, g (s)		28.5			28.5			36.1			36.1	
Actuated g/C Ratio		0.37			0.37			0.47			0.47	
Clearance Time (s)		6.0			6.0			6.0			6.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		630			458			802			836	
v/s Ratio Prot								0.30				
v/s Ratio Perm		0.06			c0.31						c0.37	
v / C Ratio		0.16			0.84			0.64			0.78	
Uniform Delay, d1		16.0			22.0			15.4			16.9	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		0.1			12.7			1.8			4.6	
Delay (s)		16.2			34.7			17.1			21.5	
Level of Service		B			C			B			C	
Approach Delay (s)		16.2			34.7			17.1			21.5	
Approach LOS		B			C			B			C	

| Intersection Summary | | | |
| :--- | ---: | :--- | ---: | :--- |
| HCM 2000 Control Delay | 23.0 | HCM 2000 Level of Service | C |
| HCM 2000 Volume to Capacity ratio | 0.80 | | 12.0 |
| Actuated Cycle Length (s) | 76.6 | Sum of lost time (s) | D |
| Intersection Capacity Utilization | 80.6% | ICU Level of Service | |
| Analysis Period (min) | 15 | | |
| c Critical Lane Group | | | |

	4	\rightarrow		\downarrow		4	4	\dagger	1		\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	\dagger		7	\dagger		\%	\dagger		*	4	T
Traffic Volume (vph)	70	220	60	20	340	190	150	200	20	60	260	20
Future Volume (vph)	70	220	60	20	340	190	150	200	20	60	260	20
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	6.0
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Fit	1.00	0.97		1.00	0.95		1.00	0.99		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1656	1687		1703	1696		1719	1784		1703	1792	1524
Flt Permitted	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (perm)	1656	1687		1703	1696		1719	1784		1703	1792	1524
Peak-hour factor, PHF	0.96	0.96	0.96	0.94	0.94	0.94	0.85	0.85	0.85	0.91	0.91	0.91
Adj. Flow (vph)	73	229	62	21	362	202	176	235	24	66	286	22
RTOR Reduction (vph)	0	10	0	0	22	0	0	4	0	0	0	18
Lane Group Flow (vph)	73	282	0	21	542	0	176	255	0	66	286	4
Heavy Vehicles (\%)	9\%	9\%	9\%	6\%	6\%	6\%	5\%	5\%	5\%	6\%	6\%	6\%
Parking (\#/hr)			0									
Turn Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases												4
Actuated Green, G (s)	3.7	33.6		1.9	31.8		10.3	19.8		7.4	16.9	16.9
Effective Green, g(s)	3.7	33.6		1.9	31.8		10.3	19.8		7.4	16.9	16.9
Actuated g/C Ratio	0.04	0.39		0.02	0.37		0.12	0.23		0.09	0.19	0.19
Clearance Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	70	653		37	622		204	407		145	349	297
v/s Ratio Prot	c0.04	0.17		0.01	c0.32		c0.10	c0.14		0.04	c0.16	
v/s Ratio Perm												0.00
v / c Ratio	1.04	0.43		0.57	0.87		0.86	0.63		0.46	0.82	0.01
Uniform Delay, d1	41.5	19.5		42.0	25.5		37.5	30.1		37.7	33.4	28.2
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	119.9	0.5		18.4	12.7		29.2	3.0		2.3	13.9	0.0
Delay (s)	161.4	20.0		60.4	38.3		66.7	33.1		40.0	47.4	28.2
Level of Service	F	B		E	D		E	C		D	D	C
Approach Delay (s)		48.3			39.0			46.7			44.9	
Approach LOS		D			D			D			D	
Intersection Summary												
HCM 2000 Control Delay			44.1	HCM 2000 Level of Service					D			
HCM 2000 Volume to Capacity ratio			0.87									
Actuated Cycle Length (s)			86.7	Sum of lost time (s)					24.0			
Intersection Capacity Utilization			75.4\%	ICU Level of Service					D			
Analysis Period (min)			15									
c Critical Lane Group												

8: N. High St/N. High St \& Ash St Ext

	\dagger		4	4	\downarrow	\downarrow
Lane Group	EBL	ERR	NBL	NBT	SBT	SBR
Lane Configurations	7	「		\uparrow	\uparrow	$\overline{7}$
Traffic Volume (vph)	200	10	5	50	300	310
Future Volume (vph)	200	10	5	50	300	310
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	120	0			220
Storage Lanes	1	1	0			1
Taper Length (t)	25		25			
Lane Utill Factor	1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.850				0.850
Flt Protected	0.950			0.996		
Satd. Flow (prot)	1719	1538	0	1820	1863	1583
Flt Permitted	0.950			0.996		
Satd. Flow (perm)	1719	1538	0	1820	1863	1583
Link Speed (mph)	30			30	30	
Link Distance (ft)	322			309	295	
Travel Time (s)	7.3			7.0	6.7	
Peak Hour Factor	0.89	0.89	0.91	0.91	0.93	0.93
Heavy Vehicles (\%)	5\%	5\%	4\%	4\%	2\%	2\%
Adj. Flow (vph)	225	11	5	55	323	333
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	225	11	0	60	323	333
Sign Control	Stop			Stop	Stop	
Intersection Summary						
Area Type: Other						
Control Type: Unsignalized						
Intersection Capacity Utilization 33.5\%Analysis Period (min) 15 \quad ICU Level of Service A						

8: N. High St/N. High St \& Ash St Ext

Intersection	
Intersection Delay. s /veh	12.4
Intersection LOS	B

Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	$\$$	\mathbf{T}		\uparrow	\uparrow	$\mathbf{7}$
Traffic Vol, veh/h	200	10	5	50	300	310
Future Vol, veh/h	200	10	5	50	300	310
Peak Hour Factor	0.89	0.89	0.91	0.91	0.93	0.93
Heavy Vehicles, \%	5	5	4	4	2	2
Mumt Flow	225	11	5	55	323	333
Number of Lanes	1	1	0	1	1	1

Approach	EB	NB	SB
Opposing Approach		SB	NB
Opposing Lanes	0	2	1
Conflicting Approach Left	SB	EB	
Conflicting Lanes Left	2	2	0
Conflicting Approach Right	NB		EB
Conflicting Lanes Right	1	0	2
HCM Control Delay	14	9.6	12.1
HCM LOS	B	A	B

| Lane | NBLn1 | EBLn1 | EBLn2 | SBLn1 | SBLn2 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Vol Left. \% | 9% | 100% | 0% | 0% | 0% |
| Vol Thru, \% | 91% | 0% | 0% | 100% | 0% |
| Vol Right, \% | 0% | 0% | 100% | 0% | 100% |
| Sign Control | Stop | Stop | Stop | Stop | Stop |
| Traffic Vol by Lane | 55 | 200 | 10 | 300 | 310 |
| LT Vol | 5 | 200 | 0 | 0 | 0 |
| Through Vol | 50 | 0 | 0 | 300 | 0 |
| RT Vol | 0 | 0 | 10 | 0 | 310 |
| Lane Flow Rate | 60 | 225 | 11 | 323 | 333 |
| Geometry Grp | 4 | 7 | 7 | 7 | 7 |
| Degree of Util (X) | 0.1 | 0.422 | 0.017 | 0.483 | 0.434 |
| Departure Headway (Hd) | 5.946 | 6.76 | 5.548 | 5.388 | 4.683 |
| Convergence, Y/N | Yes | Yes | Yes | Yes | Yes |
| Cap | 605 | 535 | 649 | 665 | 760 |
| Service Time | 3.962 | 4.463 | 3.251 | 3.17 | 2.465 |
| HCM Lane VIC Ratio | 0.099 | 0.421 | 0.017 | 0.486 | 0.438 |
| HCM Control Delay | 9.6 | 14.3 | 8.3 | 13.2 | 11.1 |
| HCM Lane LOS | A | B | A | B | B |
| HCM 95th-tile Q | 0.3 | 2.1 | 0.1 | 2.6 | 2.2 |

9: N High St \& Madden Rd

	\rangle		4	4	\downarrow	\downarrow
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M			\uparrow	\dagger	
Traffic Volume (vph)	10	0	0	250	610	10
Future Volume (vph)	10	0	0	250	610	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Fit					0.998	
Flt Protected	0.950					
Satd. Flow (prot)	1008	0	0	1827	1789	0
Fit Permitted	0.950					
Satd. Flow (perm)	1008	0	0	1827	1789	0
Link Speed (mph)	30			30	30	
Link Distance (tt)	160			224	319	
Travel Time (s)	3.6			5.1	7.3	
Peak Hour Factor	0.44	0.44	0.95	0.95	0.96	0.96
Heavy Vehicles (\%)	79\%	79\%	4\%	4\%	6\%	6\%
Adj. Flow (vph)	23	0	-	263	635	10
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	23	0	0	263	645	0
Sign Control	Stop			Free	Free	
Intersection Summary						
Area Type: Other						
Control Type: Unsignalized						
Intersection Capacity Utilization 42.7\% ICU Level of Service A						
Analysis Period (min) 15						

Intersection							
Int Delay, s/veh	0.5						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	F			AT	F		
Traffic Vol, veh/h	10	0	0	250	610	10	
Future Vol, veh/h	10	0	0	250	610	10	
Conflicting Peds, \#/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	-	-	-	-	
Veh in Median Storage, \#	0	-	-	0	0	-	
Grade, \%	0	-	-	0	0	-	
Peak Hour Factor	44	44	95	95	96	96	
Heavy Vehicles, \%	79	79	4	4	6	6	
Mvmt Flow	23	0	0	263	635	10	

Approach	EB	NB	SB
HCM Control Delay, S	22.5	0	0
HCM LOS	C		

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	931	-228	-	-	
HCM Lane V/C Ratio	-	-0.1	-	-	
HCM Control Delay (s)	0	-22.5	-	-	
HCM Lane LOS	A	-	C	\cdot	-
HCM 95th \%tile Q(veh)	0	-0.3	\cdot	-	

10: Franklin St/Franklin St Ext \& N High St/Folsom Rd

	3	\rightarrow	7	5	\longleftarrow	k	\rightarrow	λ	\downarrow	4	K	$\stackrel{ }{ }$
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations		\dagger			\pm			¢			¢	
Traffic Volume (vph)	50	210	0	0	360	10	5	20	140	120	10	0
Future Volume (vph)	50	210	0	0	360	10	5	20	140	120	10	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (tt)	150		150	150		150	0		0	150		150
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (tt)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit					0.996			0.886				
FIt Protected		0.991						0.998			0.956	
Satd. Flow (prot)	0	1760	0	0	1802	0	0	1647	0	0	1816	0
Flt Permitted		0.991						0.998			0.956	
Satd. Flow (perm)	0	1760	0	0	1802	0	0	1647	0	0	1816	0
Link Speed (mph)		30			30			30			30	
Link Distance (t)		327			240			246			251	
Travel Time (s)		7.4			5.5			5.6			5.7	
Peak Hour Factor	0.89	0.89	0.89	0.96	0.96	0.96	0.65	0.65	0.65	0.67	0.67	0.67
Heavy Vehicles (\%)	7\%	7\%	7\%	5\%	5\%	5\%	2\%	2\%	2\%	0\%	0\%	0\%
Adj. Flow (vph)	56	236	0	0	375	10	8	31	215	179	15	0
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	292	0	0	385	0	0	254	0	0	194	0
Sign Control		Free			Free			Stop			Stop	

Intersection Summary

```
Area Type: Other
```

Control Type: Unsignalized
Intersection Capacity Utilization 63.8\% ICU Level of Service B
Analysis Period (min) 15

Approach	EB	WB	SE	NW
HCM Control Delay, s	1.6	0	11.8	96.5
HCM LOS		B	F	

Minor Lane/Major Mumt	NWLn1	EBL	EBT	EBR	WBL	WBT	WBR SELn1
Capacity (veh/h)	206	1147	-	-1314	-	-786	
HCM Lane V/C Ratio	0.942	0.049	-	-	-	-	-0.323
HCM Control Delay (s)	96.5	8.3	0	-	0	-	-11.8
HCM Lane LOS	F	A	A	-	A	-	-
HCM 95th \%tile Q(veh)	7.8	0.2	-	-	0	-	-1.4

HCM Signalized Intersection Capacity Analysis
11: Folsom Rd/Tsienneto Rd \& Crystal Av/NH 28

	4	\uparrow	「	\cdots	\downarrow	\downarrow	$\xlongequal{4}$	\triangle	¢	\checkmark	\checkmark	4
Movement	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	*	$\uparrow \uparrow$	7	9	$\uparrow \uparrow$		\%	\uparrow		\%	\uparrow	
Traffic Volume (vph)	20	200	120	375	200	0	30	165	20	40		595
Future Volume (vph)	20	200	120	375	200	0	30	165	20	40	225	595
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0		6.0	6.0	4.0	6.0	6.0	6.0
Lane Util. Factor	1.00	0.95	1.00	0.97	0.95		1.00	1.00	1.00	1.00	1.00	1.00
Fit	1.00	1.00	0.85	1.00	1.00		1.00	1.00	0.85	1.00	1.00	0.85
Fll Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1736	3471	1553	3335	3438		1752	1845	1568	1752	1845	1568
Flt Permitted	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1736	3471	1553	3335	3438		1752	1845	1568	1752	1845	1568
Peak-hour factor, PHF	0.84	0.84	0.84	0.79	0.79	0.79	0.86	0.86	0.86	0.99	0.99	0.99
Adj. Flow (vph)	24	238	143	475	253	0	35	192	23	40	227	601
RTOR Reduction (vph)	0	0	95	0	0	0	0	0	0	0	0	237
Lane Group Flow (vph)	24	238	48	475	253	0	35	192	23	40	227	364
Heary Vehicles (\%)	4\%	4\%	4\%	5\%	5\%	5\%	3\%	3\%	3\%	3\%	3\%	3\%
Turn Type	Prot	NA	Perm	Prot	NA		Prot	NA	Free	Prot	NA	pttov
Protected Phases	5	2		1	6		7	4		3	8	81
Permitted Phases		2	2					4	Free		8	
Actuated Green, $\mathrm{G}(\mathrm{s})$	14.2	30.5	30.5	16.3	32.6		3.6	15.0	90.0	4.2	15.6	37.9
Effective Green, $\mathrm{g}(\mathrm{s}$)	14.2	30.5	30.5	16.3	32.6		3.6	15.0	90.0	4.2	15.6	37.9
Actuated g/C Ratio	0.16	0.34	0.34	0.18	0.36		0.04	0.17	1.00	0.05	0.17	0.42
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0		6.0	6.0		6.0	6.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	273	1176	526	604	1245		70	307	1568	81	319	660
v / s Ratio Prot	0.01	0.07		c0.14	c0.07		0.02	0.10		c0.02	c0.12	0.23
v/s Ratio Perm			0.03						c0.01			
v/c Ratio	0.09	0.20	0.09	0.79	0.20		0.50	0.63	0.01	0.49	0.71	0.55
Uniform Delay, d1	32.4	21.1	20.3	35.2	19.8		42.3	34.9	0.0	41.9	35.1	19.6
Progression Factor	1.00	1.00	1.00	0.85	0.93		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.6	0.4	0.3	6.4	0.4		5.5	3.9	0.0	4.7	7.3	1.0
Delay (s)	33.0	21.5	20.6	36.4	18.7		47.8	38.8	0.0	46.5	42.4	20.6
Level of Service	C	c	C	D	B		D	D	A	D	D	c
Approach Delay (s)		21.9			30.3			36.5			27.5	
Approach LOS		c			c			D			c	

Intersection Summary			
HCM 2000 Control Delay	28.4	HCM 2000 Level of Service	C
HCM 2000 Volume to Capacity ratio	0.49		24.0
Actuated Cycle Length (s)	90.0	Sum of lost time (s)	B
Intersection Capacity Utilization	63.5%	ICU Level of Service	
Analysis Period (min)	15		
C Critical Lane Group			

	\ldots	\%	\nearrow	\cdots	-	4
Lane Group	NWL	NWR	NET	NER	SWL	SWT
Lane Configurations	${ }^{7}$	\%	\uparrow	$\bar{\square}$		* \uparrow
Traffic Volume (vph)	170	70	350	310	60	690
Future Volume (vph)	170	70	350	310	60	690
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ti)	180	0		0	180	
Storage Lanes	1	1		1	0	
Taper Length (tt)	25				25	
Lane Util. Factor	1.00	1.00	1.00	1.00	0.95	0.95
Fit		0.850		0.850		
Flt Protected	0.950					0.996
Satd. Flow (prot)	1770	1583	1845	1568	0	3525
Flt Pemitted	0.950					0.996
Satd. Flow (perm)	1770	1583	1845	1568	0	3525
Link Speed (mph)	30		30			30
Link Distance (ft)	408		387			233
Travel Time (s)	9.3		8.8			5.3
Peak Hour Factor	0.83	0.83	0.86	0.86	0.81	0.81
Heavy Vehicles (\%)	2\%	2\%	3\%	3\%	2\%	2\%
Adj. Flow (vph)	205	84	407	360	74	852
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	205	84	407	360	0	926
Sign Control	Stop		Free			Free
ntersection Summary						
Area Type: Other						
Control Type: UnsignalizedIntersection Capacity Utilization 58.7\%						
				ICU Level of Service B		
Analysis Period (min) 15						

12: Tsienneto Rd \& Pinkerton St HCM 2010 TWSC

Intersection						
Int Delay, s/veh	92					
Movement	NWL	NWR	NET	NER	SWL	SWT
Lane Configurations	\%	「	4	$\stackrel{7}{7}$		$\stackrel{4}{4}$
Traffic Vol, veh/h	170	70	350	310	60	690
Future Vol, veh/h	170	70	350	310	60	690
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	Yield	-	None
Storage Length	180	0	-	0	-	-
Veh in Median Storage,	\# 0	-	0	-	-	0
Grade, \%	0	-	0	-	\cdot	0
Peak Hour Factor	83	83	86	86	81	81
Heavy Vehicles, \%	2	2	3	3	2	2
Mvmt Flow	205	84	407	360	74	852

Approach	NW	NE	SW
HCM Control Delay,s	60	0	1
HCM LOS	F		

Minor Lane/Major Mvmt	NET	NERNWL 1 NWLn2	SWL	SWT	
Capacity (veh/h)	-	-	229	643	1150

	\rightarrow	\rightarrow	2	\cdots	\leftarrow	c	J	λ	\rightarrow	ζ	4	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	7	$\uparrow \uparrow$		${ }^{*}$	中t			\uparrow	「		\uparrow	7
Traffic Volume (vph)	10	790	0	0	680	30	5	0	5	10	1	70
Future Volume (vph)	10	790	0	0	680	30	5	0	5	10	0	70
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0			6.0			6.0	6.0		6.0	6.0
Lane Utill. Factor	1.00	0.95			0.95			1.00	1.00		1.00	1.00
Frt	1.00	1.00			0.99			1.00	0.85		1.00	0.85
Fit Protected	0.95	1.00			1.00			0.95	1.00		0.95	1.00
Satd. Flow (prot)	1687	3374			3517			1805	1615		1787	1599
Flt Permitted	0.95	1.00			1.00			0.75	1.00		0.75	1.00
Satd. Flow (perm)	1687	3374			3517			1434	1615		1420	1599
Peak-hour factor, PHF	0.83	0.83	0.83	0.92	0.92	0.92	0.50	0.50	0.50	0.90	0.90	0.90
Adj. Flow (vph)	12	952	0	0	739	33	10	0	10	11	0	78
RTOR Reduction (vph)	0	0	-	0	2	0	0		9	0	0	73
Lane Group Flow (vph)	12	952	0	0	770	0	0	10	1	0	11	5
Heavy Vehicles (\%)	7\%	7\%	7\%	2\%	2\%	2\%	0\%	0\%	0\%	1\%	1\%	1\%
Turn Type	Prot	NA		Prot	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases					6		8	8	8	4		4
Actuated Green, G (s)	1.6	72.7			65.1			5.3	5.3		5.3	5.3
Effective Green, $\mathrm{g}(\mathrm{s})$	1.6	72.7			65.1			5.3	5.3		5.3	5.3
Actuated g/C Ratio	0.02	0.81			0.72			0.06	0.06		0.06	0.06
Clearance Time (s)	6.0	6.0			6.0			6.0	6.0		6.0	6.0
Vehicle Extension (s)	3.0	3.0			3.0			3.0	3.0		3.0	3.0
Lane Grp Cap (vph)	29	2725			2543			84	95		83	94
v / s Ratio Prot	0.01	c0.28			0.22							
v/s Ratio Perm								0.01	0.00		c0.01	0.00
v/c Ratio	0.41	0.35			0.30			0.12	0.01		0.13	0.05
Uniform Delay, d1	43.7	2.3			4.4			40.1	39.9		40.2	40.0
Progression Factor	1.17	0.94			1.23			1.00	1.00		1.00	1.00
Incremental Delay, d2	8.1	0.3			0.1			0.6	0.0		0.7	0.2
Delay (s)	59.4	2.5			5.5			40.8	39.9		40.9	40.2
Level of Service	E	A			A			D	D		D	D
Approach Delay (s)		3.2			5.5			40.3			40.3	
Approach LOS		A			A			D			D	
Intersection Summary												
HCM 2000 Control Delay			6.3	HCM 2000 Level of Service					A			
HCM 2000 Volume to Capacity ratio			0.36									
Actuated Cycle Length (s)			90.0	Sum of lost time (s)					18.0			
Intersection Capacity Utilization			45.2\%	ICU Level of Service					A			
Analysis Period (min)			15									
c Critical Lane Group												

Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	\%	\uparrow	ち		M	
Traffic Volume (vph)	20	190	310	10	40	40
Future Volume (vph)	20	190	310	10	40	40
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	140			0	0	0
Storage Lanes	1			0	1	0
Taper Length (t)	25				25	
Lane Utili. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Fit			0.996		0.932	
Flt Protected	0.950				0.976	
Satd. Flow (prot)	1687	1776	1820	0	1630	0
Flt Pemitted	0.950				0.976	
Satd. Flow (perm)	1687	1776	1820	0	1630	0
Link Speed (mph)		30	30		30	
Link Distance (tt)		535	210		522	
Travel Time (s)		12.2	4.8		11.9	
Peak Hour Factor	0.84	0.84	0.89	0.89	0.83	0.83
Heavy Vehicles (\%)	7\%	7\%	4\%	4\%	6\%	6\%
Adj. Flow (vph)	24	226	348	11	48	48
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	24	226	359	0	96	0
Sign Control		Free	Free		Stop	

Intersection Summary

Area Type: Other

Control Type: Unsignalized
Intersection Capacity Utilization 28.3\% ICU Level of Service A
Analysis Period (min) 15

Intersection						
Int Delay, s/veh	2.1					
Movement	EBL EBT		WBT	WBR	SBL	SBR
Lane Configurations	\%	\uparrow	ち		M	
Traffic Vol, veh/h	20	190	310	10	40	40
Future Vol, veh/h	20	190	310	10	40	40
Conflicting Peds, \#hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized		None	.	None		None
Storage Length	140	-	-	.	0	.
Veh in Median Storage, \#	\#	0	0	-	0	-
Grade, \%	.	0	0	\cdot	0	-
Peak Hour Factor	84	84	89	89	83	83
Heavy Vehicles, \%	7	7	4	4	6	6
Mumt Flow	24	226	348	11	48	48

Major/Minor	Major1	Major2		Minor2		
Conflicting Flow All	359	0	-	0	628	354
Stage 1	-	.	-	.	354	.
Stage 2	-	-	-	-	274	-
Critical Hdwy	4.17	-	-	-	6.46	6.26
Critical Hdwy Stg 1	-	-	-	-	5.46	.
Critical Hdwy Stg 2	-	-	-	-	5.46	-
Follow-up Hdwy	2.263	-	-		3.554	3.354
Pot Cap-1 Maneuver	1172	-	-	-	440	681
Stage 1	.	-	-	-	702	.
Stage 2	-	-		-	763	
Platoon blocked, \%		-	-	.		
Mov Cap-1 Maneuver	1172	-	-	-	431	681
Mov Cap-2 Maneuver	.	-	-	-	431	.
Stage 1	.	-	-		688	-
Stage 2	-	-	-	-	763	-

	\checkmark	\cdots	4	c	\cdots	\uparrow	\digamma	1	\cdots	\checkmark	\downarrow	\downarrow
Lane Group	WBL2	WBL	WBR	WBR2	NBL	NBT	NBR	NBR2	SBL2	SBL	SBT	SBR
Lane Configurations		*				\pm					¢	
Traffic Volume (vph)	10	170	360	20	20	110	110	10	10	110	140	40
Future Volume (vph)	10	170	360	20	20	110	110	10	10	110	140	40
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (t)		0	150		0		150			0		0
Storage Lanes		1	0		0		-			0		0
Taper Length (t)		25			25					25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.908				0.935					0.982	
Flt Protected		0.984				0.996					0.980	
Satd Flow (prot)	0	1648	0	0	0	1718	0	0	0	0	1709	0
Flt Permitted		0.984				0.996					0.980	
Satd. Flow (perm)	0	1648	0	0	0	1718	0	0	0	0	1709	0
Link Speed (mph)		30				30					30	
Link Distance (tt)		465				456					371	
Travel Time (s)		10.6				10.4					8.4	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.86	0.86	0.86	0.86	0.80	0.80	0.80	0.80
Heary Vehicles (\%)	3\%	3\%	3\%	3\%	3\%	3\%	3\%	3\%	7\%	7\%	7\%	7\%
Adj. Flow (vph)	11	187	396	22	23	128	128	12	13	138	175	50
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	616	0	0	0	291	0	0	0	0	376	0
Sign Control		Yield				Yield					Yield	

Intersection Summary

Area Type: Other
Control Type: Roundabout
Intersection Capacity Utilization 100.5\%
ICU Level of Service G
Analysis Period (min) 15

16: NH 102 W/NH 102 E \& NH 28 Byp N \& E Derry Rd

	$\stackrel{4}{ }$	\nearrow	\rightarrow	\%	ζ	\downarrow	4	4
Lane Group	NEL	NET	NER	NER2	SWL2	SWL	SWT	SWR
Lane Configurations		\dagger					¢	
Traffic Volume (vph)	50	60	110	100	5	30	120	10
Future Volume (vph)	50	60	110	100	5	30	120	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (t)	0		150			150		0
Storage Lanes	0		0			0		0
Taper Length (t)	25					25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.911					0.992	
Fit Protected		0.992					0.990	
Satd. Flow (prot)	0	1590	0	0	0	0	1744	0
Fit Pemitted		0.992					0.990	
Satd. Flow (perm)	0	1590	0	0	0	0	1744	0
Link Speed (mph)		30					30	
Link Distance (tt)		400					530	
Travel Time (s)		9.1					12.0	
Peak Hour Factor	0.60	0.60	0.60	0.60	0.83	0.83	0.83	0.83
Heavy Vehicles (\%)	8\%	8\%	8\%	8\%	7\%	7\%	7\%	7\%
Adj. Flow (vph)	83	100	183	167	6	36	145	12
Shared Lane Traffic (\%)								
Lane Group Flow (vph)	0	533	0	0	0	0	199	0
Sign Control		Yield					Yield	

[^5]

Intersection Delay. s/veh14.9 Intersection LOS B

Approach	WB	NB	SB	NE	SW
Entry Lanes	1	1	1	1	1
Conflicting Circle Lanes	1	1	1	1	1
Adj Approach Flow, veh/h	616	291	376	533	199
Demand Flow Rate, veh/h	635	300	403	576	213
Vehicles Circulating, veh/h	500	564	428	405	858
Vehicles Exiting, veh/h	364	417	643	426	277
Ped Vol Crossing Leg, \#h	0	0	0	0	0
Ped Cap Adj	1.000	1.000	1.000	1.000	1.000
Approach Delay, slveh	21.4	9.7	10.1	14.4	12.5
Approach LOS	C	A	B	B	B

Lane	Left	Left	Left	Left	Left
Designated Moves	LR	LTR	LTR	LTR	LTR
Assumed Moves	LR	LTR	LTR	LTR	LTR
RT Channelized					
Lane Util	1.000	1.000	1.000	1.000	1.000
Follow-Up Headway, s 2.609	2.609	2.609	2.609	2.609	
Critical Headway, s	4.976	4.976	4.976	4.976	4.976
Entry Flow, veh/h	635	300	403	576	213
Cap Entry Lane, veh/h	829	776	892	913	575
Entry HV Adj Factor	0.970	0.971	0.933	0.925	0.932
Flow Entry, veh/h	616	291	376	533	198
Cap Entry veh/h	803	753	832	845	536
VIC Ratio	0.766	0.386	0.452	0.631	0.370
Control Delay, s/veh	21.4	9	9.7	10.1	14.4
LOS	A	8	12.5		
95th \%tile Queue, veh	7	2	2	8	1
		2	2	5	2

17: NH 28 Byp N \& Pinkerton St/Nesmith Rd Lanes, Volumes. Timings

	\%	\rightarrow		t			4	\uparrow	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	F'		\pm			¢			\pm	
Traffic Volume (vph)	10	20	200	10	40	50	375	150	5	10	90	20
Future Volume (vph)	10	20	200	10	40	50	375	150	5	10	90	20
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (tt)	0		50	0		0	0		0	0		0
Storage Lanes	0		1	0		0	- 0		0	0		0
Taper Length (tt)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit			0.850		0.932			0.999			0.978	
Flt Protected		0.984			0.995			0.966			0.996	
Satd. Flow (prot)	0	1731	1495	0	1678	0	0	1780	0	0	1780	0
Fit Permitted		0.984			0.995			0.966			0.996	
Satd. Flow (perm)	0	1731	1495	0	1678	0	0	1780	0	0	1780	0
Link Speed (mph)		30			30			30			30	
Link Distance (t)		162			453			475			436	
Travel Time (s)		3.7			10.3			10.8			9.9	
Peak Hour Factor	0.82	0.82	0.82	0.70	0.70	0.70	0.75	0.75	0.75	0.71	0.71	0.71
Heavy Vehicles (\%)	8\%	8\%	8\%	5\%	5\%	5\%	3\%	3\%	3\%	4\%	4\%	4\%
Adj. Flow (vph)	12	24	244	14	57	71	500	200	7	14	127	28
Shared Lane Trafic (\%)												
Lane Group Flow (vph)	0	36	244	0	142	0	0	707	0	0	169	0
Sign Control		Stop			Stop			Free			Free	
Intersection Summary												
Area Type: Other												
Control Type: Unsignalized												
Intersection Capacity Utilization 54.7\%Analysis Period (min) 15												

17: NH 28 Byp N \& Pinkerton St/Nesmith Rd

18: Tsienneto Rd \& NH 28 Byp N

	9	\uparrow	F	4	\downarrow	\downarrow	4	\nless	\nrightarrow	t	1	ϑ
Movement	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	7	ち		\%	\uparrow	7	\%	F		7	ち	
Traffic Volume (vph)	30	50	20	20	40	100	10	140	70	65	330	65
Future Volume (vph)	30	50	20	20	40	100	10	140	70	65	330	65
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0		6.0	6.0	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Fit	1.00	0.96		1.00	1.00	0.85	1.00	0.95		1.00	0.98	
Fit Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1752	1767		1736	1827	1553	1770	1770		1787	1835	
Flt Permitted	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1752	1767		1736	1827	1553	1770	1770		1787	1835	
Peak-hour factor, PHF	0.82	0.82	0.82	0.81	0.81	0.81	0.68	0.68	0.68	0.78	0.78	0.78
Adj. Flow (vph)	37	61	24	25	49	123	15	206	103	83	423	83
RTOR Reduction (vph)	0	15	0	0	0	73	0	23	0	0	9	0
Lane Group Flow (vph)	37	70	0	25	49	50	15	286	0	83	497	0
Heavy Vehicles (\%)	3\%	3\%	3\%	4\%	4\%	4\%	2\%	2\%	2\%	1\%	1\%	1\%
Turn Type	Prot	NA		Prot	NA	$\mathrm{pt}+\mathrm{ov}$	Prot	NA		Prot	NA	
Protected Phases	1	6		5	2	23	3	8		7	4	
Permitted Phases												
Actuated Green, G (s)	4.8	22.0		3.2	20.4	32.8	6.4	23.8		7.0	24.4	
Effective Green, g (s)	4.8	22.0		3.2	20.4	32.8	6.4	23.8		7.0	24.4	
Actuated g/C Ratio	0.06	0.28		0.04	0.25	0.41	0.08	0.30		0.09	0.30	
Clearance Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	105	485		69	465	636	141	526		156	559	
v/s Ratio Prot	c0.02	c0.04		0.01	0.03	0.03	0.01	0.16		c0.05	c0.27	
v/s Ratio Perm												
v / c Ratio	0.35	0.14		0.36	0.11	0.08	0.11	0.54		0.53	0.89	
Uniform Delay, d1	36.1	21.9		37.4	22.8	14.4	34.1	23.5		34.9	26.5	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	2.0	0.1		3.2	0.5	0.1	0.3	1.2		3.5	15.8	
Delay (s)	38.1	22.0		40.6	23.3	14.4	34.5	24.7		38.4	42.3	
Level of Service	D	C		D	C	B	C	C		D	D	
Approach Delay (s)		26.9			20.0			25.1			41.8	
Approach LOS		C			B			C			D	

Intersection Summary
HCM 2000 Control Delay
HCM 2000 Volume to Capacity ratio
Actuated Cycle Length (s) Intersection Capacity Utilization

32.4	HCM 2000 Level of Service	C
0.54		24.0
80.0	Sum of lost time (s)	A

Analysis Period (min)
15
C Critical Lane Group

	\rangle	v	4	\uparrow	\downarrow	\downarrow	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	M		\%	\uparrow	\uparrow	F'	
Traffic Volume (vph)	510	10	20	70	140	600	
Future Volume (vph)	510	10	20	70	140	600	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	6.0		6.0	6.0	6.0	6.0	
Lane Util. Factor	1.00		1.00	1.00	1.00	1.00	
Fit	1.00		1.00	1.00	1.00	0.85	
Fit Protected	0.95		0.95	1.00	1.00	1.00	
Satd. Flow (prot)	1771		1626	1712	1863	1583	
Flt Permitted	0.95		0.63	1.00	1.00	1.00	
Satd. Flow (perm)	1771		1078	1712	1863	1583	
Peak-hour factor, PHF	0.94	0.94	0.91	0.91	0.82	0.82	
Adj. Flow (vph)	543	11	22	77	171	732	
RTOR Reduction (vph)	1	0	0	0	0	180	
Lane Group Flow (vph)	553	0	22	77	171	552	
Heavy Vehicles (\%)	2\%	2\%	11\%	11\%	2\%	2\%	
Turn Type	Prot		pm+pt	NA	NA	custom	
Protected Phases	8		1	67	27	78	
Permitted Phases			67			2	
Actuated Green, G (s)	30.6		32.3	30.6	29.7	60.3	
Effective Green, g (s)	30.6		32.3	30.6	29.7	60.3	
Actuated g/C Ratio	0.38		0.40	0.38	0.37	0.75	
Clearance Time (s)	6.0		6.0				
Vehicle Extension (s)	3.0		3.0				
Lane Grp Cap (vph)	677		446	654	691	1311	
v/s Ratio Prot	c0.31		c0.00	0.04	0.09	c0.23	
v/s Ratio Perm			0.02			0.11	
v/c Ratio	0.82		0.05	0.12	0.25	0.42	
Uniform Delay, d1	22.2		14.4	16.0	17.4	3.6	
Progression Factor	1.00		1.00	1.00	1.12	0.87	
Incremental Delay, d2	7.6		0.0	0.1	0.2	0.2	
Delay (s)	29.8		14.5	16.1	19.6	3.3	
Level of Service	C		B	B	B	A	
Approach Delay (s)	29.8			15.7	6.4		
Approach LOS	C			B	A		
Intersection Summary							
HCM 2000 Control Delay			15.3		M 2000	Level of Service	B
HCM 2000 Volume to Capacity ratio			0.70				
Actuated Cycle Length (s)			80.0		of lost	time (s)	24.0
Intersection Capacity Utilization			55.4\%		Level	of Service	B
Analysis Period (min)			15				
c Critical Lane Group							

	\dagger	\rightarrow	7	5	\leftarrow	4	4	\checkmark	4	\uparrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	SBL	SBR	NWL	NWR
Lane Configurations	\%	$\uparrow \uparrow$			$\uparrow \uparrow$	$7{ }^{17}$			Y	7
Traffic Volume (vph)	0	1770	0	0	1135	1205	0	0	0	865
Future Volume (vph)	0	1770	0	0	1135	1205	0	0	0	865
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0			6.0	6.0			6.0	6.0
Lane Util. Factor		0.95			0.95	0.88			1.00	0.95
Fit		1.00			1.00	0.85			0.85	0.85
Flt Protected		1.00			1.00	1.00			1.00	1.00
Satd. Flow (prot)		3539			3539	2787			1583	1504
Flt Permitted		1.00			1.00	1.00			1.00	1.00
Satd. Flow (perm)		3539			3539	2787			1583	1504
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	0	1883	0	0	1207	1282	0	0	0	920
RTOR Reduction (vph)	0	0	0	0	0	16	0	0	0	0
Lane Group Flow (vph)	0	1883	0	0	1207	1266	0	0	460	460
Turn Type	Perm	NA			NA	Perm			Prot	Prot
Protected Phases		2			,				4	4
Permitted Phases	2					2				
Actuated Green, G (s)		50.0			50.0	50.0			28.0	28.0
Effective Green, $\mathrm{g}(\mathrm{s}$)		50.0			50.0	50.0			28.0	28.0
Actuated g/C Ratio		0.56			0.56	0.56			0.31	0.31
Clearance Time (s)		6.0			6.0	6.0			6.0	6.0
Vehicle Extension (s)		3.0			3.0	3.0			3.0	3.0
Lane Grp Cap (vph)		1966			1966	1548			492	467
v / s Ratio Prot		c0.53			0.34				0.29	c0.31
v/s Ratio Perm						0.45				
v/c Ratio		0.96			0.61	0.82			0.93	0.99
Uniform Delay, d1		19.0			13.5	16.3			30.1	30.8
Progression Factor		1.13			1.00	1.00			1.00	1.00
Incremental Delay, d2		1.7			1.4	4.9			25.1	37.4
Delay (s)		23.1			14.9	21.2			55.2	68.2
Level of Service		C			B	C			E	E
Approach Delay (s)		23.1			18.2		0.0		61.7	
Approach LOS		c			B		A		E	
Intersection Summary										
HCM 2000 Control Delay			27.5		HCM 2000	Level of S	envice		C	
HCM 2000 Volume to Capacity ratio			0.97							
Actuated Cycle Length (s)			90.0		Sum of los	time (s)			12.0	
Intersection Capacity Utilization			129.2\%		CU Level	Service			H	
Analysis Period (min)			15							
c Critical Lane Group										

HCM Signalized Intersection Capacity Analysis

	\Rightarrow	\rightarrow	7	\checkmark	\longleftarrow	4	4	4	1	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	A		\%	F		${ }_{4}$	ち		${ }^{*}$	\uparrow	7
Traffic Volume (vph)	100	380	10	10	390	10	20	50	10	10	60	100
Future Volume (vph)	100	380	10	10	390	10	20	50	10	10	60	100
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	6.0
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Frt	1.00	1.00		1.00	1.00		1.00	0.97		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1770	1855		1770	1856		1770	1815		1770	1863	1583
Flt Permitted	0.29	1.00		0.42	1.00		0.71	1.00		0.71	1.00	1.00
Satd. Flow (perm)	540	1855		789	1856		1331	1815		1331	1863	1583
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	109	413	11	11	424	11	22	54	11	11	65	109
RTOR Reduction (vph)	0	1	0	,	1	0		7	0	0	0	66
Lane Group Flow (vph)	109	423	0	11	434		22	58	0	11	65	43
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	pm+ov
Protected Phases	7	4			8			2			6	7
Permitted Phases	4						2			6		6
Actuated Green, G (s)	29.0	25.3		23.4	22.5		22.6	22.6		22.6	22.6	26.3
Effective Green, $\mathrm{g}(\mathrm{s})$	29.0	25.3		23.4	22.5		22.6	22.6		22.6	22.6	26.3
Actuated g/C Ratio	0.43	0.38		0.35	0.34		0.34	0.34		0.34	0.34	0.39
Clearance Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	302	702		289	625		450	614		450	630	765
v / s Ratio Prot	c0.02	c0.23		0.00	c0. 23			0.03			c0.03	0.00
v / s Ratio Perm	0.14			0.01			0.02			0.01		0.02
v / C Ratio	0.36	0.60		0.04	0.69		0.05	0.09		0.02	0.10	0.06
Uniform Delay, d1	12.4	16.7		14.3	19.2		14.9	15.1		14.7	15.2	12.6
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	0.7	1.5		0.1	3.3		0.2	0.3		0.1	0.3	0.0
Delay (s)	13.1	18.2		14.4	22.5		15.1	15.4		14.8	15.5	12.6
Level of Service	B	B		B	C		B	B		B	B	B
Approach Delay (s)		17.1			22.3			15.3			13.7	
Approach LOS		B			C			B			B	
Intersection Summary												
			18.4	HCM 2000 Level of Service					B			
HCM 2000 Volume to Capacity ratio			0.40									
Actuated Cycle Length (s)			66.8	Sum of lost time (s)					18.0			
Intersection Capacity Utilization			49.4\%	ICU Level of Service					A			
			15									
Analysis Period (min) c Critical Lane Group												

24: Tsienneto Road \& Connector Road

	\rightarrow	7	\checkmark		4	p
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ち			4	7	¢
Trafic Volume (vph)	360	10	250	370	10	160
Future Volume (vph)	360	10	250	370	10	160
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (t)		0	0		0	80
Storage Lanes		0	0		1	1
Taper Length (t)			25		25	
Lane Utili. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Fit	0.996					0.850
Flt Protected				0.980	0.950	
Satd. Flow (prot)	1855	0	0	1825	1770	1583
Flt Permitted				0.980	0.950	
Satd. Flow (perm)	1855	0	0	1825	1770	1583
Link Speed (mph)	30			30	30	
Link Distance (ft)	354			472	168	
Travel Time (s)	8.0			10.7	3.8	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	391	11	272	402	11	174
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	402	0	0	674	11	174
Sign Control	Free			Free	Stop	
Intersection Summary						
Area Type: Other						
Control Type: Unsignalized						
Intersection Capacity Utilization 66.2\%Analysis Period (min) 15						

Major/Minor	Major1	Major2	Minor1	
Conflicting Flow All	0	0402	01343	397
Stage 1	-	- -	397	-
Stage 2	-	- -	946	-
Citical Hdwy	-	4.12	6.42	6.22
Critical Hdwy Stg 1	-	- -	5.42	.
Critical Hdwy Stg 2	-	- -	5.42	-
Follow-up Hdwy	-	- 2.218	- 3.518	3.318
Pot Cap-1 Maneuver	-	1157	- 168	652
Stage 1	-	- .	- 679	.
Stage 2	-	- -	377	-
Platoon blocked, \%	-	-	-	
Mov Cap-1 Maneuver	-	1157	- 117	652
Mov Cap-2 Maneuver	-	- .	- 117	.
Stage 1	-	- -	- 473	-
Stage 2	-	- -	- 377	-

Approach	EB	WB	NB
HCM Control Delay, S	0	3.7	14.1
HCM LOS		B	

27: NH 102/NH 102 WB \& English Range Road

	\Rightarrow	7	4	\uparrow	\downarrow	\checkmark
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M		*	\uparrow	F	
Traffic Volume (vph)	10	30	20	530	630	20
Future Volume (vph)	10	30	20	530	630	20
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (t)	0	0	100			0
Storage Lanes	1	0	1			0
Taper Length (tt)	25		25			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Fit	0.904				0.994	
Flt Protected	0.986		0.950			
Satd. Flow (prot)	1694	0	1787	1900	1871	0
FIt Permitted	0.986		0.950			
Satd. Flow (perm)	1694	0	1787	1900	1871	0
Link Speed (mph)	30			30	30	
Link Distance (ft)	332			288	365	
Travel Time (s)	7.5			6.5	8.3	
Peak Hour Factor	0.64	0.77	0.71	0.90	0.75	0.55
Heavy Vehicles (\%)	0\%	0\%	1\%	0\%	1\%	0\%
Adj. Flow (vph)	16	39	28	589	840	36
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	55	0	28	589	876	0
Sign Control	Stop			Free	Free	
Intersection Summary						
Area Type: Other						
Control Type: Unsignalized						
Intersection Capacity Utilization 44.4\%Analysis Period (min) 15						

Intersection						
Int Delay, s/veh	1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	r			个	F	
Traffic Vol, veh/h	10	30	20	530	630	20
Future Vol, veh/h	10	30	20	530	630	20
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	100	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	64	77	71	90	75	55
Heavy Vehicles, \%	0	0	1	0	1	0
Mvmt Flow	16	39	28	589	840	36

APPENDIX P-2: 2040 ALTERNATIVE B INTERSECTION CAPACITY ANALYSES - HCM 2000 PRINOUTS - PM PEAK HOUR

HCM Signalized Intersection Capacity Analysis

1. \mathbf{Z} : NH 102 \& Exit 4 SB Off

c Critical Lane Group

HCM Signalized Intersection Capacity Analysis

Movement	NBL2	NBL	NBR	SEL	SER	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	71		「7\％			717	个个			14	「
Traffic Volume（vph）	1345	0	750	0	0	1140	430	0	0	310	330
Future Volume（vph）	1345	0	750	0	0	1140	430	0	0	310	330
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）	6.0		6.0			6.0	6.0			6.0	4.0
Lane Util．Factor	0.97		0.88			0.97	0.95			0.95	1.00
Fit	1.00		0.85			1.00	1.00			1.00	0.85
Flt Protected	0.95		1.00			0.95	1.00			1.00	1.00
Satd．Flow（prot）	3242		2632			3335	3438			3505	1568
Flt Permitted	0.95		1.00			0.95	1.00			1.00	1.00
Satd．Flow（perm）	3242		2632			3335	3438			3505	1568
Peak－hour factor，PHF	0.88	0.88	0.88	0.92	0.92	0.94	0.94	0.94	0.92	0.92	0.92
Adj．Flow（vph）	1528	0	852	0	0	1213	457	0	0	337	359
RTOR Reduction（vph）	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow（vph）	1528	0	852	0	0	1213	457	0	0	337	359
Heavy Vehicles（\％）	8\％	8\％	8\％	2\％	2\％	5\％	5\％	5\％	3\％	3\％	3\％
Turn Type	Prot		Prot			Prot	NA			NA	Free
Protected Phases	8		8			5	2			6	
Permitted Phases											Free
Actuated Green，G（s）	60.0		60.0			46.0	78.0			26.0	150.0
Effective Green，g（s）	60.0		60.0			46.0	78.0			26.0	150.0
Actuated g／C Ratio	0.40		0.40			0.31	0.52			0.17	1.00
Clearance Time（s）	6.0		6.0			6.0	6.0			6.0	
Vehicle Extension（s）	3.0		3.0			3.0	3.0			3.0	
Lane Grp Cap（vph）	1296		1052			1022	1787			607	1568
v／s Ratio Prot	c0．47		0.32			c0．36	0.13			c0．10	
v／s Ratio Perm											0.23
v / c Ratio	1.18		0.81			1.19	0.26			0.56	0.23
Uniform Delay，d1	45.0		39.9			52.0	19.9			56.7	0.0
Progression Factor	1.00		1.00			0.65	0.40			1.00	1.00
Incremental Delay，d2	88.8		4.7			90.7	0.2			3.6	0.3
Delay（s）	133.8		44.6			124.3	8.1			60.3	0.3
Level of Service	F		D			F	A			E	A
Approach Delay（s）		101.9		0.0			92.5			29.4	
Approach LOS		F		A			F			C	

Intersection Summary			
HCM 2000 Control Delay	88.0	HCM 2000 Level of Service	F
HCM 2000 Volume to Capacity ratio	1.06		18.0
Actuated Cycle Length（s）	150.0	Sum of lost time（s）	F
Intersection Capacity Utilization	95.5%	ICU Level of Service	
Analysis Period（min）	15		
C Critical Lane Group			

HCM Signalized Intersection Capacity Analysis
3 8: Exit 5 SB On/Exit 5 SB Off \& NH 28
12/28/2017

	\rangle			\checkmark	\leftarrow			4				\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\uparrow \uparrow$	F	7	$\uparrow \uparrow$					7%		
Traffic Volume (vph)	0	790	420	150	610	0	0	0	0	175	0	425
Future Volume (vph)	0	790	420	150	610	0	0	0	0	175	0	425
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0	4.0	6.0	6.0					6.0		6.0
Lane Util. Factor		0.95	1.00	1.00	0.95					0.97		1.00
Fit		1.00	0.85	1.00	1.00					1.00		0.85
Flt Protected		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (prot)		3471	1553	1719	3438					3367		1553
Flt Permitted		1.00	1.00	0.95	1.00					0.95		1.00
Satd. Flow (perm)		3471	1553	1719	3438					3367		1553
Peak-hour factor, PHF	0.87	0.87	0.87	0.86	0.86	0.86	0.92	0.92	0.92	0.91	0.91	0.91
Adj. Flow (vph)	0	908	483	174	709	0	0	0	0	192	0	467
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	159
Lane Group Flow (vph)	0	908	483	174	709	0	0	0	0	192	0	308
Heavy Vehicles (\%)	4\%	4\%	4\%	5\%	5\%	5\%	2\%	2\%	2\%	4\%	4\%	4\%
Turn Type		NA	Free	Prot	NA					Prot		Prot
Protected Phases		2		1	6					4		
Permitted Phases			Free									
Actuated Green, G (s)		36.5	90.0	12.8	55.3					22.7		22.7
Effective Green, g (s)		36.5	90.0	12.8	55.3					22.7		22.7
Actuated g/C Ratio		0.41	1.00	0.14	0.61					0.25		0.25
Clearance Time (s)		6.0		6.0	6.0					6.0		6.0
Vehicle Extension (s)		5.0		3.0	5.0					3.0		3.0
Lane Grp Cap (vph)		1407	1553	244	2112					849		391
v/s Ratio Prot		c0.26		c0.10	0.21					0.06		c0.20
v / s Ratio Perm			0.31									
v/c Ratio		0.65	0.31	0.71	0.34					0.23		0.79
Uniform Delay, d1		21.5	0.0	36.8	8.4					26.7		31.4
Progression Factor		1.00	1.00	0.26	0.01					1.00		1.00
Incremental Delay, d2		2.3	0.5	7.4	0.2					0.1		10.0
Delay (s)		23.8	0.5	17.0	0.3					26.8		41.4
Level of Service		C	A	B	A					C		D
Approach Delay (s)		15.7			3.6			0.0			37.2	
Approach LOS		B			A			A			D	

Intersection Summary			
HCM 2000 Control Delay	16.9	HCM 2000 Level of Service	B
HCM 2000 Volume to Capacity ratio	0.70		18.0
Actuated Cycle Length (s)	90.0	Sum of lost time (s)	D
Intersection Capacity Utilization	75.1%	ICU Level of Service	
Analysis Period (min)	15		
C Critical Lane Group			

HCM Signalized Intersection Capacity Analysis
4 \＆：Exit 5 NB Off \＆NH 28
12／28／2017

	4	\rightarrow		7	\leftarrow	4	4	4	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	个个			¢ \uparrow	「	${ }^{*}$		7			
Traffic Volume（vph）	495	470	0	0	410	400	350	0	385	0	0	0
Future Volume（vph）	495	470	0	0	410	400	350	0	385	0	0	0
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）	6.0	6.0			6.0	4.0	6.0		6.0			
Lane Util．Factor	1.00	0.95			0.95	1.00	1.00		1.00			
Fit	1.00	1.00			1.00	0.85	1.00		0.85			
Flt Protected	0.95	1.00			1.00	1.00	0.95		1.00			
Satd．Flow（prot）	1752	3505			3505	1568	1703		1524			
Flt Permitted	0.95	1.00			1.00	1.00	0.95		1.00			
Satd．Flow（perm）	1752	3505			3505	1568	1703		1524			
Peak－hour factor，PHF	0.92	0.92	0.92	0.91	0.91	0.91	0.67	0.67	0.67	0.92	0.92	0.92
Adj．Flow（vph）	538	511	0	0	451	440	522	0	575	0	0	0
RTOR Reduction（vph）	0	0	0	0	0	0	0	0	236	0	0	0
Lane Group Flow（vph）	538	511	0	0	451	440	522	0	339	0	0	0
Heavy Vehicles（\％）	3\％	3\％	3\％	3\％	3\％	3\％	6\％	6\％	6\％	2\％	2\％	2\％
Turn Type	Prot	NA			NA	Free	Prot		Prot			
Protected Phases	5	2			6		8		Pror			
Permitted Phases		2			6	Free						
Actuated Green，G（s）	27.0	50.6			17.6	90.0	27.4		27.4			
Effective Green， g （s）	27.0	50.6			17.6	90.0	27.4		27.4			
Actuated g／C Ratio	0.30	0.56			0.20	1.00	0.30		0.30			
Clearance Time（s）	6.0	6.0			6.0		6.0		6.0			
Vehicle Extension（s）	5.0	5.0			5.0		3.0		3.0			
Lane Grp Cap（vph）	525	1970			685	1568	518		463			
v／s Ratio Prot	c0．31	0.15			co． 13		c0．31		0.22			
v / s Ratio Perm						0.28						
V / C Ratio	1.02	0.26			0.66	0.28	1.01		0.73			
Uniform Delay，d1	31.5	10.1			33.4	0.0	31.3		28.0			
Progression Factor	0.25	0.30			1.00	1.00	1.00		1.00			
Incremental Delay，d2	40.8	0.3			4.9	0.4	41.5		5.9			
Delay（s）	48.7	3.3			38.3	0.4	72.8		33.9			
Level of Service	D	A			D	A	E		C			
Approach Delay（s）		26.6			19.6			52.4			0.0	
Approach LOS		C			B			D			A	

Intersection Summary			
HCM 2000 Control Delay	33.9	HCM 2000 Level of Service	C
HCM 2000 Volume to Capacity ratio	0.93		18.0
Actuated Cycle Length（s）	90.0	Sum of lost time（s）	D
Intersection Capacity Utilization	75.1%	ICU Level of Service	
Analysis Period（min）	15		
C Critical Lane Group			

HCM Signalized Intersection Capacity Analysis
5 : NH 102 \& St. Charles Street/Londonderry Road
01/02/2018

Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		\uparrow	「		¢		*	\uparrow 个		${ }^{*}$	$\uparrow \uparrow$	
Traffic Volume (vph)	80	5	120	10	0	10	210	830	120	5	610	100
Future Volume (vph)	80		120	10	0	10	210	830	120	5	610	100
Ideal Flow (vphpi)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0	6.0		6.0		6.0	6.0		6.0	6.0	
Lane Utill. Factor		1.00	1.00		1.00		1.00	0.95		1.00	0.95	
Fit		1.00	0.85		0.93		1.00	0.98		1.00	0.98	
Flt Protected		0.95	1.00		0.98		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1779	1583		1729		1770	3472		1770	3464	
Flt Permitted		0.81	1.00		0.79		0.95	1.00		0.95	1.00	
Satd. Flow (perm)		1505	1583		1408		1770	3472		1770	3464	
Peak-hour factor. PHF	0.92	0.92	0.92	0.25	0.25	0.25	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	87	5	130	40	0	40	228	902	130	5	663	109
RTOR Reduction (vph)	0	0	72	0	71	0	0	10	0	0	13	
Lane Group Flow (vph)	0	92	58	0	9	0	228	1022	0	5	759	
Heavy Vehicles (\%)	2\%	2\%	2\%	0\%	0\%	0\%	2\%	2\%	2\%	2\%	2\%	2\%
Turn Type	Perm	NA	custom	Perm	NA		Prot	NA		Prot	NA	
Protected Phases		8			4		5	2		1	6	
Permitted Phases	8		6	4								
Actuated Green, G (s)		8.3	33.1		8.3		14.8	47.1		0.8	33.1	
Effective Green, $\mathrm{g}(\mathrm{s})$		8.3	33.1		8.3		14.8	47.1		0.8	33.1	
Actuated g/C Ratio		0.11	0.45		0.11		0.20	0.63		0.01	0.45	
Clearance Time (s)		6.0	6.0		6.0		6.0	6.0		6.0	6.0	
Vehicle Extension (s)		3.0	3.0		3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		168	706		157		353	2203		19	1545	
V/s Ratio Prot							c0.13	c0.29		0.00	0.22	
v / s Ratio Perm		c0.06	0.04		0.01							
v/c Ratio		0.55	0.08		0.06		0.65	0.46		0.26	0.49	
Uniform Delay, d1		31.2	11.8		29.5		27.3	7.0		36.4	14.6	
Progression Factor		1.00	1.00		1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2		3.6	0.1		0.2		4.0	0.2		7.3	0.2	
Delay (s)		34.8	11.9		29.6		31.3	7.2		43.7	14.8	
Level of Service		C	B		C		C	A		D	B	
Approach Delay (s)		21.4			29.6			11.5			15.0	
Approach LOS		C			C			B			B	

Intersection Summary			
HCM 2000 Control Delay	14.2	HCM 2000 Level of Service	B
HCM 2000 Volume to Capacity ratio	0.54		18.0
Actuated Cycle Length (s)	74.2	Sum of lost time (s)	B
Intersection Capacity Utilization	58.4%	ICU Level of Service	
Analysis Period (min)	15		
c Critical Lane Group			

HCM Signalized Intersection Capacity Analysis
10: NH 102 \& Fordway/Madden Hill Road

Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		\uparrow			\$			F			4	
Traffic Volume (vph)	20	80	5	250	0	60	0	680	130	15	345	
Future Volume (vph)	20	80	5	250	0	60	0	680	130	15	345	
Ideal Flow (vohpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0			6.0			6.0			6.0	
Lane Util. Factor		1.00			1.00			1.00			1.00	
Fit		0.99			0.97			0.98			1.00	
Flt Protected		0.99			0.96			1.00			1.00	
Satd. Flow (prot)		1834			1727			1721			1806	
Flt Permitted		0.91			0.64			1.00			0.82	
Satd. Flow (perm)		1677			1157			1721			1481	
Peak-hour factor, PHF	0.60	0.60	0.60	0.96	0.96	0.96	0.89	0.89	0.89	0.86	0.86	0.86
Adj. Flow (vph)	33	133	8	260	0	62	0	764	146	17	401	
RTOR Reduction (vph)	0	2	0	0	26	0	0	8	0	0	0	0
Lane Group Flow (vph)	0	172	0	0	297	0	0	902	0	0	418	0
Heavy Vehicles (\%)	2\%	2\%	2\%	3\%	3\%	3\%	8\%	8\%	8\%	5\%	5\%	5\%
Turn Type	Perm	NA		Perm	NA			NA		Perm	NA	
Protected Phases		4			4			2			2	
Permitted Phases	4			4						2		
Actuated Green, G (s)		24.5			24.5			48.8			48.8	
Effective Green, g (s)		24.5			24.5			48.8			48.8	
Actuated g/C Ratio		0.29			0.29			0.57			0.57	
Clearance Time (s)		6.0			6.0			6.0			6.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		481			332			984			847	
v / s Ratio Prot								c0.52				
v/s Ratio Perm		0.10			c0.26						0.28	
v/c Ratio		0.36			0.90			0.92			0.49	
Uniform Delay, d1		24.1			29.2			16.4			10.9	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		0.5			25.0			12.9			0.5	
Delay (s)		24.6			54.2			29.3			11.3	
Level of Service		C			D			C			B	
Approach Delay (s)		24.6			54.2			29.3			11.3	
Approach LOS		C			D			C			B	

Intersection Summary			
HCM 2000 Control Delay	29.1	HCM 2000 Level of Service	C
HCM 2000 Volume to Capacity ratio	0.91		12.0
Actuated Cycle Length (s)	85.3	Sum of lost time (s)	D
Intersection Capacity Utilization	81.2%	ICU Level of Service	
Analysis Period (min)	15		
C Critical Lane Group			

	4	\dagger	1	い	\pm	\downarrow	4	γ	\cdots	1	4	4
Movement	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	7	\dagger		7	4	\%	${ }^{1}$	\dagger		${ }^{*}$	${ }_{*}$	
Traffic Volume (vph)	150	200	20	70	240	10	90	420	40	60	280	210
Future Volume (vph)	150	200	20	70	240	10	90	420	40	60	280	210
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0		6.0	6.0	
Lane Util, Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Frt	1.00	0.99		1.00	1.00	0.85	1.00	0.99		1.00	0.94	
Fit Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1752	1820		1752	1845	1568	1787	1857		1787	1760	
Flt Permitted	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1752	1820		1752	1845	1568	1787	1857		1787	1760	
Peak-hour factor, PHF	0.91	0.91	0.91	0.93	0.93	0.93	0.95	0.95	0.95	0.94	0.94	0.94
Adj. Flow (vph)	165	220	22	75	258	11	95	442	42	64	298	223
RTOR Reduction (vph)	0	5	0	0	0	8	0	4	0	0	30	0
Lane Group Flow (vph)	165	237	0	75	258	3	95	480	0	64	491	0
Heavy Vehicles (\%)	3\%	3\%	3\%	3\%	3\%	3\%	1\%	1\%	1\%	1\%	1\%	1\%
Turn Type	Prot	NA		Prot	NA	$\mathrm{pm}+0 \mathrm{v}$	Prot	NA		Prot	NA	
Protected Phases	3	8		7	4	5	5	2		1	6	
Permitted Phases						4						
Actuated Green, G (s)	10.5	20.5		6.9	16.9	24.5	7.6	28.9		4.7	26.0	
Effective Green, g (s)	10.5	20.5		6.9	16.9	24.5	7.6	28.9		4.7	26.0	
Actuated g/C Ratio	0.12	0.24		0.08	0.20	0.29	0.09	0.34		0.06	0.31	
Clearance Time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0		6.0	6.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	216	438		142	366	562	159	631		98	538	
v / s Ratio Prot	c0.09	c0.13		0.04	c0.14	0.00	c0.05	c0.26		0.04	c0.28	
v/s Ratio Perm						0.00						
v/c Ratio	0.76	0.54		0.53	0.70	0.01	0.60	0.76		0.65	0.91	
Uniform Delay, d1	36.1	28.2		37.5	31.7	21.6	37.2	25.0		39.4	28.4	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	14.8	1.4		3.5	6.1	0.0	5.9	8.4		14.5	19.9	
Delay (s)	50.8	29.5		41.0	37.8	21.6	43.2	33.4		53.9	48.3	
Level of Service	D	C		D	D	C	D	C		D	D	
Approach Delay (s)		38.2			38.0			35.0			48.9	
Approach LOS		D			D			C			D	
Intersection Summary												
HCM 2000 Control Delay			40.5	HCM 2000 Level of Service					D			
HCM 2000 Volume to Capacity ratio			0.80									
Actuated Cycle Length (s)			85.0	Sum of lost time (s)					24.0			
Intersection Capacity Utilization			87.9\%	ICU Level of Service					E			
Analysis Period (min)			15									
C Critical Lane Group												

8: N.High St/N. High St \& Ash St Ext

	\rangle	7	4	4	\downarrow	\downarrow
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*	${ }^{\prime}$		4	\uparrow	F
Traffic Volume (voh)	460	10	5	100	200	245
Future Volume (vph)	460	10	5	100	200	245
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	120	0			220
Storage Lanes	1	1	0			1
Taper Length (t)	25		25			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.850				0.850
Flt Protected	0.950			0.998		
Satd. Flow (prot)	1787	1599	0	1859	1881	1599
FIt Permitted	0.950			0.998		
Satd. Flow (perm)	1787	1599	0	1859	1881	1599
Link Speed (mph)	30			30	30	
Link Distance (t)	322			309	305	
Travel Time (s)	7.3			7.0	6.9	
Peak Hour Factor	0.90	0.90	0.87	0.87	0.87	0.87
Heavy Vehicles (\%)	1\%	1\%	2\%	2\%	1\%	1\%
Adj. Flow (vph)	511	11	,	115	230	282
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	511	11	0	121	230	282
Sign Control	Stop			Stop	Stop	
Intersection Summary						
Area Type: Other						
Control Type: Unsignalized						
Intersection Capacity Utilization 47.0\%Analysis Period (min) 15				ICU Level of Service A		

\|ntersection	
Intersection Delay. S/ven	32.6
Intersection LOS	D

Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	\uparrow			\uparrow	\uparrow	\uparrow	
Traffic Vol, veh/h	460	10	5	100	200	245	
Future Vol, veh/h	460	10	5	100	200	245	
Peak Hour Factor	0.90	0.90	0.87	0.87	0.87	0.87	
Heavy Vehicles, \%	1	1	2	2	1	1	
Mumt Flow	511	11	6	115	230	282	
Number of Lanes	1	1	0	1	1	1	

Approach	EB	NB	SB
Opposing Approach		SB	NB
Opposing Lanes	0	2	1
Conflicting Approach Left	SB	EB	
Conflicting Lanes Left	2	2	0
Confiliting Approach Right	NB		EB
Conficicting Lanes Right	1	0	2
HCM Control Delay	55.5	12.3	14
HCM LOS	F	B	B

| Lane | NBLn1 | EBLn1 | EBLn2 | SBLn1 | SBLn2 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Vol Left. \% | 5% | 100% | 0% | 0% | 0% |
| Vol Thru, \% | 95% | 0% | 0% | 100% | 0% |
| Vol Right. \% | 0% | 0% | 100% | 0% | 100% |
| Sign Control | Stop | Stop | Stop | Stop | Stop |
| Traffic Vol by Lane | 105 | 460 | 10 | 200 | 245 |
| LT Vol | 5 | 460 | 0 | 0 | 0 |
| Through Vol | 100 | 0 | 0 | 200 | 0 |
| RT Vol | 0 | 0 | 10 | 0 | 245 |
| Lane Flow Rate | 121 | 511 | 11 | 230 | 282 |
| Geometry Grp | 4 | 7 | 7 | 7 | 7 |
| Degree of Util (X) | 0.236 | 0.964 | 0.017 | 0.424 | 0.463 |
| Departure Headway (Hd) | 7.03 | 6.791 | 5.577 | 6.635 | 5.922 |
| Convergence. Y/N | Yes | Yes | Yes | Yes | Yes |
| Cap | 507 | 532 | 640 | 540 | 605 |
| Service Time | 5.123 | 4.543 | 3.328 | 4.414 | 3.7 |
| HCM Lane VIC Ratio | 0.239 | 0.961 | 0.017 | 0.426 | 0.466 |
| HCM Control Delay | 12.3 | 56.5 | 8.4 | 14.3 | 13.8 |
| HCM Lane LOS | B | F | A | B | B |
| HCM 95th-tile Q | 0.9 | 12.7 | 0.1 | 2.1 | 2.4 |

	\dagger		4	\uparrow		\checkmark
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M			\uparrow	F	
Traffic Volume (vph)	10	0	0	565	445	10
Future Volume (vph)	10	0	0	565	445	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Utill. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Fit					0.997	
Fit Protected	0.950					
Satd. Flow (prot)	1703	0	0	1881	1876	0
FIt Permitted	0.950					
Satd. Flow (perm)	1703	0	0	1881	1876	0
Link Speed (mph)	30			30	30	
Link Distance (ft)	160			224	319	
Travel Time (s)	3.6			5.1	7.3	
Peak Hour Factor	0.50	0.50	0.93	0.93	0.86	0.86
Heavy Vehicles (\%)	6\%	6\%	1\%	1\%	1\%	1\%
Adj. Flow (vph)	20	0	0	608	517	12
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	20	0	0	608	529	0
Sign Control	Stop			Free	Free	
Intersection Summary						
Area Type: Other						
Control Type: Unsignalized						
Analysis Period (min) 15 liter						

10: Franklin St/Franklin St Ext \& N High St/Folsom Rd Lanes, Volumes, Timings

| | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

Intersection Summary

Area Type: Other

Control Type: Unsignalized
Intersection Capacity Utilization 95.6\% ICU Level of Service F
Analysis Period (min) 15

HCM Signalized Intersection Capacity Analysis
11: Folsom Rd/Tsienneto Rd \& NH 28 S/NH 28
03/13/2018

	4	4	$\stackrel{\square}{1}$	\checkmark	\downarrow	\downarrow	4	\not	\downarrow	$\frac{1}{7}$	\checkmark	4
Movement	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%	个个	$\stackrel{1}{*}$	7*	¢ \uparrow		\%	\uparrow	7	\%	\uparrow	7
Traffic Volume (vph)	60	320	110	550	390	0	60	360	50	45	180	625
Future Volume (vph)	60	320	110	550	390	0	60	360	50	45	180	625
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0		6.0	6.0	6.0	6.0	6.0	6.0
Lane Utill Factor	1.00	0.95	1.00	0.97	0.95		1.00	1.00	1.00	1.00	1.00	1.00
Fit	1.00	1.00	0.85	1.00	1.00		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1770	3539	1583	3433	3539		1770	1863	1583	1787	1881	1599
Flt Permitted	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1770	3539	1583	3433	3539		1770	1863	1583	1787	1881	1599
Peak-hour factor, PHF	0.92	0.92	0.92	0.94	0.94	0.94	0.96	0.96	0.96	0.95	0.95	0.95
Adj. Flow (vph)	65	348	120	585	415	0	62	375	52	47	189	658
RTOR Reduction (vph)	0	0	90	0	0	0	0	0	39	0	0	88
Lane Group Flow (vph)	65	348	30	585	415	0	63	375	13	47	189	570
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	1\%	1\%	1\%
Turn Type	Prot	NA	Perm	Prot	NA		Prot	NA	Perm	Prot	NA	$\mathrm{pm}+\mathrm{ov}$
Protected Phases	5	2		1	,		7	,		3	8	
Permitted Phases			2						4			8
Actuated Green, G (s)	6.8	27.6	27.6	25.2	46.0		7.0	26.8	26.8	6.4	26.2	51.4
Effective Green, $\mathrm{g}(\mathrm{s})$	6.8	27.6	27.6	25.2	46.0		7.0	26.8	26.8	6.4	26.2	51.4
Actuated g/C Ratio	0.06	0.25	0.25	0.23	0.42		0.06	0.24	0.24	0.06	0.24	0.47
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0		6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	109	887	397	786	1479		112	453	385	103	448	834
v / s Ratio Prot	0.04	c0.10		c0.17	0.12		c0.04	co. 20		0.03	0.10	c0.16
v / s Ratio Perm			0.02						0.01			0.20
v/c Ratio	0.60	0.39	0.08	0.74	0.28		0.56	0.83	0.03	0.46	0.42	0.68
Uniform Delay, d1	50.3	34.2	31.5	39.4	21.1		50.0	39.4	31.7	50.1	35.5	22.9
Progression Factor	1.00	1.00	1.00	1.27	1.16		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	8.5	1.3	0.4	3.6	0.1		6.3	11.8	0.0	3.2	0.6	2.3
Delay (s)	58.7	35.5	31.8	53.5	24.5		56.3	51.2	31.8	53.3	36.1	25.3
Level of Service	E	D	C	D	C		E	D	C	D	D	C
Approach Delay (s)		37.5			41.5			49.8			29.0	
Approach LOS		D			D			D			C	

Intersection Summary			
HCM 2000 Control Delay	38.3	HCM 2000 Level of Service	D
HCM 2000 Volume to Capacity ratio	0.66		24.0
Actuated Cycle Length (s)	110.0	Sum of lost time (s)	C
Intersection Capacity Utilization	70.2%	ICU Level of Service	
Analysis Period (min)	15		
c Critical Lane Group			

12: Tsienneto Rd \& Pinkerton St

	\cdots	(\nearrow	-	5	\checkmark
tane Group	NWL	NWR	NET	NER	SWL	SWT
Lane Configurations	${ }^{*}$	"	\uparrow	$\overline{ }$		$\dagger_{\text {¢ }}$
Traffic Volume (vph)	140	100	550	520	80	710
Future Volume (vph)	140	100	550	520	80	710
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (t)	180	150		0	180	
Storage Lanes	1	0		1	0	
Taper Length (t)	25				25	
Lane Util. Factor	1.00	1.00	1.00	1.00	0.95	0.95
Fit		0.850		0.850		
Fit Protected	0.950					0.995
Satd. Flow (prot)	1787	1599	1881	1599	0	3556
Flt Permitted	0.950					0.995
Satd. Flow (perm)	1787	1599	1881	1599	0	3556
Link Speed (mph)	30		30			30
Link Distance (t)	403		387			233
Travel Time (s)	9.2		8.8			5.3
Peak Hour Factor	0.86	0.86	0.96	0.96	0.85	0.85
Heavy Vehicles (\%)	1\%	1\%	1\%	1\%	1\%	1\%
Adj. Flow (vph)	163	116	573	542	94	835
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	163	116	573	542	0	929
Sign Control	Stop		Free			Free
Intersection Summary						
Area Type: Other						
Control Type: Unsignalized						
Intersection Capacity Utilization 68.7\%Analysis Period (min) 15						

Intersection						
Int Delay, s/veh	10.1					
Movement	NWL	NWR	NET	NER	SWL	SWT
Lane Configurations	7	\%	\uparrow	\%		$\uparrow \uparrow$
Traffic Vol, veh/h	140	100	550	520	80	710
Future Vol, veh/h	140	100	550	520	80	710
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	Yield	-	None
Storage Length	180	-	-	0	-	-
Veh in Median Storage, \#	\# 0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	86	86	96	96	85	85
Heavy Vehicles, \%	1	1	1	1	1	1
Mumt Flow	163	116	573	542	94	835

	\cdots	,	λ	\ldots	K	\%	\%	7	2	5	\checkmark	*
Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%	个t-		\%	个t			\uparrow	"		\uparrow	${ }^{7}$
Traffic Volume (vph)	160	1185	5	20	890	80	15	10	15	10	10	60
Future Volume (vph)	160	1185	5	20	890	80	15	10	15	10	10	60
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0			6.0	6.0		6.0	6.0
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00	1.00		1.00	1.00
Fit	1.00	1.00		1.00	0.99			1.00	0.85		1.00	0.85
FIt Protected	0.95	1.00		0.95	1.00			0.97	1.00		0.98	1.00
Satd. Flow (prot)	1787	3572		1787	3530			1844	1615		1835	1599
Flt Permitted	0.95	1.00		0.95	1.00			0.80	1.00		0.83	1.00
Satd. Flow (perm)	1787	3572		1787	3530			1518	1615		1557	1599
Peak-hour factor, PHF	0.97	0.97	0.97	0.95	0.95	0.95	0.90	0.90	0.90	0.80	0.80	0.80
Adj. Flow (vph)	165	1222	5	21	937	84	17	11	17	12	12	75
RTOR Reduction (vph)	0	0	0	0	4	0	0	0	16		0	71
Lane Group Flow (vph)	165	1227	0	21	1017	0	0	28	1	0	26	4
Heavy Vehicles (\%)	1\%	1\%	1\%	1\%	1\%	1\%	0\%	0\%	0\%	1\%	1\%	1\%
Turn Type	Prot	NA		Prot	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases							8		8	4	4	4
Actuated Green, G (s)	15.4	82.4		3.2	70.2			6.4	6.4		6.4	6.4
Effective Green, g (s)	15.4	82.4		3.2	70.2			6.4	6.4		6.4	6.4
Actuated g/C Ratio	0.14	0.75		0.03	0.64			0.06	0.06		0.06	0.06
Clearance Time (s)	6.0	6.0		6.0	6.0			6.0	6.0		6.0	6.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0	3.0		3.0	3.0
Lane Grp Cap (vph)	250	2675		51	2252			88	93		90	93
v/s Ratio Prot	c0.09	c0.34		0.01	0.29							
v/s Ratio Perm								c0.02	0.00		0.02	0.00
v/c Ratio	0.66	0.46		0.41	0.45			0.32	0.01		0.29	0.05
Uniform Delay, d1	44.8	5.3		52.5	10.1			49.7	48.8		49.6	48.9
Progression Factor	0.99	1.15		1.02	0.98			1.00	1.00		1.00	1.00
Incremental Delay, d2	5.3	0.5		4.4	0.5			2.1	0.0		1.8	0.2
Delay (s)	49.8	6.5		58.0	10.5			51.8	48.9		51.4	49.1
Level of Service	D	A		E	B			D	D		D	D
Approach Delay (s)		11.7			11.5			50.7			49.7	
Approach LOS		B			B			D			D	

Intersection Summary			
HCM 2000 Control Delay	13.8	HCM 2000 Level of Service	B
HCM 2000 Volume to Capacity ratio	0.49		18.0
Actuated Cycle Length (s)	110.0	Sum of lost time (s)	B
Intersection Capacity Utilization	60.1%	ICU Level of Service	
Analysis Period (min)	15		
C Critical Lane Group			

	\rangle	\rightarrow		\checkmark	\leftarrow	4	4	4	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow	\%	7*	个t		\%	¢ 4	F'	${ }^{*}$	$\uparrow \uparrow$	「
Traffic Volume (vph)	50	180	140	820	300	20	130	640	940	30	530	180
Future Volume (vph)	50	180	140	820	300	20	130	640	940	30	530	180
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0	4.5	6.0	6.0		4.5	6.0	6.0	4.5	6.0	6.0
Lane Util. Factor	1.00	1.00	1.00	0.97	0.95		1.00	0.95	0.88	1.00	0.95	1.00
Fit	1.00	1.00	0.85	1.00	0.99		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1787	1881	1599	3433	3506		1805	3610	2842	1805	3610	1615
Flt Permitted	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1787	1881	1599	3433	3506		1805	3610	2842	1805	3610	1615
Peak-hour factor, PHF	0.84	0.84	0.84	0.90	0.90	0.90	0.78	0.78	0.78	0.86	0.86	0.86
Adj. Flow (vph)	60	214	167	911	333	22	167	821	1205	35	616	209
RTOR Reduction (vph)	0	0	107	0	,		0	0	329	0	0	132
Lane Group Flow (vph)	60	214	60	911	351	0	167	821	876	35	616	77
Heavy Vehicles (\%)	1\%	1\%	1\%	2\%	2\%	2\%	0\%	0\%	0\%	0\%	0\%	0\%
Turn Type	Prot	NA	pm+ov	Prot	NA		Prot	NA	pm+ov	Prot	NA	pm+ov
Protected Phases	5	2	3	1	6		3	,	1	7	4	5
Permitted Phases			2						8		4	4
Actuated Green, G (s)	16.0	17.2	31.1	32.0	33.2		13.9	33.1	65.1	5.2	24.4	40.4
Effective Green, g (s)	16.0	17.2	31.1	32.0	33.2		13.9	33.1	65.1	5.2	24.4	40.4
Actuated g/C Ratio	0.15	0.16	0.28	0.29	0.30		0.13	0.30	0.59	0.05	0.22	0.37
Clearance Time (s)	6.0	6.0	4.5	6.0	6.0		4.5	6.0	6.0	4.5	6.0	6.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	259	294	452	998	1058		228	1086	1836	85	800	681
v / s Ratio Prot	0.03	c0.11	0.02	c0.27	0.10		c0.09	c0.23	0.14	0.02	0.17	0.02
v/s Ratio Perm			0.02						0.17			0.03
v/c Ratio	0.23	0.73	0.13	0.91	0.33		0.73	0.76	0.48	0.41	0.77	0.11
Uniform Delay, d1	41.6	44.2	29.4	37.7	29.8		46.3	34.8	12.8	50.9	40.2	23.0
Progression Factor	1.00	1.00	1.00	0.97	1.40		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	2.1	14.6	0.1	11.9	0.2		11.5	3.0	0.2	3.2	4.6	0.1
Delay (s)	43.6	58.8	29.5	48.3	41.8		57.7	37.8	13.0	54.1	44.8	23.0
Level of Service	D	E	c	D	D		E	D	B	D	D	C
Approach Delay (s)		45.7			46.5			25.7			39.9	
Approach LOS		D			D			C			D	

Intersection Summary			
HCM 2000 Control Delay	35.6	HCM 2000 Level of Service	D
HCM 2000 Volume to Capacity ratio	0.83		22.5
Actuated Cycle Length (s)	110.0	Sum of lost time (s)	D
Intersection Capacity Utilization	73.5%	ICU Level of Service	
Analysis Period (min)	15		
c Critical Lane Group			

Approach	EB	WB	SB
HCM Control Delay, S	1	0	16.5
HCM LOS			C

Minor Lane/Major Mvmt	EBL	EBT	WBT WBR SBLn1	
Capacity (veh/h)	1106	-	-	405
HCM Lane V/C Ratio	0.04	-	-	-0.23
HCM Control Delay (s)	8.4	-	-	-16.5
HCM Lane LOS	A	-	-	C
HCM 95th \%tile Q(veh)	0.1	-	-	-0.9

16: NH 102 W/NH 102 E \& NH 28 Byp N \& E Derry Rd

	\checkmark	\ldots	4	\leftharpoonup	9	4	¢	P	\cdots	\checkmark	\downarrow	\downarrow
Lane Group	WBL2	WBL	WBR	WBR2	NBL	NBT	NBR	NBR2	SBL2	SBL	SBT	SBR
Lane Configurations		${ }^{*}$				\pm					\$	
Traffic Volume (vph)	10	170	360	20	20	110	110	10	10	110	140	40
Future Volume (vph)	10	170	360	20	20	110	110	10	10	110	140	40
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (tt)		0	150		0		150			0		0
Storage Lanes		1	0		0		0			0		0
Taper Length (t)		25			25					25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.908				0.935					0.982	
Flt Protected		0.984				0.996					0.980	
Satd. Flow (prot)	0	1648	0	0	0	1718	0	0	0	0	1709	0
Flt Permitted		0.984				0.996					0.980	
Satd. Flow (perm)	0	1648	0	0	0	1718	0	0	0	0	1709	0
Link Speed (mph)		30				30					30	
Link Distance (t)		465				456					371	
Travel Time (s)		10.6				10.4					8.4	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.86	0.86	0.86	0.86	0.80	0.80	0.80	0.80
Heavy Vehicles (\%)	3\%	3\%	3\%	3\%	3\%	3\%	3\%	3\%	7\%	7\%	7\%	7\%
Adj. Flow (vph)	11	187	396	22	23	128	128	12	13	138	175	50
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	616	0	0	0	291	0	0	0	0	376	0
Sign Control		Yield				Yield					Yield	
Intersection Summary												
Area Type: Other												
Control Type: Roundabout												
Intersection Capacity Utilization 100.5\%Analysis Period (min) 15			ICU Level of Service G									

Intersection					
Intersection Delay, s/veh21.1					
Intersection LOS C					
Approach	WB	NB	SB	NE	SW
Entry Lanes	1	1	1	1	1
Conflicting Circle Lanes	1	1	1	1	1
Adj Approach Flow, veh/h	550	309	642	589	143
Demand Flow Rate, veh/h	555	316	648	595	146
Vehicles Circulating, veh/h	507	923	429	677	789
Vehicles Exiting, veh/h	732	349	506	400	273
Ped Vol Crossing Leg, \#/h	0	0	0	0	0
Ped Cap Adj	1.000	1.000	1.000	1.000	1.000
Approach Delay, s/veh	16.4	19.0	17.8	33.1	9.0
Approach LOS	C	C	c	D	A

Lane	Left	Left	Left	Left	Left
Designated Moves	LR	LTR	LTR	LTR	LTR
Assumed Moves	LR	LTR	LTR	LTR	LTR
RT Channelized					
Lane Util	1.000	1.000	1.000	1.000	1.000
Follow-Up Headway, s	2.609	2.609	2.609	2.609	2.609
Critical Headway, s	4.976	4.976	4.976	4.976	4.976
Entry Flow, veh/h	555	316	648	595	146
Cap Entry Lane, veh/h	823	538	891	692	617
Entry HV Adj Factor	0.991	0.979	0.990	0.991	0.980
Flow Entry, veh/h	550	309	642	589	143
Cap Entry, veh/h	815	527	882	685	605
VIC Ratio	0.675	0.587	0.727	0.860	0.237
Control Delay, s/veh	16.4	19.0	17.8	33.1	9.0
LOS	C	C	C	D	A
95th \%tile Queue, veh	5	4	7	10	1

	\rangle	\rightarrow		\checkmark	\longleftarrow	4	4	\dagger	p	-	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	F		¢			\uparrow			¢	
Traffic Volume (vph)	10	40	470	10	30	20	300	140	10	25	110	10
Future Volume (vph)	10	40	470	10	30	20	300	140	10	25	110	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (t)	0		50	0		0	0		0	0		0
Storage Lanes	0		1	0		0	0		0	0		0
Taper Length (t)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit			0.850		0.956			0.997			0.991	
Flt Protected		0.990			0.992			0.968			0.992	
Satd. Flow (prot)	0	1844	1583	0	1802	0	0	1816	0	0	1849	0
Flt Permitted		0.990			0.992			0.968			0.992	
Satd. Flow (perm)	0	1844	1583	0	1802	0	0	1816	0	0	1849	0
Link Speed (mph)		30			30			30			30	
Link Distance (t)		152			453			475			436	
Travel Time (s)		3.5			10.3			10.8			9.9	
Peak Hour Factor	0.88	0.88	0.88	0.82	0.82	0.82	0.93	0.93	0.93	0.91	0.91	0.91
Heavy Vehicles (\%)	2\%	2\%	2\%	0\%	0\%	0\%	1\%	1\%	1\%	1\%	1\%	1\%
Adj. Flow (vph)	11	45	534	12	37	24	323	151	11	27	121	11
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	56	534	0	73	0	0	485	0	0	159	0
Sign Control		Stop			Stop			Free			Free	

Intersection Summary \quad Other	
Area Type: \quad ICU Level of Service A	
Control Type: Unsignalized	
Intersection Capacity Utilization 50.1%	
Analysis Period (min) 15	

Intersection													
Int Delay, s/veh	12.6												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\uparrow	「		¢			¢			¢		
Traffic Vol, veh/h	10	40	470	10	30	20	300	140	10	25	110	10	
Future Vol, veh/h	10	40	470	10	30	20	300	140	10	25	110	10	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	.		None										
Storage Length	-	-	50	-	.	.	-	.	.	-	.	.	
Veh in Median Storage, \#	\#	0	.	-	0	-	-	0	-	-	0	-	
Grade, \%	\cdot	0	\cdot	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	88	88	88	82	82	82	93	93	93	91	91	91	
Heavy Vehicles, \%	2	2	2	0	0	0	1	1	1	1	1	1	
Mumt Flow	11	45	534	12	37	24	323	151	11	27	121	11	

Movement	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	7	F		\%	\uparrow	\%	\%	ち		\%	ち	
Traffic Volume (vph)	30	70	20	80	60	20	30	430	70	20	210	50
Future Volume (vph)	30	70	20	80	60	20	30	430	70	20	210	50
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0		6.0	6.0	
Lane Util. Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Fit	1.00	0.97		1.00	1.00	0.85	1.00	0.98		1.00	0.97	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	1801		1787	1881	1599	1805	1860		1805	1845	
Flt Permitted	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1770	1801		1787	1881	1599	1805	1860		1805	1845	
Peak-hour factor, PHF	0.99	0.99	0.99	0.95	0.95	0.95	0.89	0.89	0.89	0.93	0.93	0.93
Adj. Flow (vph)	30	71	20	84	63	21	34	483	79	22	226	54
RTOR Reduction (vph)	0	11	0	0	0	12	0	7	0	0	11	0
Lane Group Flow (vph)	30	80	0	84	63	9	34	555	0	22	269	0
Heavy Vehicles (\%)	2\%	2\%	2\%	1\%	1\%	1\%	0\%	0\%	0\%	0\%	0\%	0\%
Turn Type	Prot	NA		Prot	NA	pt+ov	Prot	NA		Prot	NA	
Protected Phases	1	6		5	2	23	3	8		7	4	
Permitted Phases		6			2							
Actuated Green, G (s)	3.2	19.3		6.6	22.7	33.5	4.8	26.9		3.2	25.3	
Effective Green, g (s)	3.2	19.3		6.6	22.7	33.5	4.8	26.9		3.2	25.3	
Actuated g/C Ratio	0.04	0.24		0.08	0.28	0.42	0.06	0.34		0.04	0.32	
Clearance Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	70	434		147	533	669	108	625		72	583	
v/s Ratio Prot	0.02	c0.04		c0.05	c0.03	0.01	c0.02	c0.30		0.01	0.15	
v/s Ratio Perm												
v/c Ratio	0.43	0.18		0.57	0.12	0.01	0.31	0.89		0.31	0.46	
Uniform Delay, d1	37.5	24.1		35.3	21.2	13.6	36.0	25.1		37.3	21.9	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	4.2	0.2		5.3	0.5	0.0	1.7	14.3		2.4	0.6	
Delay (s)	41.7	24.3		40.6	21.7	13.6	37.7	39.4		39.7	22.5	
Level of Service	D	C		D	C	B	D	D		D	C	
Approach Delay (s)		28.6			30.1			39.3			23.7	
Approach LOS		C			C			D			C	

Intersection Summary			
HCM 2000 Control Delay	33.0	HCM 2000 Level of Service	C
HCM 2000 Volume to Capacity ratio	0.59		24.0
Actuated Cycle Length (s)	80.0	Sum of lost time (s)	A
Intersection Capacity Utilization	48.0%	ICU Level of Service	
Analysis Period (min)	15		

Intersection Summary			
HCM 2000 Control Delay	38.0	HCM 2000 Level of Service	D
HCM 2000 Volume to Capacity ratio	0.82		
Actuated Cycle Length (s)	100.4	Sum of lost time (s)	24.0
Intersection Capacity Utilization	58.7%	ICU Level of Service	B
Analysis Period (min)	15		
C Critical Lane Group			

20: Exit 4A SB On/Exit 4A SB Off \& Connector Road

	\Rightarrow	\rightarrow	7	\checkmark	\leftarrow	4	\downarrow	\checkmark	4	\uparrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	SBL	SBR	NWL	NWR
Lane Configurations	*	$\uparrow \uparrow$			$\uparrow \uparrow$	P7			Y	7
Traffic Volume (vph)	0	1575	0	0	1010	1075	0	0	0	770
Future Volume (vph)	0	1575	0	0	1010	1075	0	,	0	770
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0			6.0	6.0			6.0	6.0
Lane Util. Factor		0.95			0.95	0.88			1.00	0.95
Fit		1.00			1.00	0.85			0.85	0.85
Flt Protected		1.00			1.00	1.00			1.00	1.00
Satd. Flow (prot)		3539			3539	2787			1583	1504
Flt Permitted		1.00			1.00	1.00			1.00	1.00
Satd. Flow (perm)		3539			3539	2787			1583	1504
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	0	1676	0	0	1074	1144	0	0	0	819
RTOR Reduction (vph)	0	0	0	0	0	30	0	0	0	0
Lane Group Flow (vph)	0	1676	0	0	1074	1114	0	0	410	409
Tum Type	Perm	NA			NA	Perm			Prot	Prot
Protected Phases		2			2				4	4
Permitted Phases	2					2				
Actuated Green, G (s)		42.0			42.0	42.0			26.0	26.0
Effective Green, $\mathrm{g}(\mathrm{s})$		42.0			42.0	42.0			26.0	26.0
Actuated g/C Ratio		0.52			0.52	0.52			0.32	0.32
Clearance Time (s)		6.0			6.0	6.0			6.0	6.0
Vehicle Extension (s)		3.0			3.0	3.0			3.0	3.0
Lane Grp Cap (vph)		1857			1857	1463			514	488
v / s Ratio Prot		c0.47			0.30				0.26	c0. 27
v/s Ratio Perm						0.40				
v/c Ratio		0.90			0.58	0.76			0.80	0.84
Uniform Delay, d1		17.2			13.0	15.0			24.6	25.0
Progression Factor		0.04			1.00	1.00			1.00	1.00
Incremental Delay, d2		2.7			1.3	3.8			12.2	15.7
Delay (s)		3.4			14.3	18.8			36.8	40.8
Level of Service		A			B	B			D	D
Approach Delay (s)		3.4			16.6		0.0		38.8	
Approach LOS		A			B		A		D	
Intersection Summary										
HCM 2000 Control Delay			15.8		HCM 2000	Level of S	arvice		B	
HCM 2000 Volume to Capacity ratio			0.88							
Actuated Cycle Length (s)			80.0		Sum of lost	time (s)			12.0	
Intersection Capacity Utilization			115.2\%		CU Level of	Service			H	
Analysis Period (min)			15							
c Critical Lane Group										

c Critical Lane Group

	\rightarrow	\rangle	\checkmark	\leftarrow	4	p
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†			\uparrow	\%	7
Traffic Volume (vph)	460	0	290	470	0	210
Future Volume (vph)	460	0	290	470	0	210
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)		0	0		0	80
Storage Lanes		0	0		1	1
Taper Length (ft)			25		25	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt						0.850
Flt Protected				0.981		
Satd. Flow (prot)	1863	0	0	1827	1863	1583
Flt Permitted				0.981		
Satd. Flow (perm)	1863	0	0	1827	1863	1583
Link Speed (mph)	30			30	30	
Link Distance (ft)	410			475	676	
Travel Time (s)	9.3			10.8	15.4	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	500	0	315	511	0	228
Shared Lane Traffic (\%) 500						
Lane Group Flow (vph)	500	0	0	826	0	228
Sign Control	Free			Free	Stop	

Intersection Summary
Area Type:
Intersection Capacity Utilization 71.7\% ICU Level of Service C

Analysis Period (min) 15

Intersection						
Int Delay, s/veh	4.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	T			\uparrow	7	7
Traffic Vol, veh/h	460	0	290	470	0	210
Future Vol, veh/h	460	0	290	470	0	210
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	80
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	500	0	315	511	0	228

	\prime	\rangle	4	\uparrow	\downarrow	\checkmark
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	\%		\%	\uparrow	F	
Traffic Volume (vph)	5	30	40	610	720	10
Future Volume (vph)	5	30	40	610	720	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (tt)	,	0	100			0
Storage Lanes	1	0	1			0
Taper Length (t)	25		25			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Fit	0.888				0.998	
FIt Protected	0.992		0.950			
Satd. Flow (prot)	1674	0	1787	1900	1878	0
FIt Permitted	0.992		0.950			
Satd. Flow (perm)	1674	0	1787	1900	1878	0
Link Speed (mph)	30			30	30	
Link Distance (ft)	332			288	365	
Travel Time (s)	7.5			6.5	8.3	
Peak Hour Factor	0.64	0.77	0.71	0.90	0.75	0.55
Heavy Vehicles (\%)	0\%	0\%	1\%	0\%	1\%	0\%
$\begin{array}{lllllll}\text { Shared Lane Traffic (\%) } & 8 & & \\ \text { Sla }\end{array}$						
Lane Group Flow (vph)	47	0	56	678	978	0
Sign Control	Stop			Free	Free	
Intersection Summary						
Area Type: Other						
Control Type: Unsignalized						
Intersection Capacity Utilization 48.5\%Analysis Period (min) 15						

Intersection						
Int Delay, s/veh	1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	r		1	A	t	
Traffic Vol, veh/h	5	30	40	610	720	10
Future Vol, veh/h	5	30	40	610	720	10
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	100	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	64	77	71	90	75	55
Heavy Vehicles, \%	0	0	1	0	1	0
Mvmt Flow	8	39	56	678	960	18

APPENDIX P-3: 2040 ALTERNATIVE B INTERSECTION CAPACITY ANALYSES - SYNCHRO PRINOUTS - AM PEAK HOUR

Lanes，Volumes，Timings
1．苃：NH 102 \＆Exit 4 SB Off

	4	\rightarrow	\downarrow			
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		舟4	靳		\％	「¢
Traffic Volume（vph）	0	1280	720	0	385	925
Future Volume（vph）	0	1280	720	0	385	925
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900
Lane Width（ft）	12	12	12	12	16	12
Lane Util．Factor	1.00	0.95	0.95	1.00	1.00	0.88
Fit						0.850
Flt Protected					0.950	
Satd．Flow（prot）	0	3471	3406	0	1930	2682
Flt Permitted					0.950	
Satd．Flow（perm）	0	3471	3406	0	1930	2682
Right Turn on Red				Yes		No
Satd．Flow（RTOR）						
Link Speed（mph）		30	30		25	
Link Distance（ft）		712	388		212	
Travel Time（s）		16.2	8.8		5.8	
Peak Hour Factor	0.93	0.93	0.88	0.88	0.89	0.89
Heavy Vehicles（\％）	4\％	4\％	6\％	6\％	6\％	6\％
Adj．Flow（vph）	0	1376	818	0	433	1039
Shared Lane Traffic（\％）						
Lane Group Flow（vph）	0	1376	818	0	433	1039
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width（ft）		24	24		16	
Link Offset（ft）		0	0		0	
Crosswalk Width（ft）		16	16		16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	0.85	1.00
Turning Speed（mph）	15			9	15	9
Number of Detectors		3	3		3	3
Detector Template		Thru	Thru		Left	
Leading Detector（ ft ）		256	256		256	256
Trailing Detector（ft）		－5	－5		－5	－5
Detector 1 Position（ft）		－5	－5		－5	－5
Detector 1 Size（ft）		50	50		50	50
Detector 1 Type		$\mathrm{Cl}+\mathrm{Ex}$	Cl＋Ex		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$
Detector 1 Channel						
Detector 1 Extend（s）		0.0	0.0		0.0	0.0
Detector 1 Queue（s）		0.0	0.0		0.0	0.0
Detector 1 Delay（s）		0.0	0.0		0.0	0.0
Detector 2 Position（ft）		125	125		125	125
Detector 2 Size（ft）		6	6		6	6
Detector 2 Type		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$
Detector 2 Channel						
Detector 2 Extend（s）		0.0	0.0		0.0	0.0
Detector 3 Position（ft）		250	250		250	250
Detector 3 Size（ft）		6	6		6	6
Detector 3 Type		$\mathrm{Cl}+\mathrm{EX}$	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$
Detector 3 Channel						

Intersection Signal Delay: $28.2 \quad$ Intersection LOS: C
Intersection Capacity Utilization 68.7\% ICU Level of Service C
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 7: NH 102 \& Exit 4 SB Off

	\cdots	k	1	\cdots	\rangle	\%	χ	\not	7	\checkmark	k
Lane Group	NBL2	NBL	NBR	SEL	SER	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\% ${ }_{1}$		Tir			\%\%	种			44	\%
Traffic Volume (vph)	485	0	245	0	0	1415	250	0	0	820	500
Future Volume (vph)	485	0	245	0	0	1415	250	0	0	820	500
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)		0	0	0	0	550		0	0		0
Storage Lanes		2	2	0	0	2		0	0		1
Taper Length (ft)		25		25		25			25		
Lane Util. Factor	0.97	1.00	0.88	1.00	1.00	0.97	0.95	1.00	1.00	0.95	1.00
Fit			0.850								0.850
Flt Protected	0.950					0.950					
Satd. Flow (prot)	3242	0	2632	0	0	3335	3438	0	0	3505	1568
Flt Permitted	0.950					0.950					
Satd. Flow (perm)	3242	0	2632	0	0	3335	3438	0	0	3505	1568
Right Turn on Red			No					Yes			Yes
Satd. Flow (RTOR)											306
Link Speed (mph)		25		30			30			30	
Link Distance (ft)		856		390			760			857	
Travel Time (s)		23.3		8.9			17.3			19.5	
Peak Hour Factor	0.88	0.88	0.88	0.92	0.92	0.94	0.94	0.94	0.92	0.92	0.92
Heavy Vehicles (\%)	8\%	8\%	8\%	2\%	2\%	5\%	5\%	5\%	3\%	3\%	3\%
Adj. Flow (vph)	551	0	278	0	0	1505	266	0	0	891	543
Shared Lane Traffic (\%)											
Lane Group Flow (vph)	551	0	278	0	0	1505	266	0	0	891	543
Enter Blocked Intersection	No										
Lane Alignment	Left	Left	Right	Left	Right	Left	Left	Right	Left	Right	Right
Median Width(ft)		24		0			24			24	
Link Offset(ft)		12		0			0			0	
Crosswalk Width(ft)		16		16			16			16	
Two way Left Turn Lane											
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	15	25	15	9	15		9	15		25
Number of Detectors	3		3			3	3			3	0
Detector Template											
Leading Detector (ft)	256		256			256	256			256	0
Trailing Detector (ft)	-5		-5			-5	-5			-5	0
Detector 1 Position(ft)	-5		-5			-5	-5			-5	-5
Detector 1 Size(ft)	55		55			55	55			55	50
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$		Cl+Ex			$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{EX}$	$\mathrm{Cl}+\mathrm{Ex}$
Detector 1 Channel											
Detector 1 Extend (s)	0.0		0.0			0.0	0.0			0.0	0.0
Detector 1 Queue (s)	0.0		0.0			0.0	0.0			0.0	0.0
Detector 1 Delay (s)	0.0		0.0			0.0	0.0			0.0	0.0
Detector 2 Position(ft)	125		125			125	125			125	
Detector 2 Size(ft)	6		6			6	6			6	
Detector 2 Type	$\mathrm{Cl}+\mathrm{Ex}$		Cl+Ex			$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$	
Detector 2 Channel											
Detector 2 Extend (s)	0.0		0.0			0.0	0.0			0.0	
Detector 3 Position(ft)	250		250			250	250			250	
Detector 3 Size(ft)	6		6			6	6			6	

Lanes, Volumes, Timings
2. 8: NH 102 \& Exit 4 NB Off

Lane Group	NBL2	NBL	NBR	SEL	SER	NEL	NET	NER	SWL	SWT	SWR
Detector 3 Type	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{EX}$	$\mathrm{Cl}+\mathrm{Ex}$			Cl+Ex	
Detector 3 Channel											
Detector 3 Extend (s)	0.0		0.0			0.0	0.0			0.0	
Turn Type	Prot		Prot			Prot	NA			NA	Free
Protected Phases	8		8			5	2			6	
Permitted Phases											Free
Detector Phase	8		2			5	2			6	
Switch Phase											
Minimum Initial (s)	10.0		10.0			5.0	8.0			8.0	
Minimum Split (s)	16.0		16.0			11.0	42.0			31.0	
Total Split (s)	31.0		31.0			73.0	119.0			46.0	
Total Split (\%)	20.7\%		20.7\%			48.7\%	79.3\%			30.7\%	
Maximum Green (s)	25.0		25.0			67.0	113.0			40.0	
Yellow Time (s)	2.0		2.0			2.0	2.0			2.0	
All-Red Time (s)	4.0		4.0			4.0	4.0			4.0	
Lost Time Adjust (s)	0.0		0.0			0.0	0.0			0.0	
Total Lost Time (s)	6.0		6.0			6.0	6.0			6.0	
Lead/Lag						Lead				Lag	
Lead-Lag Optimize?											
Vehicle Extension (s)	3.0		3.0			3.0	3.0			3.0	
Recall Mode	None		None			None	C-Min			C-Min	
Walk Time (s)							7.0			7.0	
Flash Dont Walk (s)							29.0			17.0	
Pedestrian Calls (\#/hr)							0			0	
Act Effct Green (s)	25.0		25.0			67.0	113.0			40.0	150.0
Actuated g/C Ratio	0.17		0.17			0.45	0.75			0.27	1.00
v/c Ratio	1.02		0.63			1.01	0.10			0.95	0.35
Control Delay	104.4		65.6			51.1	9.0			74.0	0.6
Queue Delay	0.0		0.0			0.0	0.0			0.0	0.0
Total Delay	104.4		65.6			51.1	9.0			74.0	0.6
LOS	F		E			D	A			E	A
Approach Delay		91.3					44.7			46.2	
Approach LOS		F					D			D	
Queue Length 50th (ft)	~ 293		146			~ 706	51			454	0
Queue Length 95th (ft)	\#398		197			m\#903	m57			\#588	0
Internal Link Dist (ft)		776		310			680			777	
Turn Bay Length (ft)						550					
Base Capacity (vph)	540		438			1489	2589			934	1568
Starvation Cap Reductn	0		0			0	0			0	0
Spillback Cap Reductn	0		0			0	0			0	0
Storage Cap Reductn	0		0			0	0			0	0
Reduced v/c Ratio	1.02		0.63			1.01	0.10			0.95	0.35

Intersection Summary

Area Type:
Other
Cycle Length: 150
Actuated Cycle Length: 150
Offset: 147 (98\%), Referenced to phase 2:NET and 6:SWT, Start of Yellow
Natural Cycle: 130

Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.02
Intersection Signal Delay: $54.9 \quad$ Intersection LOS: D
Intersection Capacity Utilization 92.9\%

ICU Level of Service F

Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 8: NH 102 \& Exit 4 NB Off

	4	\rightarrow		7	\longleftarrow	4	4	\uparrow	p	*	\dagger	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			F	${ }^{*}$	44					$7{ }^{7}$		\%
Traffic Volume (vph)	0	690	420	260	730	0	0	0	0	105	0	385
Future Volume (vph)	0	690	420	260	730	0	0	0	0	105	0	385
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		350	0		0	0		0	0		0
Storage Lanes	0		1	1		0	0		0	2		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	0.97	1.00	1.00
Fit			0.850									0.850
Flt Protected				0.950						0.950		
Satd. Flow (prot)	0	3167	1417	1687	3374	0	0	0	0	3303	0	1524
Flt Permitted				0.950						0.950		
Satd. Flow (perm)	0	3167	1417	1687	3374	0	0	0	0	3303	0	1524
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			457									110
Link Speed (mph)		30			30			30			35	
Link Distance (ft)		851			693			486			581	
Travel Time (s)		19.3			15.8			11.0			11.3	
Peak Hour Factor	0.92	0.92	0.92	0.73	0.73	0.73	0.92	0.92	0.92	0.74	0.74	0.74
Heavy Vehicles (\%)	14\%	14\%	14\%	7\%	7\%	7\%	2\%	2\%	2\%	6\%	6\%	6\%
Adj. Flow (vph)	0	750	457	356	1000	0	0	0	0	142	0	520
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	750	457	356	1000	0	0	0	0	142	0	520
Enter Blocked Intersection	No											
Lane Alignment	Left	Right	Right	Left	Left	Right	Left	Left	Right	R NA	Left	Right
Median Width(ft)		36			36			24			24	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		25	15		9	15		9	15		9
Number of Detectors		3	2	3	3					3		
Detector Template		Thru	Right	Left	Thru					Left		
Leading Detector (ft)		256	131	256	256					256		206
Trailing Detector (ft)		-5	-5	-5	-5					-5		-5
Detector 1 Position(ft)		-5	-5	-5	-5					-5		-5
Detector 1 Size(ft)		50	50	50	50					50		50
Detector 1 Type		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex					Cl+Ex		CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)		0.0	0.0	0.0	0.0					0.0		0.0
Detector 1 Queue (s)		0.0	0.0	0.0	0.0					0.0		0.0
Detector 1 Delay (s)		0.0	0.0	0.0	0.0					0.0		0.0
Detector 2 Position(ft)		125	125	125	125					125		200
Detector 2 Size(ft)		6	6	6	6					6		6
Detector 2 Type		Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$					Cl+Ex		$\mathrm{Cl}+\mathrm{Ex}$
Detector 2 Channel												
Detector 2 Extend (s)		0.0	0.0	0.0	0.0					0.0		0.0
Detector 3 Position(ft)		250		250	250					250		
Detector 3 Size(ft)		6		6	6					6		

2. Exit 5 SB On/Exit 5 SB Off \& NH 28

	$\stackrel{ }{\prime}$				\longleftarrow			\uparrow			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector 3 Type		Cl+Ex		Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$					Cl+Ex		
Detector 3 Channel												
Detector 3 Extend (s)		0.0		0.0	0.0					0.0		
Turn Type		NA	Free	Prot	NA					Prot		Prot
Protected Phases		2		1	,					4		4
Permitted Phases			Free									
Detector Phase		2		1	6					4		4
Switch Phase												
Minimum Initial (s)		9.0		4.0	9.0					4.0		4.0
Minimum Split (s)		21.0		10.0	21.0					10.0		10.0
Total Split (s)		42.0		39.0	81.0					49.0		49.0
Total Split (\%)		32.3\%		30.0\%	62.3\%					37.7\%		37.7\%
Maximum Green (s)		36.0		33.0	75.0					43.0		43.0
Yellow Time (s)		4.0		4.0	4.0					4.0		4.0
All-Red Time (s)		2.0		2.0	2.0					2.0		2.0
Lost Time Adjust (s)		0.0		0.0	0.0					0.0		0.0
Total Lost Time (s)		6.0		6.0	6.0					6.0		6.0
Lead/Lag		Lag		Lead								
Lead-Lag Optimize?												
Vehicle Extension (s)		5.0		3.0	5.0					3.0		3.0
Recall Mode		C-Min		None	C-Min					None		None
Walk Time (s)		7.0			7.0							
Flash Dont Walk (s)		8.0			8.0							
Pedestrian Calls (\#/hr)		0			0							
Act Effct Green (s)		40.3	130.0	30.7	77.0					41.0		41.0
Actuated g/C Ratio		0.31	1.00	0.24	0.59					0.32		0.32
v / C Ratio		0.76	0.32	0.89	0.50					0.14		0.94
Control Delay		47.8	0.6	39.7	2.8					31.5		59.3
Queue Delay		0.0	0.0	0.0	0.0					0.0		0.0
Total Delay		47.8	0.6	39.7	2.8					31.5		59.3
LOS		D	A	D	A					C		E
Approach Delay		30.0			12.5						53.3	
Approach LOS		C			B						D	
Queue Length 50th (tt)		316	0	255	53					43		343
Queue Length 95th (ft)		\#404	0	m142	39					55		356
Internal Link Dist (ft)		771			613			406			501	
Turn Bay Length (ft)			350									
Base Capacity (vph)		981	1417	428	1998					1092		577
Starvation Cap Reductn		0	0	0	0					0		0
Spillback Cap Reductn		0	0	0	0					0		0
Storage Cap Reductn		0	0	0	0					0		0
Reduced v/c Ratio		0.76	0.32	0.83	0.50					0.13		0.90

Intersection Summary

Area Type: Other

Cycle Length: 130
Actuated Cycle Length: 130
Offset: $75(58 \%)$, Referenced to phase 2:EBT and 6 :WBT, Start of Yellow
Natural Cycle: 80

Lanes, Volumes, Timings
3 2: Exit 5 SB On/Exit 5 SB Off \& NH 28
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.94
Intersection Signal Delay: $27.4 \quad$ Intersection LOS: C
Intersection Capacity Utilization 76.3\% ICU Level of Service D
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 2: Exit 5 SB On/Exit 5 SB Off \& NH 28

	4	\rightarrow	\％	\checkmark		4	4	\dagger	p	\checkmark	\downarrow	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	革			靳	${ }^{7}$	\％		「＇			
Traffic Volume（vph）	525	270	0	0	545	570	445	0	165	0	0	0
Future Volume（vph）	525	270	0	0	545	570	445	0	165	0	0	0
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util．Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit						0.850			0.850			
Flt Protected	0.950						0.950					
Satd．Flow（prot）	1641	3282	0	0	3438	1538	1656	0	1482	0	0	0
Flt Permitted	0.950						0.950					
Satd．Flow（perm）	1641	3282	0	0	3438	1538	1656	0	1482	0	0	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）						604			169			
Link Speed（mph）		30			30			35			30	
Link Distance（ft）		693			542			867			392	
Travel Time（s）		15.8			12.3			16.9			8.9	
Peak Hour Factor	0.87	0.87	0.87	0.90	0.90	0.90	0.78	0.78	0.78	0.92	0.92	0.92
Heavy Vehicles（\％）	10\％	10\％	10\％	5\％	5\％	5\％	9\％	9\％	9\％	2\％	2\％	2\％
Adj．Flow（vph）	603	310	0	0	606	633	571	0	212	0	0	0
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	603	310	0	0	606	633	571	0	212	0	0	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right	Left	Right	Right	Right	Left	Right	Left	Left	Right
Median Width（ft）		36			42			12			12	
Link Offset（ft）		0			0			0			36	
Crosswalk Width（ft）		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed（mph）	15		9	15		25	15		9	15		9
Number of Detectors	3	3			3	2	3		0			
Detector Template	Left	Thru			Thru	Right	Left					
Leading Detector（ft）	256	256			256	131	256		0			
Trailing Detector（ft）	－5	－5			－5	－5	－5		0			
Detector 1 Position（ft）	－5	－5			－5	－5	－5		－5			
Detector 1 Size（ft）	50	50			50	50	50		50			
Detector 1 Type	Cl＋Ex	$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$			
Detector 1 Channel												
Detector 1 Extend（s）	0.0	0.0			0.0	0.0	0.0		0.0			
Detector 1 Queue（s）	0.0	0.0			0.0	0.0	0.0		0.0			
Detector 1 Delay（s）	0.0	0.0			0.0	0.0	0.0		0.0			
Detector 2 Position（ft）	125	125			125	125	125					
Detector 2 Size（ft）	6	6			6	6	6					
Detector 2 Type	$\mathrm{Cl}+\mathrm{Ex}$	Cl＋Ex			Cl＋Ex	$\mathrm{Cl}+\mathrm{Ex}$	Cl＋Ex					
Detector 2 Channel												
Detector 2 Extend（s）	0.0	0.0			0.0	0.0	0.0					
Detector 3 Position（ft）	250	250			250		250					
Detector 3 Size（ft）	6	6			6		6					
Detector 3 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$		Cl＋Ex					
Detector 3 Channel												
Detector 3 Extend（s）	0.0	0.0			0.0		0.0					

Lanes, Volumes, Timings
4. 8: Exit 5 NB Off \& NH 28

	4	\rightarrow		1	4	4	4	\dagger	p	*	\downarrow	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Prot	NA			NA	Free	Prot		Prot			
Protected Phases	5	2			6		8		8			
Permitted Phases		2			6	Free						
Detector Phase	5	2			6		8		8			
Switch Phase												
Minimum Initial (s)	4.0	16.0			16.0		4.0		4.0			
Minimum Split (s)	10.0	23.0			23.0		10.0		10.0			
Total Split (s)	52.0	81.0			29.0		49.0		49.0			
Total Split (\%)	40.0\%	62.3\%			22.3\%		37.7\%		37.7\%			
Maximum Green (s)	46.0	75.0			23.0		43.0		43.0			
Yellow Time (s)	4.0	4.0			4.0		4.0		4.0			
All-Red Time (s)	2.0	2.0			2.0		2.0		2.0			
Lost Time Adjust (s)	0.0	0.0			0.0		0.0		0.0			
Total Lost Time (s)	6.0	6.0			6.0		6.0		6.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?												
Vehicle Extension (s)	5.0	5.0			5.0		3.0		3.0			
Recall Mode	None	C-Min			C-Min		None		None			
Walk Time (s)		7.0			7.0							
Flash Dont Walk (s)		10.0			10.0							
Pedestrian Calls (\#/hr)		0			0							
Act Effct Green (s)	46.0	75.0			23.0	130.0	43.0		43.0			
Actuated g/C Ratio	0.35	0.58			0.18	1.00	0.33		0.33			
v/c Ratio	1.04	0.16			1.00	0.41	1.04		0.35			
Control Delay	55.8	2.7			89.0	0.8	92.8		9.7			
Queue Delay	0.0	0.0			0.0	0.0	0.0		0.0			
Total Delay	55.8	2.7			89.0	0.8	92.8		9.7			
LOS	E	A			F	A	F		A			
Approach Delay		37.8			43.9			70.3				
Approach LOS		D			D			E				
Queue Length 50th (ft)	~ 534	5			271	0	~ 520		25			
Queue Length 95th (ft)	\#684	7			\#398	0	\#583		57			
Internal Link Dist (ft)		613			462			787			312	
Turn Bay Length (ft) 312												
Base Capacity (vph)	580	1893			608	1538	547		603			
Starvation Cap Reductn	0	0			0	0	0		0			
Spillback Cap Reductn	0	0			0	0	0		0			
Storage Cap Reductn	0	0			0	0	0		0			
Reduced v/c Ratio	1.04	0.16			1.00	0.41	1.04		0.35			

Intersection Summary

Area Type: Other

Cycle Length: 130
Actuated Cycle Length: 130
Offset: $0(0 \%)$, Referenced to phase 2:EBT and $6: W B T$, Start of Yellow, Master Intersection
Natural Cycle: 130
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.04
Intersection Signal Delay: $49.1 \quad$ Intersection LOS: D
4. 8: Exit 5 NB Off \& NH 28

Intersection Capacity Utilization $76.3 \% \quad$ ICU Level of Service D
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 3: Exit 5 NB Off \& NH 28

Lanes, Volumes, Timings
5 2: NH 102 \& St. Charles Street/Londonderry Road
01/23/2018

	\cdots	-	2	\ldots	k	5	y	7	\rightarrow	K	4	-
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		*	7		*		\%	約		7	㻢	
Traffic Volume (vph)	10	0	150	0	1	0	60	410	0	5	1030	20
Future Volume (vph)	10	0	150	0	1	0	60	410	0	5	1030	20
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		225	0		0	350		0	100		0
Storage Lanes	0		1	0		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Fit			0.850								0.997	
Flt Protected		0.950					0.950			0.950		
Satd. Flow (prot)	0	1770	1583	0	1900	0	1770	3539	0	1770	3529	0
Flt Permitted							0.950			0.950		
Satd. Flow (perm)	0	1863	1583	0	1900	0	1770	3539	0	1770	3529	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			182								3	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		593			447			750			330	
Travel Time (s)		13.5			10.2			17.0			7.5	
Peak Hour Factor	0.92	0.92	0.92	0.25	0.25	0.25	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	2\%	2\%	2\%	0\%	0\%	0\%	2\%	2\%	2\%	2\%	2\%	2\%
Adj. Flow (vph)	11	0	163	0	4	0	65	446	0	5	1120	22
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	11	163	0	4	0	65	446	0	5	1142	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		0			0			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	3	3	1	3	1		3	3		3	3	
Detector Template	Left	Thru	Right	Left			Left	Thru		Left	Thru	
Leading Detector (ft)	256	256	45	256	45		256	256		256	256	
Trailing Detector (ft)	-5	-5	-5	-5	-5		-5	-5		-5	-5	
Detector 1 Position(ft)	-5	-5	-5	-5	-5		-5	-5		-5	-5	
Detector 1 Size(ft)	50	50	50	50	50		50	50		50	50	
Detector 1 Type	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$		CI+Ex	$\mathrm{Cl}+\mathrm{Ex}$	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)	125	125		125			125	125		125	125	
Detector 2 Size(ft)	6	6		6			6	6		6	6	
Detector 2 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$			Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$		Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$	
Detector 2 Channel												
Detector 2 Extend (s)	0.0	0.0		0.0			0.0	0.0		0.0	0.0	
Detector 3 Position(ft)	250	250		250			250	250		250	250	
Detector 3 Size(ft)	6	6		6			6	6		6	6	

Lanes, Volumes, Timings
5 : NH 102 \& St. Charles Street/Londonderry Road
01/23/2018

| Lane Group | SEL | SET | SER | NWL | NWT | NWR | NEL | NET | NER | SWL | SWT |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | SWR

Permitted Phases	8		6	4					
Detector Phase	8	8	6	4	4	5	2	6	
Switch Phase									
Minimum Initial (s)	5.0	5.0	8.0	5.0	5.0	5.0	8.0	5.0	8.0
Minimum Split (s)	24.0	24.0	24.0	24.0	24.0	24.0	24.0	11.0	24.0
Total Split (s)	24.0	24.0	42.0	24.0	24.0	24.0	55.0	11.0	42.0
Total Split (\%)	26.7%	26.7%	46.7%	26.7%	26.7%	26.7%	61.1%	12.2%	46.7%

Maximum Green (s)	18.0	18.0	36.0	18.0	18.0	18.0	49.0	5.0	36.0
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		0.0	0.0		0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		6.0	6.0		6.0	6.0	6.0	6.0	6.0

Lead/Lag		Lag		Lead	Lag	Lead Lag			
Lead-Lag Optimize?									
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0

Recall Mode	None	None	Min	None	None	None	Min	None	Min
Walk Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	
Flash Dont Walk (s)	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	
Pedestrian Calls (\#/hr)	0	0	0	0	0	0	0	0	
Act Effct Green (s)		6.3	43.5		6.2	7.9	55.9	5.2	43.5

Actuated g/C Ratio	0.10	0.71	0.10	0.13	0.91	0.09	0.71
v / c Ratio	0.06	0.14	0.02	0.29	0.14	0.03	0.45
Control Delay	27.3	1.6	27.0	29.0	2.4	29.0	7.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	27.3	1.6	27.0	29.0	2.4	29.0	7.4
LOS	C	A	C	C	A	C	A
Approach Delay	3.2		27.0		5.8		7.5
Approach LOS	A		C		A		A
Queue Length 50th (ft)	4	0	1	23	0	2	85
Queue Length 95th (ft)	19	22	3	60	67	12	248
Internal Link Dist (ft)	513		367		670		250
Turn Bay Length (ft)		225		350		100	
Base Capacity (vph)	567	1178	578	538	3313	149	2511
Starvation Cap Reductn	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	0.02	0.14	0.01	0.12	0.13	0.03	0.45

Intersection Summary
Area Type: Other

Cycle Length: 90
Actuated Cycle Length: 61.1
Natural Cycle: 80
Control Type: Actuated-Uncoordinated

Lanes, Volumes, Timings
5. 2: NH 102 \& St. Charles Street/Londonderry Road

Maximum v/c Ratio: 0.45
Intersection Signal Delay: 6.6 Intersection LOS: A

Intersection Capacity Utilization 61.4\% ICU Level of Service B
Analysis Period (min) 15
Splits and Phases: 9: NH 102 \& St. Charles Street/Londonderry Road

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		*			\leqslant			t			\uparrow	
Traffic Volume (vph)	10	50	0	350	0	40	0	360	110	15	545	
Future Volume (vph)	10	50	0	350	0	40	0	360	110	15	545	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit					0.986			0.968				
Flt Protected		0.992			0.957						0.999	
Satd. Flow (prot)	0	1848	0	0	1741	0	0	1703	0	0	1808	
Flt Permitted		0.910			0.678						0.982	
Satd. Flow (perm)	0	1695	0	0	1233	0	0	1703	0	0	1777	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					36			24				
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		356			493			1124			603	
Travel Time (s)		8.1			11.2			25.5			13.7	
Peak Hour Factor	0.60	0.60	0.60	0.96	0.96	0.96	0.89	0.89	0.89	0.86	0.86	0.86
Heavy Vehicles (\%)	2\%	2\%	2\%	3\%	3\%	3\%	8\%	8\%	8\%	5\%	5\%	5\%
Adj. Flow (vph)	17	83	0	365	0	42	0	404	124	17	634	0
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	100	0	0	407	0	0	528	0	0	651	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		0			0			0			0	
Link Offset(ft)		-22			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	3	1		3	2			2		3	2	
Detector Template	Left			Left						Left		
Leading Detector (ft)	256	45		256	131			131		256	131	
Trailing Detector (ft)	-5	-5		-5	-5			-5		-5	-5	
Detector 1 Position(ft)	-5	-5		-5	-5			-5		-5	-5	
Detector 1 Size(ft)	50	50		50	50			50		50	50	
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0			0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0			0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0			0.0		0.0	0.0	
Detector 2 Position(ft)	125			125	125			125		125	125	
Detector 2 Size(ft)	6			6	6			6		6	6	
Detector 2 Type	CI+Ex			Cl+EX	$\mathrm{Cl}+\mathrm{EX}$			$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	
Detector 2 Channel												
Detector 2 Extend (s)	0.0			0.0	0.0			0.0		0.0	0.0	
Detector 3 Position(ft)	250			250						250		
Detector 3 Size(ft)	6			6						6		
Detector 3 Type	$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$						$\mathrm{Cl}+\mathrm{Ex}$		
Detector 3 Channel												
Detector 3 Extend (s)	0.0			0.0						0.0		

Lanes, Volumes, Timings
6.20: NH 102 \& Fordway/Madden Hill Road

01/23/2018

	\cdots	-	J	\cdots	k	1	\%	\nearrow	T	5	-	\cdots
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Turn Type	Perm	NA		Perm	NA			NA		Perm	NA	
Protected Phases		4			4			2			2	
Permitted Phases	4			4						2		
Detector Phase	4	4		4	4			2		2	2	
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0			5.0		5.0	5.0	
Minimum Split (s)	24.0	24.0		24.0	24.0			24.0		24.0	24.0	
Total Split (s)	41.0	41.0		41.0	41.0			49.0		49.0	49.0	
Total Split (\%)	45.6\%	45.6\%		45.6\%	45.6\%			54.4\%		54.4\%	54.4\%	
Maximum Green (s)	35.0	35.0		35.0	35.0			43.0		43.0	43.0	
Yellow Time (s)	4.0	4.0		4.0	4.0			4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0			2.0		2.0	2.0	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		6.0			6.0			6.0			6.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0		3.0	3.0	
Recall Mode	None	None		None	None			Min		Min	Min	
Walk Time (s)	7.0	7.0		7.0	7.0			7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0			11.0		11.0	11.0	
Pedestrian Calls (\#/hr)	0	0		0	0			0		0	0	
Act Effct Green (s)		28.5			28.5			36.1			36.1	
Actuatedg/C Ratio		0.37			0.37			0.47			0.47	
v / c Ratio		0.16			0.86			0.65			0.78	
Control Delay		18.5			40.4			20.3			26.2	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		18.5			40.4			20.3			26.2	
LOS		B			D			C			C	
Approach Delay		18.5			40.4			20.3			26.2	
Approach LOS		B			D			C			C	
Queue Length 50th (ft)		36			187			203			288	
Queue Length 95th (ft)		45			\#351			312			404	
Internal Link Dist (ft)		276			413			1044			523	
Turn Bay Length (ft)												
Base Capacity (vph)		813			610			1014			1048	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.12			0.67			0.52			0.62	
Intersection Summary												
Area Type:												
Cycle Length: 90												
Actuated Cycle Length: 77.3												
Natural Cycle: 60												
Control Type: Actuated-Uncoordinated												
Maximum v/c Ratio: 0.86												
Intersection Signal Delay: 27.3				Intersection LOS: C								
Intersection Capacity Utilization 80.6\%				ICU Level of Service D								

Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer Queue shown is maximum after two cycles.

Splits and Phases: 10: NH 102 \& Fordway/Madden Hill Road

	\Rightarrow		7	\downarrow	\leftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	$\stackrel{\rightharpoonup}{1}$		*	F		*	\hat{H}		${ }^{*}$	\uparrow	\%
Traffic Volume (vph)	70	220	60	20	340	190	150	200	20	60	260	20
Future Volume (vph)	70	220	60	20	340	190	150	200	20	60	260	20
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (tt)	390		0	110		0	70		0	245		245
Storage Lanes	1		0	1		0	1		0	1		1
Taper Length (t)	25			25			25			25		
Lane Utill. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.968			0.946			0.986				0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1656	1687	0	1703	1696	0	1719	1784	0	1703	1792	1524
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1656	1687	0	1703	1696	0	1719	1784	0	1703	1792	1524
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		17			35			5				182
Link Speed (mph)		30			30			30			30	
Link Distance (t)		505			530			361			411	
Travel Time (s)		11.5			12.0			8.2			9.3	
Peak Hour Factor	0.96	0.96	0.96	0.94	0.94	0.94	0.85	0.85	0.85	0.91	0.91	0.91
Heavy Vehicles (\%)	9\%	9\%	9\%	6\%	6\%	6\%	5\%	5\%	5\%	6\%	6\%	6\%
Parking (\#/hr)			0									
Adj. Flow (vph)	73	229	63	21	362	202	176	235	24	66	286	22
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	73	292	0	21	564	0	176	259	0	66	286	22
Tum Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	Perm
Protected Phases	5	2		1	.		3	8		7	4	
Permitted Phases												4
Detector Phase	5	2		1	6		3	8		7	4	4
Switch Phase												
Minimum Initial (s)	4.0	5.0		4.0	10.0		4.0	10.0		4.0	9.0	9.0
Minimum Split (s)	10.0	30.0		10.0	30.0		10.0	25.0		10.0	25.0	25.0
Total Split (s)	11.0	38.0		11.0	38.0		16.0	27.0		14.0	25.0	25.0
Total Split (\%)	12.2\%	42.2\%		12.2\%	42.2\%		17.8\%	30.0\%		15.6\%	27.8\%	27.8\%
Maximum Green (s)	5.0	32.0		5.0	32.0		10.0	21.0		8.0	19.0	19.0
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	6.0
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	Min		None	Min		Min	None		Min	None	None
Walk Time (s)		7.0			7.0			7.0			7.0	7.0
Flash Dont Walk (s)		11.0			11.0			11.0			11.0	11.0
Pedestrian Calls (\#/hr)		10			10			0			10	10
Act Effict Green (s)	5.1	33.6		5.1	29.4		10.3	19.8		7.4	16.9	16.9
Actuated g/C Ratio	0.06	0.40		0.06	0.35		0.12	0.24		0.09	0.20	0.20
VIC Ratio	0.72	0.42		0.20	0.91		0.83	0.61		0.44	0.79	0.05
Control Delay	79.9	20.4		45.4	45.8		71.2	36.5		48.5	49.8	0.2

	4	\rightarrow		\downarrow	\leftarrow	4	4	\uparrow	p	*	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	79.9	20.4		45.4	45.8		71.2	36.5		48.5	49.8	0.2
LOS	E	C		D	D		E	D		D	D	A
Approach Delay		32.3			45.8			50.5			46.7	
Approach LOS		C			D			D			D	
Queue Length 50th (ft)	42	94		12	285		101	130		36	154	0
Queue Length 95th (ft)	\#120	195		35	\#487		\#205	196		78	\#271	0
Internal Link Dist (ft)		425			450			281			331	
Turn Bay Length (tt)	390			110			70			245		245
Base Capacity (vph)	102	758		104	691		212	466		168	420	496
Starvation Cap Reductn	0	0		0	0		0	0		0	0	O
Spillback Cap Reductn	0	0		0	0		0	0		0	0	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	0.72	0.39		0.20	0.82		0.83	0.56		0.39	0.68	0.04

Intersection Summary

Area Type:

Other

Cycle Length: 90
Actuated Cycle Length: 83.3
Natural Cycle: 90
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.91
Intersection Signal Delay: 44.3
Intersection LOS: D
Intersection Capacity Utilization $75.4 \% \quad$ ICU Level of Service D
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 7: Birch St/Crystal Ave \& NH 102 (E Broadway)

Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%	44	7	${ }^{*}$	44		${ }^{7}$	\uparrow	「	${ }_{7}$	4	,
Traffic Volume (vph)	20	200	120	375	200	0	30	165	20	40	225	595
Future Volume (vph)	20	200	120	375	200	0	30	165	20	40	225	595
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	110		90	360		0	190		180	0		210
Storage Lanes	1		1	2		0	1		1	1		
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	1.00	0.97	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit			0.850						0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1736	3471	1553	3335	3438	0	1752	1845	1568	1752	1845	1568
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1736	3471	1553	3335	3438	0	1752	1845	1568	1752	1845	1568
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			255						327			409
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		639			546			532			387	
Travel Time (s)		14.5			12.4			12.1			8.8	
Peak Hour Factor	0.84	0.84	0.84	0.79	0.79	0.79	0.86	0.86	0.86	0.99	0.99	0.99
Heavy Vehicles (\%)	4\%	4\%	4\%	5\%	5\%	5\%	3\%	3\%	3\%	3\%	3\%	3\%
Adj. Flow (vph)	24	238	143	475	253	0	35	192	23	40	227	601
Shared Lane Traffic (\%) 220												
Lane Group Flow (vph)	24	238	143	475	253	0	35	192	23	40	227	601
Turn Type	Prot	NA	Perm	Prot	NA		Prot	NA	Free	Prot	NA	pt+ov
Protected Phases	5	2		1	6		7	4		3	8	81
Permitted Phases		2	2		6			4	Free		8	
Detector Phase	5	2	2	1	6		7	4		3	8	81
Switch Phase 8.0												
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0		6.0	8.0		7.0	8.0	
Minimum Split (s)	14.0	31.0	31.0	14.0	40.0		12.0	21.0		13.0	21.0	
Total Split (s)	14.0	32.0	32.0	23.0	41.0		12.0	22.0		13.0	23.0	
Total Split (\%)	15.6\%	35.6\%	35.6\%	25.6\%	45.6\%		13.3\%	24.4\%		14.4\%	25.6\%	
Maximum Green (s)	8.0	26.0	26.0	17.0	35.0		6.0	16.0		7.0	17.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0		6.0	6.0		6.0	6.0	
Lead/Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes		Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	Max	C-Max	C-Max	None	Max		None	None		None	None	
Walk Time (s)		5.0	5.0		5.0			5.0			5.0	
Flash Dont Walk (s)		10.0	10.0		10.0			10.0			10.0	
Pedestrian Calls (\#/hr)		0	0		0			0			0	
Act Effct Green (s)	14.2	32.9	32.9	16.3	35.0		6.0	15.0	90.0	7.0	15.6	37.9
Actuated g/C Ratio	0.16	0.37	0.37	0.18	0.39		0.07	0.17	1.00	0.08	0.17	0.42
v/c Ratio	0.09	0.19	0.20	0.79	0.19		0.30	0.63	0.01	0.29	0.71	0.67
Control Delay	38.4	22.3	0.6	40.0	17.3		47.2	44.3	0.0	45.2	47.8	10.0
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0

Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Total Delay	38.4	22.3	0.6	40.0	17.3		47.2	44.3	0.0	45.2	47.8	10.0
LOS	D	C	A	D	B		D	D	A	D	D	B
Approach Delay		15.6			32.1			40.6			21.5	
Approach LOS		B			C			D			C	
Queue Length 50th (ft)	13	54	0	136	54		19	101	0	22	121	68
Queue Length 95th (ft)	35	78	0	139	68		47	162	0	54	198	184
Internal Link Dist (ft)		559			466			452			307	
Turn Bay Length (ft)	110		90	360			190		180			210
Base Capacity (vph)	273	1269	729	629	1337		116	328	1568	136	348	893
Starvation Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Reduced v/c Ratio	0.09	0.19	0.20	0.76	0.19		0.30	0.59	0.01	0.29	0.65	0.67

Intersection Summary
Area Type: Other

Cycle Length: 90
Actuated Cycle Length: 90
Offset: $0(0 \%)$, Referenced to phase 2:NBT, Start of Green
Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.79
Intersection Signal Delay: $26.0 \quad$ Intersection LOS: C
Intersection Capacity Utilization 63.5\% ICU Level of Service B
Analysis Period (min) 15
Splits and Phases: 11: Folsom Rd/Tsienneto Rd \& Crystal Av/NH 28

	\rightarrow	\rightarrow	2	\ldots	\longleftarrow	\longleftarrow	y	\ngtr	ρ	\downarrow	4	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\％	个t		\％	个t			\uparrow	「		\uparrow	\％
Traffic Volume（vph）	10	790	0	0	680	30	5	，	5	10	0	70
Future Volume（vph）	10	790	0	0	680	30	5	0	5	10	0	70
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ti）	100		0	115		0	0		0	，		0
Storage Lanes	1		0	1		0	0		1	0		1
Taper Length（t）	50			25			25			25		
Lane Util．Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Fit					0.994				0.850			0.850
Flt Protected	0.950							0.950			0.950	
Satd．Flow（prot）	1687	3374	0	1863	3518	0	0	1805	1615	0	1787	1599
Fit Permitted	0.950							0.755			0.755	
Satd．Flow（perm）	1687	3374	0	1863	3518	0	0	1434	1615	0	1420	1599
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）					6				109			109
Link Speed（mph）		30			30			30			30	
Link Distance（t）		277			601			218			433	
Travel Time（s）		6.3			13.7			5.0			9.8	
Peak Hour Factor	0.83	0.83	0.83	0.92	0.92	0.92	0.50	0.50	0.50	0.90	0.90	0.90
Heavy Vehicles（\％）	7\％	7\％	7\％	2\％	2\％	2\％	0\％	0\％	0\％	1\％	1\％	1\％
Adj．Flow（vph）	12	952	，	0	739	33	10	0	10	11	0	78
Shared Lane Trafic（\％）												
Lane Group Flow（vph）	12	952	0	0	772	0	0	10	10	0	11	78
Turn Type	Prot	NA		Prot	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases					6		8	8	8	4		4
Detector Phase	5	2		1	6		8	8	8	4	4	4
Switch Phase												
Minimum Initial（s）	8.0	8.0		5.0	8.0		5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split（s）	14.0	46.0		11.0	43.0		33.0	33.0	33.0	33.0	33.0	33.0
Total Split（s）	14.0	46.0		11.0	43.0		33.0	33.0	33.0	33.0	33.0	33.0
Total Split（\％）	15．6\％	51．1\％		12．2\％	47．8\％		36．7\％	36．7\％	36．7\％	36．7\％	36．7\％	36．7\％
Maximum Green（s）	8.0	40.0		5.0	37.0		27.0	27.0	27.0	27.0	27.0	27.0
Yellow Time（s）	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
All－Red Time（s）	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust（s）	0.0	0.0		0.0	0.0			0.0	0.0		0.0	0.0
Total Lost Time（s）	6.0	6.0		6.0	6.0			6.0	6.0		6.0	6.0
Lead／Lag	Lead	Lag		Lead	Lag							
Lead－Lag Optimize？	Yes	Yes		Yes	Yes							
Vehicle Extension（s）	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	C－Max		None	None		None	None	None	None	None	None
Act Effit Green（s）	8.0	75.1			72.3			6.4	6.4		6.4	6.4
Actuated g／C Ratio	0.09	0.83			0.80			0.07	0.07		0.07	0.07
v／c Ratio	0.08	0.34			0.27			0.10	0.05		0.11	0.36
Control Delay	45.5	2.6			4.7			40.6	0.4		41.0	8.8
Queue Delay	0.0	0.0			0.0			0.0	0.0		0.0	0.0
Total Delay	45.5	2.6			4.7			40.6	0.4		41.0	8.8
LOS	D	A			A			D	A		D	A
Approach Delay		3.1			4.7			20.5			12.8	

Splits and Phases: \quad 13: Applebees/Linlew Dr \& NH 28

	\Rightarrow	\rightarrow	7	\checkmark	\leftarrow	4	4	4	1	，	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	＊	\uparrow	7	7%	个官		${ }^{7}$	$\uparrow \uparrow$	＂7	7	个个	F
Traffic Volume（vph）	40	140	100	630	230	20	100	500	730	20	420	140
Future Volume（vph）	40	140	100	630	230	20	100	500	730	20	420	140
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（t）	100		0	220			100		265	200		0
Storage Lanes	1		1	2		0	1		，	1		1
Taper Length（t）	200			25			25			25		
Lane Utill．Factor	1.00	1.00	1.00	0.97	0.95	0.95	1.00	0.95	0.88	1.00	0.95	1.00
Fit			0.850		0.988				0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd．Flow（prot）	1703	1792	1524	3367	3429	0	1805	3610	2842	1752	3505	1568
Flt Permitted	0.950			0.950			0.950			0.950		
Satd．Flow（perm）	1703	1792	1524	3367	3429	0	1805	3610	2842	1752	3505	1568
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）			109		10				754			156
Link Speed（mph）		30			30			30			30	
Link Distance（ ft ）		412			486			387			343	
Travel Time（s）		9.4			11.0			8.8			7.8	
Peak Hour Factor	0.83	0.83	0.83	0.97	0.97	0.97	0.67	0.67	0.67	0.90	0.90	0.90
Heavy Vehicles（\％）	6\％	6\％	6\％	4\％	4\％	4\％	0\％	0\％	0\％	3\％	3\％	3\％
Adj．Flow（vph）	48	169	120	649	237	21	149	746	1090	22	467	156
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	48	169	120	649	258	0	149	746	1090	22	467	156
Turn Type	Prot	NA	pm＋ov	Prot	NA		Prot	NA	pm＋ov	Prot	NA	pm＋ov
Protected Phases	5	2	3	1	6		3	8	1	7	4	5
Permitted Phases			2						8		4	4
Detector Phase	5	2	3	1	6		3	8	1	7		5
Switch Phase												
Minimum Initial（s）	8.0	8.0	5.0	8.0	8.0		5.0	5.0	8.0	5.0	8.0	8.0
Minimum Split（s）	22.0	22.0	11.0	22.0	22.0		11.0	22.0	22.0	11.0	22.0	22.0
Total Split（s）	22.0	24.0	16.0	27.0	29.0		16.0	28.0	27.0	11.0	23.0	22.0
Total Split（\％）	24．4\％	26．7\％	17．8\％	30．0\％	32．2\％		17．8\％	31．1\％	30．0\％	12．2\％	25．6\％	24．4\％
Maximum Green（s）	16.0	18.0	10.0	21.0	23.0		10.0	22.0	21.0	5.0	17.0	16.0
Yellow Time（s）	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
All－Red Time（s）	2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust（s）	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）	6.0	6.0	6.0	6.0	6.0		6.0	6.0	6.0	6.0	6.0	6.0
Lead／Lag	Lead	Lag	Lead	Lead	Lag		Lead	Lag	Lead	Lead	Lag	Lead
Lead－Lag Optimize？	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension（s）	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	Min	C－Min	None	Min	Min		None	None	Min	None	None	Min
Walk Time（s）	5.0	5.0		5.0	5.0			5.0	5.0		5.0	5.0
Flash Dont Walk（s）	11.0	11.0		11.0	11.0			11.0	11.0		11.0	11.0
Pedestrian Calls（\＃／hr）	0	0		0	0			0	0		0	0
Act Effict Green（s）	8.8	17.6	34.6	21.6	30.4		11.0	28.0	55.6	6.0	15.8	30.6
Actuated g／C Ratio	0.10	0.20	0.38	0.24	0.34		0.12	0.31	0.62	0.07	0.18	0.34
v／c Ratio	0.29	0.48	0.18	0.81	0.22		0.67	0.66	0.53	0.19	0.76	0.25
Control Delay	42.0	38.3	5.5	41.4	19.6		54.5	31.6	4.0	43.9	43.8	4.4
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0

Splits and Phases: 22: Connector Road \& NH 28

Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%	¢		\%	\uparrow	7	7	F		7	\dagger	
Traffic Volume (vph)	30	50	20	20	40	100	10	140	70	65	330	65
Future Volume (vph)	30	50	20	20	40	100	10	140	70	65	330	65
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	200		150	190		190	135		150	120		150
Storage Lanes	1		0	1		1	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.958				0.850		0.950			0.975	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1752	1767	0	1736	1827	1553	1770	1770	0	1787	1834	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1752	1767	0	1736	1827	1553	1770	1770	0	1787	1834	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		21				123		33			13	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		481			347			479			371	
Travel Time (s)		10.9			7.9			10.9			8.4	
Peak Hour Factor	0.82	0.82	0.82	0.81	0.81	0.81	0.68	0.68	0.68	0.78	0.78	0.78
Heavy Vehicles (\%)	3\%	3\%	3\%	4\%	4\%	4\%	2\%	2\%	2\%	1\%	1\%	1\%
Adj. Flow (vph)	37	61	24	25	49	123	15	206	103	83	423	83
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	37	85	0	25	49	123	15	309	0	83	506	0
Turn Type	Prot	NA		Prot	NA	pt+ov	Prot	NA		Prot	NA	
Protected Phases	1	6		5	2	23	3	8		7	4	
Permitted Phases												
Detector Phase	1	6		5	2	23	3	8		7	4	
Switch Phase												
Minimum Initial (s)	8.0	8.0		8.0	8.0		8.0	8.0		8.0	8.0	
Minimum Split (s)	14.0	20.0		14.0	20.0		14.0	20.0		14.0	20.0	
Total Split (s)	14.0	20.0		14.0	20.0		14.0	31.0		15.0	32.0	
Total Split (\%)	17.5\%	25.0\%		17.5\%	25.0\%		17.5\%	38.8\%		18.8\%	40.0\%	
Maximum Green (s)	8.0	14.0		8.0	14.0		8.0	25.0		9.0	26.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Lead/Lag	Lead	Lag										
Lead-Lag Optimize?	Yes	Yes										
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	C-Max		None	None		None	None	
Act Effct Green (s)	8.0	26.8		8.0	24.0	38.0	8.0	23.8		8.6	24.4	
Actuated g/C Ratio	0.10	0.34		0.10	0.30	0.48	0.10	0.30		0.11	0.30	
v/c Ratio	0.21	0.14		0.14	0.09	0.15	0.08	0.56		0.43	0.89	
Control Delay	36.4	20.8		35.1	27.7	4.3	34.0	25.3		40.8	45.7	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	36.4	20.8		35.1	27.7	4.3	34.0	25.3		40.8	45.7	
LOS	D	C		D	C	A	C	C		D	D	
Approach Delay		25.5			14.0			25.7			45.0	

	\cdots	\uparrow	Γ	\checkmark	\downarrow	\}	$\xlongequal{4}$	\star	\uparrow	\downarrow	\checkmark	\uparrow			
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR			
Approach LOS		C			B			C			D				
Queue Length 50th (tt)	17	21		12	21	0	7	112		39	226				
Queue Length 95th (tt)	41	59		31	45	25	18	129		71	282				
Internal Link Dist (t)		401			267			399			291				
Turn Bay Length (ft)	200			190		190	135			120					
Base Capacity (vph)	175	606		173	548	803	177	575		201	604				
Starvation Cap Reductn	renter	0		0	0	0	0	0		0	0				
Spillback Cap Reductn	0	0		0	0	0	0	0		0	0				
Storage Cap Reductn	0	0		0	0	0	0	0		0	0				
Reduced v/c Ratio	0.21	0.14		0.14	0.09	0.15	0.08	0.54		0.41	0.84				
Intersection Summary															
Area Type: Other															
Cycle Length: 80															
Actuated Cycle Length: 80															
Offset: 0 (0\%), Referenced to phase 2:SBT, Start of Green															
Natural Cycle: 75															
Control Type: Actuated-Coordinated															
Maximum v/c Ratio: 0.89															
Intersection Signal Delay: 33.1					Intersection LOS: C										
Intersection Capacity Utilization 51.3\% ICU Level of Service A															
Analysis Period (min) 15															
Splits and Phases: 18: Tsienneto Rd \& NH 28 Byp N															
M_{01}	¢ $\downarrow \square_{2}(\mathrm{R})$			$\nu^{4} 93$			${ }^{\prime} 04$								
${ }^{14 \mathrm{~S}}$	${ }^{20 \mathrm{~s}}{ }_{\text {¢ }}$			${ }_{\square}^{145}$			25								
				168											
14 s	20 s						15 s			315					

19: NH 102 EB/NH 102 WB \& Connector Road

	\Rightarrow		4	\uparrow	\downarrow	\checkmark					
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	$\emptyset 2$	$\emptyset 5$	$\emptyset 6$	$\varnothing 7$	
Lane Configurations	M		\%	\uparrow	\uparrow	「					
Traffic Volume (vph)	510	10	20	70	140	600					
Future Volume (vph)	510	10	20	70	140	600					
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900					
Storage Length (ft)	0	0	120			90					
Storage Lanes	1	0	1			1					
Taper Length (ft)	25		25								
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00					
Fit	0.997					0.850					
Fil Protected	0.953		0.950								
Satd. Flow (prot)	1770	0	1626	1712	1863	1583					
Fit Permitted	0.953		0.630								
Satd. Flow (perm)	1770	0	1078	1712	1863	1583					
Right Turn on Red		Yes				Yes					
Satd. Flow (RTOR)	1					732					
Link Speed (mph)	30			30	30						
Link Distance (ft)	472			739	258						
Travel Time (s)	10.7			16.8	5.9						
Peak Hour Factor	0.94	0.94	0.91	0.91	0.82	0.82					
Heavy Vehicles (\%)	2\%	2\%	11\%	11\%	2\%	2\%					
Adj. Flow (vph)	543	11	22	77	171	732					
Shared Lane Traffic (\%)											
Lane Group Flow (vph)	554	0	22	77	171	732					
Turn Type	Prot		pm+pt	NA	NA	custom					
Protected Phases	8		1	67	27	78	2	5	6	7	
Permitted Phases			67			2					
Detector Phase	8		1	67	27	78					
Switch Phase											
Minimum Initial (s)	5.0		5.0				5.0	5.0	5.0	5.0	
Minimum Split (s)	26.5		11.0				28.0	11.0	28.0	11.0	
Total Split (s)	36.0		11.0				29.0	11.0	29.0	14.0	
Total Split (\%)	40.0\%		12.2\%				32\%	12\%	32\%	16\%	
Maximum Green (s)	30.0		5.0				23.0	5.0	23.0	8.0	
Yellow Time (s)	4.0		4.0				4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0		2.0				2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0		0.0								
Total Lost Time (s)	6.0		6.0								
Lead/Lag	Lag		Lead				Lag	Lead	Lag	Lead	
Lead-Lag Optimize?	Yes		Yes				Yes	Yes	Yes	Yes	
Vehicle Extension (s)	3.0		3.0				3.0	3.0	3.0	3.0	
Recall Mode	None		None				Min	None	Min	None	
Walk Time (s)							7.0		7.0		
Flash Dont Walk (s)							15.0		15.0		
Pedestrian Calls (\#/hr)							0		0		
Act Effct Green (s)	30.6		31.6	30.7	28.9	69.7					
Actuated g/C Ratio	0.41		0.42	0.41	0.38	0.92					
v/c Ratio	0.77		0.05	0.11	0.24	0.48					
Control Delay	31.6		11.1	14.4	19.2	1.2					
Queue Delay	0.0		0.0	0.0	1.1	0.1					
$\begin{aligned} & 01 / 30 / 2018 \\ & \text { MCC } \end{aligned}$											Synchro 9 Report Page 9

	\Rightarrow		4	\uparrow	\downarrow	\downarrow				
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	$\emptyset 2$	$\varnothing 5$	$\varnothing 6$	07
Total Delay	31.6		11.1	14.4	20.3	1.2				
LOS	C		B	B	C	A				
Approach Delay	31.6			13.7	4.9					
Approach LOS	C			B	A					
Queue Length 50th (ft)	183		6	20	54	2				
Queue Length 95th (ft)	\#509		17	54	92	0				
Internal Link Dist (ft)	392			659	178					
Turn Bay Length (ft)			120			90				
Base Capacity (vph)	719		488	701	700	1502				
Starvation Cap Reductn	0		0	0	342	104				
Spillback Cap Reductn	0		0	0	0	0				
Storage Cap Reductn	0		0	0	0	0				
Reduced v/c Ratio	0.77		0.05	0.11	0.48	0.52				
Intersection Summary										
Area Type: Other										
Cycle Length: 90										
Actuated Cycle Length: 75.5										
Natural Cycle: 90										
Control Type: Actuated-Uncoordinated										
Maximum v/c Ratio: 0.77										
Intersection Signal Delay: 15.0				Intersection LOS: B						
Intersection Capacity Utilization 55.4\%				ICU Level of Service B						
Analysis Period (min) 15										
\# 95th percentile volume exceeds capacity, queue may be longer.										

Splits and Phases: 19: NH 102 EB/NH 102 WB \& Connector Road

20: Exit 4A SB On/Exit 4A SB Off \& Connector Road

20: Exit 4A SB On/Exit 4A SB Off \& Connector Road

Splits and Phases: 20: Exit 4A SB On/Exit 4A SB Off \& Connector Road

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	SBL	SBR	NWL	NWR
Lane Configurations	\%	个4			44	T ${ }^{\text {P/ }}$			Y	7
Traffic Volume (vph)	0	1770	0	0	1135	1205	0	0	0	865
Future Volume (vph)	0	1770	0	0	1135	1205	0	0	0	865
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	100		0	0		200	0	0	0	0
Storage Lanes	1		0	0		2	0	0	1	1
Taper Length (ft)	75			25			25		25	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	0.88	1.00	1.00	1.00	0.95
Fit						0.850			0.850	0.850
Flt Protected										
Satd. Flow (prot)	1863	3539	0	0	3539	2787	0	0	1583	1504
Flt Permitted										
Satd. Flow (perm)	1863	3539	0	0	3539	2787	0	0	1583	1504
Right Turn on Red			Yes			Yes		Yes		
Satd. Flow (RTOR)						36				
Link Speed (mph)		30			30		30		30	
Link Distance (ft)		372			394		598		519	
Travel Time (s)		8.5			9.0		13.6		11.8	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	0	1883	0	0	1207	1282	0	0	0	920
Shared Lane Traffic (\%)										50\%
Lane Group Flow (vph)	0	1883	0	0	1207	1282	0	0	460	460
Turn Type	Perm	NA			NA	Perm			Prot	Prot
Protected Phases		2			2				4	4
Permitted Phases	2					2				

Permitted Phases	2		2			
Detector Phase	2	2	2	2	4	4
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	9.0	9.0
Minimum Split (s)	24.0	24.0	24.0	24.0	24.0	24.0
Total Split (s)	56.0	56.0	56.0	56.0	34.0	34.0
Total Split (\%)	62.2\%	62.2\%	62.2\%	62.2\%	37.8\%	37.8\%
Maximum Green (s)	50.0	50.0	50.0	50.0	28.0	28.0
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	6.0

Lead-Lag Optimize?

Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	C-Max	C-Max	C-Max	C-Max	Min	Min
Act ffft G Green (s)	50.0	50.0	50.0	28.0	28.0	
Actuated g/C Ratio	0.56	0.56	0.56	0.31	0.31	
vcc Ratio	0.96	0.61	0.82	0.93	0.99	
Control Delay	24.0	15.2	21.4	59.2	71.0	
Queue Delay	45.2	4.2	0.0	0.0	0.0	
Total Delay	69.2	19.4	21.4	59.2	71.0	
LOS	E	B	C	E	E	
Approach Delay	69.2	20.4		65.1		
Approach LOS	E	C	E			

	4	\rightarrow		7	\longleftarrow	4	4	4	p	-	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\dagger		${ }^{k}$	\dagger		${ }^{*}$	t		7	\uparrow	\#
Traffic Volume (vph)	100	380	10	10	390	10	20	50	10	10	60	100
Future Volume (vph)	100	380	10	10	390	10	20	50	10	10	60	100
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	275		0	75		100	75		0	210		210
Storage Lanes	1		0	1		0	1		0	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.996			0.996			0.975				0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1855	0	1770	1855	0	1770	1816	0	1770	1863	1583
Flt Permitted	0.290			0.424			0.715			0.715		
Satd. Flow (perm)	540	1855	0	790	1855	0	1332	1816	0	1332	1863	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		2			2			11				109
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		314			303			290			341	
Travel Time (s)		7.1			6.9			6.6			7.8	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	109	413	11	11	424	11	22	54	11	11	65	109
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	109	424	0	11	435	0	22	65	0	11	65	109
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	pm+ov
Protected Phases	7	4		3	8			2			6	7
Permitted Phases	4			8			2			6		6
Detector Phase	7	4		3	8		2	2		6	6	7
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	5.0
Minimum Split (s)	11.0	28.0		11.0	28.0		28.0	28.0		28.0	28.0	11.0
Total Split (s)	11.0	31.0		11.0	31.0		28.0	28.0		28.0	28.0	11.0
Total Split (\%)	15.7\%	44.3\%		15.7\%	44.3\%		40.0\%	40.0\%		40.0\%	40.0\%	15.7\%
Maximum Green (s)	5.0	25.0		5.0	25.0		22.0	22.0		22.0	22.0	5.0
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	6.0
Lead/Lag	Lead	Lag		Lead	Lag							Lead
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None		None	None		Max	Max		Max	Max	None
Walk Time (s)		7.0			7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)		15.0			15.0		15.0	15.0		15.0	15.0	
Pedestrian Calls (\#/hr)		0			0		0	0		0	0	
Act Effct Green (s)	26.2	25.3		22.8	19.0		22.6	22.6		22.6	22.6	33.9
Actuated g/C Ratio	0.42	0.41		0.37	0.31		0.36	0.36		0.36	0.36	0.55
v/c Ratio	0.33	0.56		0.03	0.76		0.05	0.10		0.02	0.10	0.12
Control Delay	12.2	17.6		8.9	29.5		16.7	14.7		16.5	16.8	2.9
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	12.2	17.6		8.9	29.5		16.7	14.7		16.5	16.8	2.9

	\rangle	\rightarrow	7	\checkmark	-	4	4	\uparrow	p	\checkmark	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
LOS	,	B		A	C		B	B		B	右	A
Approach Delay		16.5			29.0			15.2			8.6	
Approach LOS		B			c			B			A	
Queue Length 50th (ft)	23	107		2	153		6	14		3	17	0
Queue Length 95th (ft)	46	239		9	247		21	42		14	46	23
Internal Link Dist (ft)		234			223			210			261	
Turn Bay Length (ft)	275			75			75			210		210
Base Capacity (vph)	329	872		370	766		483	666		483	676	911
Starvation Cap Reductn	0	0		0	0		,	0		0	0	0
Spillback Cap Reductn	0	0		0	0		0	0		0	0	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	0.33	0.49		0.03	0.57		0.05	0.10		0.02	0.10	012

Intersection Summary
Area Type: Other

Cycle Length: 70
Actuated Cycle Length: 62.2
Natural Cycle: 70
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.76
Intersection Signal Delay: 19.7
Intersection LOS: B
Intersection Capacity Utilization 49.4\% ICU Level of Service A
Analysis Period (min) 15
Splits and Phases: 23: NH 28 Byp N \& Connector Road

	\checkmark	1	\uparrow	p	\checkmark	\downarrow				
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	01	$\varnothing 2$	$\varnothing 6$	$\varnothing 8$
Lane Configurations	Y		\uparrow	7	\%	\uparrow				
Traffic Volume (vph)	90	10	540	40	10	650				
Future Volume (vph)	90	10	540	40	10	650				
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900				
Storage Length (ft)	0	0		90	100					
Storage Lanes	1	0		1	1					
Taper Length (t)	25				25					
Lane Utill. Factor	1.00	1.00	1.00	1.00	1.00	1.00				
Fit	0.983			0.850						
Flt Protected	0.958				0.950					
Satd. Flow (prot)	1774	0	1900	1615	1805	1900				
Flt Permitted	0.958				0.256					
Satd. Flow (perm)	1774	0	1900	1615	486	1900				
Right Turn on Red		Yes		Yes						
Satd. Flow (RTOR)	6			38						
Link Speed (mph)	30		30			30				
Link Distance (ft)	524		258			288				
Travel Time (s)	11.9		5.9			6.5				
Peak Hour Factor	0.87	0.67	0.95	0.84	0.73	0.96				
Heavy Vehicles (\%)	1\%	0\%	0\%	0\%	0\%	0\%				
Adj. Flow (vph)	103	15	568	48	14	677				
Shared Lane Traffic (\%)										
Lane Group Flow (vph)	118	0	568	48	14	677				
Turn Type	Prot		NA	Perm	custom	NA				
Protected Phases	7		68		5	28	1	2	6	8
Permitted Phases				68	2					
Detector Phase	7		68	68	5	28				
Switch Phase										
Minimum Initial (s)	5.0				5.0		5.0	5.0	5.0	5.0
Minimum Split (s)	11.0				11.0		11.0	28.0	28.0	26.5
Total Split (s)	14.0				11.0		11.0	29.0	29.0	36.0
Total Split (\%)	15.6\%				12.2\%		12\%	32\%	32\%	40\%
Maximum Green (s)	8.0				5.0		5.0	23.0	23.0	30.0
Yellow Time (s)	4.0				4.0		4.0	4.0	4.0	4.0
All-Red Time (s)	2.0				2.0		2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0				0.0					
Total Lost Time (s)	6.0				6.0					
Lead/Lag	Lead				Lead		Lead	Lag	Lag	Lag
Lead-Lag Optimize?	Yes				Yes		Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0				3.0		3.0	3.0	3.0	3.0
Recall Mode	None				None		None	Min	Min	None
Walk Time (s)								7.0	7.0	
Flash Dont Walk (s)								15.0	15.0	
Pedestrian Calls (\#/hr)								0	0	
Act Effit Green (s)	8.1		52.3	52.3	16.3	49.3				
Actuated g/C Ratio	0.11		0.69	0.69	0.22	0.65				
v/c Ratio	0.60		0.43	0.04	0.07	0.55				
Control Delay	48.5		2.2	0.8	19.7	7.3				
Queue Delay	0.0		0.2	0.0	0.0	0.0				

	\checkmark	\pm	\uparrow	p	\checkmark	\downarrow				
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	$\varnothing 1$	$\varnothing 2$	$\varnothing 6$	$\varnothing 8$
Total Delay	48.5		2.5	0.8	19.7	7.3				
LOS	D		A	A	B	A				
Approach Delay	48.5		2.3			7.6				
Approach LOS	D		A			A				
Queue Length 50th (ft)	45		7	0	5	103				
Queue Length 95th (ft)	\#140		m78	m0	14	151				
Internal Link Dist (ft)	444		178			208				
Turn Bay Length (t)				90	100					
Base Capacity (vph)	197		1529	1308	194	1465				
Starvation Cap Reductn	0		360	0	0	0				
Spillback Cap Reductn	0		0	0	0	0				
Storage Cap Reductn	0		0	0	0	0				
Reduced v/c Ratio	0.60		0.49	0.04	0.07	0.46				

Intersection Summary

Area Type: Other
Cycle Length: 90
Actuated Cycle Length: 75.5
Natural Cycle: 90
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.77
Intersection Signal Delay: 8.7
ntersection LOS: A
Intersection Capacity Utilization 49.8\% ICU Level of Service A
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 26: NH 102 \& North Shore Road

APPENDIX P-4: 2040 ALTERNATIVE B INTERSECTION CAPACITY ANALYSES - SYNCHRO PRINOUTS - PM PEAK HOUR

Lanes，Volumes，Timings
1．7：NH 102 \＆Exit 4 SB Off

	4	\rightarrow	\longleftarrow	4	－	4
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		个4	坐中		＊	「7\％
Traffic Volume（vph）	0	1180	1385	0	390	1300
Future Volume（vph）	0	1180	1385	0	390	1300
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900
Lane Width（ft）	12	12	12	12	16	12
Lane Util．Factor	1.00	0.95	0.95	1.00	1.00	0.88
Frt						0.850
Flt Protected					0.950	
Satd．Flow（prot）	0	3471	3406	0	1930	2682
Flt Permitted					0.950	
Satd．Flow（perm）	0	3471	3406	0	1930	2682
Right Turn on Red				Yes		No

Satd．Flow（RTOR）
Link Speed（mph）
Link Distance（ft）
Travel Time（s）
Peak Hour Factor
Heavy Vehicles（\％）
Adj．Flow（vph）
Shared Lane Traffic（\％）
Lane Group Flow（vph）

Lane Group Flow（vph）	0	1269	1574	0	438	1461
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Left	Left	Right	Left	Right
Median Width（ft）		24	24		16	

Link Offset（ft）	0	0	0			
Crosswalk Width（ft）		16	16	16		
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	0.85	1.00

Headway Factor	1.00	1.00	1.00	1.00	0.85	1.00
Turning Speed（mph）	15			9	15	9
Number of Detectors		3	3		3	3
Detector Template		Thru	Thru		Left	
Leading Detector（ft）		256	256		256	256
Trailing Detector（ft）		－5	－5		－5	－5
Detector 1 Position（ft）		－5	－5		－5	－5
Detector 1 Size（ft）		50	50		50	50
Detector 1 Type		$\mathrm{Cl}+\mathrm{Ex}$	Cl＋Ex		Cl＋Ex	$\mathrm{Cl}+\mathrm{Ex}$
Detector 1 Channel						
Detector 1 Extend（s）		0.0	0.0		0.0	0.0
Detector 1 Queue（s）		0.0	0.0		0.0	0.0
Detector 1 Delay（s）		0.0	0.0		0.0	0.0
Detector 2 Position（ft）		125	125		125	125
Detector 2 Size（ft）		6	6		6	6
Detector 2 Type		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$
Detector 2 Channel						
Detector 2 Extend（s）		0.0	0.0		0.0	0.0
Detector 3 Position（ft）		250	250		250	250
Detector 3 Size（ft）		6	6		6	6
Detector 3 Type		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	Cl＋Ex

Lanes, Volumes, Timings
I Z: NH 102 \& Exit 4 SB Off
Intersection Signal Delay: $55.7 \quad$ Intersection LOS: E
Intersection Capacity Utilization 95.8\% ICU Level of Service F
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 7: NH 102 \& Exit 4 SB Off

Lane Group	NBL2	NBL	NBR	SEL	SER	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%7\%		Tr			17	44			番	7
Traffic Volume (vph)	1345	0	750	0	0	1140	430	0	0	310	330
Future Volume (vph)	1345	0	750	0	0	1140	430	0	0	310	330
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)		0	0	0	0	550		0	0		0
Storage Lanes		2	2	0	0	2		0	0		1
Taper Length (ft)		25		25		25			25		
Lane Util. Factor	0.97	1.00	0.88	1.00	1.00	0.97	0.95	1.00	1.00	0.95	1.00
Fit			0.850								0.850
Flt Protected	0.950					0.950					
Satd. Flow (prot)	3242	0	2632	0	0	3335	3438	0	0	3505	1568
Flt Permitted	0.950					0.950					
Satd. Flow (perm)	3242	0	2632	0	0	3335	3438	0	0	3505	1568
Right Turn on Red			No					Yes			Yes
Satd. Flow (RTOR)											359
Link Speed (mph)		25		30			30			30	
Link Distance (ft)		856		390			760			857	
Travel Time (s)		23.3		8.9			17.3			19.5	
Peak Hour Factor	0.88	0.88	0.88	0.92	0.92	0.94	0.94	0.94	0.92	0.92	0.92
Heavy Vehicles (\%)	8\%	8\%	8\%	2\%	2\%	5\%	5\%	5\%	3\%	3\%	3\%
Adj. Flow (vph)	1528	0	852	0	0	1213	457	0	0	337	359
Shared Lane Traffic (\%)											
Lane Group Flow (vph)	1528	0	852	0	0	1213	457	0	0	337	359
Enter Blocked Intersection	No										
Lane Alignment	Left	Left	Right	Left	Right	Left	Left	Right	Left	Right	Right
Median Width(ft)		24		0			24			24	
Link Offset(ft)		12		0			0			0	
Crosswalk Width(ft)		16		16			16			16	
Two way Left Turn Lane											
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	15	25	15	9	15		9	15		25
Number of Detectors	3		3			3	3			3	0
Detector Template											
Leading Detector (ft)	256		256			256	256			256	0
Trailing Detector (ft)	-5		-5			-5	-5			-5	0
Detector 1 Position(ft)	-5		-5			-5	-5			-5	-5
Detector 1 Size(ft)	55		55			55	55			55	50
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$
Detector 1 Channel											
Detector 1 Extend (s)	0.0		0.0			0.0	0.0			0.0	0.0
Detector 1 Queue (s)	0.0		0.0			0.0	0.0			0.0	0.0
Detector 1 Delay (s)	0.0		0.0			0.0	0.0			0.0	0.0
Detector 2 Position(ft)	125		125			125	125			125	
Detector 2 Size(ft)	6		6			6	6			6	
Detector 2 Type	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$			CI+Ex	$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$	
Detector 2 Channel 0 (0.0											
Detector 2 Extend (s)	0.0		0.0			0.0	0.0			0.0	
Detector 3 Position(ft)	250		250			250	250			250	
Detector 3 Size(ft)	6		6			6	6			6	

2
\&: NH 102 \& Exit 4 NB Off

	H	1	χ	\cdots	\checkmark	y	7	\downarrow	1	\checkmark	\cdots
Lane Group	NBL2	NBL	NBR	SEL	SER	NEL	NET	NER	SWL	SWT	SWR
Detector 3 Type	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex			Cl+Ex	
Detector 3 Channel											
Detector 3 Extend (s)	0.0		0.0			0.0	0.0			0.0	
Turn Type	Prot		Prot			Prot	NA			NA	Free
Protected Phases	8		8			5	2			6	
Permitted Phases											Free
Detector Phase	8		2			5	2			6	
Switch Phase											
Minimum Initial (s)	10.0		10.0			5.0	8.0			8.0	
Minimum Split (s)	16.0		16.0			11.0	42.0			31.0	
Total Split (s)	66.0		66.0			52.0	84.0			32.0	
Total Split (\%)	44.0\%		44.0\%			34.7\%	56.0\%			21.3\%	
Maximum Green (s)	60.0		60.0			46.0	78.0			26.0	
Yellow Time (s)	2.0		2.0			2.0	2.0			2.0	
All-Red Time (s)	4.0		4.0			4.0	4.0			4.0	
Lost Time Adjust (s)	0.0		0.0			0.0	0.0			0.0	
Total Lost Time (s)	6.0		6.0			6.0	6.0			6.0	
Lead/Lag						Lead				Lag	
Lead-Lag Optimize?											
Vehicle Extension (s)	3.0		3.0			3.0	3.0			3.0	
Recall Mode	None		None			None	C-Min			C-Min	
Walk Time (s)							7.0			7.0	
Flash Dont Walk (s)							29.0			17.0	
Pedestrian Calls (\#/hr)							0			0	
Act Effct Green (s)	60.0		60.0			46.0	78.0			26.0	150.0
Actuated g/C Ratio	0.40		0.40			0.31	0.52			0.17	1.00
v/c Ratio	1.18		0.81			1.19	0.26			0.56	0.23
Control Delay	128.9		47.3			122.6	8.2			60.7	0.3
Queue Delay	0.0		0.0			0.0	0.0			0.0	0.0
Total Delay	128.9		47.3			122.6	8.2			60.7	0.3
LOS	F		D			F	A			E	A
Approach Delay		99.7					91.3			29.6	
Approach LOS		F					F			C	
Queue Length 50th (ft)	~919		417			~734	80			161	0
Queue Length 95th (fi)	\#1018		498			\#863	m97			215	0
Internal Link Dist (ft)		776		310			680			777	
Turn Bay Length (ft)						550					
Base Capacity (vph)	1296		1052			1022	1787			607	1568
Starvation Cap Reductn	0		0			0	0			0	0
Spillback Cap Reductn	0		0			0	0			0	0
Storage Cap Reductn	0		0			0	0			0	0
Reduced v/c Ratio	1.18		0.81			1.19	0.26			0.56	0.23
Intersection Summary											

Area Type:

Other

Cycle Length: 150
Actuated Cycle Length: 150
Offset: 57 (38\%), Referenced to phase 2:NET and 6:SWT, Start of Yellow
Natural Cycle: 150

Lanes, Volumes, Timings
2 : NH 102 \& Exit 4 NB Off
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.19
Intersection Signal Delay: $86.4 \quad$ Intersection LOS: F
Intersection Capacity Utilization 95.5\% ICU Level of Service F
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 8: NH 102 \& Exit 4 NB Off

	4	\rightarrow		\checkmark		4	4	\dagger	\%	\pm	$\frac{1}{\downarrow}$	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44	7	${ }^{7}$	44					${ }^{48}$		R
Traffic Volume (vph)	0	790	420	150	610	0	0	0	0	175	0	425
Future Volume (vph)	0	790	420	150	610	0	0	0	0	175	0	425
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		350	0		0	0		0	0		0
Storage Lanes	0		1	1		0	0		0	2		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	0.97	1.00	1.00
Frt			0.850									0.850
Flt Protected				0.950						0.950		
Satd. Flow (prot)	0	3471	1553	1719	3438	0	0	0	0	3367	0	1553
Flt Permitted				0.950						0.950		
Satd. Flow (perm)	0	3471	1553	1719	3438	0	0	0	0	3367	0	1553
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			483									213
Link Speed (mph)		30			30			30			35	
Link Distance (ft)		851			693			486			581	
Travel Time (s)		19.3			15.8			11.0			11.3	
Peak Hour Factor	0.87	0.87	0.87	0.86	0.86	0.86	0.92	0.92	0.92	0.91	0.91	0.91
Heavy Vehicles (\%)	4\%	4\%	4\%	5\%	5\%	5\%	2\%	2\%	2\%	4\%	4\%	4\%
Adj. Flow (vph)	0	908	483	174	709	0	0	0	0	192	0	467
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	908	483	174	709	0	0	0	0	192	0	467
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Right	Left	Right
Median Width(ft)		36			36			24			24	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		25	15		9	15		9	15		25
Number of Detectors		3	3	3	3					3		3
Detector Template		Thru	Right	Left	Thru					Left		Right
Leading Detector (ft)		256	256	256	256					256		256
Trailing Detector (ft)		-5	-5	-5	-5					-5		-5
Detector 1 Position(ft)		-5	-5	-5	-5					-5		-5
Detector 1 Size(ft)		50	50	50	50					50		50
Detector 1 Type		Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex					$\mathrm{Cl}+\mathrm{Ex}$		Cl+Ex
Detector 1 Channel												
Detector 1 Extend (s)		0.0	0.0	0.0	0.0					0.0		0.0
Detector 1 Queue (s)		0.0	0.0	0.0	0.0					0.0		0.0
Detector 1 Delay (s)		0.0	0.0	0.0	0.0					0.0		0.0
Detector 2 Position(ft)		125	125	125	125					125		125
Detector 2 Size(ft)		6	6	6	6					6		6
Detector 2 Type		Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$					Cl+Ex		$\mathrm{Cl}+\mathrm{Ex}$
Detector 2 Channel												
Detector 2 Extend (s)		0.0	0.0	0.0	0.0					0.0		0.0
Detector 3 Position(ft)		250	250	250	250					250		250
Detector 3 Size(ft)		6	6	6	6					6		6

Lanes, Volumes, Timings
3. 2. Exit 5 SB On/Exit 5 SB Off \& NH 28

Intersection Summary
Area Type: Other
Cycle Length: 90
Actuated Cycle Length: 90
Offset: $51(57 \%)$, Referenced to phase 2:EBT and 6:WBT, Start of Yellow
Natural Cycle: 60

Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.85
Intersection Signal Delay: 16.3 Intersection LOS: B
Intersection Capacity Utilization 75.1\%
ICU Level of Service D
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 2: Exit 5 SB On/Exit 5 SB Off \& NH 28

	4	\rightarrow		7	\leftarrow	4	4	4	p	(\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	低			平4	7	${ }^{*}$		7			
Traffic Volume (vph)	495	470	0	0	410	400	350	0	385	0	0	0
Future Volume (vph)	495	470	0	0	410	400	350	0	385	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit						0.850			0.850			
Flt Protected	0.950						0.950					
Satd. Flow (prot)	1752	3505	0	0	3505	1568	1703	0	1524	0	0	0
Flt Permitted	0.950						0.950					
Satd. Flow (perm)	1752	3505	0	0	3505	1568	1703	0	1524	0	0	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)						440			339			
Link Speed (mph)		30			30			35			30	
Link Distance (ft)		693			542			867			392	
Travel Time (s)		15.8			12.3			16.9			8.9	
Peak Hour Factor	0.92	0.92	0.92	0.91	0.91	0.91	0.67	0.67	0.67	0.92	0.92	0.92
Heavy Vehicles (\%)	3\%	3\%	3\%	3\%	3\%	3\%	6\%	6\%	6\%	2\%	2\%	2\%
Adj. Flow (vph)	538	511	0	0	451	440	522	0	575	0	0	0
Shared Lane Traffic (\%) 0												
Lane Group Flow (vph)	538	511	0	0	451	440	522	0	575	0	0	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right	Left	Left	Right	Right	Left	Right	Left	Left	Right
Median Width(ft)		36			42			12			12	
Link Offset(ft)		0			0			0			36	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		25	15		25	15		9
Number of Detectors	3	3			3	3	3		0			
Detector Template	Left					Right	Left					
Leading Detector (ft)	256	256			256	256	256		0			
Trailing Detector (ft)	-5	-5			-5	-5	-5		0			
Detector 1 Position(ft)	-5	-5			-5	-5	-5		-5			
Detector 1 Size(ft)	50	50			50	50	50		50			
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex			$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$			
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0			0.0	0.0	0.0		0.0			
Detector 1 Queue (s)	0.0	0.0			0.0	0.0	0.0		0.0			
Detector 1 Delay (s)	0.0	0.0			0.0	0.0	0.0		0.0			
Detector 2 Position(ft)	125	125			125	125	125					
Detector 2 Size(ft)	6	6			6	6	6					
Detector 2 Type	$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex			$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{EX}$					
Detector 2 Channel												
Detector 2 Extend (s)	0.0	0.0			0.0	0.0	0.0					
Detector 3 Position(ft)	250	250			250	250	250					
Detector 3 Size(ft)	6	6			6	6	6					
Detector 3 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$			Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$					
Detector 3 Channel												
Detector 3 Extend (s)	0.0	0.0			0.0	0.0	0.0					

Lanes, Volumes, Timings
4. 3: Exit 5 NB Off \& NH 28

	4	\rightarrow		7			4	\uparrow	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Prot	NA			NA	Free	Prot		Prot			
Protected Phases	5	2			6		8		8			
Permitted Phases		2			6	Free						
Detector Phase	5	2			6		8		8			
Switch Phase												
Minimum Initial (s)	4.0	16.0			16.0		4.0		4.0			
Minimum Split (s)	10.0	23.0			23.0		11.0		11.0			
Total Split (s)	33.0	57.0			24.0		33.0		33.0			
Total Split (\%)	36.7\%	63.3\%			26.7\%		36.7\%		36.7\%			
Maximum Green (s)	27.0	51.0			18.0		27.0		27.0			
Yellow Time (s)	4.0	4.0			4.0		4.0		4.0			
All-Red Time (s)	2.0	2.0			2.0		2.0		2.0			
Lost Time Adjust (s)	0.0	0.0			0.0		0.0		0.0			
Total Lost Time (s)	6.0	6.0			6.0		6.0		6.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?												
Vehicle Extension (s)	5.0	5.0			5.0		3.0		3.0			
Recall Mode	None	C-Min			C-Min		None		None			
Walk Time (s)		7.0			7.0							
Flash Dont Walk (s)		10.0			10.0							
Pedestrian Calls (\#/hr)		0			0							
Act Effct Green (s)	27.0	50.6			17.6	90.0	27.4		27.4			
Actuated g/C Ratio	0.30	0.56			0.20	1.00	0.30		0.30			
v/c Ratio	1.02	0.26			0.66	0.28	1.01		0.82			
Control Delay	53.9	3.3			38.5	0.4	75.1		23.2			
Queue Delay	0.0	0.0			0.0	0.0	0.0		0.0			
Total Delay	53.9	3.3			38.5	0.4	75.1		23.2			
LOS	D	A			D	A	E		C			
Approach Delay		29.3			19.7			47.9				
Approach LOS		C			B			D				
Queue Length 50th (ft)	~316	6			124	0	~ 307		127			
Queue Length 95th (ft)	\#493	8			176	0	287		110			
Internal Link Dist (ft)		613			462			787			312	
Turn Bay Length (ft) 312												
Base Capacity (vph)	525	1986			701	1568	518		699			
Starvation Cap Reductn	0	0			0	0	0		0			
Spillback Cap Reductn	0	0			0	0	0		0			
Storage Cap Reductn	0	0			0	0	0		0			
Reduced v/c Ratio	1.02	0.26			0.64	0.28	1.01		0.82			
Intersection Summary												
Area Type: Other												
Cycle Length: 90												
Actuated Cycle Length: 90												
Offset: 0 (0\%), Referenced to phase 2:EBT and 6:WBT, Start of Yellow, Master Intersection												
Natural Cycle: 90												
Control Type: Actuated-Coordinated												
Maximum v/c Ratio: 1.02												
Intersection Signal Delay					ersection	LOS: C						

Intersection Capacity Utilization $75.1 \% \quad$ ICU Level of Service D

Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 3: Exit 5 NB Off \& NH 28

5. \&: NH 102 \& St. Charles Street/Londonderry Road

01/23/2018

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		\uparrow	7		*		\%	中b		7	性	
Traffic Volume (vph)	80	5	120	10	0	10	210	830	120	5	610	100
Future Volume (vph)	80	5	120	10	0	10	210	830	120	5	610	100
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		225	0		0	350		0	100		0
Storage Lanes	0		1	0		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Fit			0.850		0.932			0.981			0.979	
Flt Protected		0.955			0.976		0.950			0.950		
Satd. Flow (prot)	0	1779	1583	0	1728	0	1770	3472	0	1770	3465	0
Flt Permitted		0.808			0.795		0.950			0.950		
Satd. Flow (perm)	0	1505	1583	0	1408	0	1770	3472	0	1770	3465	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			182		182			28			23	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		593			447			750			330	
Travel Time (s)		13.5			10.2			17.0			7.5	
Peak Hour Factor	0.92	0.92	0.92	0.25	0.25	0.25	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	2\%	2\%	2\%	0\%	0\%	0\%	2\%	2\%	2\%	2\%	2\%	2\%
Adj. Flow (vph)	87	5	130	40	0	40	228	902	130	5	663	109
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	92	130	0	80	0	228	1032	0	5	772	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		0			0			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	3	3	1	3	1		3	3		3	3	
Detector Template	Left	Thru	Right	Left			Left	Thru		Left	Thru	
Leading Detector (ft)	256	256	45	256	45		256	256		256	256	
Trailing Detector (ft)	-5	-5	-5	-5	-5		-5	-5		-5	-5	
Detector 1 Position(ft)	-5	-5	-5	-5	-5		-5	-5		-5	-5	
Detector 1 Size(ft)	50	50	50	50	50		50	50		50	50	
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex		Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)	125	125		125			125	125		125	125	
Detector 2 Size(ft)	6	6		6			6	6		6	6	
Detector 2 Type	Cl+Ex	Cl+Ex		$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$	
Detector 2 Channel												
Detector 2 Extend (s)	0.0	0.0		0.0			0.0	0.0		0.0	0.0	
Detector 3 Position(ft)	250	250		250			250	250		250	250	
Detector 3 Size(ft)	6	6		6			6	6		6	6	

4A Zone 2 7:30 am 08/03/2016 Alt B 2040 PM Peak
LC

Lanes, Volumes, Timings
5. 8: NH 102 \& St. Charles Street/Londonderry Road

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Detector 3 Type	Cl+Ex	Cl+Ex		$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex	
Detector 3 Channel												
Detector 3 Extend (s)	0.0	0.0		0.0			0.0	0.0		0.0	0.0	
Turn Type	Perm	NA	custom	Perm	NA		Prot	NA		Prot	NA	
Protected Phases		8			4		5	2		1	6	
Permitted Phases	8		6	4								
Detector Phase	8	8	6	4	4		5	2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	8.0	5.0	5.0		5.0	8.0		5.0	8.0	
Minimum Split (s)	24.0	24.0	24.0	24.0	24.0		24.0	24.0		11.0	24.0	
Total Split (s)	24.0	24.0	38.0	24.0	24.0		28.0	55.0		11.0	38.0	
Total Split (\%)	26.7\%	26.7\%	42.2\%	26.7\%	26.7\%		31.1\%	61.1\%		12.2\%	42.2\%	
Maximum Green (s)	18.0	18.0	32.0	18.0	18.0		22.0	49.0		5.0	32.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		6.0	6.0		6.0		6.0	6.0		6.0	6.0	
Lead/Lag			Lag				Lead	Lag		Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None	Min	None	None		None	Min		None	Min	
Walk Time (s)	7.0	7.0	7.0	7.0	7.0		7.0	7.0			7.0	
Flash Dont Walk (s)	11.0	11.0	11.0	11.0	11.0		11.0	11.0			11.0	
Pedestrian Calls (\#/hr)	0	0	0	0	0		0	0			0	
Act Effct Green (s)		10.7	27.3		10.5		14.8	49.5		5.6	27.3	
Actuated g/C Ratio		0.16	0.40		0.15		0.22	0.73		0.08	0.40	
v/c Ratio		0.39	0.17		0.22		0.59	0.41		0.03	0.55	
Control Delay		35.6	1.8		1.4		34.2	6.9		38.0	18.8	
Queue Delay		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Delay		35.6	1.8		1.4		34.2	6.9		38.0	18.8	
LOS		D	A		A		C	A		D	B	
Approach Delay		15.8			1.4			11.8			18.9	
Approach LOS		B			A			B			B	
Queue Length 50th (ft)		40	0		0		99	85		2	131	
Queue Length 95th (ft)		90	15		0		181	224		14	235	
Internal Link Dist (ft)		513			367			670			250	
Turn Bay Length (ft)			225				350			100		
Base Capacity (vph)		443	915		542		637	2595		144	1824	
Starvation Cap Reductn		0	0		0		0	0		0	0	
Spillback Cap Reductn		0	0		0		0	0		0	0	
Storage Cap Reductn		0	0		0		0	0		0	0	
Reduced v/c Ratio		0.21	0.14		0.15		0.36	0.40		0.03	0.42	

Intersection Summary

Area Type: Other
Cycle Length: 90
Actuated Cycle Length: 68.2
Natural Cycle: 75
Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.59
Intersection Signal Delay: $14.2 \quad$ Intersection LOS: B
Intersection Capacity Utilization 58.4\%
Analysis Period (min) 15
ICU Level of Service B

Splits and Phases: 9: NH 102 \& St. Charles Street/Londonderry Road

द. $\mathbf{\text { OO: NH }} 102$ \& Fordway/Madden Hill Road

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		\$			\$			今			\uparrow	
Traffic Volume (vph)	20	80	5	250	0	60	0	680	130	15	345	
Future Volume (vph)	20	80	5	250	0	60	0	680	130	15	345	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Utill. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.994			0.974			0.978				
Flt Protected		0.991			0.961						0.998	
Satd. Flow (prot)	0	1835	0	0	1727	0	0	1721	0	0	1806	
Fit Permitted		0.906			0.644						0.819	
Satd. Flow (perm)	0	1678	0	0	1157	0	0	1721	0	0	1482	
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		3			36			18				
Link Speed (mph)		30			30			30			30	
Link Distance (t)		356			493			1124			603	
Travel Time (s)		8.1			11.2			25.5			13.7	
Peak Hour Factor	0.60	0.60	0.60	0.96	0.96	0.96	0.89	0.89	0.89	0.86	0.86	0.86
Heavy Vehicles (\%)	2\%	2\%	2\%	3\%	3\%	3\%	8\%	8\%	8\%	5\%	5\%	5\%
Adj. Flow (vph)	33	133	8	260	0	63	0	764	146	17	401	

Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	174	0	0	323	0	0	910	0	0	418	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(t)		0			0			0			0	
Link Offset(ft)		-22			0			0			0	
Crosswalk Width(t)		16			16			16			16	

Two way Leff Turn Lane			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Headway Factor	1.00	1.00										
Turning Speed (mph)	15		9	15		9	15		9	15		9

umber of Detector	3	1	3	2	2	3	2
Detector Template	Left		Left			Left	
Leading Detector (tt)	256	45	256	131	131	256	131
Trailing Detector (t)	-5	-5	-5	-5	-5	-5	-5
Detector 1 Position(ft)	-5	-5	-5	-5	-5	-5	-5
Detector 1 Size(t)	50	50	50	50	50	50	50
Detector 1 Type	Cl+Ex	Cl+Ex	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$
Detector 1 Channel							
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(tt)	125		125	125	125	125	125
Detector 2 Size(ft)	6		6	6	6	6	6
Detector 2 Type	CltEx		Cl+Ex	CI+Ex	Cl+Ex	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$
Detector 2 Channel							
Detector 2 Extend (s)	0.0		0.0	0.0	0.0	0.0	0.0
Detector 3 Position(tt)	250		250			250	
Detector 3 Size(tt)	6		6			6	
Detector 3 Type	Cl+Ex		Cl+Ex			$\mathrm{Cl}+\mathrm{Ex}$	
Detector 3 Channel							

Detector 3 Extend (s)	0.0	0.0	0.0

DQ: NH 102 \& Fordway/Madden Hill Road

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Turn Type	Perm	NA		Perm	NA			NA		Perm	NA	
Protected Phases		4			4			2			2	
Permitted Phases	4			4						2		
Detector Phase	4	4		4	4			2		2	2	
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0			5.0		5.0	5.0	
Minimum Split (s)	24.0	24.0		24.0	24.0			24.0		24.0	24.0	
Total Split (s)	32.0	32.0		32.0	32.0			58.0		58.0	58.0	
Total Split (\%)	35.6\%	35.6\%		35.6\%	35.6\%			64.4\%		64.4\%	64.4\%	
Maximum Green (s)	26.0	26.0		26.0	26.0			52.0		52.0	52.0	
Yellow Time (s)	4.0	4.0		4.0	4.0			4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0			2.0		2.0	2.0	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		6.0			6.0			6.0			6.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0		3.0	3.0	
Recall Mode	None	None		None	None			Min		Min	Min	
Walk Time (s)	7.0	7.0		7.0	7.0			7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0			11.0		11.0	11.0	
Pedestrian Calls (\#/hr)	0	0		0	0			0		0	0	
Act Effct Green (s)		24.5			24.5			48.8			48.8	
Actuated g/C Ratio		0.29			0.29			0.57			0.57	
v/c Ratio		0.36			0.91			0.92			0.49	
Control Delay		27.3			58.1			32.6			13.5	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		27.3			58.1			32.6			13.5	
LOS		C			E			C			B	
Approach Delay		27.3			58.1			32.6			13.5	
Approach LOS		C			E			C			B	
Queue Length 50th (ft)		77			158			420			130	
Queue Length 95th (ft)		83			\#320			\#700			191	
Internal Link Dist (ft)		276			413			1044			523	
Turn Bay Length (ft)												
Base Capacity (vph)		519			381			1069			915	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.34			0.85			0.85			0.46	

Intersection Summary

Area Type: Other
Cycle Length: 90
Actuated Cycle Length: 85.4
Natural Cycle: 70
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.92
Intersection Signal Delay: 32.2
Intersection Capacity Utilization 81.2%

Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 10: NH 102 \& Fordway/Madden Hill Road

Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%	\dagger		7	4	\#	${ }^{1}$	¢		${ }^{*}$	\dagger	
Traffic Volume (vph)	150	200	20	70	240	10	90	420	40	60	280	210
Future Volume (vph)	150	200	20	70	240	10	90	420	40	60	280	210
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	70		0	245		245	390		0	110		0
Storage Lanes	1		0	1		1	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.986				0.850		0.987			0.936	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1752	1819	0	1752	1845	1568	1787	1857	0	1787	1761	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1752	1819	0	1752	1845	1568	1787	1857	0	1787	1761	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		6				116		6			43	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		361			411			477			530	
Travel Time (s)		8.2			9.3			10.8			12.0	
Peak Hour Factor	0.91	0.91	0.91	0.93	0.93	0.93	0.95	0.95	0.95	0.94	0.94	0.94
Heavy Vehicles (\%)	3\%	3\%	3\%	3\%	3\%	3\%	1\%	1\%	1\%	1\%	1\%	1\%
Adj. Flow (vph)	165	220	22	75	258	11	95	442	42	64	298	223
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	165	242	0	75	258	11	95	484	0	64	521	0
Turn Type	Prot	NA		Prot	NA	pm+ov	Prot	NA		Prot	NA	
Protected Phases	3	8		7	4	5	5	2		1	6	
Permitted Phases						4						
Detector Phase	3	8		7	4	5	5	2		1	6	
Switch Phase												
Minimum Initial (s)	4.0	5.0		4.0	10.0	4.0	4.0	10.0		4.0	9.0	
Minimum Split (s)	17.0	24.0		11.0	24.0	16.0	16.0	24.0		11.0	24.0	
Total Split (s)	17.0	26.0		15.0	24.0	16.0	16.0	33.0		11.0	28.0	
Total Split (\%)	20.0\%	30.6\%		17.6\%	28.2\%	18.8\%	18.8\%	38.8\%		12.9\%	32.9\%	
Maximum Green (s)	11.0	20.0		9.0	18.0	10.0	10.0	27.0		5.0	22.0	
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0		6.0	6.0	
Lead/Lag	Lead	Lag		Lead	Lag	Lead	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None	None	None	C-Max		None	None	
Act Effct Green (s)	10.5	20.5		8.0	15.7	30.6	8.8	31.2		5.9	28.3	
Actuated g/C Ratio	0.12	0.24		0.09	0.18	0.36	0.10	0.37		0.07	0.33	
v/c Ratio	0.76	0.55		0.45	0.76	0.02	0.51	0.71		0.52	0.85	
Control Delay	59.4	33.3		45.1	47.3	0.0	45.7	31.9		55.6	42.9	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	59.4	33.3		45.1	47.3	0.0	45.7	31.9		55.6	42.9	
LOS	E	C		D	D	A	D	C		E	D	
Approach Delay		43.9			45.3			34.2			44.3	

	4	4	1	W	1	\pm	4	7	7	-	-	4
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Approach LOS		D			D			C			D	
Queue Length 50th (ft)	86	113		38	129	0	48	233		34	~ 268	
Queue Length 95th (ft)	\#180	186		80	207	0	95	\#394		\#93	\#488	
Internal Link Dist (ft)		281			331			397			450	
Turn Bay Length (ft)	70			245		245	390			110		
Base Capacity (vph)	226	456		185	390	657	210	686		123	615	
Starvation Cap Reductn	0	0		0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0		0	0	0	0	0		0	0	
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	
Reduced v/c Ratio	0.73	0.53		0.41	0.66	0.02	0.45	0.71		0.52	0.85	
Intersection Summary												
Area Type: Other												
Cycle Length: 85												
Actuated Cycle Length: 85												
Offset: $0(0 \%)$, Referenced to phase 2:NET, Start of Green												
Natural Cycle: 85												
Control Type: Actuated-Coordinated												
Maximum v/c Ratio: 0.85												
Intersection Signal Delay: 41.3					Intersection LOS: D							
Intersection Capacity Utilization 87.9\%					ICU Level of Service E							
Analysis Period (min) 15												
~ Volume exceeds capacity, queue is theoretically infinite.												
Queue shown is maximum after two cycles.												
\# 95th percentile volume exceeds capacity, queue may be longer.												
Queue shown is maximum after two cycles.												

Splits and Phases: 7: NH 102 (E Broadway) \& Birch St/Crystal Av

Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	${ }^{7}$		『＇	\％ 17	中4		${ }^{*}$	\uparrow	「	7	\uparrow	F
Traffic Volume（vph）	60	320	110	550	390	0	60	360	50	45	180	625
Future Volume（vph）	60	320	110	550	390	0	60	360	50	45	180	625
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ft）	110		90	360		0	190		180	0		210
Storage Lanes	1		1	2		0	1		1	1		
Taper Length（ft）	25			25			25			25		
Lane Util．Factor	1.00	0.95	1.00	0.97	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit			0.850						0.850			0.850
Fit Protected	0.950			0.950			0.950			0.950		
Satd．Flow（prot）	1770	3539	1583	3433	3539	0	1770	1863	1583	1787	1881	1599
Flt Permitted	0.950			0.950			0.950			0.950		
Satd．Flow（perm）	1770	3539	1583	3433	3539	0	1770	1863	1583	1787	1881	1599
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）			208						208			165
Link Speed（mph）		30			30			30			30	
Link Distance（ft）		639			503			532			387	
Travel Time（s）		14.5			11.4			12.1			8.8	
Peak Hour Factor	0.92	0.92	0.92	0.94	0.94	0.94	0.96	0.96	0.96	0.95	0.95	0.95
Heavy Vehicles（\％）	2\％	2\％	2\％	2\％	2\％	2\％	2\％	2\％	2\％	1\％	1\％	1\％
Adj．Flow（vph）	65	348	120	585	415	0	63	375	52	47	189	658
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	65	348	120	585	415	0	63	375	52	47	189	658
Turn Type	Prot	NA	Perm	Prot	NA		Prot	NA	Perm	Prot	NA	pm＋ov
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2						4			8
Detector Phase	5	2	2	1	6		7	4	4	3	8	1
Switch Phase												
Minimum Initial（s）	8.0	8.0	8.0	8.0	8.0		7.0	8.0	8.0	8.0	8.0	8.0
Minimum Split（s）	14.0	22.0	22.0	14.0	22.0		13.0	22.0	22.0	14.0	22.0	14.0
Total Split（s）	14.0	23.0	23.0	35.0	44.0		15.0	38.0	38.0	14.0	37.0	35.0
Total Split（\％）	12．7\％	20．9\％	20．9\％	31．8\％	40．0\％		13．6\％	34．5\％	34．5\％	12．7\％	33．6\％	31．8\％
Maximum Green（s）	8.0	17.0	17.0	29.0	38.0		9.0	32.0	32.0	8.0	31.0	29.0
Yellow Time（s）	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
All－Red Time（s）	2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust（s）	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）	6.0	6.0	6.0	6.0	6.0		6.0	6.0	6.0	6.0	6.0	6.0
Lead／Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lead
Lead－Lag Optimize？	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension（s）	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	C－Max	C－Max	None	None		None	None	None	None	None	None
Walk Time（s）		5.0	5.0		5.0			5.0	5.0		5.0	
Flash Dont Walk（s）		11.0	11.0		11.0			11.0	11.0		11.0	
Pedestrian Calls（\＃／hr）		0	0		0			0	0		0	
Act Effct Green（s）	8.4	28.9	28.9	25.2	48.4		8.4	26.7	26.7	8.0	26.2	57.4
Actuated g／C Ratio	0.08	0.26	0.26	0.23	0.44		0.08	0.24	0.24	0.07	0.24	0.52
v／c Ratio	0.48	0.38	0.21	0.74	0.27		0.47	0.83	0.10	0.36	0.42	0.72
Control Delay	61.1	38.3	0.8	55.3	26.8		60.4	55.0	0.4	57.0	37.7	18.7
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0

11: Folsom Rd/Tsienneto Rd \& NH 28 S/NH 28 Lanes, Volumes, Timings

	\cdots	\uparrow	\%	\checkmark	\downarrow	J	$\stackrel{4}{ }$	\star	\square	7	4	4
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Total Delay	61.1	38.3	0.8	55.3	26.8		60.4	55.0	0.4	57.0	37.7	18.7
LOS	E	D	A	E	C		E	E	A	E	D	B
Approach Delay		32.6			43.5			49.9			24.7	
Approach LOS		C			D			D			C	
Queue Length 50th (ft)	44	112	0	226	102		43	250	0	32	113	253
Queue Length 95th (ft)	91	173	0	288	155		88	343	0	71	171	330
Internal Link Dist (tt)		559			423			452			307	
Turn Bay Length (tt)	110		90	360			190		180			210
Base Capacity (vph)	135	928	568	905	1558		144	541	608	129	530	962
Starvation Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Reduced v/c Ratio	0.48	0.38	0.21	0.65	0.27		0.44	0.69	0.09	0.36	0.36	0.68
Intersection Summary												
Area Type: Other												
Cycle Length: 110												
Actuated Cycle Length: 110												
Offset: $0(0 \%)$, Referenced to phase 2:NBT, Start of Green												
Natural Cycle: 80												
Control Type: Actuated-Coordinated												
Maximum v/c Ratio: 0.83												
Intersection Signal Delay: 36.8					Intersection LOS: D							
Intersection Capacity Utilization 70.2\%					ICU Level of Service C							
Analysis Period (min) 15												

Splits and Phases: 11: Folsom Rd/Tsienneto Rd \& NH 28 S/NH 28

Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%	4 ${ }^{\text {a }}$		7	个t			\uparrow	「		\uparrow	F
Traffic Volume (vph)	160	1185	5	20	890	80	15	10	15	10	10	60
Future Volume (vph)	160	1185	5	20	890	80	15	10	15	10	10	60
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	100		0	115		0	0		0	0		0
Storage Lanes	1		0	1		0	0		1	0		
Taper Length (t)	25			25			25			25		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.999			0.988				0.850			0.850
Fit Protected	0.950			0.950				0.971			0.976	
Satd. Flow (prot)	1787	3571	0	1787	3531	0	0	1845	1615	0	1836	1599
Flt Permitted	0.950			0.950				0.799			0.827	
Satd. Flow (perm)	1787	3571	0	1787	3531	0	0	1518	1615	0	1556	1599
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		1			11				149			149
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		277			644			230			387	
Travel Time (s)		6.3			14.6			5.2			8.8	
Peak Hour Factor	0.97	0.97	0.97	0.95	0.95	0.95	0.90	0.90	0.90	0.80	0.80	0.80
Heavy Vehicles (\%)	1\%	1\%	1\%	1\%	1\%	1\%	0\%	0\%	0\%	1\%	1\%	1\%
Adj. Flow (vph)	165	1222	5	21	937	84	17	11	17	13	13	75
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	165	1227	0	21	1021	0	0	28	17	0	26	75
Turn Type	Prot	NA		Prot	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases							8		8	4	4	4
Detector Phase	5	2		1	6		8	8	8	4	4	4
Switch Phase												
Minimum Initial (s)	5.0	8.0		5.0	8.0		5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	26.0	63.0		11.0	48.0		21.0	21.0	21.0	21.0	21.0	21.0
Total Split (s)	30.0	74.0		13.0	57.0		23.0	23.0	23.0	23.0	23.0	23.0
Total Split (\%)	27.3\%	67.3\%		11.8\%	51.8\%		20.9\%	20.9\%	20.9\%	20.9\%	20.9\%	20.9\%
Maximum Green (s)	24.0	68.0		7.0	51.0		17.0	17.0	17.0	17.0	17.0	17.0
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0		0.0	0.0
Total Lost Time (s)	6.0	6.0		6.0	6.0			6.0	6.0		6.0	6.0
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	C-Max		None	C-Max		None	None	None	None	None	None
Walk Time (s)		7.0			7.0		7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)		11.0			11.0		8.0	8.0	8.0	8.0	8.0	8.0
Pedestrian Calls (\#/hr)		0			0		0	0	0	0	0	0
Act Effct Green (s)	15.4	88.4		6.9	71.4			7.5	7.5		7.5	7.5
Actuated g/C Ratio	0.14	0.80		0.06	0.65			0.07	0.07		0.07	0.07
v / c Ratio	0.66	0.43		0.19	0.44			0.27	0.07		0.25	0.30
Control Delay	54.6	6.4		52.7	11.3			54.7	0.5		53.5	3.1
Queue Delay	0.0	0.0		0.0	0.0			0.0	0.0		0.0	0.0

	\cdots	*	2	\ldots	*	$\stackrel{1}{*}$	V	\nearrow	-	4	\checkmark	K
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Total Delay	54.6	6.4		52.7	11.3			54.7	0.5		53.5	3.1
LOS	D	A		D	B			D	A		D	
Approach Delay		12.1			12.1			34.2			16.1	
Approach LOS		B			B			C			B	
Queue Length 50th (tt)	115	82		13	190			19	0		18	
Queue Length 95th (ft)	m177	284		m27	253			48	0		40	
Internal Link Dist (ft)		197			564			150			307	
Turn Bay Length (ft)	100			115								
Base Capacity (vph)	389	2869		120	2296			234	375		240	373
Starvation Cap Reductn	0	0		0	0			0	,		0	
Spillback Cap Reductn	0	0		0	0			0	0		0	
Storage Cap Reductn	0	0		0	0			0	-		0	
Reduced v/c Ratio	0.42	0.43		0.17	0.44			0.12	0.05		0.11	0.20
Intersection Summary												
Area Type: Other												
Cycle Length: 110												
Actuated Cycle Length: 110												
Offset: 0 (0\%), Referenced to phase 2:SET and 6:NWT, Start of GreenNatural Cycle: 95												
Control Type: Actuated-Coordinated												
Maximum v/c Ratio: 0.66												
Intersection Signal Delay: 12.7				Intersection LOS: B								
Intersection Capacity Utilization 60.1\%				ICU Level of Service B								
Analysis Period (min) 15												
m Volume for 95 th percentile queue is metered by upstream signal.												

Splits and Phases: 13: Applebee's/Linlew Dr \& NH 28

	4	\rightarrow				4	4	4	$>$	＊	\downarrow	＋
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	\uparrow	7	${ }^{717}$	4 ${ }^{\text {a }}$		${ }^{7}$	个4	「だ	${ }^{*}$	44	＊
Traffic Volume（vph）	50	180	140	820	300	20	130	640	940	30	530	180
Future Volume（vph）	50	180	140	820	300	20	130	640	940	30	530	180
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length（ft）	100		0	220		0	100		265	200		0
Storage Lanes	1		1	2		0	1		2	1		
Taper Length（ft）	150			25			25			25		
Lane Util．Factor	1.00	1.00	1.00	0.97	0.95	0.95	1.00	0.95	0.88	1.00	0.95	1.00
Fit			0.850		0.991				0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd．Flow（prot）	1787	1881	1599	3433	3507	0	1805	3610	2842	1805	3610	1615
Flt Permitted	0.950			0.950			0.950			0.950		
Satd．Flow（perm）	1787	1881	1599	3433	3507	0	1805	3610	2842	1805	3610	1615
Right Turn on Red			Yes			Yes			Yes			Yes
Satd．Flow（RTOR）			149		6				806			209
Link Speed（mph）		30			30			30			30	
Link Distance（ft）		877			438			391			343	
Travel Time（s）		19.9			10.0			8.9			7.8	
Peak Hour Factor	0.84	0.84	0.84	0.90	0.90	0.90	0.78	0.78	0.78	0.86	0.86	0.86
Heavy Vehicles（\％）	1\％	1\％	1\％	2\％	2\％	2\％	0\％	0\％	0\％	0\％	0\％	0\％
Adj．Flow（vph）	60	214	167	911	333	22	167	821	1205	35	616	209
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	60	214	167	911	355	0	167	821	1205	35	616	209
Turn Type	Prot	NA	pm＋ov	Prot	NA		Prot	NA	pm＋ov	Prot	NA	pm＋ov
Protected Phases	5	2	3	1	6		3	8	1	7	4	5
Permitted Phases			2						8		4	4
Detector Phase	5	2	3	1	6		3	8	1	7	4	5
Switch Phase												
Minimum Initial（s）	8.0	8.0	5.0	8.0	8.0		5.0	5.0	8.0	5.0	8.0	8.0
Minimum Split（s）	22.0	22.0	9.5	22.0	22.0		9.5	22.0	22.0	9.5	22.0	22.0
Total Split（s）	22.0	25.0	20.0	38.0	41.0		20.0	28.0	38.0	19.0	27.0	22.0
Total Split（\％）	20．0\％	22．7\％	18．2\％	34．5\％	37．3\％		18．2\％	25．5\％	34．5\％	17．3\％	24．5\％	20．0\％
Maximum Green（s）	16.0	19.0	15.5	32.0	35.0		15.5	22.0	32.0	14.5	21.0	16.0
Yellow Time（s）	4.0	4.0	3.5	4.0	4.0		3.5	4.0	4.0	3.5	4.0	4.0
All－Red Time（s）	2.0	2.0	1.0	2.0	2.0		1.0	2.0	2.0	1.0	2.0	2.0
Lost Time Adjust（s）	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）	6.0	6.0	4.5	6.0	6.0		4.5	6.0	6.0	4.5	6.0	6.0
Lead／Lag	Lead	Lag	Lead	Lead	Lag		Lead	Lag	Lead	Lead	Lag	Lead
Lead－Lag Optimize？	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension（s）	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	Max	C－Max	None	None	None		None	None	None	None	None	Max
Walk Time（s）	5.0	5.0		5.0	5.0			5.0	5.0		5.0	5.0
Flash Dont Walk（s）	11.0	11.0		11.0	11.0			11.0	11.0		11.0	11.0
Pedestrian Calls（\＃／hr）	0	0		0	0			0	0		0	0
Act Effct Green（s）	16.0	19.0	38.9	32.0	35.0		13.9	33.1	71.1	7.6	22.6	44.6
Actuated g／C Ratio	0.15	0.17	0.35	0.29	0.32		0.13	0.30	0.65	0.07	0.21	0.41
v／c Ratio	0.23	0.66	0.25	0.91	0.32		0.73	0.76	0.57	0.28	0.83	0.27
Control Delay	44.2	53.3	6.2	50.5	40.1		65.0	41.7	4.7	53.5	53.4	4.0
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0

	4	\rightarrow		6	4		4	\dagger	$\stackrel{ }{ }+$,	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay	44.2	53.3	6.2	50.5	40.1		65.0	41.7	4.7	53.5	53.4	4.0
LOS	D	D	A	D	D		E	D	A	D	D	A
Approach Delay		34.2			47.5			23.1			41.4	
Approach LOS		C			D			C			D	
Queue Length 50th (ft)	38	142	8	344	128		113	291	68	24	225	0
Queue Length 95th (ft)	73	207	44	\#445	176		158	315	72	53	\#299	39
Internal Link Dist (ft)		797			358			311			263	
Turn Bay Length (ft)	100			220			100		265	200		
Base Capacity (vph)	259	324	682	998	1119		254	1084	2121	237	741	778
Starvation Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Reduced v/c Ratio	0.23	0.66	0.24	0.91	0.32		0.66	0.76	0.57	0.15	0.83	0.27
Intersection Summary												
Area Type: Other												
Cycle Length: 110												
Actuated Cycle Length: 110												
Offset: 0 (0\%), Referenced to phase 2:EBT, Start of Yellow												
Natural Cycle: 90												
Control Type: Actuated-Coordinated												
Maximum v/c Ratio: 0.91												
Intersection Signal Delay: 33.9					Intersection LOS: C							
Intersection Capacity Utilization 73.5\%					ICU Level of Service D							
Analysis Period (min) 15												
\# 95th percentile volume exceeds capacity, queue may be longer.												
Queue shown is maximum after two cycles.												

Splits and Phases: 22: Connector Road \& NH 28

Zone 5
2040 Alt B
18: Tsienneto Rd \& NH 28 Byp SB

	\cdots	\uparrow	\dagger	6	\downarrow	\downarrow	4	\nearrow	-	\downarrow	4	t
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%	\dagger		7	\uparrow	\%	\%	F		7	\dagger	
Traffic Volume (vph)	30	70	20	80	60	20	30	430	70	20	210	50
Future Volume (vph)	30	70	20	80	60	20	30	430	70	20	210	50
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	200		150	190		190	135		150	120		150
Storage Lanes	1		0	1		1	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.967				0.850		0.979			0.971	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1801	0	1787	1881	1599	1805	1860	0	1805	1845	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1770	1801	0	1787	1881	1599	1805	1860	0	1805	1845	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		15				123		11			16	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		481			347			479			371	
Travel Time (s)		10.9			7.9			10.9			8.4	
Peak Hour Factor	0.99	0.99	0.99	0.95	0.95	0.95	0.89	0.89	0.89	0.93	0.93	0.93
Heavy Vehicles (\%)	2\%	2\%	2\%	1\%	1\%	1\%	0\%	0\%	0\%	0\%	0\%	0\%
Adj. Flow (vph)	30	71	20	84	63	21	34	483	79	22	226	54
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	30	91	0	84	63	21	34	562	0	22	280	0
Turn Type	Prot	NA		Prot	NA	pt+ov	Prot	NA		Prot	NA	
Protected Phases	1	6		5	2	23	3	8		7	4	
Permitted Phases		6			2							
Detector Phase	1	6		5	2	23	3	8		7	4	
Switch Phase												
Minimum Initial (s)	8.0	8.0		8.0	8.0		8.0	8.0		8.0	8.0	
Minimum Split (s)	14.0	20.0		14.0	20.0		14.0	28.0		14.0	14.0	
Total Split (s)	14.0	20.0		14.0	20.0		14.0	32.0		14.0	32.0	
Total Split (\%)	17.5\%	25.0\%		17.5\%	25.0\%		17.5\%	40.0\%		17.5\%	40.0\%	
Maximum Green (s)	8.0	14.0		8.0	14.0		8.0	26.0		8.0	26.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	
Lead/Lag	Lead	Lag										
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	C-Max		None	None		None	None	
Walk Time (s)								7.0				
Flash Dont Walk (s)								15.0				
Pedestrian Calls (\#/hr)								0				
Act Effct Green (s)	8.0	24.1		8.2	29.9	43.9	8.0	26.9		8.0	24.1	
Actuated g/C Ratio	0.10	0.30		0.10	0.37	0.55	0.10	0.34		0.10	0.30	
v/c Ratio	0.17	0.16		0.46	0.09	0.02	0.19	0.89		0.12	0.49	
Control Delay	35.5	23.4		42.6	23.8	0.1	35.8	43.8		34.6	25.1	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	

18: Tsienneto Rd \& NH 28 Byp SB

	4	\uparrow	\dagger	\checkmark	\downarrow	\}	$\xlongequal{*}$	λ	\downarrow	\checkmark	\checkmark	4
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Total Delay	35.5	23.4		42.6	23.8	0.1	35.8	43.8		34.6	25.1	
LOS	D	C		D	C	A	D	D		C	C	
Approach Delay		26.4			30.2			43.3			25.8	
Approach LOS		C			C			D			C	
Queue Length 50th (ft)	14	29		40	17	0	16	236		10	123	
Queue Length 95th (ft)	39	74		85	61	0	42	\#450		32	173	
Internal Link Dist (ft)		401			267			399			291	
Turn Bay Length (t)	200			190		190	135			120		
Base Capacity (vph)	177	553		183	704	933	180	644		180	621	
Starvation Cap Reductn	0	0		0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0		0	0	0	0	0		0	0	
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	
Reduced v/c Ratio	0.17	0.16		0.46	0.09	0.02	0.19	0.87		0.12	0.45	

Intersection Summary
 Area Type: Other

Cycle Length: 80
Actuated Cycle Length: 80
Offset: $0(0 \%)$, Referenced to phase 2:SBT, Start of Green
Natural Cycle: 80
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.89
Intersection Signal Delay: 35.3
Intersection LOS: D
Intersection Capacity Utilization 48.0\%
ICU Level of Service A
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 18: Tsienneto Rd \& NH 28 Byp SB

Zone 5

Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	$\emptyset 2$	$\varnothing 5$	$\varnothing 6$	$\varnothing 7$
Lane Configurations	M		7	\uparrow	\uparrow	「				
Traffic Volume (vph)	660	10	40	140	100	720				
Future Volume (vph)	660	10	40	140	100	720				
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900				
Storage Length (ft)	0	0	120			90				
Storage Lanes	1	0	1			1				
Taper Length (ft)	25		25							
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00				
Fit	0.998					0.850				
Flt Protected	0.953		0.950							
Satd. Flow (prot)	1789	0	1770	1863	1845	1568				
Flt Permitted	0.953		0.653							
Satd. Flow (perm)	1789	0	1216	1863	1845	1568				
Right Turn on Red		Yes				Yes				
Satd. Flow (RTOR)	1					809				
Link Speed (mph)	30			30	30					
Link Distance (ft)	475			709	258					
Travel Time (s)	10.8			16.1	5.9					
Peak Hour Factor	0.90	0.90	0.87	0.87	0.89	0.89				
Heavy Vehicles (\%)	1\%	1\%	2\%	2\%	3\%	3\%				
Adj. Flow (vph)	733	11	46	161	112	809				
Shared Lane Traffic (\%)										
Lane Group Flow (vph)	744	0	46	161	112	809				
Turn Type	Prot		pm+pt	NA	NA	custom				
Protected Phases	8		1	67	27	78	2	5	6	7
Permitted Phases			67			2				
Detector Phase	8		1	67	27	78				
Switch Phase										
Minimum Initial (s)	5.0		5.0				5.0	5.0	5.0	5.0
Minimum Split (s)	26.5		11.0				28.0	11.0	28.0	11.0
Total Split (s)	46.0		11.0				29.0	11.0	29.0	14.0
Total Split (\%)	46.0\%		11.0\%				29\%	11\%	29\%	14\%
Maximum Green (s)	40.0		5.0				23.0	5.0	23.0	8.0
Yellow Time (s)	4.0		4.0				4.0	4.0	4.0	4.0
All-Red Time (s)	2.0		2.0				2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0		0.0							
Total Lost Time (s)	6.0		6.0							
Lead/Lag	Lag		Lead				Lag	Lead	Lag	Lead
Lead-Lag Optimize?	Yes		Yes				Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0		3.0				3.0	3.0	3.0	3.0
Recall Mode	None		None				Max	None	Max	None
Walk Time (s)							7.0		7.0	
Flash Dont Walk (s)							15.0		15.0	
Pedestrian Calls (\#/hr)							0		0	
Act Effct Green (s)	40.1		42.3	41.3	37.1	85.8				
Actuated g/C Ratio	0.42		0.44	0.43	0.39	0.90				
v / c Ratio	0.99		0.08	0.20	0.16	0.54				
Control Delay	60.5		14.6	18.4	23.6	1.6				
Queue Delay	0.0		0.0	0.0	0.0	0.5				

Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	$\varnothing 2$	$\emptyset 5$	$\emptyset 6$	$\varnothing 7$
Total Delay	60.5		14.6	18.4	23.6	2.1				
LOS	E		B	B	C	A				
Approach Delay	60.5			17.5	4.7					
Approach LOS	E			B	A					
Queue Length 50th (ft)	~ 515		15	56	47	9				
Queue Length 95th (ft)	\#744		33	114	m80	7				
Internal Link Dist (ft)	395			629	178					
Turn Bay Length (ft)			120			90				
Base Capacity (vph)	751		566	805	716	1490				
Starvation Cap Reductn	0		0	0	0	287				
Spillback Cap Reductn	0		0	0	0	0				
Storage Cap Reductn	0		0	0	0	0				
Reduced v/c Ratio	0.99		0.08	0.20	0.16	0.67				
Intersection Summary										
Area Type: Other										
Cycle Length: 100										
Actuated Cycle Length: 95.6										
Natural Cycle: 100										
Control Type: Actuated-Uncoordinated										
Maximum v/c Ratio: 0.99										
Intersection Signal Delay: 28.3				Intersection LOS: C						
Intersection Capacity Utilization 58.7\%				ICU Level of Service B						
Analysis Period (min) 15										

~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 19: NH 102 EB/NH 102 WB \& Connector Road

20: Exit 4A SB On/Exit 4A SB Off \& Connector Road

Splits and Phases: 20: Exit 4A SB On/Exit 4A SB Off \& Connector Road

21: Exit 4A NB Off \& Connector Road \& Exit 4A NB On

	\Rightarrow	\rightarrow	7	5	\leftarrow	4	1	\checkmark	4	\uparrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	SBL	SBR	NWL	NWR
Lane Configurations	\%	$\uparrow \uparrow$			$\uparrow \uparrow$	77			M	7
Traffic Volume (vph)	0	1575	0	0	1010	1075	0	0	0	770
Future Volume (vph)	0	1575	0	0	1010	1075	0	0	0	770
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	100		0	0		200	0	0	0	0
Storage Lanes	1		0	0		2	0	0	1	1
Taper Length (tt)	75			25			25		25	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	0.88	1.00	1.00	1.00	0.95
Fit						0.850			0.850	0.850
Flt Protected 0.850										
Satd. Flow (prot)	1863	3539	0	0	3539	2787	0	0	1583	1504
Flt Permitted										
Satd. Flow (perm)	1863	3539	0	0	3539	2787	0	0	1583	1504
Right Turn on Red			Yes			Yes		Yes		
Satd. Flow (RTOR)						64				
Link Speed (mph)		30			30		30		30	
Link Distance (t)		372			394		598		519	
Travel Time (s)		8.5			9.0		13.6		11.8	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	,	1676	0	0	1074	1144	0	0	0	819
Shared Lane Traffic (\%)										50\%
Lane Group Flow (vph)	0	1676	0	0	1074	1144	0	0	410	409
Turn Type	Perm	NA			NA	Perm			Prot	Prot
Protected Phases		2			2				4	4
Permitted Phases	2					2				
Detector Phase	2	2			2	2			4	4
Switch Phase										
Minimum Initial (s)	5.0	5.0			5.0	5.0			9.0	9.0
Minimum Split (s)	24.0	24.0			24.0	24.0			24.0	24.0
Total Split (s)	48.0	48.0			48.0	48.0			32.0	32.0
Total Split (\%)	60.0\%	60.0\%			60.0\%	60.0\%			40.0\%	40.0\%
Maximum Green (s)	42.0	42.0			42.0	42.0			26.0	26.0
Yellow Time (s)	4.0	4.0			4.0	4.0			4.0	4.0
All-Red Time (s)	2.0	2.0			2.0	2.0			2.0	2.0
Lost Time Adjust (s)	0.0	0.0			0.0	0.0			0.0	0.0
Total Lost Time (s)	6.0	6.0			6.0	6.0			6.0	6.0
Lead/Lag										
Lead-Lag Optimize?										
Vehicle Extension (s)	3.0	3.0			3.0	3.0			3.0	3.0
Recall Mode	C-Max	C-Max			C-Max	C-Max			Max	Max
Act Effct Green (s)		42.0			42.0	42.0			26.0	26.0
Actuatedg/C Ratio		0.52			0.52	0.52			0.32	0.32
v / C Ratio		0.90			0.58	0.77			0.80	0.84
Control Delay		4.6			14.5	18.5			38.3	42.6
Queue Delay		0.4			0.9	0.0			0.0	0.0
Total Delay		5.0			15.5	18.5			38.3	42.6
LOS		A			B	B			D	D
Approach Delay		5.0			17.0				40.5	
Approach LOS		A			B				D	

21: Exit 4A NB Off \& Connector Road \& Exit 4A NB On

	\Rightarrow	\rightarrow	\checkmark	5	\leftarrow	4	4	\downarrow	4	\uparrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	SBL	SBR	NWL	NWR
Queue Length 50th (ft)		3			180	228			184	196
Queue Length 95th (ft)		m5			238	319			\#330	\#361
Internal Link Dist (ft)		292			314		518		439	
Turn Bay Length (ft)						200				
Base Capacity (vph)		1857			1857	1493			514	488
Starvation Cap Reductn		26			0	0			0	0
Spillback Cap Reductn		0			474	0			0	0
Storage Cap Reductn		0			0	0			0	0
Reduced v/c Ratio		0.92			0.78	0.77			0.80	0.84
Intersection Summary										
Area Type: Other										
Cycle Length: 80										
Actuated Cycle Length: 80										
Offset: $0(0 \%)$, Referenced to phase 2:EBWB, Start of Yellow										
Natural Cycle: 70										
Control Type: Actuated-Coordinated										
Maximum v/c Ratio: 0.90										
Intersection Signal Delay: 16.8					Intersection LOS: B					
Intersection Capacity Utilization 115.2\%					ICU Level of Service H					
Analysis Period (min) 15										
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.										
m Volume for 95 th percentile queue is metered by upstream signal.										
Splits and Phases: 21: Exit 4A NB Off \& Connector Road \& Exit 4A NB On										
$\leftrightarrows_{\square 2}(\mathrm{R})$						${ }^{4404}$				
48 s						32 s				

	\Rightarrow	\rightarrow	7	\checkmark	\leftarrow		4	4	p		\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	$\stackrel{+}{ }$		*	F		7	\uparrow		${ }^{7}$	\uparrow	7
Traffic Volume (vph)	130	490	10	10	500	10	20	70	10	10	70	130
Future Volume (vph)	130	490	10	10	500	10	20	70	10	10	70	130
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	275		0	75		100	75		,	210		210
Storage Lanes	1		0	1		0	1		0	1		210
Taper Length (ft)	25			25			25			25		
Lane Utill. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.997			0.997			0.981				0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1857	0	1770	1857	0	1770	1827	0	1770	1863	1583
Flt Permitted	0.198			0.332			0.708			0.701		
Satd. Flow (perm)	369	1857	0	618	1857	0	1319	1827	0	1306	1863	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		2			2			11				141
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		310			410			481			432	
Travel Time (s)		7.0			9.3			10.9			9.8	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	141	533	11	11	543	11	22	76	11	11	76	
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	141	544	0	11	554	0	22	87	0	11	76	141
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	$\mathrm{pm}+\mathrm{ov}$
Protected Phases	7	4		,	8			2			6	7
Permitted Phases	4			8			2			6		6
Detector Phase	7	4		3	8		2	2		6	6	7
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	5.0
Minimum Split (s)	11.0	28.0		11.0	28.0		28.0	28.0		28.0	28.0	11.0
Total Split (s)	11.0	31.0		11.0	31.0		28.0	28.0		28.0	28.0	11.0
Total Split (\%)	15.7\%	44.3\%		15.7\%	44.3\%		40.0\%	40.0\%		40.0\%	40.0\%	15.7\%
Maximum Green (s)	5.0	25.0		5.0	25.0		22.0	22.0		22.0	22.0	5.0
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0		6.0	6.0		6.0	6.0		6.0	6.0	6.0
Lead/Lag	Lead	Lag		Lead	Lag							Lead
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	Max		None	None		Max	Max		None	None	None
Walk Time (s)		7.0			7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)		15.0			15.0		15.0	15.0		15.0	15.0	
Pedestrian Calls (\#hr)		,			0		0	0		0	0	
Act Effict Green (s)	32.8	31.8		27.9	22.9		22.0	22.0		22.0	22.0	33.1
Actuated g/C Ratio	0.48	0.47		0.41	0.34		0.32	0.32		0.32	0.32	0.49
v/c Ratio	0.50	0.63		0.03	0.88		0.05	0.15		0.03	0.13	0.17
Control Delay	16.3	19.4		8.8	39.3		17.2	16.2		17.0	17.8	2.7
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	16.3	19.4		8.8	39.3		17.2	16.2		17.0	17.8	2.7

	λ	\rightarrow		t	\leftarrow	4	4	\uparrow	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
LOS	B	B		A	D		B	B		B	B	A
Approach Delay		18.8			38.7			16.4			8.5	
Approach LOS		B			D			B			A	
Queue Length 50th (t)	30	149		2	213		7	23		3	23	0
Queue Length 95th (tt)	58	\#373		9	\#384		21	53		14	51	26
Internal Link Dist (ft)		230			330			401			352	
Turn Bay Length (tt)	275			75			75			210		210
Base Capacity (vph)	281	869		338	685		427	599		423	603	841
Starvation Cap Reductn	0	0		0	0		0	0		0	0	0
Spillback Cap Reductn	0	0		0	0		0	0		0	0	0
Storage Cap Reductn	0	0		0	0		0	0		0	0	0
Reduced v/c Ratio	0.50	0.63		0.03	0.81		0.05	0.15		0.03	0.13	0.17
Intersection Summary												
Area Type: Other												
Cycle Length: 70												
Actuated Cycle Length: 68												
Natural Cycle: 70												
Control Type: Actuated-Uncoordinated												
Maximum v/c Ratio: 0.88												
Intersection Signal Delay: 24.2				Intersection LOS: C								
Intersection Capacity Utilization 56.9\%				ICU Level of Service B								
Analysis Period (min) 15												
\# 95th percentile volume exceeds capacity, queue may be longer.Queue shown is maximum after two cycles.												

Splits and Phases: 23: NH 28 Byp SB \& Connector Road

	\checkmark	4	\uparrow	p		\downarrow				
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	$\varnothing 1$	$\varnothing 2$	$\emptyset 6$	$\emptyset 8$
Lane Configurations	\$		\uparrow	7	${ }^{*}$	\uparrow				
Traffic Volume (vph)	80	10	640	160	10	740				
Future Volume (vph)	80	10	640	160	10	740				
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900				
Storage Length (ft)	0	0		90	100					
Storage Lanes	1	0		1	1					
Taper Length (ft)	25				25					
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00				
Fit	0.981			0.850						
Fit Protected	0.959				0.950					
Satd. Flow (prot)	1772	0	1900	1615	1805	1900				
Flt Permitted	0.959				0.218					
Satd. Flow (perm)	1772	0	1900	1615	414	1900				
Right Turn on Red		Yes		Yes						
Satd. Flow (RTOR)	6			126						
Link Speed (mph)	30		30			30				
Link Distance (ft)	524		258			288				
Travel Time (s)	11.9		5.9			6.5				
Peak Hour Factor	0.87	0.67	0.95	0.84	0.73	0.96				
Heavy Vehicles (\%)	1\%	0\%	0\%	0\%	0\%	0\%				
Adj. Flow (vph)	92	15	674	190	14	771				
Shared Lane Traffic (\%)										
Lane Group Flow (vph)	107	0	674	190	14	771				
Turn Type	Prot		NA	Perm	custom	NA				
Protected Phases	7		68		5	28	1	2	6	8
Permitted Phases				68	2					
Detector Phase	7		68	68	5	28				
Switch Phase										
Minimum Initial (s)	5.0				5.0		5.0	5.0	5.0	5.0
Minimum Split (s)	11.0				11.0		11.0	28.0	28.0	26.5
Total Split (s)	14.0				11.0		11.0	29.0	29.0	46.0
Total Split (\%)	14.0\%				11.0\%		11\%	29\%	29\%	46\%
Maximum Green (s)	8.0				5.0		5.0	23.0	23.0	40.0
Yellow Time (s)	4.0				4.0		4.0	4.0	4.0	4.0
All-Red Time (s)	2.0				2.0		2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0				0.0					
Total Lost Time (s)	6.0				6.0					
Lead/Lag	Lead				Lead		Lead	Lag	Lag	Lag
Lead-Lag Optimize?	Yes				Yes		Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0				3.0		3.0	3.0	3.0	3.0
Recall Mode	None				None		None	Max	Max	None
Walk Time (s)								7.0	7.0	
Flash Dont Walk (s)								15.0	15.0	
Pedestrian Calls (\#/hr)								0	0	
Act Effct Green (s)	8.0		72.3	72.3	25.9	65.8				
Actuated g/C Ratio	0.08		0.76	0.76	0.27	0.69				
v/c Ratio	0.69		0.47	0.15	0.08	0.59				
Control Delay	65.8		1.5	0.5	23.2	7.4				
Queue Delay	0.0		1.6	0.5	0.0	0.0				

	\downarrow	4	\uparrow	p		\downarrow				
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT	01	$\varnothing 2$	$\varnothing 6$	$\varnothing 8$
Total Delay	65.8		3.1	1.0	23.2	7.4				
LOS	E		A	A	C	A				
Approach Delay	65.8		2.6			7.7				
Approach LOS	E		A			A				
Queue Length 50th (ft)	64		13	0	6	127				
Queue Length 95th (ft)	\#142		m59	m0	16	182				
Internal Link Dist (ft)	444		178			208				
Turn Bay Length (ft)				90	100					
Base Capacity (vph)	154		1437	1252	185	1307				
Starvation Cap Reductn	0		555	726	0	0				
Spillback Cap Reductn	0		0	0	0	0				
Storage Cap Reductn	0		0	0	0	0				
Reduced v/c Ratio	0.69		0.76	0.36	0.08	0.59				
Intersection Summary										
Area Type: Other										
Cycle Length: 100										
Actuated Cycle Length: 95.6										
Natural Cycle: 100										
Control Type: Actuated-Uncoordinated										
Maximum v/c Ratio: 0.99										
Intersection Signal Delay: 8.8				Intersection LOS: A						
Intersection Capacity Utilization 54.0\%				ICU Level of Service A						
Analysis Period (min) 15										
\# 95th percentile volume exceeds capacity, queue may be longer.										
Queue shown is maximum after two cycles.										
m Volume for 95 th percentile queue is metered by upstream signal.										

Splits and Phases: 26: NH 102 \& North Shore Road

APPENDIX Q-1: ALTERNATIVE C INTERSECTION CAPACITY ANALYSES - HCM 2000 PRINTSOUTS - AM PEAK HOUR

HCM Signalized Intersection Capacity Analysis

1. 7: NH 102 \& Exit 4 SB Off

c Critical Lane Group

HCM Signalized Intersection Capacity Analysis
2．\％：NH 102 \＆Exit 4 NB Off

Movement	NBL2	NBL	NBR	SEL	SER	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	7\％		T゙「			${ }^{1 \%}$	4个			44	F
Traffic Volume（vph）	1250	0	910	0	0	1085	295	0	0	420	240
Future Volume（vph）	1250	0	910	0	0	1085	295	0	0	420	240
｜deal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）	6.0		6.0			6.0	6.0			6.0	4.0
Lane Util．Factor	0.97		0.88			0.97	0.95			0.95	1.00
Fit	1.00		0.85			1.00	1.00			1.00	0.85
Flt Protected	0.95		1.00			0.95	1.00			1.00	1.00
Satd．Flow（prot）	3242		2632			3335	3438			3505	1568
Flt Permitted	0.95		1.00			0.95	1.00			1.00	1.00
Satd．Flow（perm）	3242		2632			3335	3438			3505	1568
Peak－hour factor，PHF	0.88	0.88	0.88	0.92	0.92	0.94	0.94	0.94	0.92	0.92	0.92
Adj．Flow（vph）	1420	0	1034	0	0	1154	314	0	0	457	261
RTOR Reduction（vph）	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow（vph）	1420	0	1034	0	0	1154	314	0	0	457	261
Heavy Vehicles（\％）	8\％	8\％	8\％	2\％	2\％	5\％	5\％	5\％	3\％	3\％	3\％
Turn Type	Prot		Prot			Prot	NA			NA	Free
Protected Phases	8		8			5	2			6	
Permitted Phases											Free
Actuated Green，G（s）	54.0		54.0			42.0	74.0			26.0	140.0
Effective Green，g（s）	54.0		54.0			42.0	74.0			26.0	140.0
Actuated g／C Ratio	0.39		0.39			0.30	0.53			0.19	1.00
Clearance Time（s）	6.0		6.0			6.0	6.0			6.0	
Vehicle Extension（s）	3.0		3.0			3.0	3.0			3.0	
Lane Grp Cap（vph）	1250		1015			1000	1817			650	1568
v / s Ratio Prot	c0．44		0.39			c0．35	0.09			c0．13	
v／s Ratio Perm											0.17
v／c Ratio	1.14		1.02			1.15	0.17			0.70	0.17
Uniform Delay，d1	43.0		43.0			49.0	17.1			53.4	0.0
Progression Factor	1.00		1.00			0.44	0.15			1.00	1.00
Incremental Delay，d2	71.5		33.0			75.1	0.1			6.3	0.2
Delay（s）	114.5		76.0			96.4	2.7			59.6	0.2
Level of Service	F		E			F	A			E	A
Approach Delay（s）		98.3		0.0			76.4			38.0	
Approach LOS		F		A			E			D	

Intersection Summary			
HCM 2000 Control Delay	82.0	HCM 2000 Level of Service	F
HCM 2000 Volume to Capacity ratio	1.05		18.0
Actuated Cycle Length（s）	140.0	Sum of lost time（s）	F
Intersection Capacity Utilization	94.2%	ICU Level of Service	
Analysis Period（min）	15		
C Critical Lane Group			

HCM Signalized Intersection Capacity Analysis
3 \＆：Exit 5 SB On／Exit 5 SB Off \＆NH 28

	3	\rightarrow	\bigcirc	\checkmark	4	4	4	\dagger	p	\pm	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		鞂	「	＊	㐱					＊＊		\％
Traffic Volume（vph）	0	640	470	160	615	0	0	0	0	180	0	390
Future Volume（vph）	0	640	470	160	615	0	0	0	0	180	0	390
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）		6.0	4.0	6.0	6.0					6.0		6.0
Lane Util．Factor		0.95	1.00	1.00	0.95					0.97		1.00
Frt		1.00	0.85	1.00	1.00					1.00		0.85
Flt Protected		1.00	1.00	0.95	1.00					0.95		1.00
Satd．Flow（prot）		3471	1553	1719	3438					3367		1553
Flt Permitted		1.00	1.00	0.95	1.00					0.95		1.00
Satd．Flow（perm）		3471	1553	1719	3438					3367		1553
Peak－hour factor，PHF	0.87	0.87	0.87	0.86	0.86	0.86	0.92	0.92	0.92	0.91	0.91	0.91
Adj．Flow（vph）	0	736	540	186	715	0	0	0	0	198	0	429
RTOR Reduction（vph）	0	0	0	0	0	0	0	0	0	0	0	154
Lane Group Flow（vph）	0	736	540	186	715	0	0	0	0	198	0	275
Heavy Vehicles（\％）	4\％	4\％	4\％	5\％	5\％	5\％	2\％	2\％	2\％	4\％	4\％	4\％
Turn Type		NA	Free	Prot	NA					Prot		Prot
Protected Phases		2		1	6					4		4
Permitted Phases			Free									
Actuated Green，G（s）		36.1	90.0	14.2	56.3					21.7		21.7
Effective Green， g （s）		36.1	90.0	14.2	56.3					21.7		21.7
Actuated g／C Ratio		0.40	1.00	0.16	0.63					0.24		0.24
Clearance Time（s）		6.0		6.0	6.0					6.0		6.0
Vehicle Extension（s）		5.0		3.0	5.0					3.0		3.0
Lane Grp Cap（vph）		1392	1553	271	2150					811		374
v／s Ratio Prot		c0．21		c0．11	0.21					0.06		c0．18
v／s Ratio Perm			0.35									
v／c Ratio		0.53	0.35	0.69	0.33					0.24		0.74
Uniform Delay，d1		20.5	0.0	35.8	8.0					27.5		31.5
Progression Factor		1.00	1.00	0.35	0.02					1.00		1.00
Incremental Delay，d2		1.4	0.6	4.6	0.2					0.2		7.3
Delay（s）		21.9	0.6	17.3	0.4					27.7		38.8
Level of Service		C	A	B	A					C		D
Approach Delay（s）		12.9			3.9			0.0			35.3	
Approach LOS		B			A			A			D	

Intersection Summary

HCM 2000 Control Delay	15.0	HCM 2000 Level of Service	B
HCM 2000 Volume to Capacity ratio	0.62		18.0
Actuated Cycle Length（s）	90.0	Sum of lost time（s）	C
Intersection Capacaity Utilization	70.4%	ICU Level of Service	
Analysis Period（min）	15		
C Critical Lane Group			

HCM Signalized Intersection Capacity Analysis
4 ：Exit 5 NB Off \＆NH 28

	4	\rightarrow		7	4	4	4	\dagger	\％	，	\downarrow	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	个4			舯	F	${ }^{7}$		『゙			
Traffic Volume（vph）	440	380	0	0	455	230	320	0	370	0	0	0
Future Volume（vph）	440	380	0	0	455	230	320	0	370	0	0	0
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）	6.0	6.0			6.0	4.0	6.0		6.0			
Lane Util．Factor	1.00	0.95			0.95	1.00	1.00		1.00			
Fit	1.00	1.00			1.00	0.85	1.00		0.85			
Flt Protected	0.95	1.00			1.00	1.00	0.95		1.00			
Satd．Flow（prot）	1752	3505			3505	1568	1703		1524			
Flt Permitted	0.95	1.00			1.00	1.00	0.95		1.00			
Satd．Flow（perm）	1752	3505			3505	1568	1703		1524			
Peak－hour factor，PHF	0.92	0.92	0.92	0.91	0.91	0.91	0.67	0.67	0.67	0.92	0.92	0.92
Adj．Flow（vph）	478	413	0	0	500	253	478	0	552	0	0	0
RTOR Reduction（vph）	0	0	0	0	0	0	0	0	288	0	0	0
Lane Group Flow（vph）	478	413	0	0	500	253	478	0	264	0	0	0
Heavy Vehicles（\％）	3\％	3\％	3\％	3\％	3\％	3\％	6\％	6\％	6\％	2\％	2\％	2\％
Turn Type	Prot	NA			NA	Free	Prot		Prot			
Protected Phases	5	2			6		8		8			
Permitted Phases		2			6	Free						
Actuated Green，G（s）	26.9	50.1			17.2	90.0	27.9		27.9			
Effective Green，g（s）	26.9	50.1			17.2	90.0	27.9		27.9			
Actuated g／C Ratio	0.30	0.56			0.19	1.00	0.31		0.31			
Clearance Time（s）	6.0	6.0			6.0		6.0		6.0			
Vehicle Extension（s）	5.0	5.0			5.0		3.0		3.0			
Lane Grp Cap（vph）	523	1951			669	1568	527		472			
v／s Ratio Prot	c0．27	0.12			c0．14		c0．28		0.17			
v／s Ratio Perm						0.16						
v／c Ratio	0.91	0.21			0.75	0.16	0.91		0.56			
Uniform Delay，d1	30.4	10.0			34.3	0.0	29.8		25.9			
Progression Factor	0.27	0.33			1.00	1.00	1.00		1.00			
Incremental Delay，d2	19.1	0.2			7.5	0.2	19.2		1.4			
Delay（s）	27.2	3.6			41.8	0.2	49.0		27.3			
Level of Service	C	A			D	A	D		C			
Approach Delay（s）		16.3			27.8			37.4			0.0	
Approach LOS		B			C			D			A	

Intersection Summary

HCM 2000 Control Delay	27.7	HCM 2000 Level of Service	C
HCM 2000 Volume to Capacity ratio	0.87		18.0
Actuated Cycle Length（s）	90.0	Sum of lost time（s）	C
Intersection Capacity Utilization	70.4%	ICU Level of Service	
Analysis Period（min）	15		
C Critical Lane Group			

HCM Signalized Intersection Capacity Analysis
5 . NH 102 \& St. Charles Street/Londonderry Road

Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		\uparrow	\%		\$		${ }^{4}$	个 ${ }^{\text {a }}$		${ }^{7}$	㻢	
Traffic Volume (vph)	10	5	210	10	0	10	270	820	120	5	590	130
Future Volume (vph)	10	5	210	10	0	10	270	820	120	5	590	130
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0	6.0		6.0		6.0	6.0		6.0	6.0	
Lane Util. Factor		1.00	1.00		1.00		1.00	0.95		1.00	0.95	
Fit		1.00	0.85		0.93		1.00	0.98		1.00	0.97	
Fit Protected		0.97	1.00		0.98		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1801	1583		1729		1770	3472		1770	3443	
Flt Permitted		0.87	1.00		0.83		0.95	1.00		0.95	1.00	
Satd. Flow (perm)		1622	1583		1477		1770	3472		1770	3443	
Peak-hour factor, PHF	0.92	0.92	0.92	0.25	0.25	0.25	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	11	5	228	40	0	40	293	891	130	5	641	141
RTOR Reduction (vph)	0	0	125	0	75	0	0	9	0	0	17	0
Lane Group Flow (vph)	0	16	103	0	5	0	293	1012	0	5	765	0
Heavy Vehicles (\%)	2\%	2\%	2\%	0\%	0\%	0\%	2\%	2\%	2\%	2\%	2\%	2\%
Turn Type	Perm	NA	custom	Perm	NA		Prot	NA		Prot	NA	
Protected Phases		8			4		5	2		1	6	
Permitted Phases	8		6	4								
Actuated Green, G (s)		4.8	32.6		4.8		16.9	48.7		0.8	32.6	
Effective Green, g (s)		4.8	32.6		4.8		16.9	48.7		0.8	32.6	
Actuated g/C Ratio		0.07	0.45		0.07		0.23	0.67		0.01	0.45	
Clearance Time (s)		6.0	6.0		6.0		6.0	6.0		6.0	6.0	
Vehicle Extension (s)		3.0	3.0		3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		107	713		98		413	2338		19	1552	
v/s Ratio Prot							c0.17	0.29		0.00	c0. 22	
v/s Ratio Perm		c0.01	0.06		0.00							
v / c Ratio		0.15	0.14		0.05		0.71	0.43		0.26	0.49	
Uniform Delay, d1		31.8	11.7		31.6		25.4	5.4		35.5	14.0	
Progression Factor		1.00	1.00		1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2		0.6	0.1		0.2		5.5	0.1		7.3	0.2	
Delay (s)		32.5	11.8		31.9		31.0	5.6		42.7	14.3	
Level of Service		C	B		C		C	A		D	B	
Approach Delay (s)		13.1			31.9			11.2			14.4	
Approach LOS		B			C			B			B	

Intersection Summary			
HCM 2000 Control Delay	13.1	HCM 2000 Level of Service	B
HCM 2000 Volume to Capacity ratio	0.53		18.0
Actuated Cycle Length (s)	72.3	Sum of lost time (s)	B
Intersection Capacity Utilization	62.0%	ICU Level of Service	
Analysis Period (min)	15		
c Critical Lane Group			

HCM Signalized Intersection Capacity Analysis
6. 10: NH 102 \& Fordway/Madden Hill Road

Movement	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		4			*			\dagger			\uparrow	
Traffic Volume (vph)	20	20	5	270	0	50	0	730	130	10	380	0
Future Volume (vph)	20	20	5	270	0	50	0	730	130	10	380	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0			6.0			6.0			6.0	
Lane Util. Factor		1.00			1.00			1.00			1.00	
Fit		0.99			0.98			0.98			1.00	
Flt Protected		0.98			0.96			1.00			1.00	
Satd. Flow (prot)		1796			1733			1723			1807	
Fit Permitted		0.83			0.71			1.00			0.89	
Satd. Flow (perm)		1530			1279			1723			1610	
Peak-hour factor, PHF	0.60	0.60	0.60	0.96	0.96	0.96	0.89	0.89	0.89	0.86	0.86	0.86
Adj. Flow (vph)	33	33	8	281	0	52	0	820	146	12	442	0
RTOR Reduction (vph)	0	5	0	0	27	0	0	7	0	0	0	0
Lane Group Flow (vph)	0	69	0	0	306	0	0	959	0	0	454	0
Heavy Vehicles (\%)	2\%	2\%	2\%	3\%	3\%	3\%	8\%	8\%	8\%	5\%	5\%	5\%
Turn Type	Perm	NA		Perm	NA			NA		Perm	NA	
Protected Phases		4			4			2			2	
Permitted Phases	4			4						2		
Actuated Green, G (s)		22.3			22.3			52.1			52.1	
Effective Green, g (s)		22.3			22.3			52.1			52.1	
Actuated g/C Ratio		0.26			0.26			0,60			0.60	
Clearance Time (s)		6.0			6.0			6.0			6.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		394			330			1038			970	
v / s Ratio Prot								c0.56				
v/s Ratio Perm		0.04			c0.24						0.28	
v/c Ratio		0.17			0.93			0.92			0.47	
Uniform Delay, d1		24.9			31.3			15.4			9.5	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		0.2			31.2			13.2			0.4	
Delay (s)		25.1			62.5			28.6			9.8	
Level of Service		C			E			C			A	
Approach Delay (s)		25.1			62.5			28.6			9.8	
Approach LOS		C			E			C			A	

Intersection Summary			C
HCM 2000 Control Delay	30.0	HCM 2000 Level of Service	
HCM 2000 Volume to Capacity ratio	0.92		12.0
Actuated Cycle Length (s)	86.4	Sum of lost time (s)	E
Intersection Capacity Utilization	84.3%	ICU Level of Service	
Analysis Period (min)	15		
c Critical Lane Group			

	\%		4	\uparrow	\downarrow	\downarrow
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	\dagger	「		\uparrow	\uparrow	$\overline{7}$
Traffic Volume (vph)	465	10	10	160	100	535
Future Volume (vph)	465	10	10	160	100	535
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (tt)	0	120	0			220
Storage Lanes	1	1	0			1
Taper Length (t)	25		25			
Lane Utili. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850				0.850
Flt Protected	0.950			0.997		
Satd. Flow (prot)	1787	1599	0	1857	1881	1599
Flt Permitted	0.950			0.997		
Satd. Flow (perm)	1787	1599	0	1857	1881	1599
Link Speed (mph)	30			30	30	
Link Distance (tt)	322			309	354	
Travel Time (s)	7.3			7.0	8.0	
Peak Hour Factor	0.90	0.90	0.87	0.87	0.87	0.87
Heavy Vehicles (\%)	1\%	1\%	2\%	2\%	1\%	1\%
Adj. Flow (vph)	517	11	11	184	115	615
Shared Lane Trafic (\%)						
Lane Group Flow (vph)	517	11	0	195	115	615
Sign Control	Stop			Stop	Stop	
Antersection Summary						
Control Type: Unsignalized						
Intersection Capacity Utilization 53.1\%Analysis Period (min) 15						

Intersection	
Intersection Delay s/veh	68.8
Intersection LOS	F

Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*	7		\uparrow	\uparrow	「゙
Traffic Vol, veh/h	465	10	10	160	100	535
Future Vol, veh/h	465	10	10	160	100	535
Peak Hour Factor	0.90	0.90	0.87	0.87	0.87	0.87
Heavy Vehicles, \%	1	1	2	2	1	1
Mvmt Flow	517	11	11	184	115	615
Number of Lanes	1	1	0	1	1	1
Approach	EB		NB		SB	
Opposing Approach			SB		NB	
Opposing Lanes	0		2		1	
Conflicting Approach Left	SB		EB			
Conflicting Lanes Left	2		2		0	
Conflicting Approach Right	NB				EB	
Conflicting Lanes Right	1		0		2	
HCM Control Delay	88.9		16.1		68.3	
HCM LOS	F		C		F	

Lane	NBLn1	EBLn1	EBLn2	SBLn1	SBLn2
Vol Left, \%	6%	100%	0%	0%	0%
Vol Thru, \%	94%	0%	0%	100%	0%
Vol Right, \%	0%	0%	100%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	170	465	10	100	535
LT Vol	10	465	0	0	0
Through Vol	160	0	0	100	0
RT Vol	0	0	10	0	535
Lane Flow Rate	195	517	11	115	615
Geometry Grp	4	7	7	7	7
Degree of Util (X)	0.404	1.075	0.019	0.22	1.057
Departure Headway (Hd)	7.845	7.695	6.471	7.175	6.458
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	461	475	556	503	566
Service Time	5.845	5.395	4.171	4.875	4.158
HCM Lane VIC Ratio	0.423	1.088	0.02	0.229	1.087
HCM Control Delay	16.1	90.6	9.3	11.9	78.9
HCM Lane LOS	C	F	A	B	F
HCM 95th-tile Q	1.9	16.1	0.1	0.8	17

	\prime		4	4		\downarrow
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M			\uparrow	\dagger	
Traffic Volume (vph)	10	0	0	625	635	10
Future Volume (vph)	10	0	0	625	635	10
\|deal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Utill Factor	1.00	1.00	1.00	1.00	1.00	1.00
Fit					0.998	
Flt Protected	0.950					
Satd. Flow (prot)	1703	0	0	1881	1877	0
Flt Permitted	0.950					
Satd. Flow (perm)	1703	0	0	1881	1877	0
Link Speed (mph)	30			30	30	
Link Distance (t)	160			224	319	
Travel Time (s)	3.6			5.1	7.3	
Peak Hour Factor	0.50	0.50	0.93	0.93	0.86	0.86
Heavy Vehicles (\%)	6\%	6\%	1\%	1\%	1\%	1\%
Adj. Flow (vph)	20	0	0	672	738	12
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	20	0	0	672	750	0
Sign Control	Stop			Free	Free	
intersection Summary						
Area Type: Other						
Control Type: UnsignalizedIntersection Capacity Utilization 50.5% ICU Level of Service A						
Analysis Period (min) 15						

Minor Lane/Major Mvmt	NBL	NBTEBLn1	SBT	SBR
Capacity (veh/h)	864	-148	-	-
HCM Lane V/C Ratio	-	-0.135	-	-
HCM Control Delay (s)	0	-33.1	-	-
HCM Lane LOS	A	-	D	-
HCM 95th \%tile Q(veh)	0	-	-	

	3	\rightarrow	\rightarrow	5	\leftarrow		\rightarrow	*	4	4	\cdots	$\stackrel{+}{ }$
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations		¢			¢			\dagger			¢	
Traffic Volume (vph)	40	590	5	30	410	20	100	40	230	5	20	150
Future Volume (vph)	40	590	5	30	410	20	100	40	230	5	20	150
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (t)	150		150	150		150	0		0	150		150
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (t)	25			25			25			25		
Lane Utill. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.999			0.994			0.916			0.884	
Flt Protected		0.997			0.997			0.987			0.999	
Satd. Flow (prot)	0	1874	0	0	1846	0	0	1718	0	0	1678	0
Flt Permitted		0.997			0.997			0.987			0.999	
Satd. Flow (perm)	0	1874	0	0	1846	0	0	1718	0	0	1678	0
Link Speed (mph)		30			30			30			30	
Link Distance (tt)		327			240			246			251	
Travel Time (s)		7.4			5.5			5.6			5.7	
Peak Hour Factor	0.94	0.94	0.94	0.88	0.88	0.88	0.67	0.67	0.67	0.82	0.82	0.82
Heavy Vehicles (\%)	1\%	1\%	1\%	2\%	2\%	2\%	0\%	0\%	0\%	0\%	0\%	0\%
Adj. Flow (vph)	43	628	5	34	466	23	149	60	343	6	24	183
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	676	0	0	523	0	0	552	0	0	213	0
Sign Control		Free			Free			Stop			Stop	

ntersection Summary

```
Area Type: Other
```

Control Type: Unsignalized
Intersection Capacity Utilization 89.7\%

ICU Level of Service E
Analysis Period (min) 15

Movement	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations	\%	44	7	\% ${ }^{1}$	$\uparrow \uparrow$		\%	\uparrow	「	\%	4	F
Traffic Volume (vph)	80	330	140	560	530	0	320	500	120	50	290	590
Future Volume (vph)	80	330	140	560	530	0	320	500	120	50	290	590
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0		6.0	6.0	6.0	6.0	6.0	6.0
Lane Util. Factor	1.00	0.95	1.00	0.97	0.95		1.00	1.00	1.00	1.00	1.00	1.00
Fit	1.00	1.00	0.85	1.00	1.00		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1770	3539	1583	3433	3539		1770	1863	1583	1787	1881	1599
FIt Permitted	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1770	3539	1583	3433	3539		1770	1863	1583	1787	1881	1599
Peak-hour factor, PHF	0.92	0.92	0.92	0.94	0.94	0.94	0.96	0.96	0.96	0.95	0.95	0.95
Adj. Flow (vph)	87	359	152	596	564	0	333	521	125	53	305	621
RTOR Reduction (vph)	-	0	126		0	0	0	0	82	,	0	89
Lane Group Flow (vph)	87	359	26	596	564	0	333	521	43	53	305	532
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	1\%	1\%	1\%
Turn Type	Prot	NA	Perm	Prot	NA		Prot	NA	Perm	Prot	NA	pm+ov
Protected Phases	5	2		1	6		7	4		,	,	1
Permitted Phases			2						4			8
Actuated Green, G (s)	8.3	18.6	18.6	22.1	32.4		23.4	37.6	37.6	7.7	21.9	44.0
Effective Green, $\mathrm{g}(\mathrm{s})$	8.3	18.6	18.6	22.1	32.4		23.4	37.6	37.6	7.7	21.9	44.0
Actuated g/C Ratio	0.08	0.17	0.17	0.20	0.29		0.21	0.34	0.34	0.07	0.20	0.40
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0		6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	133	598	267	689	1042		376	636	541	125	374	726
v / s Ratio Prot	0.05	0.10		c0.17	c0.16		c0.19	c0.28		0.03	0.16	c0.15
v / s Ratio Perm			0.02						0.03			0.19
v/c Ratio	0.65	0.60	0.10	0.87	0.54		0.89	0.82	0.08	0.42	0.82	0.73
Uniform Delay, d1	49.5	42.3	38.6	42.5	32.6		42.0	33.1	24.5	49.0	42.1	28.0
Progression Factor	1.00	1.00	1.00	1.32	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	11.0	4.4	0.7	10.2	0.5		21.2	8.1	0.1	2.3	12.8	3.8
Delay (s)	60.5	46.7	39.3	66.5	33.1		63.2	41.2	24.6	51.3	54.9	31.8
Level of Service	E	D	D	E	C		E	D	C	D	D	C
Approach Delay (s)		46.8			50.3			46.6			40.1	
Approach LOS		D			D			D			,	

Intersection Summary			
HCM 2000 Control Delay	46.1	HCM 2000 Level of Service	D
HCM 2000 Volume to Capacity ratio	0.83		24.0
Actuated Cycle Length (s)	110.0	Sum of lost time (s)	D
Intersection Capacity Utilization	78.4%	ICU Level of Service	
Analysis Period (min)	15		
C Critical Lane Group			

12: Tsienneto Rd \& Pinkerton St

Intersection						
Int Delay, s/veh	101.7					

	\rangle	\rightarrow		6		4	4	\dagger	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%*	个\%		${ }^{*}$	$\uparrow \uparrow$		${ }^{7}$	\dagger			\downarrow	\%
Traffic Volume (vph)	530	1270	5	5	1080	70	40	10	10	80	5	490
Future Volume (vph)	530	1270	5	5	1080	70	40	10	10	80	5	490
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0		6.0	6.0			6.0	6.0
Lane Util, Factor	0.97	0.95		1.00	0.95		1.00	1.00			1.00	1.00
Fit	1.00	1.00		1.00	0.99		1.00	0.93			1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00			0.96	1.00
Satd. Flow (prot)	3467	3572		1770	3507		1805	1758			1815	1615
Fit Permitted	0.95	1.00		0.95	1.00		0.69	1.00			0.72	1.00
Satd. Flow (perm)	3467	3572		1770	3507		1317	1758			1368	1615
Peak-hour factor, PHF	0.84	0.84	0.84	0.90	0.90	0.90	0.78	0.78	0.78	0.86	0.86	0.86
Adj. Flow (vph)	631	1512	6	6	1200	78	51	13	13	93	6	570
RTOR Reduction (vph)	0	0	0	0	4	0	0	11	0	0	0	18
Lane Group Flow (vph)	631	1518	0	6	1274	0	51	15	0	0	99	552
Heary Vehicles (\%)	1\%	1\%	1\%	2\%	2\%	2\%	0\%	0\%	0\%	0\%	0\%	0\%
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	pm+ov
Protected Phases	5	2		1	6			8			4	5
Permitted Phases							8	8		4		4
Actuated Green, G (s)	29.0	77.3		1.4	49.7		13.3	13.3			13.3	42.3
Effective Green, g (s)	29.0	77.3		1.4	49.7		13.3	13.3			13.3	42.3
Actuated g/C Ratio	0.26	0.70		0.01	0.45		0.12	0.12			0.12	0.38
Clearance Time (s)	6.0	6.0		6.0	6.0		6.0	6.0			6.0	6.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0			3.0	3.0
Lane Grp Cap (vph)	914	2510		22	1584		159	212			165	709
v / s Ratio Prot	0.18	0.42		0.00	c0.36			0.01				c0.21
v/s Ratio Perm							0.04				0.07	0.14
V/C Ratio	0.69	0.60		0.27	0.80		0.32	0.07			0.60	0.78
Uniform Delay, d1	36.5	8.5		53.8	26.0		44.2	42.9			45.8	29.7
Progression Factor	1.00	1.00		0.81	1.59		1.00	1.00			1.00	1.00
Incremental Delay, d2	2.3	1.1		6.2	2.9		1.2	0.1			5.8	5.4
Delay (s)	38.7	9.5		50.0	44.0		45.4	43.0			51.6	35.1
Level of Service	D	A		D	D		D	D			D	D
Approach Delay (s)		18.1			44.1			44.6			37.5	
Approach LOS		B			D			D			D	
Intersection Summary												
HCM 2000 Control Delay			29.7		M 2000	evel of S	ervice		C			
HCM 2000 Volume to Capacity ratio			0.84									
Actuated Cycle Length (s)			110.0		of lost	ime (s)			18.0			
Intersection Capacity Utilization			81.6\%		Level or	Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

	\rangle	-	\leftarrow	4	\checkmark	\checkmark
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	*	$\uparrow \uparrow$	个t		\%	F
Traffic Volume (vph)	210	1870	1510	30	10	70
Future Volume (vph)	210	1870	1510	30	10	70
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (t)	300			0	0	175
Storage Lanes	1			0	1	1
Taper Length (t)	25				25	
Lane Util. Factor	1.00	0.95	0.95	0.95	1.00	1.00
Fit			0.997			0.850
FIt Protected	0.950				0.950	
Satd. Flow (prot)	1770	3539	3529	0	1752	1568
Flt Permitted	0.950				0.950	
Satd. Flow (perm)	1770	3539	3529	0	1752	1568
Link Speed (mph)		30	30		30	
Link Distance (t)		535	210		522	
Travel Time (s)		12.2	4.8		11.9	
Peak Hour Factor	0.91	0.91	0.90	0.90	0.75	0.75
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	3\%	3\%
Adj. Flow (vph)	231	2055	1678	33	13	93
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	231	2055	1711	0	13	93
Sign Control		Free	Free		Stop	

Intersection Summary
Area Type: Other

Control Type: Unsignalized
Intersection Capacity Utilization 67.7\%
ICU Level of Service C
Analysis Period (min) 15

Major/Minor	Major1	Major2	Minor2			
Conflicting Flow All	1711	0	-	0	3185	856
\quad Stage 1	-	-	-	-1695	-	
\quad Stage 2	-	-	-	-1490	-	
Critical ddwy	4.14	-	-	-6.86	6.96	
Critical Hdwy Stg 1	-	-	-	-	5.86	-
Critical Hdwy Stg 2	-	-	-	-	5.86	-
Follow-up Hdwy	2.22	-	-	-	3.53	3.33
Pot Cap-1 Maneuver	367	-	-	-	-8	299
\quad Stage 1	-	-	-	-	133	-
\quad Stage 2	-	-	-	-	172	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	367	-	-	-	-3	299
Mov Cap-2 Maneuver	-	-	-	-	-3	-
\quad Stage 1	-	-	-	-	49	-
\quad Stage 2	-	-	-	-	172	-

Approach	EB	WB	SB
HCM Control Delay, S	3	0	$S 483.6$
HCM LOS		F	

16: NH 102 W/NH 102 E \& Bypass 28 S/Bypass 28 N \& E Derry Rd

	\checkmark	\checkmark	\pm	を	\rightarrow	\uparrow	「	P	\checkmark	\checkmark	\downarrow	\}
Lane Group	WBL2	WBL	WBR	WBR2	NBL	NBT	NBR	NBR2	SBL2	SBL	SBT	SBR
Lane Configurations		M				\$					$\stackrel{\text { d }}{ }$	
Traffic Volume (vph)	10	220	340	20	80	140	80	5	10	290	210	30
Future Volume (vph)	10	220	340	20	80	140	80	5	10	290	210	30
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.918				0.962					0.992	
Flt Protected		0.981				0.987					0.973	
Satd. Flow (prot)	0	1694	0	0	0	1769	0	0	0	0	1816	0
Flt Permitted		0.981				0.987					0.973	
Satd. Flow (perm)	0	1694	0	0	0	1769	0	0	0	0	1816	0
Link Speed (mph)		30				30					30	
Link Distance (tt)		449				456					370	
Travel Time (s)		10.2				10.4					8.4	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.87	0.87	0.87	0.87	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	1\%	1\%	1\%	1\%	2\%	2\%	2\%	2\%	1\%	1\%	1\%	1\%
Adj. Flow (vph)	11	242	374	22	92	161	92	-	11	315	228	33
Shared Lane Trafic (\%) 228												
Lane Group Flow (vph)	0	649	0	0	0	351	0	0	0	0	587	0
Sign Control		Yield				Yield					Yield	

Intersection Summary Other
Area Type:
Control Type: Roundabout
Intersection Capacity Utilization 124.5\%
Analysis Period (min) 15

Lane Group	NEL	NET	NER	NER2	SWL2	SWL	SWT	SWR
Lane Configurations				A				

Intersection Summary

nntersection					
Intersection Delay, s/veh18.9					
Intersection LOS	C				
Approach	WB			SB	SW
Entry Lanes	1	1	1	1	1
Conflicting Circle Lanes	1	1	1	1	1
Adj Approach Flow, veh/h	649	351	587	522	159
Demand Flow Rate, veh/h	655	358	592	527	162
Vehicles Circulating, veh/h	486	804	500	609	924
Vehicles Exiting, veh/h	676	332	586	483	217
Ped Vol Crossing Leg, \#/h	0	0	0	0	0
Ped Cap Adj	1.000	1.000	1.000	1.000	1.000
Approach Delay, s/veh	21.7	17.3	18.1	19.6	11.3
Approach LOS	C	C	C	C	B

Lane	Left	Left	Left	Left	Left
Designated Moves	LR	LTR	LTR	LTR	LTR
Assumed Moves	LR	LTR	LTR	LTR	LTR
RT Channelized					
Lane Util	1.000	1.000	1.000	1.000	1.000
Follow-Up Headway, s 2.609	2.609	2.609	2.609	2.609	
Critical Headway, s	4.976	4.976	4.976	4.976	4.976
Entry Flow, veh/h	655	358	592	527	162
Cap Entry Lane, veh/h	841	608	829	741	538
Entry HV Adj Factor	0.991	0.980	0.991	0.991	0.980
Flow Entry, veh/h	649	351	587	522	159
Cap Entry, veh/h	833	595	821	735	527
V/C Ratio	0.779	0.589	0.714	0.711	0.301
Control Delay, s/veh	21.7	17.3	18.1	19.6	11.3
LOS	C	C	C	C	B
95th \%tile Queue, veh	8	4	6	6	1

	7	\rightarrow	7	\checkmark	\leftarrow	4	4	\uparrow	1	\checkmark	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	\uparrow		4			4			¢	
Traffic Volume (vph)	10	50	425	5	30	20	320	190	10	10	110	10
Future Volume (vph)	10	50	425	5	30	20	320	190	10	10	110	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		50	0		0	-		0	0		0
Storage Lanes	0		1	0		0	0		0	0		0
Taper Length (t)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit			0.850		0.952			0.997			0.990	
Flt Protected		0.992			0.996			0.970			0.996	
Satd. Flow (prot)	0	1848	1583	0	1802	0	0	1819	0	0	1855	0
Fit Permitted		0.992			0.996			0.970			0.996	
Satd. Flow (perm)	0	1848	1583	0	1802	0	0	1819	0	0	1855	0
Link Speed (mph)		30			30			30			30	
Link Distance (t)		168			453			475			436	
Travel Time (s)		3.8			10.3			10.8			9.9	
Peak Hour Factor	0.88	0.88	0.88	0.82	0.82	0.82	0.93	0.93	0.93	0.91	0.91	0.91
Heavy Vehicles (\%)	2\%	2\%	2\%	0\%	0\%	0\%	1\%	1\%	1\%	1\%	1\%	1\%
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	68	483	0	67	0	0	559	0	0	143	0
Sign Control		Stop			Stop			Free			Free	

Intersection Summary

```
Area Type:


\begin{tabular}{lrrrrrrrrl}
\hline Minor Lane/Major Mumt & NBL & NBT & NBR EBLn1 & EBLn2WBLL1 & SBL & SBT & SBR \\
\hline Capacity (veh/h) & 1459 & - & - & 157 & 923 & 163 & 1361 & - & - \\
\hline HCM Lane V/C Ratio & 0.236 & - & -0.434 & 0.523 & 0.411 & 0.008 & - & - \\
HCM Control Delay (s) & 8.2 & 0 & - & 44.5 & 13.1 & 41.7 & 7.7 & 0 & - \\
HCM Lane LOS & A & A & - & E & B & E & A & A & - \\
HCM 95th \%tile Q(veh) & 0.9 & - & - & 2 & 3.1 & 1.8 & 0 & - & -
\end{tabular}




C Critical Lane Group


c Critical Lane Group





\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\dagger\) & 7 & 4 & \(\uparrow\) & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & M & & \% & \(\uparrow\) & F & \\
\hline Traffic Volume (vph) & 10 & 10 & 30 & 660 & 730 & 10 \\
\hline Future Volume (vph) & 10 & 10 & 30 & 660 & 730 & 10 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (t) & 0 & 0 & 100 & & & 0 \\
\hline Storage Lanes & 1 & 0 & 1 & & & 0 . \\
\hline Taper Length (tt) & 25 & & 25 & & & \\
\hline Lane Utill Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & 0.939 & & & & 0.998 & \\
\hline FIt Protected & 0.973 & & 0.950 & & & \\
\hline Satd. Flow (prot) & 1736 & 0 & 1787 & 1900 & 1878 & 0 \\
\hline Flt Permitted & 0.973 & & 0.950 & & & \\
\hline Satd. Flow (perm) & 1736 & 0 & 1787 & 1900 & 1878 & 0 \\
\hline Link Speed (mph) & 30 & & & 30 & 30 & \\
\hline Link Distance (ft) & 332 & & & 288 & 365 & \\
\hline Travel Time (s) & 7.5 & & & 6.5 & 8.3 & \\
\hline Peak Hour Factor & 0.64 & 0.77 & 0.71 & 0.90 & 0.75 & 0.55 \\
\hline Heary Vehicles (\%) & 0\% & 0\% & 1\% & 0\% & 1\% & 0\% \\
\hline Adj. Flow (vph) & 16 & 13 & 42 & 733 & 973 & 18 \\
\hline Shared Lane Traffic (\%) & & & & & & \\
\hline Lane Group Flow (vph) & 29 & 0 & 42 & 733 & 991 & 0 \\
\hline Sign Control & Stop & & & Free & Free & \\
\hline Intersection Summary & & & & & & \\
\hline \multicolumn{2}{|l|}{Area Type: Other} & & & & & \\
\hline \multicolumn{7}{|l|}{Control Type: Unsignalized} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Intersection Capacity Utilization 49.0\% Analysis Period (min) 15}} & & & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{ICU Level of Service A}} \\
\hline & & & & & & \\
\hline
\end{tabular}


\begin{tabular}{lrrr}
\hline Approach & EB & NB & SB \\
\hline HCM Control Delay, S & 42.1 & 0.6 & 0 \\
HCM LOS & E & &
\end{tabular}
\begin{tabular}{lrrrrl}
\hline Minor Lane/Major Mvmt & NBL & NBT EBLn1 & SBT & SBR \\
\hline Capacity (veh/h) & 702 & -125 & - & - \\
HCM Lane V/C Ratio & 0.06 & -0.229 & - & - \\
HCM Control Delay (s) & 10.5 & -42.1 & - & - \\
HCM Lane LOS & B & - & E & \(\cdot\) & - \\
HCM 95th \%tile Q(veh) & 0.2 & -0.8 & \(\cdot\) &
\end{tabular}

\section*{APPENDIX Q-2: ALTERNATIVE C INTERSECTION CAPACITY} ANALYSES - HCM 2000 PRINTSOUTS - PM PEAK HOUR
\begin{tabular}{lrrrrrr}
\hline & & & & & & \\
\cline { 5 - 7 } & & & & & & \\
\hline
\end{tabular}
c Critical Lane Group
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & NBL2 & NBL & NBR & SEL & SER & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & \(7{ }^{7}\) & & 「「 & & & \(7{ }^{7 / 4}\) & \(\uparrow \uparrow\) & & & \(\uparrow \uparrow\) & 7 \\
\hline Traffic Volume (vph) & 455 & 0 & 300 & 0 & 0 & 1350 & 110 & 0 & 0 & 990 & 375 \\
\hline Future Volume (vph) & 455 & 0 & 300 & 0 & 0 & 1350 & 110 & 0 & 0 & 990 & 375 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time (s) & 6.0 & & 6.0 & & & 6.0 & 6.0 & & & 6.0 & 4.0 \\
\hline Lane Util. Factor & 0.97 & & 0.88 & & & 0.97 & 0.95 & & & 0.95 & 1.00 \\
\hline Fit & 1.00 & & 0.85 & & & 1.00 & 1.00 & & & 1.00 & 0.85 \\
\hline Flt Protected & 0.95 & & 1.00 & & & 0.95 & 1.00 & & & 1.00 & 1.00 \\
\hline Satd. Flow (prot) & 3242 & & 2632 & & & 3335 & 3438 & & & 3505 & 1568 \\
\hline Flt Permitted & 0.95 & & 1.00 & & & 0.95 & 1.00 & & & 1.00 & 1.00 \\
\hline Satd. Flow (perm) & 3242 & & 2632 & & & 3335 & 3438 & & & 3505 & 1568 \\
\hline Peak-hour factor, PHF & 0.88 & 0.88 & 0.88 & 0.92 & 0.92 & 0.94 & 0.94 & 0.94 & 0.92 & 0.92 & 0.92 \\
\hline Adj. Flow (vph) & 517 & 0 & 341 & 0 & 0 & 1436 & 117 & 0 & 0 & 1076 & 408 \\
\hline RTOR Reduction (vph) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Lane Group Flow (vph) & 517 & 0 & 341 & 0 & 0 & 1436 & 117 & 0 & 0 & 1076 & 408 \\
\hline Heavy Vehicles (\%) & 8\% & 8\% & 8\% & 2\% & 2\% & 5\% & 5\% & 5\% & 3\% & 3\% & 3\% \\
\hline Turn Type & Prot & & Prot & & & Prot & NA & & & NA & Free \\
\hline Protected Phases & 8 & & 8 & & & 5 & 2 & & & 6 & \\
\hline Permitted Phases & & & & & & & & & & & Free \\
\hline Actuated Green, G (s) & 23.0 & & 23.0 & & & 63.0 & 115.0 & & & 46.0 & 150.0 \\
\hline Effective Green, \(\mathrm{g}(\mathrm{s})\) & 23.0 & & 23.0 & & & 63.0 & 115.0 & & & 46.0 & 150.0 \\
\hline Actuated g/C Ratio & 0.15 & & 0.15 & & & 0.42 & 0.77 & & & 0.31 & 1.00 \\
\hline Clearance Time (s) & 6.0 & & 6.0 & & & 6.0 & 6.0 & & & 6.0 & \\
\hline Vehicle Extension (s) & 3.0 & & 3.0 & & & 3.0 & 3.0 & & & 3.0 & \\
\hline Lane Grp Cap (vph) & 497 & & 403 & & & 1400 & 2635 & & & 1074 & 1568 \\
\hline \(\mathrm{V} / \mathrm{s}\) Ratio Prot & c0. 16 & & 0.13 & & & c0.43 & 0.03 & & & c0.31 & \\
\hline \(\mathrm{v} / \mathrm{s}\) Ratio Perm & & & & & & & & & & & 0.26 \\
\hline v/c Ratio & 1.04 & & 0.85 & & & 1.03 & 0.04 & & & 1.00 & 0.26 \\
\hline Uniform Delay, d1 & 63.5 & & 61.8 & & & 43.5 & 4.2 & & & 52.0 & 0.0 \\
\hline Progression Factor & 1.00 & & 1.00 & & & 0.59 & 1.90 & & & 1.00 & 1.00 \\
\hline Incremental Delay, d2 & 51.2 & & 15.0 & & & 22.4 & 0.0 & & & 27.9 & 0.4 \\
\hline Delay (s) & 114.7 & & 76.8 & & & 48.2 & 8.0 & & & 79.9 & 0.4 \\
\hline Level of Service & F & & E & & & D & A & & & E & A \\
\hline Approach Delay (s) & & 99.6 & & 0.0 & & & 45.2 & & & 58.1 & \\
\hline Approach LOS & & F & & A & & & D & & & E & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
\hline Intersection Summary & & \\
\hline HCM 2000 Control Delay & 62.1 & HCM 2000 Level of Service & E \\
HCM 2000 Volume to Capacity ratio & 1.02 & & \\
\hline Actuated Cycle Length (s) & 150.0 & Sum of lost time (s) & 18.0 \\
\hline Intersection Capacity Utilization & \(94.9 \%\) & ICU Level of Service & F \\
\hline Analysis Period (min) & 15 & & \\
c Critical Lane Group & & &
\end{tabular}

HCM Signalized Intersection Capacity Analysis
\&. Exit 5 SB On/Exit 5 SB Off \& NH 28
12/27/2017
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\rangle\) & & & \(\checkmark\) & & & & \(\uparrow\) & \(p\) & & \(\downarrow\) & \(\downarrow\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBP \\
\hline Lane Configurations & & \(\uparrow \uparrow\) & F & 7 & \(\uparrow \uparrow\) & & & & & \(7{ }^{7}\) & & \\
\hline Traffic Volume (vph) & 0 & 575 & 470 & 280 & 730 & 0 & 0 & 0 & 0 & 105 & 0 & 360 \\
\hline Future Volume (vph) & 0 & 575 & 470 & 280 & 730 & 0 & 0 & 0 & 0 & 105 & 0 & 360 \\
\hline |deal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time (s) & & 6.0 & 4.0 & 6.0 & 6.0 & & & & & 6.0 & & 6.0 \\
\hline Lane Util. Factor & & 0.95 & 1.00 & 1.00 & 0.95 & & & & & 0.97 & & 1.00 \\
\hline Fit & & 1.00 & 0.85 & 1.00 & 1.00 & & & & & 1.00 & & 0.85 \\
\hline Flt Protected & & 1.00 & 1.00 & 0.95 & 1.00 & & & & & 0.95 & & 1.00 \\
\hline Satd. Flow (prot) & & 3167 & 1417 & 1687 & 3374 & & & & & 3303 & & 1524 \\
\hline Flt Permitted & & 1.00 & 1.00 & 0.95 & 1.00 & & & & & 0.95 & & 1.00 \\
\hline Satd. Flow (perm) & & 3167 & 1417 & 1687 & 3374 & & & & & 3303 & & 1524 \\
\hline Peak-hour factor, PHF & 0.92 & 0.92 & 0.92 & 0.73 & 0.73 & 0.73 & 0.92 & 0.92 & 0.92 & 0.74 & 0.74 & 0.74 \\
\hline Adj. Flow (vph) & 0 & 625 & 511 & 384 & 1000 & 0 & 0 & 0 & 0 & 142 & 0 & 486 \\
\hline RTOR Reduction (vph) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 79 \\
\hline Lane Group Flow (vph) & 0 & 625 & 511 & 384 & 1000 & 0 & 0 & 0 & 0 & 142 & 0 & 407 \\
\hline Heavy Vehicles (\%) & 14\% & 14\% & 14\% & 7\% & 7\% & 7\% & 2\% & 2\% & 2\% & 6\% & 6\% & 6\% \\
\hline Turn Type & & NA & Free & Prot & NA & & & & & Prot & & Prot \\
\hline Protected Phases & & 2 & & 1 & 6 & & & & & 4 & & \\
\hline Permitted Phases & & & Free & & & & & & & & & \\
\hline Actuated Green, G (s) & & 31.6 & 110.0 & 28.1 & 65.7 & & & & & 32.3 & & 32.3 \\
\hline Effective Green, g (s) & & 31.6 & 110.0 & 28.1 & 65.7 & & & & & 32.3 & & 32.3 \\
\hline Actuated g/C Ratio & & 0.29 & 1.00 & 0.26 & 0.60 & & & & & 0.29 & & 0.29 \\
\hline Clearance Time (s) & & 6.0 & & 6.0 & 6.0 & & & & & 6.0 & & 6.0 \\
\hline Vehicle Extension (s) & & 5.0 & & 3.0 & 5.0 & & & & & 3.0 & & 3.0 \\
\hline Lane Grp Cap (vph) & & 909 & 1417 & 430 & 2015 & & & & & 969 & & 447 \\
\hline \(\mathrm{v} / \mathrm{s}\) Ratio Prot & & c0.20 & & c0.23 & 0.30 & & & & & 0.04 & & 0.27 \\
\hline v/s Ratio Perm & & & 0.36 & & & & & & & & & \\
\hline v/c Ratio & & 0.69 & 0.36 & 0.89 & 0.50 & & & & & 0.15 & & 0.91 \\
\hline Uniform Delay, d1 & & 34.8 & 0.0 & 39.5 & 12.7 & & & & & 28.7 & & 37.5 \\
\hline Progression Factor & & 1.00 & 1.00 & 0.38 & 0.10 & & & & & 1.00 & & 1.00 \\
\hline Incremental Delay, d2 & & 4.2 & 0.7 & 17.4 & 0.5 & & & & & 0.1 & & 22.5 \\
\hline Delay (s) & & 39.0 & 0.7 & 32.5 & 1.7 & & & & & 28.7 & & 59.9 \\
\hline Level of Service & & D & A & C & A & & & & & C & & E \\
\hline Approach Delay (s) & & 21.8 & & & 10.3 & & & 0.0 & & & 52.9 & \\
\hline Approach LOS & & C & & & B & & & A & & & D & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
\hline Intersection Summary & & & \\
\hline HCM 2000 Control Delay & 22.9 & HCM 2000 Level of Service & C \\
\hline HCM 2000 Volume to Capacity ratio & 0.83 & & 18.0 \\
\hline Actuated Cycle Length (s) & 110.0 & Sum of lost time (s) & C \\
Intersection Capacity Utilization & \(71.3 \%\) & ICU Level of Service & \\
Analysi Period (min) & 15 & & \\
C Critical Lane Group & & & \\
\hline
\end{tabular}

HCM Signalized Intersection Capacity Analysis
4
\%: Exit 5 NB Off \& NH 28

\begin{tabular}{lrrrrrrrrrrr}
\hline Movement & ESL & EST & EAR & DBL & WBT & WBR & DBL & NBT & ABR & SBL & SBT
\end{tabular} SR
\begin{tabular}{lrrrrrrrr}
1900 & 6.0 & 4.0 & 6.0 & 6.0 & \\
Total Lost time (s) & 6.0 & 6.0 & 0.95 & 1.00 & 1.00 & 1.00 & \\
Lane Util. Factor & 1.00 & 0.95 & 1.00 & 0.85 & 1.00 & 0.85 & \\
Frt & 1.00 & 1.00 & 1.0 & 190 &
\end{tabular}


\begin{tabular}{lrlr}
\hline Intersection Summary & & \\
\hline HCM 2000 Control Delay & 49.9 & HCM 2000 Level of Service & D \\
\hline HCM 2000 Volume to Capacity ratio & 1.02 & & 18.0 \\
\hline Actuated Cycle Length (s) & 110.0 & Sum of lost time (s) & C \\
Intersection Capacity Utilization & \(71.3 \%\) & ICU Level of Service & \\
\hline Analysis Period (min) & 15 & & \\
c Critical Lane Group & & & \\
\hline
\end{tabular}

HCM Signalized Intersection Capacity Analysis
5
.9. NH 102 \& St. Charles Street/Londonderry Road
12/27/2017
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & & \(\uparrow\) & 7 & & \(\pm\) & & 7 & 个 \({ }_{\text {d }}\) & & 7 & 个t & \\
\hline Traffic Volume (vph) & 10 & , & 170 & 0 & , & 0 & 100 & 450 & 5 & 5 & 1010 & 40 \\
\hline Future Volume (vph) & 10 & 0 & 170 & 0 & 0 & 0 & 100 & 450 & 5 & 5 & 1010 & 40 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time (s) & & 6.0 & 6.0 & & & & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Lane Util. Factor & & 1.00 & 1.00 & & & & 1.00 & 0.95 & & 1.00 & 0.95 & \\
\hline Frt & & 1.00 & 0.85 & & & & 1.00 & 1.00 & & 1.00 & 0.99 & \\
\hline Flt Protected & & 0.95 & 1.00 & & & & 0.95 & 1.00 & & 0.95 & 1.00 & \\
\hline Satd. Flow (prot) & & 1770 & 1583 & & & & 1770 & 3534 & & 1770 & 3519 & \\
\hline Flt Permitted & & 1.00 & 1.00 & & & & 0.95 & 1.00 & & 0.95 & 1.00 & \\
\hline Satd. Flow (perm) & & 1863 & 1583 & & & & 1770 & 3534 & & 1770 & 3519 & \\
\hline Peak-hour factor, PHF & 0.92 & 0.92 & 0.92 & 0.25 & 0.25 & 0.25 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 \\
\hline Adj. Flow (vph) & 11 & , & 185 & 0 & , & 0 & 109 & 489 & , & 5 & 1098 & 43 \\
\hline RTOR Reduction (vph) & 0 & 0 & 70 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & , & \\
\hline Lane Group Flow (vph) & 0 & 11 & 115 & 0 & 0 & 0 & 109 & 493 & 0 & 5 & 1139 & \\
\hline Heary Vehicles (\%) & 2\% & 2\% & 2\% & 0\% & 0\% & 0\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% \\
\hline Turn Type & Perm & NA & custom & & & & Prot & NA & & Prot & NA & \\
\hline Protected Phases & & 8 & & & 4 & & 5 & 2 & & 1 & 6 & \\
\hline
\end{tabular}

\begin{tabular}{lrlr}
\hline Intersection Summary & & & \\
\hline HCM 2000 Control Delay & 8.2 & HCM 2000 Level of Service & A \\
HCM 2000 Volume to Capacity ratio & 0.52 & & 18.0 \\
Actuated Cycle Length (s) & 70.7 & Sum of lost time (s) & B \\
Intersection Capacity Utilization & \(57.7 \%\) & ICU Level of Service & \\
\hline Analysis Period (min) & 15 & & \\
C Critical Lane Group & & & \\
\hline
\end{tabular}

HCM Signalized Intersection Capacity Analysis
6 20: NH 102 \& Fordway/Madden Hill Road
12/27/2017
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & & ¢ & & & ¢ & & & A & & & \(\uparrow\) & \\
\hline Traffic Volume (vph) & 10 & 10 & 10 & 360 & 0 & 40 & 0 & 380 & 110 & 15 & 525 & \\
\hline Future Volume (vph) & 10 & 10 & 10 & 360 & 0 & 40 & 0 & 380 & 110 & 15 & 525 & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrrrrrr} 
Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
Total Lost time (s) & & 6.0 & & & 6.0 & & & 6.0 & & & 6.0 &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Util. Factor & \multicolumn{4}{|c|}{1.00} & \multicolumn{2}{|l|}{1.00} & \multicolumn{3}{|c|}{1.00} & \multicolumn{3}{|c|}{1.00} \\
\hline Frt & \multicolumn{3}{|c|}{0.95} & \multicolumn{3}{|c|}{0.99} & \multicolumn{3}{|c|}{0.97} & \multicolumn{3}{|c|}{1.00} \\
\hline Flt Protected & \multicolumn{3}{|c|}{0.98} & \multicolumn{3}{|c|}{0.96} & \multicolumn{3}{|c|}{1.00} & \multicolumn{3}{|c|}{1.00} \\
\hline Satd. Flow (prot) & \multicolumn{3}{|c|}{1750} & \multicolumn{3}{|c|}{1741} & \multicolumn{3}{|c|}{1706} & \multicolumn{3}{|c|}{1807} \\
\hline Flt Permitted & \multicolumn{3}{|c|}{0.84} & \multicolumn{3}{|c|}{0.71} & \multicolumn{3}{|c|}{1.00} & \multicolumn{3}{|c|}{0.98} \\
\hline Satd. Flow (perm) & \multicolumn{3}{|c|}{1501} & \multicolumn{3}{|c|}{1293} & \multicolumn{3}{|c|}{1706} & \multicolumn{3}{|c|}{1774} \\
\hline Peak-hour factor, PHF & 0.60 & 0.60 & 0.60 & 0.96 & 0.96 & 0.96 & 0.89 & 0.89 & 0.89 & 0.86 & 0.86 & 0.86 \\
\hline Adj. Flow (vph) & 17 & 17 & 17 & 375 & 0 & 42 & 0 & 427 & 124 & 17 & 610 & 0 \\
\hline RTOR Reduction (vph) & 0 & 11 & 0 & 0 & 23 & 0 & 0 & 12 & 0 & 0 & 0 & 0 \\
\hline Lane Group Flow (vph) & 0 & 40 & 0 & 0 & 394 & 0 & 0 & 539 & 0 & 0 & 627 & 0 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 3\% & 3\% & \(3 \%\) & 8\% & 8\% & 8\% & 5\% & 5\% & 5\% \\
\hline Turn Type & Perm & NA & & Perm & NA & & & NA & & Perm & NA & \\
\hline Protected Phases & & 4 & & & 4 & & & 2 & & & 2 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Permitted Phases & 4 & 4 & & 2 \\
\hline Actuated Green, G (s) & 27.9 & 27.9 & 34.8 & 34.8 \\
\hline Effective Green, \(\mathrm{g}(\mathrm{s})\) & 27.9 & 27.9 & 34.8 & 34.8 \\
\hline Actuated g/C Ratio & 0.37 & 0.37 & 0.47 & 0.47 \\
\hline Clearance Time (s) & 6.0 & 6.0 & 6.0 & 6.0 \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & 3.0 & 3.0 \\
\hline Lane Grp Cap (vph) & 560 & 482 & 794 & 826 \\
\hline v/s Ratio Prot & & & 0.32 & \\
\hline v/s Ratio Perm & 0.03 & c0.30 & & c0.35 \\
\hline v/c Ratio & 0.07 & 0.82 & 0.68 & 0.76 \\
\hline Uniform Delay, d1 & 15.1 & 21.1 & 15.6 & 16.5 \\
\hline Progression Factor & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Incremental Delay, d2 & 0.1 & 10.4 & 2.3 & 4.0 \\
\hline Delay (s) & 15.1 & 31.5 & 17.9 & 20.5 \\
\hline Level of Service & B & C & B & C \\
\hline Approach Delay (s) & 15.1 & 31.5 & 17.9 & 20.5 \\
\hline Approach LOS & B & C & B & C \\
\hline
\end{tabular}
\begin{tabular}{lrlr} 
Intersection Summary & & & \\
\hline HCM 2000 Control Delay & 22.3 & HCM 2000 Level of Service & C \\
HCM 2000 Volume to Capacity ratio & 0.78 & & 12.0 \\
\hline Actuated Cycle Length (s) & 74.7 & Sum of lost time (s) & D \\
Intersection Capacity Utilization & \(80.1 \%\) & ICU Level of Service & \\
\hline Analysis Period (min) & 15 & & \\
C Critical Lane Group & & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & & \(\downarrow\) & 4 & 4 & 4 & \(\dagger\) & 1 & & \(\downarrow\) & 4 \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & 7 & \(\dagger\) & & \({ }^{*}\) & \(\uparrow\) & & \({ }^{*}\) & \(\dagger\) & & \({ }^{*}\) & 4 & F \\
\hline Traffic Volume (vph) & 60 & 210 & 50 & 20 & 400 & 50 & 70 & 270 & 20 & 70 & 270 & 40 \\
\hline Future Volume (vph) & 60 & 210 & 50 & 20 & 400 & 50 & 70 & 270 & 20 & 70 & 270 & 40 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time (s) & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & 6.0 \\
\hline Lane Util. Factor & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & 1.00 \\
\hline Frt & 1.00 & 0.97 & & 1.00 & 0,98 & & 1.00 & 0.99 & & 1.00 & 1.00 & 0.85 \\
\hline Fit Protected & 0.95 & 1.00 & & 0.95 & 1.00 & & 0.95 & 1.00 & & 0.95 & 1.00 & 1.00 \\
\hline Satd. Flow (prot) & 1656 & 1693 & & 1703 & 1763 & & 1719 & 1790 & & 1703 & 1792 & 1524 \\
\hline Flt Permitted & 0.95 & 1.00 & & 0.95 & 1.00 & & 0.95 & 1.00 & & 0.95 & 1.00 & 1.00 \\
\hline Satd. Flow (perm) & 1656 & 1693 & & 1703 & 1763 & & 1719 & 1790 & & 1703 & 1792 & 1524 \\
\hline Peak-hour factor, PHF & 0.96 & 0.96 & 0.96 & 0.94 & 0.94 & 0.94 & 0.85 & 0.85 & 0.85 & 0.91 & 0.91 & 0.91 \\
\hline Adj. Flow (vph) & 62 & 219 & 52 & 21 & 426 & 53 & 82 & 318 & 24 & 77 & 297 & 44 \\
\hline RTOR Reduction (vph) & 0 & 9 & 0 & 0 & 5 & 0 & 0 & 3 & 0 & 0 & 0 & 34 \\
\hline Lane Group Flow (vph) & 63 & 262 & 0 & 21 & 474 & 0 & 82 & 339 & 0 & 77 & 297 & 10 \\
\hline Heavy Vehicles (\%) & 9\% & 9\% & 9\% & 6\% & 6\% & 6\% & 5\% & 5\% & 5\% & 6\% & 6\% & 6\% \\
\hline Parking (\#/hr) & & & 0 & & & & & & & & & \\
\hline Turn Type & Prot & NA & Perm \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & 3 & 8 & & 7 & 4 & \\
\hline Permitted Phases & & & & & & & & & & & & 4 \\
\hline Actuated Green, G (s) & 4.4 & 30.7 & & 1.8 & 28.1 & & 7.0 & 18.6 & & 7.0 & 18.6 & 18.6 \\
\hline Effective Green, \(\mathrm{g}(\mathrm{s})\) & 4.4 & 30.7 & & 1.8 & 28.1 & & 7.0 & 18.6 & & 7.0 & 18.6 & 18.6 \\
\hline Actuated g/C Ratio & 0.05 & 0.37 & & 0.02 & 0.34 & & 0.09 & 0.23 & & 0.09 & 0.23 & 0.23 \\
\hline Clearance Time (s) & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & 6.0 \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & 3.0 \\
\hline Lane Grp Cap (vph) & 88 & 633 & & 37 & 603 & & 146 & 405 & & 145 & 405 & 345 \\
\hline v/s Ratio Prot & c0.04 & c0.15 & & 0.01 & c0.27 & & c0.05 & c0.19 & & 0.05 & 0.17 & \\
\hline v/s Ratio Perm & & & & & & & & & & & & 0.01 \\
\hline \(\mathrm{v} / \mathrm{c}\) Ratio & 0.72 & 0.41 & & 0.57 & 0.79 & & 0.56 & 0.84 & & 0.53 & 0.73 & 0.03 \\
\hline Uniform Delay, d1 & 38.2 & 19.0 & & 39.8 & 24.3 & & 36.1 & 30.3 & & 36.0 & 29.4 & 24.7 \\
\hline Progression Factor & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & 1.00 \\
\hline Incremental Delay, d2 & 24.0 & 0.4 & & 18.4 & 6.7 & & 4.9 & 13.9 & & 3.7 & 6.7 & 0.0 \\
\hline Delay (s) & 62.3 & 19.5 & & 58.2 & 31.0 & & 40.9 & 44.2 & & 39.7 & 36.2 & 24.8 \\
\hline Level of Service & E & B & & E & C & & D & D & & D & D & C \\
\hline Approach Delay (s) & & 27.5 & & & 32.1 & & & 43.6 & & & 35.6 & \\
\hline Approach LOS & & C & & & C & & & D & & & D & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline \multicolumn{3}{|l|}{HCM 2000 Control Delay} & 35.0 & \multicolumn{4}{|r|}{HCM 2000 Level of Service} & & \multirow[t]{2}{*}{C} & & & \\
\hline \multicolumn{3}{|l|}{HCM 2000 Volume to Capacity ratio} & 0.77 & & & & & & & & & \\
\hline \multicolumn{3}{|l|}{Actuated Cycle Length (s)} & 82.1 & \multicolumn{4}{|c|}{Sum of lost time (s)} & & \multicolumn{2}{|l|}{24.0} & & \\
\hline \multicolumn{3}{|l|}{Intersection Capacity Utilization} & 66.7\% & \multicolumn{4}{|c|}{ICU Level of Service} & & \multicolumn{2}{|l|}{C} & & \\
\hline \multicolumn{3}{|l|}{Analysis Period (min)} & 15 & & & & & & & & & \\
\hline \multicolumn{2}{|l|}{C Critical Lane Group} & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 4 & & 4 & & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & \({ }^{7}\) & \% & & \(\uparrow\) & \(\uparrow\) & 「 \\
\hline Traffic Volume (vph) & 350 & 20 & 5 & 130 & 115 & 415 \\
\hline Future Volume (vph) & 350 & 20 & 5 & 130 & 115 & 415 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length ( ft ) & 0 & 120 & 0 & & & 220 \\
\hline Storage Lanes & 1 & 1 & 0 & & & 1 \\
\hline Taper Length (t) & 25 & & 25 & & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & 0.850 & & & & 0.850 \\
\hline Fit Protected & 0.950 & & & 0.998 & & \\
\hline Satd. Flow (prot) & 1719 & 1538 & 0 & 1823 & 1863 & 1583 \\
\hline Fit Permitted & 0.950 & & & 0.998 & & \\
\hline Satd. Flow (perm) & 1719 & 1538 & 0 & 1823 & 1863 & 1583 \\
\hline Link Speed (mph) & 30 & & & 30 & 30 & \\
\hline Link Distance ( ft ) & 322 & & & 309 & 292 & \\
\hline Travel Time (s) & 7.3 & & & 7.0 & 6.6 & \\
\hline Peak Hour Factor & 0.89 & 0.89 & 0.91 & 0.91 & 0.93 & 0.93 \\
\hline Heavy Vehicles (\%) & 5\% & 5\% & 4\% & 4\% & 2\% & 2\% \\
\hline Adj. Flow (vph) & 393 & 22 & 5 & 143 & 124 & 446 \\
\hline Shared Lane Traffic (\%) & & & & & & \\
\hline Lane Group Flow (vph) & 393 & 22 & 0 & 148 & 124 & 446 \\
\hline Sign Control & Stop & & & Stop & Stop & \\
\hline Intersection Summary & & & & & & \\
\hline \multicolumn{2}{|l|}{Area Type: Other} & & & & & \\
\hline \multicolumn{7}{|l|}{Control Type: Unsignalized} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Intersection Capacity Utilization 39.5\%
Analysis Period (min) 15}} & & & \multicolumn{3}{|r|}{ICU Level of Service A} \\
\hline & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{lr|}
\hline Intersection \\
Intersection Delay, s/veh & 211 \\
Intersection LOS & C
\end{tabular}
\begin{tabular}{lrrrrrr}
\hline Movement & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & & \(\mathbf{F}\) & & \(\uparrow\) & \(\uparrow\) & \(\mathbf{T}\) \\
Traffic Vol, veh/h & 350 & 20 & 5 & 130 & 115 & 415 \\
Future Vol, veh/h & 350 & 20 & 5 & 130 & 115 & 415 \\
Peak Hour Factor & 0.89 & 0.89 & 0.91 & 0.91 & 0.93 & 0.93 \\
Heavy Vehicles, \% & 5 & 5 & 4 & 4 & 2 & 2 \\
Mvmt Flow & 393 & 22 & 5 & 143 & 124 & 446 \\
Number of Lanes & 1 & 1 & 0 & 1 & 1 & 1
\end{tabular}
\begin{tabular}{lrrr}
\hline Approach & EB & NB & SB \\
\hline Opposing Approach & & SB & NB \\
Opposing Lanes & 0 & 2 & 1 \\
Conflicting Approach Left & SB & EB & \\
Conflicting Lanes Left & 2 & 2 & 0 \\
Conflicting Approach Right & NB & & EB \\
Conflicting Lanes Right & 1 & 0 & 2 \\
HCM Control Delay & 28.2 & 12.4 & 18.2 \\
HCM LOS & D & B & C \\
\hline
\end{tabular}
\begin{tabular}{lrrrrr}
\hline Lane & NBLn1 & EBLn1 & EBLn2 & SBLn1 & SBLn2 \\
\hline Vol Left, \% & \(4 \%\) & \(100 \%\) & \(0 \%\) & \(0 \%\) & \(0 \%\) \\
Vol Thru, \% & \(96 \%\) & \(0 \%\) & \(0 \%\) & \(100 \%\) & \(0 \%\) \\
Vol Right, \% & \(0 \%\) & \(0 \%\) & \(100 \%\) & \(0 \%\) & \(100 \%\) \\
Sign Control & Stop & Stop & Stop & Stop & Stop \\
Traffic Vol by Lane & 135 & 350 & 20 & 115 & 415 \\
LT Vol & 5 & 350 & 0 & 0 & 0 \\
Through Vol & 130 & 0 & 0 & 115 & 0 \\
RT Vol & 0 & 0 & 20 & 0 & 415 \\
\hline Lane Flow Rate & 148 & 393 & 22 & 124 & 446 \\
Geometry Grp & 4 & 7 & 7 & 7 & 7 \\
Degree of Util (X) & 0.277 & 0.766 & 0.036 & 0.217 & 0.694 \\
Departure Headway (Hd) & 6.722 & 7.011 & 5.795 & 6.311 & 5.6 \\
Convergence, Y/N & Yes & Yes & Yes & Yes & Yes \\
Cap & 531 & 515 & 616 & 566 & 643 \\
Service Time & 4.802 & 4.763 & 3.547 & 4.078 & 3.367 \\
HCM Lane VIC Ratio & 0.279 & 0.763 & 0.036 & 0.219 & 0.694 \\
HCM Control Delay & 12.4 & 29.3 & 8.8 & 10.8 & 20.2 \\
HCM Lane LOS & B & D & A & B & C \\
HCM 95th-tile Q & 1.1 & 6.8 & 0.1 & 0.8 & 5.5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 4 & \% & 4 & \(\dagger\) & \(\downarrow\) & 4 \\
\hline Lane Group & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & M & & & \(\uparrow\) & \(\dagger\) & \\
\hline Traffic Volume (vph) & 10 & 0 & 10 & 470 & 530 & 0 \\
\hline Future Volume (vph) & 10 & 0 & 10 & 470 & 530 & 0 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Lane Util Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & & & & & \\
\hline Fit Protected & 0.950 & & & 0.999 & & \\
\hline Satd. Flow (prot) & 1008 & 0 & 0 & 1825 & 1792 & 0 \\
\hline Flt Permitted & 0.950 & & & 0.999 & & \\
\hline Satd. Flow (perm) & 1008 & 0 & 0 & 1825 & 1792 & 0 \\
\hline Link Speed (mph) & 30 & & & 30 & 30 & \\
\hline Link Distance (ft) & 160 & & & 224 & 319 & \\
\hline Travel Time (s) & 3.6 & & & 5.1 & 7.3 & \\
\hline Peak Hour Factor & 0.44 & 0.44 & 0.95 & 0.95 & 0.96 & 0.96 \\
\hline Heavy Vehicles (\%) & 79\% & 79\% & 4\% & 4\% & 6\% & 6\% \\
\hline Adj. Flow (vph) & 23 & 0 & 11 & 495 & 552 & 0 \\
\hline \multicolumn{7}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 23 & 0 & 0 & 506 & 552 & 0 \\
\hline Sign Control & Stop & & & Free & Free & \\
\hline
\end{tabular}
\begin{tabular}{l} 
Intersection Summary \\
\hline Area Type: Other \\
Control Type: Unsignalized \\
Intersection Capacity Utilization \(42.8 \%\) \\
Analysis Period (min) 15
\end{tabular}



10: Franklin St/Franklin St Ext \& N High St/Folsom Rd
Lanes, Volumes, Timings
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 3 & \(\rightarrow\) & \(\checkmark\) & 5 & \(\leftarrow\) & \(\cdots\) & \(\longrightarrow\) & , & 4 & 4 & k & \(\stackrel{+}{ }\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & SEL & SET & SER & NWL & NWT & NWR \\
\hline Lane Configurations & & \(\dagger\) & & & ¢ & & & \(\pm\) & & & \(\uparrow\) & \\
\hline Traffic Volume (vph) & 50 & 420 & 10 & 30 & 420 & 10 & 50 & 70 & 100 & 10 & 10 & 100 \\
\hline Future Volume (vph) & 50 & 420 & 10 & 30 & 420 & 10 & 50 & 70 & 100 & 10 & 10 & 100 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 150 & & 150 & 150 & & 150 & 0 & & 0 & 150 & & 150 \\
\hline Storage Lanes & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 \\
\hline Taper Length ( t ) & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & 0.997 & & & 0.997 & & & 0.939 & & & 0.888 & \\
\hline Flt Protected & & 0.995 & & & 0.997 & & & 0.989 & & & 0.996 & \\
\hline Satd. Flow (prot) & 0 & 1762 & 0 & 0 & 1799 & 0 & 0 & 1730 & 0 & 0 & 1680 & 0 \\
\hline Flt Permitted & & 0.995 & & & 0.997 & & & 0.989 & & & 0.996 & \\
\hline Satd. Flow (perm) & 0 & 1762 & 0 & 0 & 1799 & 0 & 0 & 1730 & 0 & 0 & 1680 & 0 \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance ( ft ) & & 327 & & & 240 & & & 246 & & & 251 & \\
\hline Travel Time (s) & & 7.4 & & & 5.5 & & & 5.6 & & & 5.7 & \\
\hline Peak Hour Factor & 0.89 & 0.89 & 0.89 & 0.96 & 0.96 & 0.96 & 0.65 & 0.65 & 0.65 & 0.67 & 0.67 & 0.67 \\
\hline Heavy Vehicles (\%) & 7\% & 7\% & 7\% & 5\% & 5\% & 5\% & 2\% & 2\% & 2\% & 0\% & 0\% & 0\% \\
\hline Adj. Flow (vph) & 56 & 472 & 11 & 31 & 438 & 10 & 77 & 108 & 154 & 15 & 15 & 149 \\
\hline Shared Lane Traffic (\%) & & & & & & & & & & & & \\
\hline Lane Group Flow (vph) & 0 & 539 & 0 & 0 & 479 & 0 & 0 & 339 & 0 & 0 & 179 & 0 \\
\hline Sign Control & & Free & & & Free & & & Stop & & & Stop & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline Area Type: & \multicolumn{12}{|l|}{ther} \\
\hline \multicolumn{13}{|l|}{Control Type: Unsignalized} \\
\hline \multicolumn{13}{|l|}{\multirow[t]{2}{*}{Intersection Capacity Utilization 63.8\%
Analysis Period (min) 15 \(\quad\) ICU Level of Service B}} \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}


\begin{tabular}{lcccc}
\hline Approach & EB & WB & SE & NW \\
\hline HCM Control Delay, S & 0.9 & 0.6 & 219.6 & 29 \\
HCM LOS & & F & D
\end{tabular}
\begin{tabular}{lrrrrrrr}
\hline Minor Lane/Major Mvmt & NWLn1 & EBL & EBT & EBR & WBL & WBT & WBR SELn1 \\
\hline Capacity (veh/h) & 324 & 1086 & - & -1064 & - & -251 \\
HCM Lane V/C Ratio & 0.553 & 0.052 & - & -0.029 & - & -1.348 \\
HCM Control Delay (s) & 29 & 8.5 & 0 & - & 8.5 & 0 & -219.6 \\
HCM Lane LOS & D & A & A & - & A & A & - \\
HCM 95th \%tile Q(veh) & 3.2 & 0.2 & - & - & 0.1 & - & -18
\end{tabular}

HCM Signalized Intersection Capacity Analysis
11: Folsom Rd/Tsienneto Rd \& Crystal Av/NH 28
03/13/2018
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 9 & \(\dagger\) & 1 & \(\checkmark\) & \(\downarrow\) & \(\downarrow\) & 4 & \(\nearrow\) & ¢ & \(\frac{1}{7}\) & \(\checkmark\) & \(\uparrow\) \\
\hline Movement & NBL & NBT & NBR & SBL & SBT & SBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & 7 & \(\uparrow \uparrow\) & \# & 7* & ¢ \(\uparrow\) & & \% & \(\uparrow\) & \% & \% & \(\uparrow\) & \({ }^{7}\) \\
\hline Traffic Volume (vph) & 20 & 220 & 115 & 345 & 270 & 0 & 190 & 280 & 20 & 40 & 370 & 530 \\
\hline Future Volume (vph) & 20 & 220 & 115 & 345 & 270 & 0 & 190 & 280 & 20 & 40 & 370 & 530 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time (s) & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & & 6.0 & 6.0 & 4.0 & 6.0 & 6.0 & 6.0 \\
\hline Lane Util. Factor & 1.00 & 0.95 & 1.00 & 0.97 & 0.95 & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & 1.00 & 1.00 & 0.85 & 1.00 & 1.00 & & 1.00 & 1.00 & 0.85 & 1.00 & 1.00 & 0.85 \\
\hline Flt Protected & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & 1.00 \\
\hline Satd. Flow (prot) & 1736 & 3471 & 1553 & 3335 & 3438 & & 1752 & 1845 & 1568 & 1752 & 1845 & 1568 \\
\hline Flt Permitted & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & 1.00 \\
\hline Satd. Flow (perm) & 1736 & 3471 & 1553 & 3335 & 3438 & & 1752 & 1845 & 1568 & 1752 & 1845 & 1568 \\
\hline Peak-hour factor, PHF & 0.84 & 0.84 & 0.84 & 0.79 & 0.79 & 0.79 & 0.86 & 0.86 & 0.86 & 0.99 & 0.99 & 0.99 \\
\hline Adj. Flow (vph) & 24 & 262 & 137 & 437 & 342 & - & 221 & 326 & 23 & 40 & 374 & 535 \\
\hline RTOR Reduction (vph) & 0 & 0 & 113 & 0 & 0 & , & 0 & 0 & & 0 & 0 & 95 \\
\hline Lane Group Flow (vph) & 24 & 262 & 24 & 437 & 342 & 0 & 221 & 326 & 23 & 40 & 374 & 440 \\
\hline Heavy Vehicles (\%) & 4\% & 4\% & 4\% & 5\% & 5\% & 5\% & 3\% & 3\% & 3\% & 3\% & 3\% & 3\% \\
\hline Turn Type & Prot & NA & Perm & Prot & NA & & Prot & NA & Free & Prot & NA & pt+ov \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & 7 & 4 & & 3 & 8 & 81 \\
\hline Permitted Phases & & 2 & 2 & & 6 & & & 4 & Free & & 8 & \\
\hline Actuated Green, G (s) & 8.6 & 15.6 & 15.6 & 14.6 & 21.6 & & 13.5 & 31.6 & 90.0 & 4.2 & 22.3 & 42.9 \\
\hline Effective Green, \(\mathrm{g}(\mathrm{s})\) & 8.6 & 15.6 & 15.6 & 14.6 & 21.6 & & 13.5 & 31.6 & 90.0 & 4.2 & 22.3 & 42.9 \\
\hline Actuated g/C Ratio & 0.10 & 0.17 & 0.17 & 0.16 & 0.24 & & 0.15 & 0.35 & 1.00 & 0.05 & 0.25 & 0.48 \\
\hline Clearance Time (s) & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Lane Grp Cap (vph) & 165 & 601 & 269 & 541 & 825 & & 262 & 647 & 1568 & 81 & 457 & 747 \\
\hline v/s Ratio Prot & 0.01 & 0.08 & & c0.13 & c0.10 & & c0.13 & 0.18 & & 0.02 & c0.20 & 0.28 \\
\hline v/s Ratio Perm & & & 0.02 & & & & & & 0.01 & & & \\
\hline v/c Ratio & 0.15 & 0.44 & 0.09 & 0.81 & 0.41 & & 0.84 & 0.50 & 0.01 & 0.49 & 0.82 & 0.59 \\
\hline Uniform Delay, d1 & 37.3 & 33.3 & 31.2 & 36.3 & 28.9 & & 37.2 & 23.0 & 0.0 & 41.9 & 31.9 & 17.1 \\
\hline Progression Factor & 1.00 & 1.00 & 1.00 & 0.91 & 0.70 & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Incremental Delay, d2 & 1.8 & 2.3 & 0.6 & 8.3 & 1.5 & & 21.2 & 0.6 & 0.0 & 4.7 & 10.9 & 1.2 \\
\hline Delay (s) & 39.2 & 35.6 & 31.9 & 41.5 & 21.8 & & 58.4 & 23.6 & 0.0 & 46.5 & 42.8 & 18.3 \\
\hline Level of Service & D & D & C & D & C & & E & C & A & D & D & B \\
\hline Approach Delay (s) & & 34.6 & & & 32.8 & & & 36.2 & & & 29.2 & \\
\hline Approach LOS & & C & & & C & & & D & & & c & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
\hline Intersection Summary & & & \\
\hline HCM 2000 Control Delay & 32.5 & HCM 2000 Level of Service & C \\
HCM 2000 Volume to Capacity ratio & 0.73 & & 24.0 \\
Actuated Cycle Length (s) & 90.0 & Sum of lost time (s) & C \\
Intersection Capacity Utilization & \(66.5 \%\) & ICU Level of Service & \\
Analysis Period (min) & 15 & & \\
c Critical Lane Group & & &
\end{tabular}

12: Tsienneto Rd \& Pinkerton St
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & m & ¢ & \(\nearrow\) & \(\square\) & 4 & 4 \\
\hline Lane Group & NWL & NWR & NET & NER & SWL & SWT \\
\hline Lane Configurations & \% & 「 & \(\uparrow\) & F & & ¢¢ \\
\hline Traffic Volume (vph) & 320 & 70 & 430 & 310 & 80 & 620 \\
\hline Future Volume (vph) & 320 & 70 & 430 & 310 & 80 & 620 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ti) & 180 & 0 & & 0 & 180 & \\
\hline Storage Lanes & 1 & 1 & & 1 & 0 & \\
\hline Taper Length (t) & 25 & & & & 25 & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 0.95 & 0.95 \\
\hline Fit & & 0.850 & & 0.850 & & \\
\hline Flt Protected & 0.950 & & & & & 0.994 \\
\hline Satd. Flow (prot) & 1770 & 1583 & 1845 & 1568 & 0 & 3518 \\
\hline Flt Permitted & 0.950 & & & & & 0.994 \\
\hline Satd. Flow (perm) & 1770 & 1583 & 1845 & 1568 & 0 & 3518 \\
\hline Link Speed (mph) & 30 & & 30 & & & 30 \\
\hline Link Distance (t) & 408 & & 387 & & & 233 \\
\hline Travel Time (s) & 9.3 & & 8.8 & & & 5.3 \\
\hline Peak Hour Factor & 0.83 & 0.83 & 0.86 & 0.86 & 0.81 & 0.81 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 3\% & 3\% & 2\% & 2\% \\
\hline Adj. Flow (vph) & 386 & 84 & 500 & 360 & 99 & 765 \\
\hline \multicolumn{7}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 386 & 84 & 500 & 360 & 0 & 864 \\
\hline Sign Control & \multicolumn{2}{|l|}{Stop} & \multicolumn{3}{|l|}{Free} & Free \\
\hline \multicolumn{7}{|l|}{Intersection Summary} \\
\hline \multicolumn{7}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{ll}
\hline Area Type: Other & \\
Control Type: Unsignalized \\
Intersection Capacity Utilization \(69.8 \%\) & ICU Level of Service C \\
Analysis Period (min) 15 &
\end{tabular}}} \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}

\section*{Zone 4}

12: Tsienneto Rd \& Pinkerton St



\begin{tabular}{lrrrrrrrrrrrrr}
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}

Analysis Period (min)
c Critical Lane Group


\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Lane Group & EBL & EBT & WBT & WBR & SBL & SBR \\
\hline Lane Configurations & \% & 4 4 & \(\uparrow{ }_{\text {个 }}\) & & \% & \(\bar{\square}\) \\
\hline Traffic Volume (vph) & 110 & 1320 & 1220 & 10 & 10 & 80 \\
\hline Future Volume (vph) & 110 & 1320 & 1220 & 10 & 10 & 80 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 300 & & & 0 & 0 & 175 \\
\hline Storage Lanes & 1 & & & 0 & 1 & 1 \\
\hline Taper Length ( ft ) & 25 & & & & 25 & \\
\hline Lane Util. Factor & 1.00 & 0.95 & 0.95 & 0.95 & 1.00 & 1.00 \\
\hline Fit & & & 0.999 & & & 0.850 \\
\hline Fit Protected & 0.950 & & & & 0.950 & \\
\hline Satd. Flow (prot) & 1687 & 3374 & 3468 & 0 & 1703 & 1524 \\
\hline Fit Permitted & 0.950 & & & & 0.950 & \\
\hline Satd. Flow (perm) & 1687 & 3374 & 3468 & 0 & 1703 & 1524 \\
\hline Link Speed (mph) & & 30 & 30 & & 30 & \\
\hline Link Distance (ft) & & 535 & 210 & & 522 & \\
\hline Travel Time (s) & & 12.2 & 4.8 & & 11.9 & \\
\hline Peak Hour Factor & 0.84 & 0.84 & 0.89 & 0.89 & 0.83 & 0.83 \\
\hline Heavy Vehicles (\%) & 7\% & 7\% & 4\% & 4\% & 6\% & 6\% \\
\hline Adj. Flow (vph) & 131 & 1571 & 1371 & 11 & 12 & 96 \\
\hline \multicolumn{7}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 131 & 1571 & 1382 & 0 & 12 & 96 \\
\hline Sign Control & & Free & Free & & Stop & \\
\hline
\end{tabular}

\section*{Intersection Summary}
Area Type: Other

Control Type: Unsignalized
Intersection Capacity Utilization 53.5\% ICU Level of Service A
Analysis Period (min) 15



16: NH 102 W/NH 102 E \& Bypass 28 S/Bypass 28 N \& E Derry Rd
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\checkmark\) & \(\checkmark\) & \(\pm\) & c & \(\uparrow\) & \(\uparrow\) & 「 & P & \(\checkmark\) & \(\checkmark\) & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group & WBL2 & WBL & WBR & WBR2 & NBL & NBT & NBR & NBR2 & SBL2 & SBL & SBT & SBR \\
\hline Lane Configurations & & \% & & & & 4 & & & & & 4 & \\
\hline Traffic Volume (vph) & 10 & 180 & 340 & 20 & 20 & 125 & 110 & 5 & 10 & 105 & 170 & 40 \\
\hline Future Volume (vph) & 10 & 180 & 340 & 20 & 20 & 125 & 110 & 5 & 10 & 105 & 170 & 40 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ti) & & 0 & 150 & & 0 & & 150 & & & 0 & & 0 \\
\hline Storage Lanes & & 1 & 0 & & 0 & & 0 & & & 0 & & 0 \\
\hline Taper Length (t) & & 25 & & & 25 & & & & & 25 & & \\
\hline Lane Utili. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & 0.912 & & & & 0.940 & & & & & 0.983 & \\
\hline Flt Protected & & 0.983 & & & & 0.996 & & & & & 0.983 & \\
\hline Satd. Flow (prot) & 0 & 1654 & 0 & 0 & 0 & 1727 & 0 & 0 & 0 & 0 & 1716 & 0 \\
\hline Flt Permitted & & 0.983 & & & & 0.996 & & & & & 0.983 & \\
\hline Satd. Flow (perm) & 0 & 1654 & 0 & 0 & 0 & 1727 & 0 & 0 & 0 & 0 & 1716 & 0 \\
\hline Link Speed (mph) & & 30 & & & & 30 & & & & & 30 & \\
\hline Link Distance ( t ) & & 465 & & & & 456 & & & & & 371 & \\
\hline Travel Time (s) & & 10.6 & & & & 10.4 & & & & & 8.4 & \\
\hline Peak Hour Factor & 0.91 & 0.91 & 0.91 & 0.91 & 0.86 & 0.86 & 0.86 & 0.86 & 0.80 & 0.80 & 0.80 & 0.80 \\
\hline Heavy Vehicles (\%) & 3\% & 3\% & 3\% & 3\% & 3\% & 3\% & 3\% & 3\% & 7\% & 7\% & 7\% & 7\% \\
\hline Adj. Flow (vph) & 11 & 198 & 374 & 22 & 23 & 145 & 128 & , & 13 & 131 & 213 & 50 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%) 005} \\
\hline Lane Group Flow (vph) & 0 & 605 & 0 & 0 & 0 & 302 & 0 & 0 & 0 & 0 & 407 & 0 \\
\hline Sign Control & & Yield & & & & Yield & & & & & Yield & \\
\hline
\end{tabular}

\section*{Intersection Summary}
```

Area Type:
Other

```
Control Type: Roundabout
Intersection Capacity Utilization 100.3\%
ICU Level of Service G

Analysis Period (min) 15


Intersection Delay, s/veh14.1
Intersection LOS B
\begin{tabular}{lrrrrr}
\hline Approach & WB & NB & SB & NE \\
\hline Entry Lanes & 1 & 1 & 1 & 1 & SW \\
Conflicting Circle Lanes & 1 & 1 & 1 & 1 & 1 \\
Adj Approach Flow, veh/h & 605 & 302 & 407 & 475 & 1 \\
Demand Flow Rate, veh/h & 623 & 311 & 436 & 513 & 235 \\
Vehicles Circulating, veh/h & 472 & 529 & 478 & 438 & 252 \\
Vehicles Exiting, veh/h & 368 & 422 & 628 & 476 & 854 \\
Ped Vol Crossing Leg, \#/h & 0 & 0 & 0 & 0 & 241 \\
Ped Cap Adj & 1.000 & 1.000 & 1.000 & 1.000 & 0 \\
Approach Delay, slveh & 18.8 & 9.4 & 11.8 & 13.2 & 1.000 \\
Approach LOS & C & A & B & B & 13.9 \\
& & & & B &
\end{tabular}
\begin{tabular}{lrrrrrl}
\hline Lane & Left & & Left & Leff & \\
\hline Designated Moves & LR & LTR & LTR & LTR & LTR \\
Assumed Moves & LR & LTR & LTR & LTR & LTR \\
RT Channelized & & & & & \\
Lane Util & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
Follow-Up Headway, s 2.609 & 2.609 & 2.609 & 2.609 & 2.609 \\
Critical Headway, s & 4.976 & 4.976 & 4.976 & 4.976 & 4.976 \\
Entry Flow, veh/h & 623 & 311 & 436 & 513 & 252 \\
Cap Entry Lane, veh/h & 853 & 804 & 847 & 883 & 578 \\
Entry HV Adj Factor & 0.971 & 0.970 & 0.934 & 0.925 & 0.932 \\
Flow Entry, veh/h & 605 & 302 & 407 & 475 & 235 \\
Cap Entry, veh/h & 828 & 780 & 791 & 817 & 538 \\
VIC Ratio & 0.731 & 0.387 & 0.514 & 0.581 & 0.436 \\
Control Delay, s/veh & 18.8 & 9.4 & 11.8 & 13.2 & 13.9 \\
LOS & C & A & B & B & B \\
95th \%tile Queue, veh & 7 & 2 & 3 & 4 & 2
\end{tabular}


\footnotetext{
Intersection Summary
Area Type: Other
Control Type: Unsignalized
Intersection Capacity Utilization 51.3\%
ICU Level of Service A
Analysis Period (min) 15
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|l|}{Intersection} \\
\hline Int Delay, s/veh & 21.4 & & & & & & & & & & & & \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR & \\
\hline Lane Configurations & & \(\uparrow\) & \(\overline{7}\) & & 4 & & & ¢ & & & 4 & & \\
\hline Traffic Vol, veh/h & 5 & 20 & 220 & 5 & 40 & 50 & 375 & 140 & 5 & 10 & 100 & 20 & \\
\hline Future Vol, veh/h & 5 & 20 & 220 & 5 & 40 & 50 & 375 & 140 & 5 & 10 & 100 & 20 & \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & \\
\hline Sign Control & Stop & Stop & Stop & Stop & Stop & Stop & Free & Free & Free & Free & Free & Free & \\
\hline RT Channelized & . & & None & . & & None & . & - & None & . & & None & \\
\hline Storage Length & - & - & 50 & - & - & . & . & . & . & . & & , & \\
\hline Veh in Median Storage, \# & \# & 0 & . & - & 0 & - & - & 0 & - & - & 0 & & med \\
\hline Grade, \% & - & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - & \\
\hline Peak Hour Factor & 82 & 82 & 82 & 70 & 70 & 70 & 75 & 75 & 75 & 71 & 71 & 71 & Eshly \\
\hline Heavy Vehicles, \% & 8 & 8 & & 5 & 5 & 5 & 3 & 3 & 3 & 4 & 4 & 4 & \\
\hline Mumt Flow & 6 & 24 & 268 & 7 & 57 & 71 & 500 & 187 & 7 & 14 & 141 & 28 & 12r0 Nm \\
\hline
\end{tabular}




\section*{20: Exit 4A SB On/Exit 4A SB Off \& Connector Road}
\begin{tabular}{lrrrrrr}
\hline & & & & & \\
& & & & \\
\hline
\end{tabular}
c Critical Lane Group

c Critical Lane Group


C Critical Lane Group




\begin{tabular}{lrrrrrr}
\hline Movement & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & & & 4 & & 1 & \(\uparrow\) \\
Traffic Volume (vph) & 70 & 10 & 460 & 50 & 10 & 680 \\
Future Volume (vph) & 70 & 10 & 460 & 50 & 10 & 680 \\
Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
Total Lost time (s) & 6.0 & & 4.0 & 4.0 & 6.0 & 4.0 \\
Lane Util. Factor & 1.00 & & 1.00 & 1.00 & 1.00 & 1.00 \\
Fit & 0.98 & & 1.00 & 0.85 & 1.00 & 1.00 \\
FIt Protected & 0.96 & & 1.00 & 1.00 & 0.95 & 1.00 \\
Satd. Flow (prot) & 1769 & & 1900 & 1615 & 1805 & 1900 \\
FIt Permitted & 0.96 & & 1.00 & 1.00 & 0.26 & 1.00 \\
Satd. Flow (perm) & 1769 & & 1900 & 1615 & 488 & 1900 \\
\hline Peak-hour factor, PHF & 0.87 & 0.67 & 0.95 & 0.84 & 0.73 & 0.96 \\
Adj. Flow (vph) & 80 & 15 & 484 & 60 & 14 & 708 \\
RTOR Reduction (vph) & 8 & 0 & 0 & 25 & 0 & 0 \\
Lane Group Flow (vph) & 87 & 0 & 484 & 35 & 14 & 708 \\
\hline Heavy Vehicles (\%) & \(1 \%\) & \(0 \%\) & \(0 \%\) & \(0 \%\) & \(0 \%\) & \(0 \%\) \\
\hline Turn Type & Prot & & NA & Perm & custom & NA \\
Protected Phases & 7 & & 68 & & 5 & 28 \\
\hline Permitted Phases & & & & 68 & 2 & \\
\hline Actuated Green, G (s) & 11.6 & & 39.4 & 39.4 & 17.4 & 38.6 \\
\hline Effective Green, g (s) & 11.6 & & 39.4 & 39.4 & 17.4 & 38.6 \\
\hline Actuated g/C Ratio & 0.16 & & 0.53 & 0.53 & 0.24 & 0.52 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Clearance Time (s) & 6.0 & \multicolumn{4}{|c|}{6.0} \\
\hline Vehicle Extension (s) & 3.0 & & & 3.0 & \\
\hline Lane Grp Cap (vph) & 278 & 1014 & 862 & 129 & 993 \\
\hline v/s Ratio Prot & c0.05 & 0.25 & & c0.00 & c0.37 \\
\hline v/s Ratio Perm & & & 0.02 & 0.02 & \\
\hline \(\mathrm{v} / \mathrm{c}\) Ratio & 0.31 & 0.48 & 0.04 & 0.11 & 0.71 \\
\hline Uniform Delay, d1 & 27.6 & 10.8 & 8.2 & 22.1 & 13.4 \\
\hline Progression Factor & 1.00 & 0.53 & 0.42 & 1.00 & 1.00 \\
\hline Incremental Delay, d2 & 0.7 & 0.2 & 0.0 & 0.4 & 2.4 \\
\hline Delay (s) & 28.2 & 5.9 & 3.4 & 22.5 & 15.8 \\
\hline Level of Service & C & A & A & C & B \\
\hline Approach Delay (s) & 28.2 & 5.6 & & & 16.0 \\
\hline Approach LOS & C & A & & & B \\
\hline
\end{tabular}
\begin{tabular}{lrlrl} 
Intersection Summary & & \\
\hline HCM 2000 Control Delay & 12.7 & HCM 2000 Level of Service & B \\
HCM 2000 Volume to Capacity ratio & 0.60 & & \\
Actuated Cycle Length (s) & 73.8 & Sum of lost time (s) & 22.0 \\
Intersection Capacity Utilization & \(48.6 \%\) & ICU Level of Service & A \\
Analysis Period (min) & 15 & & \\
C Critical Lane Group & & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\rangle\) & \(\checkmark\) & 4 & \(\uparrow\) & \(\downarrow\) & \(\checkmark\) & \\
\hline Lane Group & EBL & EBR & NBL & NBT & SBT & SBR & \\
\hline Lane Configurations & \% & & \% & 4 & \(\dagger\) & & \\
\hline Traffic Volume (vph) & 5 & 30 & 20 & 450 & 660 & 20 & \\
\hline Future Volume (vph) & 5 & 30 & 20 & 450 & 660 & 20 & \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & \\
\hline Storage Length (ft) & 0 & 0 & 100 & & & 0 & \\
\hline Storage Lanes & 1 & 0 & 1 & & & 0 & \\
\hline Taper Length (ft) & 25 & & 25 & & & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & \\
\hline Fit & 0.888 & & & & 0.995 & & \\
\hline Flt Protected & 0.992 & & 0.950 & & & & \\
\hline Satd. Flow (prot) & 1674 & 0 & 1787 & 1900 & 1873 & 0 & \\
\hline Flt Permitted & 0.992 & & 0.950 & & & & \\
\hline Satd. Flow (perm) & 1674 & 0 & 1787 & 1900 & 1873 & 0 & \\
\hline Link Speed (mph) & 30 & & & 30 & 30 & & \\
\hline Link Distance (ft) & 332 & & & 288 & 365 & & \\
\hline Travel Time (s) & 7.5 & & & 6.5 & 8.3 & & \\
\hline Peak Hour Factor & 0.64 & 0.77 & 0.71 & 0.90 & 0.75 & 0.55 & \\
\hline Heavy Vehicles (\%) & 0\% & 0\% & 1\% & 0\% & 1\% & 0\% & \\
\hline Adj. Flow (vph) & 8 & 39 & 28 & 500 & 880 & 36 & \\
\hline \multicolumn{8}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 47 & 0 & 28 & 500 & 916 & 0 & \\
\hline Sign Control & Stop & & & Free & Free & & \\
\hline \multicolumn{8}{|l|}{Intersection Summary} \\
\hline \multicolumn{8}{|l|}{Area Type: Other} \\
\hline \multicolumn{8}{|l|}{Control Type: Unsignalized} \\
\hline \multicolumn{8}{|l|}{\begin{tabular}{l}
Intersection Capacity Utilization 45.9\% \\
ICU Level of Service A
\end{tabular}} \\
\hline \multicolumn{8}{|l|}{Analysis Period (min) 15 IL} \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrl}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 0.8 & & & & & & \\
\hline Movement & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & \(Y\) & & & 个 & F & & \\
Traffic Vol, veh/h & 5 & 30 & 20 & 450 & 660 & 20 \\
Future Vol, veh/h & 5 & 30 & 20 & 450 & 660 & 20 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & 100 & - & - & - \\
Veh in Median Storage, \# & 0 & - & - & 0 & 0 & - \\
Grade, \% & 0 & - & - & 0 & 0 & - \\
Peak Hour Factor & 64 & 77 & 71 & 90 & 75 & 55 \\
Heavy Vehicles, \% & 0 & 0 & 1 & 0 & 1 & 0 \\
Mvmt Flow & 8 & 39 & 28 & 500 & 880 & 36 \\
& & & & & & &
\end{tabular}



\section*{APPENDIX Q-3: ALTERNATIVE C INTERSECTION CAPACITY ANALYSES - SYNCHRO PRINTSOUTS - AM PEAK HOUR}

Lanes, Volumes, Timings
1. Z: NH 102 \& Exit 4 SB Off

\begin{tabular}{lrrrrr}
\hline & & & & & \\
\cline { 5 - 6 } & & & & & \\
\hline
\end{tabular}
```

Intersection Signal Delay: 37.2
Intersection Capacity Utilization 67.1\%
Intersection LOS: D

```

Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
\(m\) Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 7: NH 102 \& Exit 4 SB Off


Lanes，Volumes，Timings
Z b：NH 102 \＆Exit 4 NB Off
01／23／2018
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 9 & \(k\) & 1 & \(\cdots\) & \％ & \(y\) & 7 & A & \％ & \(\checkmark\) & k \\
\hline Lane Group & NBL2 & NBL & NBR & SEL & SER & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & ＊＊ & & Fir & & & 7＊ & 䩗 & & & 4虫 & 「 \\
\hline Traffic Volume（vph） & 455 & 0 & 300 & 0 & 0 & 1350 & 110 & 0 & 0 & 990 & 375 \\
\hline Future Volume（vph） & 455 & 0 & 300 & 0 & 0 & 1350 & 110 & 0 & 0 & 990 & 375 \\
\hline Ideal Flow（vphpl） & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length（ft） & & 0 & 0 & 0 & 0 & 550 & & 0 & 0 & & 0 \\
\hline Storage Lanes & & 2 & 2 & 0 & 0 & 2 & & 0 & 0 & & 1 \\
\hline Taper Length（ ft ） & & 25 & & 25 & & 25 & & & 25 & & \\
\hline Lane Util．Factor & 0.97 & 1.00 & 0.88 & 1.00 & 1.00 & 0.97 & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 \\
\hline Frt & & & 0.850 & & & & & & & & 0.850 \\
\hline Flt Protected & 0.950 & & & & & 0.950 & & & & & \\
\hline Satd．Flow（prot） & 3242 & 0 & 2632 & 0 & 0 & 3335 & 3438 & 0 & 0 & 3505 & 1568 \\
\hline Flt Permitted & 0.950 & & & & & 0.950 & & & & & \\
\hline Satd．Flow（perm） & 3242 & 0 & 2632 & 0 & 0 & 3335 & 3438 & 0 & 0 & 3505 & 1568 \\
\hline Right Turn on Red & & & No & & & & & Yes & & & Yes \\
\hline Satd．Flow（RTOR） & & & & & & & & & & & 190 \\
\hline Link Speed（mph） & & 25 & & 30 & & & 30 & & & 30 & \\
\hline Link Distance（ft） & & 856 & & 390 & & & 760 & & & 857 & \\
\hline Travel Time（s） & & 23.3 & & 8.9 & & & 17.3 & & & 19.5 & \\
\hline Peak Hour Factor & 0.88 & 0.88 & 0.88 & 0.92 & 0.92 & 0.94 & 0.94 & 0.94 & 0.92 & 0.92 & 0.92 \\
\hline Heavy Vehicles（\％） & 8\％ & 8\％ & 8\％ & 2\％ & 2\％ & 5\％ & 5\％ & 5\％ & 3\％ & 3\％ & 3\％ \\
\hline Adj．Flow（vph） & 517 & 0 & 341 & 0 & 0 & 1436 & 117 & 0 & 0 & 1076 & 408 \\
\hline \multicolumn{12}{|l|}{Shared Lane Traffic（\％）} \\
\hline Lane Group Flow（vph） & 517 & 0 & 341 & 0 & 0 & 1436 & 117 & 0 & 0 & 1076 & 408 \\
\hline Enter Blocked Intersection & No \\
\hline Lane Alignment & Left & Left & Right & Left & Right & Left & Left & Right & Left & Right & Right \\
\hline Median Width（ft） & & 24 & & 0 & & & 24 & & & 24 & \\
\hline Link Offset（ft） & & 12 & & 0 & & & 0 & & & 0 & \\
\hline Crosswalk Width（ft） & & 16 & & 16 & & & 16 & & & 16 & \\
\hline \multicolumn{12}{|l|}{Two way Left Turn Lane} \\
\hline Headway Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Turning Speed（mph） & 15 & 15 & 25 & 15 & 9 & 15 & & 9 & 15 & & 25 \\
\hline Number of Detectors & 3 & & 3 & & & 3 & 3 & & & 3 & 0 \\
\hline \multicolumn{12}{|l|}{Detector Template} \\
\hline Leading Detector（ft） & 256 & & 256 & & & 256 & 256 & & & 256 & 0 \\
\hline Trailing Detector（ft） & －5 & & －5 & & & －5 & －5 & & & －5 & 0 \\
\hline Detector 1 Position（ft） & －5 & & －5 & & & －5 & －5 & & & －5 & －5 \\
\hline Detector 1 Size（ft） & 55 & & 55 & & & 55 & 55 & & & 55 & 50 \\
\hline Detector 1 Type & Cl＋Ex & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & Cl＋Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & Cl＋Ex \\
\hline \multicolumn{12}{|l|}{Detector 1 Channel} \\
\hline Detector 1 Extend（s） & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & 0.0 \\
\hline Detector 1 Queue（s） & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & 0.0 \\
\hline Detector 1 Delay（s） & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & 0.0 \\
\hline Detector 2 Position（ft） & 125 & & 125 & & & 125 & 125 & & & 125 & \\
\hline Detector 2 Size（ft） & 6 & & 6 & & & 6 & 6 & & & 6 & \\
\hline Detector 2 Type & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline \multicolumn{12}{|l|}{Detector 2 Channel 0.0} \\
\hline Detector 2 Extend（s） & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & \\
\hline Detector 3 Position（ft） & 250 & & 250 & & & 250 & 250 & & & 250 & \\
\hline Detector 3 Size（ft） & 6 & & 6 & & & 6 & 6 & & & 6 & \\
\hline
\end{tabular}

Lanes, Volumes, Timings
2 : NH 102 \& Exit 4 NB Off
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & NBL2 & NBL & NBR & SEL & SER & NEL & NET & NER & SWL & SWT & SWR \\
\hline Detector 3 Type & \(\mathrm{Cl}+\mathrm{Ex}\) & & Cl+Ex & & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline \multicolumn{12}{|l|}{Detector 3 Channel} \\
\hline Detector 3 Extend (s) & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & \\
\hline Turn Type & Prot & & Prot & & & Prot & NA & & & NA & Free \\
\hline Protected Phases & 8 & & 8 & & & 5 & 2 & & & 6 & \\
\hline Permitted Phases & & & & & & & & & & & Free \\
\hline Detector Phase & 8 & & 2 & & & 5 & 2 & & & 6 & \\
\hline \multicolumn{12}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 10.0 & & 10.0 & & & 5.0 & 8.0 & & & 8.0 & \\
\hline Minimum Split (s) & 16.0 & & 16.0 & & & 11.0 & 42.0 & & & 31.0 & \\
\hline Total Split (s) & 29.0 & & 29.0 & & & 69.0 & 121.0 & & & 52.0 & \\
\hline Total Split (\%) & 19.3\% & & 19.3\% & & & 46.0\% & 80.7\% & & & 34.7\% & \\
\hline Maximum Green (s) & 23.0 & & 23.0 & & & 63.0 & 115.0 & & & 46.0 & \\
\hline Yellow Time (s) & 2.0 & & 2.0 & & & 2.0 & 2.0 & & & 2.0 & \\
\hline All-Red Time (s) & 4.0 & & 4.0 & & & 4.0 & 4.0 & & & 4.0 & \\
\hline Lost Time Adjust (s) & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & 6.0 & & 6.0 & & & 6.0 & 6.0 & & & 6.0 & \\
\hline Lead/Lag & & & & & & Lead & & & & Lag & \\
\hline \multicolumn{12}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 3.0 & & 3.0 & & & 3.0 & 3.0 & & & 3.0 & \\
\hline Recall Mode & None & & None & & & None & C-Min & & & C-Min & \\
\hline Walk Time (s) & & & & & & & 7.0 & & & 7.0 & \\
\hline Flash Dont Walk (s) & & & & & & & 29.0 & & & 17.0 & \\
\hline Pedestrian Calls (\#/hr) & & & & & & & 0 & & & 0 & \\
\hline Act Effct Green (s) & 23.0 & & 23.0 & & & 63.0 & 115.0 & & & 46.0 & 150.0 \\
\hline Actuated g/C Ratio & 0.15 & & 0.15 & & & 0.42 & 0.77 & & & 0.31 & 1.00 \\
\hline v/c Ratio & 1.04 & & 0.85 & & & 1.03 & 0.04 & & & 1.00 & 0.26 \\
\hline Control Delay & 111.4 & & 81.0 & & & 49.1 & 8.1 & & & 79.3 & 0.4 \\
\hline Queue Delay & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & 0.0 \\
\hline Total Delay & 111.4 & & 81.0 & & & 49.1 & 8.1 & & & 79.3 & 0.4 \\
\hline LOS & F & & F & & & D & A & & & E & A \\
\hline Approach Delay & & 99.3 & & & & & 46.0 & & & 57.6 & \\
\hline Approach LOS & & F & & & & & D & & & E & \\
\hline Queue Length 50th (ft) & \(\sim 280\) & & 186 & & & \(\sim 434\) & 21 & & & \(\sim 557\) & 0 \\
\hline Queue Length 95th (ft) & \#384 & & \#264 & & & m\#791 & m23 & & & \#713 & 0 \\
\hline Internal Link Dist (ft) & & 776 & & 310 & & & 680 & & & 777 & \\
\hline Turn Bay Length (ft) & & & & & & 550 & & & & & \\
\hline Base Capacity (vph) & 497 & & 403 & & & 1400 & 2635 & & & 1074 & 1568 \\
\hline Starvation Cap Reductn & 0 & & 0 & & & 0 & 0 & & & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & & 0 & & & 0 & 0 & & & 0 & 0 \\
\hline Storage Cap Reductn & 0 & & 0 & & & 0 & 0 & & & 0 & 0 \\
\hline Reduced v/c Ratio & 1.04 & & 0.85 & & & 1.03 & 0.04 & & & 1.00 & 0.26 \\
\hline
\end{tabular}

\section*{Intersection Summary}
Area Type: Other

Cycle Length: 150
Actuated Cycle Length: 150
Offset: \(3(2 \%)\), Referenced to phase 2:NET and 6:SWT, Start of Yellow
Natural Cycle: 140

Lanes, Volumes, Timings
2 \&: NH 102 \& Exit 4 NB Off
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.04
Intersection Signal Delay: 62.1
Intersection LOS: E
Intersection Capacity Utilization 94.9\%
ICU Level of Service F
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
\(m\) Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 8: NH 102 \& Exit 4 NB Off


3 \&: Exit 5 SB On/Exit 5 SB Off \& NH 28
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & 44 & 7 & \({ }^{7}\) & 舯 & & & & & 7\% & & r \\
\hline Traffic Volume (vph) & 0 & 575 & 470 & 280 & 730 & 0 & 0 & 0 & 0 & 105 & 0 & 360 \\
\hline Future Volume (vph) & 0 & 575 & 470 & 280 & 730 & 0 & 0 & 0 & 0 & 105 & 0 & 360 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 0 & & 350 & 0 & & 0 & 0 & & 0 & 0 & & 0 \\
\hline Storage Lanes & 0 & & 1 & 1 & & 0 & 0 & & 0 & 2 & & 1 \\
\hline Taper Length (ft) & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & 1.00 & 1.00 & 1.00 & 0.97 & 1.00 & 1.00 \\
\hline Frt & & & 0.850 & & & & & & & & & 0.850 \\
\hline Flt Protected & & & & 0.950 & & & & & & 0.950 & & \\
\hline Satd. Flow (prot) & 0 & 3167 & 1417 & 1687 & 3374 & 0 & 0 & 0 & 0 & 3303 & 0 & 1524 \\
\hline Flt Permitted & & & & 0.950 & & & & & & 0.950 & & \\
\hline Satd. Flow (perm) & 0 & 3167 & 1417 & 1687 & 3374 & 0 & 0 & 0 & 0 & 3303 & 0 & 1524 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & & 511 & & & & & & & & & 112 \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 35 & \\
\hline Link Distance (ft) & & 851 & & & 693 & & & 486 & & & 581 & \\
\hline Travel Time (s) & & 19.3 & & & 15.8 & & & 11.0 & & & 11.3 & \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.73 & 0.73 & 0.73 & 0.92 & 0.92 & 0.92 & 0.74 & 0.74 & 0.74 \\
\hline Heavy Vehicles (\%) & 14\% & 14\% & 14\% & 7\% & 7\% & 7\% & 2\% & 2\% & 2\% & 6\% & 6\% & 6\% \\
\hline Adj. Flow (vph) & 0 & 625 & 511 & 384 & 1000 & 0 & 0 & 0 & 0 & 142 & 0 & 486 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 625 & 511 & 384 & 1000 & 0 & 0 & 0 & 0 & 142 & 0 & 486 \\
\hline Enter Blocked Intersection & No \\
\hline Lane Alignment & Left & Right & Right & Left & Left & Right & Left & Left & Right & RNA & Left & Right \\
\hline Median Width(ft) & & 36 & & & 36 & & & 24 & & & 24 & \\
\hline Link Offset(ft) & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Crosswalk Width(ft) & & 16 & & & 16 & & & 16 & & & 16 & \\
\hline \multicolumn{13}{|l|}{Two way Left Turn Lane} \\
\hline Headway Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Turning Speed (mph) & 15 & & 25 & 15 & & 9 & 15 & & 9 & 15 & & \\
\hline Number of Detectors & & 3 & 2 & 3 & 3 & & & & & 3 & & 2 \\
\hline Detector Template & & Thru & Right & Left & Thru & & & & & Left & & \\
\hline Leading Detector (ft) & & 256 & 131 & 256 & 256 & & & & & 256 & & 206 \\
\hline Trailing Detector (ft) & & -5 & -5 & -5 & -5 & & & & & -5 & & -5 \\
\hline Detector 1 Position(ft) & & -5 & -5 & -5 & -5 & & & & & -5 & & -5 \\
\hline Detector 1 Size(ft) & & 50 & 50 & 50 & 50 & & & & & 50 & & 50 \\
\hline Detector 1 Type & & CI+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & & & & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) \\
\hline \multicolumn{13}{|l|}{Detector 1 Channel} \\
\hline Detector 1 Extend (s) & & 0.0 & 0.0 & 0.0 & 0.0 & & & & & 0.0 & & 0.0 \\
\hline Detector 1 Queue (s) & & 0.0 & 0.0 & 0.0 & 0.0 & & & & & 0.0 & & 0.0 \\
\hline Detector 1 Delay (s) & & 0.0 & 0.0 & 0.0 & 0.0 & & & & & 0.0 & & 0.0 \\
\hline Detector 2 Position(ft) & & 125 & 125 & 125 & 125 & & & & & 125 & & 200 \\
\hline Detector 2 Size(ft) & & 6 & 6 & 6 & 6 & & & & & 6 & & 6 \\
\hline Detector 2 Type & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & & & & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) \\
\hline \multicolumn{13}{|l|}{Detector 2 Channel} \\
\hline Detector 2 Extend (s) & & 0.0 & 0.0 & 0.0 & 0.0 & & & & & 0.0 & & 0.0 \\
\hline Detector 3 Position(ft) & & 250 & & 250 & 250 & & & & & 250 & & \\
\hline Detector 3 Size(ft) & & 6 & & 6 & 6 & & & & & 6 & & \\
\hline
\end{tabular}

3 2: Exit 5 SB On/Exit 5 SB Off \& NH 28
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & & \(\checkmark\) & 4 & 4 & 4 & \(\dagger\) & \(p\) & \(\pm\) & \(\frac{1}{7}\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Detector 3 Type & & Cl+Ex & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & & & & \(\mathrm{Cl}+\mathrm{Ex}\) & & \\
\hline \multicolumn{13}{|l|}{Detector 3 Channel} \\
\hline Detector 3 Extend (s) & & 0.0 & & 0.0 & 0.0 & & & & & 0.0 & & \\
\hline Turn Type & & NA & Free & Prot & NA & & & & & Prot & & Prot \\
\hline Protected Phases & & 2 & & 1 & 6 & & & & & 4 & & 4 \\
\hline Permitted Phases & & & Free & & & & & & & & & \\
\hline Detector Phase & & 2 & & 1 & 6 & & & & & 4 & & 4 \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & & 9.0 & & 4.0 & 9.0 & & & & & 4.0 & & 4.0 \\
\hline Minimum Split (s) & & 21.0 & & 10.0 & 21.0 & & & & & 10.0 & & 10.0 \\
\hline Total Split (s) & & 34.0 & & 36.0 & 70.0 & & & & & 40.0 & & 40.0 \\
\hline Total Split (\%) & & 30.9\% & & 32.7\% & 63.6\% & & & & & 36.4\% & & 36.4\% \\
\hline Maximum Green (s) & & 28.0 & & 30.0 & 64.0 & & & & & 34.0 & & 34.0 \\
\hline Yellow Time (s) & & 4.0 & & 4.0 & 4.0 & & & & & 4.0 & & 4.0 \\
\hline All-Red Time (s) & & 2.0 & & 2.0 & 2.0 & & & & & 2.0 & & 2.0 \\
\hline Lost Time Adjust (s) & & 0.0 & & 0.0 & 0.0 & & & & & 0.0 & & 0.0 \\
\hline Total Lost Time (s) & & 6.0 & & 6.0 & 6.0 & & & & & 6.0 & & 6.0 \\
\hline Lead/Lag & & Lag & & Lead & & & & & & & & \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & & 5.0 & & 3.0 & 5.0 & & & & & 3.0 & & 3.0 \\
\hline Recall Mode & & C-Min & & None & C-Min & & & & & None & & None \\
\hline Walk Time (s) & & 7.0 & & & 7.0 & & & & & & & \\
\hline Flash Dont Walk (s) & & 8.0 & & & 8.0 & & & & & & & \\
\hline Pedestrian Calls (\#/hr) & & 0 & & & 0 & & & & & & & \\
\hline Act Effct Green (s) & & 31.7 & 110.0 & 28.1 & 65.7 & & & & & 32.3 & & 32.3 \\
\hline Actuated g/C Ratio & & 0.29 & 1.00 & 0.26 & 0.60 & & & & & 0.29 & & 0.29 \\
\hline \(\mathrm{v} / \mathrm{c}\) Ratio & & 0.69 & 0.36 & 0.89 & 0.50 & & & & & 0.15 & & 0.92 \\
\hline Control Delay & & 40.6 & 0.7 & 35.2 & 1.8 & & & & & 28.5 & & 53.7 \\
\hline Queue Delay & & 0.0 & 0.0 & 0.0 & 0.0 & & & & & 0.0 & & 0.0 \\
\hline Total Delay & & 40.6 & 0.7 & 35.2 & 1.8 & & & & & 28.5 & & 53.7 \\
\hline LOS & & D & A & D & A & & & & & C & & D \\
\hline Approach Delay & & 22.7 & & & 11.0 & & & & & & 48.0 & \\
\hline Approach LOS & & C & & & B & & & & & & D & \\
\hline Queue Length 50th (ft) & & 216 & 0 & 47 & 16 & & & & & 37 & & 260 \\
\hline Queue Length 95th (ft) & & 284 & 0 & m40 & 13 & & & & & 50 & & 287 \\
\hline Internal Link Dist (ft) & & 771 & & & 613 & & & 406 & & & 501 & \\
\hline Turn Bay Length (ft) & & & 350 & & & & & & & & & \\
\hline Base Capacity (vph) & & 912 & 1417 & 460 & 2016 & & & & & 1020 & & 548 \\
\hline Starvation Cap Reductn & & 0 & 0 & 0 & 0 & & & & & 0 & & 0 \\
\hline Spillback Cap Reductn & & 0 & 0 & 0 & 0 & & & & & 0 & & 0 \\
\hline Storage Cap Reductn & & 0 & 0 & 0 & 0 & & & & & 0 & & 0 \\
\hline Reduced v/c Ratio & & 0.69 & 0.36 & 0.83 & 0.50 & & & & & 0.14 & & 0.89 \\
\hline
\end{tabular}

\section*{Intersection Summary}

Area Type:
Other
Cycle Length: 110
Actuated Cycle Length: 110
Offset: \(58(53 \%)\), Referenced to phase 2:EBT and \(6:\) WBT, Start of Yellow
Natural Cycle: 70

Lanes, Volumes, Timings
3 2: Exit 5 SB On/Exit 5 SB Off \& NH 28
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.92
Intersection Signal Delay: 22.6 Intersection LOS: C
Intersection Capacity Utilization 71.3\% ICU Level of Service C
Analysis Period (min) 15
\(m\) Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 2: Exit 5 SB On/Exit 5 SB Off \& NH 28

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\rangle\) & & & \(\checkmark\) & \(\leftarrow\) & & 4 & 4 & \(p\) & \(\downarrow\) & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \({ }^{3}\) & 4 \(\uparrow\) & & & \(\uparrow \uparrow\) & 7 & \({ }^{7}\) & & 7 & & & \\
\hline Traffic Volume (vph) & 480 & 200 & 0 & 0 & 595 & 340 & 415 & 0 & 160 & 0 & 0 & 0 \\
\hline Future Volume (vph) & 480 & 200 & 0 & 0 & 595 & 340 & 415 & 0 & 160 & 0 & 0 & 0 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Lane Util. Factor & 1.00 & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & & & & & 0.850 & & & 0.850 & & & \\
\hline Flt Protected & 0.950 & & & & & & 0.950 & & & & & \\
\hline Satd. Flow (prot) & 1641 & 3282 & 0 & 0 & 3438 & 1538 & 1656 & 0 & 1482 & 0 & 0 & 0 \\
\hline Flt Permitted & 0.950 & & & & & & 0.950 & & & & & \\
\hline Satd. Flow (perm) & 1641 & 3282 & 0 & 0 & 3438 & 1538 & 1656 & 0 & 1482 & 0 & 0 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & & & & & 378 & & & 201 & & & \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 35 & & & 30 & \\
\hline Link Distance (tt) & & 693 & & & 542 & & & 867 & & & 392 & \\
\hline Travel Time (s) & & 15.8 & & & 12.3 & & & 16.9 & & & 8.9 & \\
\hline Peak Hour Factor & 0.87 & 0.87 & 0.87 & 0.90 & 0.90 & 0.90 & 0.78 & 0.78 & 0.78 & 0.92 & 0.92 & 0.92 \\
\hline Heavy Vehicles (\%) & 10\% & 10\% & 10\% & 5\% & 5\% & 5\% & 9\% & 9\% & 9\% & 2\% & 2\% & 2\% \\
\hline Adj. Flow (vph) & 552 & 230 & 0 & 0 & 661 & 378 & 532 & 0 & 205 & 0 & 0 & 0 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 552 & 230 & 0 & 0 & 661 & 378 & 532 & 0 & 205 & 0 & 0 & 0 \\
\hline Enter Blocked Intersection & No \\
\hline Lane Alignment & Left & Left & Right & Left & Right & Right & Right & Left & Right & Left & Left & Right \\
\hline Median Width( \((t)\) & & 36 & & & 42 & & & 12 & & & 12 & \\
\hline Link Offset(ft) & & 0 & & & 0 & & & 0 & & & 36 & \\
\hline Crosswalk Width(f) & & 16 & & & 16 & & & 16 & & & 16 & \\
\hline \multicolumn{13}{|l|}{Two way Left Turn Lane} \\
\hline Headway Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Turning Speed (mph) & 15 & & 9 & 15 & & 25 & 15 & & 9 & 15 & & 9 \\
\hline Number of Detectors & 3 & 3 & & & 3 & 2 & 3 & & 0 & & & \\
\hline Detector Template & Left & Thru & & & Thru & Right & Left & & & & & \\
\hline Leading Detector (t) & 256 & 256 & & & 256 & 131 & 256 & & 0 & & & \\
\hline Trailing Detector (ft) & -5 & -5 & & & -5 & -5 & -5 & & 0 & & & \\
\hline Detector 1 Position(tt) & -5 & -5 & & & -5 & -5 & -5 & & -5 & & & \\
\hline Detector 1 Size(t) & 50 & 50 & & & 50 & 50 & 50 & & 50 & & & \\
\hline Detector 1 Type & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & & & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & Cl+Ex & & & \\
\hline Detector 1 Channel & & & & & & & & & & & & \\
\hline Detector 1 Extend (s) & 0.0 & 0.0 & & & 0.0 & 0.0 & 0.0 & & 0.0 & & & \\
\hline Detector 1 Queue (s) & 0.0 & 0.0 & & & 0.0 & 0.0 & 0.0 & & 0.0 & & & \\
\hline Detector 1 Delay (s) & 0.0 & 0.0 & & & 0.0 & 0.0 & 0.0 & & 0.0 & & & \\
\hline Detector 2 Position(tt) & 125 & 125 & & & 125 & 125 & 125 & & & & & \\
\hline Detector 2 Size(tt) & 6 & 6 & & & 6 & 6 & 6 & & & & & \\
\hline Detector 2 Type & Cl+Ex & Cl+Ex & & & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & & & & \\
\hline \multicolumn{13}{|l|}{Detector 2 Channel} \\
\hline Detector 2 Extend (s) & 0.0 & 0.0 & & & 0.0 & 0.0 & 0.0 & & & & & \\
\hline Detector 3 Position(t) & 250 & 250 & & & 250 & & 250 & & & & & \\
\hline Detector 3 Size(t) & 6 & 6 & & & 6 & & 6 & & & & & \\
\hline Detector 3 Type & Cl+Ex & Cl+Ex & & & Cl+Ex & & Cl+Ex & & & & & \\
\hline \multicolumn{13}{|l|}{Detector 3 Channel} \\
\hline Detector 3 Extend (s) & 0.0 & 0.0 & & & 0.0 & & 0.0 & & & & & \\
\hline
\end{tabular}

Lanes, Volumes, Timings
4 \&: Exit 5 NB Off \& NH 28
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{8: Exit 5 NB Off \& NH 28} & \multicolumn{2}{|l|}{01/23/2018} \\
\hline & \(\Rightarrow\) & \(\rightarrow\) & & & \(\longleftarrow\) & 4 & 4 & \(\uparrow\) & & , & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Turn Type & Prot & NA & & & NA & Free & Prot & & Prot & & & \\
\hline Protected Phases & 5 & 2 & & & 6 & & 8 & & 8 & & & \\
\hline Permitted Phases & & 2 & & & 6 & Free & & & & & & \\
\hline Detector Phase & 5 & 2 & & & 6 & & 8 & & 8 & & & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 4.0 & 16.0 & & & 16.0 & & 4.0 & & 4.0 & & & \\
\hline Minimum Split (s) & 10.0 & 23.0 & & & 23.0 & & 10.0 & & 10.0 & & & \\
\hline Total Split (s) & 42.0 & 70.0 & & & 28.0 & & 40.0 & & 40.0 & & & \\
\hline Total Split (\%) & 38.2\% & 63.6\% & & & 25.5\% & & 36.4\% & & 36.4\% & & & \\
\hline Maximum Green (s) & 36.0 & 64.0 & & & 22.0 & & 34.0 & & 34.0 & & & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & & 4.0 & & 4.0 & & 4.0 & & & \\
\hline All-Red Time (s) & 2.0 & 2.0 & & & 2.0 & & 2.0 & & 2.0 & & & \\
\hline Lost Time Adjust (s) & 0.0 & 0.0 & & & 0.0 & & 0.0 & & 0.0 & & & \\
\hline Total Lost Time (s) & 6.0 & 6.0 & & & 6.0 & & 6.0 & & 6.0 & & & \\
\hline Lead/Lag & Lead & & & & Lag & & & & & & & \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 5.0 & 5.0 & & & 5.0 & & 3.0 & & 3.0 & & & \\
\hline Recall Mode & None & C-Min & & & C-Min & & None & & None & & & \\
\hline Walk Time (s) & & 7.0 & & & 7.0 & & & & & & & \\
\hline Flash Dont Walk (s) & & 10.0 & & & 10.0 & & & & & & & \\
\hline Pedestrian Calls (\#hr) & & 0 & & & 0 & & & & & & & \\
\hline Act Effct Green (s) & 36.0 & 64.0 & & & 22.0 & 110.0 & 34.0 & & 34.0 & & & \\
\hline Actuated g/C Ratio & 0.33 & 0.58 & & & 0.20 & 1.00 & 0.31 & & 0.31 & & & \\
\hline \(\mathrm{v} / \mathrm{C}\) Ratio & 1.03 & 0.12 & & & 0.96 & 0.25 & 1.04 & & 0.34 & & & \\
\hline Control Delay & 54.7 & 1.6 & & & 70.4 & 0.4 & 88.9 & & 6.0 & & & \\
\hline Queue Delay & 0.0 & 0.0 & & & 0.0 & 0.0 & 0.0 & & 0.0 & & & \\
\hline Total Delay & 54.7 & 1.6 & & & 70.4 & 0.4 & 88.9 & & 6.0 & & & \\
\hline LOS & D & A & & & E & A & F & & A & & & \\
\hline Approach Delay & & 39.1 & & & 44.9 & & & 65.9 & & & & \\
\hline Approach LOS & & D & & & D & & & E & & & & \\
\hline Queue Length 50th (t) & \(\sim 412\) & 2 & & & 245 & 0 & \(\sim 407\) & & 2 & & & \\
\hline Queue Length 95th (tt) & \#569 & 3 & & & \#363 & 0 & \#483 & & 33 & & & \\
\hline Internal Link Dist (ft) & & 613 & & & 462 & & & 787 & & & 312 & \\
\hline \multicolumn{13}{|l|}{Turn Bay Length ( \((\mathrm{t})\) ( \({ }^{\text {a }}\)} \\
\hline Base Capacity (vph) & 537 & 1909 & & & 687 & 1538 & 511 & & 596 & & & \\
\hline Starvation Cap Reductn & 0 & 0 & & & 0 & 0 & 0 & & 0 & & & \\
\hline Spillback Cap Reductn & 0 & 0 & & & 0 & 0 & 0 & & 0 & & & \\
\hline Storage Cap Reductn & 0 & 0 & & & 0 & 0 & 0 & & 0 & & & \\
\hline Reduced v/c Ratio & 1.03 & 0.12 & & & 0.96 & 0.25 & 1.04 & & 0.34 & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline
\end{tabular}

\section*{Area Type: Other}

Cycle Length: 110
Actuated Cycle Length: 110
Offset: \(0(0 \%)\), Referenced to phase 2:EBT and 6:WBT, Start of Yellow, Master Intersection
Natural Cycle: 110
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.04
Intersection Signal Delay: 49.2 Intersection LOS: D

Intersection Capacity Utilization 71.3\%

\section*{ICU Level of Service C}

Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 3: Exit 5 NB Off \& NH 28

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & & \(\uparrow\) & 7 & & * & & \({ }^{*}\) & 性 & & \({ }^{*}\) & 性 & \\
\hline Traffic Volume (vph) & 10 & 0 & 170 & 0 & 0 & 0 & 100 & 450 & 5 & 5 & 1010 & 40 \\
\hline Future Volume (vph) & 10 & 0 & 170 & 0 & 0 & 0 & 100 & 450 & 5 & 5 & 1010 & 40 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 0 & & 225 & 0 & & 0 & 350 & & 0 & 100 & & 0 \\
\hline Storage Lanes & 0 & & 1 & 0 & & 0 & 1 & & 0 & 1 & & 0 \\
\hline Taper Length ( ft ) & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.95 & 0.95 & 1.00 & 0.95 & 0.95 \\
\hline Frt & & & 0.850 & & & & & 0.998 & & & 0.994 & \\
\hline Flt Protected & & 0.950 & & & & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (prot) & 0 & 1770 & 1583 & 0 & 1900 & 0 & 1770 & 3532 & 0 & 1770 & 3518 & 0 \\
\hline Flt Permitted & & & & & & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (perm) & 0 & 1863 & 1583 & 0 & 1900 & 0 & 1770 & 3532 & 0 & 1770 & 3518 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & & 185 & & & & & 2 & & & 5 & \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance (ft) & & 593 & & & 447 & & & 750 & & & 330 & \\
\hline Travel Time (s) & & 13.5 & & & 10.2 & & & 17.0 & & & 7.5 & \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.25 & 0.25 & 0.25 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 0\% & 0\% & 0\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% \\
\hline Adj. Flow (vph) & 11 & 0 & 185 & 0 & 0 & 0 & 109 & 489 & 5 & 5 & 1098 & 43 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 11 & 185 & 0 & 0 & 0 & 109 & 494 & 0 & 5 & 1141 & 0 \\
\hline Enter Blocked Intersection & No \\
\hline Lane Alignment & Left & Left & Right \\
\hline Median Width(ft) & & 0 & & & 0 & & & 12 & & & 12 & \\
\hline Link Offset(ft) & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Crosswalk Width( tt ) & & 16 & & & 16 & & & 16 & & & 16 & \\
\hline \multicolumn{13}{|l|}{Two way Left Turn Lane} \\
\hline Headway Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Turning Speed (mph) & 15 & & 9 & 15 & & 9 & 15 & & 9 & 15 & & 9 \\
\hline Number of Detectors & 3 & 3 & 1 & 3 & 1 & & 3 & 3 & & 3 & 3 & \\
\hline Detector Template & Left & Thru & Right & Left & & & Left & Thru & & Left & Thru & \\
\hline Leading Detector (ft) & 256 & 256 & 45 & 256 & 45 & & 256 & 256 & & 256 & 256 & \\
\hline Trailing Detector (ft) & -5 & -5 & -5 & -5 & -5 & & -5 & -5 & & -5 & -5 & \\
\hline Detector 1 Position(ft) & -5 & -5 & -5 & -5 & -5 & & -5 & -5 & & -5 & -5 & \\
\hline Detector 1 Size(ft) & 50 & 50 & 50 & 50 & 50 & & 50 & 50 & & 50 & 50 & \\
\hline Detector 1 Type & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline \multicolumn{13}{|l|}{Detector 1 Channel} \\
\hline Detector 1 Extend (s) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 1 Queue (s) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 1 Delay (s) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 2 Position(ft) & 125 & 125 & & 125 & & & 125 & 125 & & 125 & 125 & \\
\hline Detector 2 Size(ft) & 6 & 6 & & 6 & & & 6 & 6 & & 6 & 6 & \\
\hline Detector 2 Type & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline \multicolumn{13}{|l|}{Detector 2 Channel} \\
\hline Detector 2 Extend (s) & 0.0 & 0.0 & & 0.0 & & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 3 Position(ft) & 250 & 250 & & 250 & & & 250 & 250 & & 250 & 250 & \\
\hline Detector 3 Size(ft) & 6 & 6 & & 6 & & & 6 & 6 & & 6 & 6 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Detector 3 Type & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & CI+Ex & & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline \multicolumn{13}{|l|}{Detector 3 Channel 0} \\
\hline Detector 3 Extend (s) & 0.0 & 0.0 & & 0.0 & & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Turn Type & Perm & NA & custom & & & & Prot & NA & & Prot & NA & \\
\hline Protected Phases & & 8 & & & 4 & & 5 & 2 & & 1 & 6 & \\
\hline Permitted Phases & 8 & & 6 & 4 & & & & & & & & \\
\hline Detector Phase & 8 & 8 & 6 & 4 & 4 & & 5 & 2 & & 1 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 5.0 & 5.0 & 8.0 & 5.0 & 5.0 & & 5.0 & 8.0 & & 5.0 & 8.0 & \\
\hline Minimum Split (s) & 24.0 & 24.0 & 24.0 & 24.0 & 24.0 & & 24.0 & 24.0 & & 11.0 & 24.0 & \\
\hline Total Split (s) & 24.0 & 24.0 & 42.0 & 24.0 & 24.0 & & 24.0 & 55.0 & & 11.0 & 42.0 & \\
\hline Total Split (\%) & 26.7\% & 26.7\% & 46.7\% & 26.7\% & 26.7\% & & 26.7\% & 61.1\% & & 12.2\% & 46.7\% & \\
\hline Maximum Green (s) & 18.0 & 18.0 & 36.0 & 18.0 & 18.0 & & 18.0 & 49.0 & & 5.0 & 36.0 & \\
\hline Yellow Time (s) & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & \\
\hline All-Red Time (s) & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & 0.0 & & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Total Lost Time (s) & & 6.0 & 6.0 & & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Lead/Lag & & & Lag & & & & Lead & Lag & & Lead & Lag & \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & None & None & Min & None & None & & None & Min & & None & Min & \\
\hline Walk Time (s) & 7.0 & 7.0 & 7.0 & 7.0 & 7.0 & & 7.0 & 7.0 & & & 7.0 & \\
\hline Flash Dont Walk (s) & 11.0 & 11.0 & 11.0 & 11.0 & 11.0 & & 11.0 & 11.0 & & & 11.0 & \\
\hline Pedestrian Calls (\#/hr) & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & & & 0 & \\
\hline Act Effct Green (s) & & 6.3 & 41.9 & & & & 9.4 & 55.9 & & 5.2 & 41.9 & \\
\hline Actuated g/C Ratio & & 0.10 & 0.69 & & & & 0.15 & 0.92 & & 0.09 & 0.69 & \\
\hline \(\mathrm{v} / \mathrm{c}\) Ratio & & 0.06 & 0.16 & & & & 0.40 & 0.15 & & 0.03 & 0.47 & \\
\hline Control Delay & & 27.8 & 2.1 & & & & 29.5 & 2.3 & & 29.6 & 8.4 & \\
\hline Queue Delay & & 0.0 & 0.0 & & & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Total Delay & & 27.8 & 2.1 & & & & 29.5 & 2.3 & & 29.6 & 8.4 & \\
\hline LOS & & C & A & & & & C & A & & C & A & \\
\hline Approach Delay & & 3.5 & & & & & & 7.2 & & & 8.5 & \\
\hline Approach LOS & & A & & & & & & A & & & A & \\
\hline Queue Length 50th (ft) & & 3 & 0 & & & & 34 & 0 & & 2 & 91 & \\
\hline Queue Length 95th ( ft ) & & 19 & 30 & & & & 89 & 74 & & 13 & 270 & \\
\hline Internal Link Dist (ft) & & 513 & & & 367 & & & 670 & & & 250 & \\
\hline Turn Bay Length (ft) & & & 225 & & & & 350 & & & 100 & & \\
\hline Base Capacity (vph) & & 568 & 1147 & & & & 540 & 3288 & & 150 & 2424 & \\
\hline Starvation Cap Reductn & & 0 & 0 & & & & 0 & 0 & & 0 & 0 & \\
\hline Spillback Cap Reductn & & 0 & 0 & & & & 0 & 0 & & 0 & 0 & \\
\hline Storage Cap Reductn & & 0 & 0 & & & & 0 & 0 & & 0 & 0 & \\
\hline Reduced v/c Ratio & & 0.02 & 0.16 & & & & 0.20 & 0.15 & & 0.03 & 0.47 & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline \multicolumn{13}{|l|}{Area Type: Other} \\
\hline \multicolumn{13}{|l|}{Cycle Length: 90} \\
\hline \multicolumn{13}{|l|}{Actuated Cycle Length: 60.9} \\
\hline \multicolumn{13}{|l|}{Natural Cycle: 80} \\
\hline Control Type: Actuated-U & rdinated & & & & & & & & & & & \\
\hline
\end{tabular}

Lanes, Volumes, Timings
5 \%: NH 102 \& St. Charles Street/Londonderry Road
Maximum v/c Ratio: 0.47
Intersection Signal Delay: 7.6 Intersection LOS: A
Intersection Capacity Utilization 57.7\%
ICU Level of Service B
Analysis Period (min) 15
Splits and Phases: 9: NH 102 \& St. Charles StreetLondonderry Road

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & & \$ & & & * & & & \(\uparrow\) & & & 4 & \\
\hline Traffic Volume (vph) & 10 & 10 & 10 & 360 & 0 & 40 & 0 & 380 & 110 & 15 & 525 & 0 \\
\hline Future Volume (vph) & 10 & 10 & 10 & 360 & 0 & 40 & 0 & 380 & 110 & 15 & 525 & 0 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & 0.955 & & & 0.986 & & & 0.970 & & & & \\
\hline Flt Protected & & 0.984 & & & 0.957 & & & & & & 0.999 & \\
\hline Satd. Flow (prot) & 0 & 1750 & 0 & 0 & 1741 & 0 & 0 & 1706 & 0 & 0 & 1808 & 0 \\
\hline Flt Permitted & & 0.844 & & & 0.711 & & & & & & 0.980 & \\
\hline Satd. Flow (perm) & 0 & 1501 & 0 & 0 & 1293 & 0 & 0 & 1706 & 0 & 0 & 1773 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & 17 & & & 36 & & & 22 & & & & \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance ( ft ) & & 356 & & & 493 & & & 1124 & & & 603 & \\
\hline Travel Time (s) & & 8.1 & & & 11.2 & & & 25.5 & & & 13.7 & \\
\hline Peak Hour Factor & 0.60 & 0.60 & 0.60 & 0.96 & 0.96 & 0.96 & 0.89 & 0.89 & 0.89 & 0.86 & 0.86 & 0.86 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 3\% & 3\% & 3\% & 8\% & 8\% & 8\% & 5\% & 5\% & 5\% \\
\hline Adj. Flow (vph) & 17 & 17 & 17 & 375 & 0 & 42 & 0 & 427 & 124 & 17 & 610 & 0 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 51 & 0 & 0 & 417 & 0 & 0 & 551 & 0 & 0 & 627 & 0 \\
\hline Enter Blocked Intersection & No \\
\hline Lane Alignment & Left & Left & Right \\
\hline Median Width(ft) & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Link Offset(ft) & & -22 & & & 0 & & & 0 & & & 0 & \\
\hline Crosswalk Width(ft) & & 16 & & & 16 & & & 16 & & & 16 & \\
\hline \multicolumn{13}{|l|}{Two way Left Turn Lane} \\
\hline Headway Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Turning Speed (mph) & 15 & & 9 & 15 & & 9 & 15 & & 9 & 15 & & 9 \\
\hline Number of Detectors & 3 & 1 & & 3 & 2 & & & 2 & & 3 & 2 & \\
\hline Detector Template & Left & & & Left & & & & & & Left & & \\
\hline Leading Detector ( ft ) & 256 & 45 & & 256 & 131 & & & 131 & & 256 & 131 & \\
\hline Trailing Detector (ft) & -5 & -5 & & -5 & -5 & & & -5 & & -5 & -5 & \\
\hline Detector 1 Position(ft) & -5 & -5 & & -5 & -5 & & & -5 & & -5 & -5 & \\
\hline Detector 1 Size(ft) & 50 & 50 & & 50 & 50 & & & 50 & & 50 & 50 & \\
\hline Detector 1 Type & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline \multicolumn{13}{|l|}{Detector 1 Channel} \\
\hline Detector 1 Extend (s) & 0.0 & 0.0 & & 0.0 & 0.0 & & & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 1 Queue (s) & 0.0 & 0.0 & & 0.0 & 0.0 & & & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 1 Delay (s) & 0.0 & 0.0 & & 0.0 & 0.0 & & & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 2 Position(ft) & 125 & & & 125 & 125 & & & 125 & & 125 & 125 & \\
\hline Detector 2 Size(ft) & 6 & & & 6 & 6 & & & 6 & & 6 & 6 & \\
\hline Detector 2 Type & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & & Cl+Ex & CI+Ex & \\
\hline \multicolumn{13}{|l|}{Detector 2 Channel} \\
\hline Detector 2 Extend (s) & 0.0 & & & 0.0 & 0.0 & & & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 3 Position(ft) & 250 & & & 250 & & & & & & 250 & & \\
\hline Detector 3 Size(ft) & 6 & & & 6 & & & & & & 6 & & \\
\hline Detector 3 Type & \(\mathrm{Cl}+\mathrm{Ex}\) & & & Cl+Ex & & & & & & \(\mathrm{Cl}+\mathrm{Ex}\) & & \\
\hline \multicolumn{13}{|l|}{Detector 3 Channel} \\
\hline Detector 3 Extend (s) & 0.0 & & & 0.0 & & & & & & 0.0 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Turn Type & Perm & NA & & Perm & NA & & & NA & & Perm & NA & \\
\hline Protected Phases & & 4 & & & 4 & & & 2 & & & 2 & \\
\hline Permitted Phases & 4 & & & 4 & & & & & & 2 & & \\
\hline Detector Phase & 4 & 4 & & 4 & 4 & & & 2 & & 2 & 2 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 5.0 & 5.0 & & 5.0 & 5.0 & & & 5.0 & & 5.0 & 5.0 & \\
\hline Minimum Split (s) & 24.0 & 24.0 & & 24.0 & 24.0 & & & 24.0 & & 24.0 & 24.0 & \\
\hline Total Split (s) & 42.0 & 42.0 & & 42.0 & 42.0 & & & 48.0 & & 48.0 & 48.0 & \\
\hline Total Split (\%) & 46.7\% & 46.7\% & & 46.7\% & 46.7\% & & & 53.3\% & & 53.3\% & 53.3\% & \\
\hline Maximum Green (s) & 36.0 & 36.0 & & 36.0 & 36.0 & & & 42.0 & & 42.0 & 42.0 & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & & 4.0 & & 4.0 & 4.0 & \\
\hline All-Red Time (s) & 2.0 & 2.0 & & 2.0 & 2.0 & & & 2.0 & & 2.0 & 2.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & & 6.0 & & & 6.0 & & & 6.0 & & & 6.0 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & None & None & & None & None & & & Min & & Min & Min & \\
\hline Walk Time (s) & 7.0 & 7.0 & & 7.0 & 7.0 & & & 7.0 & & 7.0 & 7.0 & \\
\hline Flash Dont Walk (s) & 11.0 & 11.0 & & 11.0 & 11.0 & & & 11.0 & & 11.0 & 11.0 & \\
\hline Pedestrian Calls (\#/hr) & 0 & 0 & & 0 & 0 & & & 0 & & 0 & 0 & \\
\hline Act Effct Green (s) & & 27.9 & & & 27.9 & & & 34.8 & & & 34.8 & \\
\hline Actuated g/C Ratio & & 0.37 & & & 0.37 & & & 0.46 & & & 0.46 & \\
\hline v/c Ratio & & 0.09 & & & 0.83 & & & 0.69 & & & 0.77 & \\
\hline Control Delay & & 12.8 & & & 37.0 & & & 21.7 & & & 25.4 & \\
\hline Queue Delay & & 0.0 & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Delay & & 12.8 & & & 37.0 & & & 21.7 & & & 25.4 & \\
\hline LOS & & B & & & D & & & C & & & C & \\
\hline Approach Delay & & 12.8 & & & 37.0 & & & 21.7 & & & 25.4 & \\
\hline Approach LOS & & B & & & D & & & C & & & C & \\
\hline Queue Length 50th (ft) & & 11 & & & 182 & & & 207 & & & 258 & \\
\hline Queue Length 95th (ft) & & 20 & & & \#342 & & & 341 & & & 392 & \\
\hline Internal Link Dist (ft) & & 276 & & & 413 & & & 1044 & & & 523 & \\
\hline \multicolumn{13}{|l|}{Turn Bay Length (ft)} \\
\hline Base Capacity (vph) & & 771 & & & 675 & & & 1021 & & & 1052 & \\
\hline Starvation Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Spillback Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Storage Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Reduced v/c Ratio & & 0.07 & & & 0.62 & & & 0.54 & & & 0.60 & \\
\hline
\end{tabular}
\begin{tabular}{l} 
Intersection Summary \(\quad\) Other \\
\hline Area Type: \\
Cycle Length: 90 \\
Actuated Cycle Length: 75.5 \\
Natural Cycle: 55 \\
Control Type: Actuated-Uncoordinated \\
\begin{tabular}{l} 
Maximum v/c Ratio: 0.83 \\
Intersection Signal Delay: 26.7 \\
Intersection Capacity Utilization \(80.1 \%\)
\end{tabular} \\
\hline
\end{tabular}

6 10: NH 102 \& Fordway/Madden Hill Road
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 10: NH 102 \& Fordway/Madden Hill Road


Zone 3
7: Birch St/Crystal Ave \& NH 102 (E Broadway)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\rangle\) & \(\rightarrow\) & & \(\checkmark\) & & & 4 & 4 & \(p\) & & \(\downarrow\) & \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & 7 & A & & \% & \(\dagger\) & & \% & 今 & & \({ }^{*}\) & \(\uparrow\) & \\
\hline Traffic Volume (vph) & 60 & 210 & 50 & 20 & 400 & 50 & 70 & 270 & 20 & 70 & 270 & 40 \\
\hline Future Volume (vph) & 60 & 210 & 50 & 20 & 400 & 50 & 70 & 270 & 20 & 70 & 270 & 40 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (t) & 390 & & 0 & 110 & & - & 70 & & , & 245 & & 245 \\
\hline Storage Lanes & 1 & & 0 & 1 & & 0 & 1 & & 0 & 1 & & \\
\hline Taper Length (tt) & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & 0.971 & & & 0.983 & & & 0.989 & & & & 0.850 \\
\hline Flt Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (prot) & 1656 & 1693 & 0 & 1703 & 1762 & 0 & 1719 & 1790 & 0 & 1703 & 1792 & 1524 \\
\hline Fit Permitted & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (perm) & 1656 & 1693 & 0 & 1703 & 1762 & 0 & 1719 & 1790 & 0 & 1703 & 1792 & 1524 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & 15 & & & & & & 4 & & & & 182 \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance ( t ) & & 505 & & & 530 & & & 361 & & & 411 & \\
\hline Travel Time (s) & & 11.5 & & & 12.0 & & & 8.2 & & & 9.3 & \\
\hline Peak Hour Factor & 0.96 & 0.96 & 0.96 & 0.94 & 0.94 & 0.94 & 0.85 & 0.85 & 0.85 & 0.91 & 0.91 & 0.91 \\
\hline Heavy Vehicles (\%) & 9\% & 9\% & 9\% & 6\% & 6\% & 6\% & 5\% & 5\% & 5\% & 6\% & 6\% & 6\% \\
\hline Parking (\#/hr) & & & 0 & & & & & & & & & \\
\hline Adj. Flow (vph) & 63 & 219 & 52 & 21 & 426 & 53 & 82 & 318 & 24 & 77 & 297 & 44 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 63 & 271 & 0 & 21 & 479 & 0 & 82 & 342 & 0 & 77 & 297 & 44 \\
\hline Turn Type & Prot & NA & Perm \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & 3 & 8 & & 7 & 4 & \\
\hline \multicolumn{13}{|l|}{Permitted Phases} \\
\hline Detector Phase & 5 & 2 & & 1 & 6 & & 3 & 8 & & 7 & 4 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 4.0 & 5.0 & & 4.0 & 10.0 & & 4.0 & 10.0 & & 4.0 & 9.0 & 9.0 \\
\hline Minimum Split (s) & 10.0 & 30.0 & & 10.0 & 30.0 & & 10.0 & 25.0 & & 10.0 & 25.0 & 25.0 \\
\hline Total Split (s) & 12.0 & 39.0 & & 11.0 & 38.0 & & 13.0 & 27.0 & & 13.0 & 27.0 & 27.0 \\
\hline Total Split (\%) & 13.3\% & 43.3\% & & 12.2\% & 42.2\% & & 14.4\% & 30.0\% & & 14.4\% & 30.0\% & 30.0\% \\
\hline Maximum Green (s) & 6.0 & 33.0 & & 5.0 & 32.0 & & 7.0 & 21.0 & & 7.0 & 21.0 & 21.0 \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 \\
\hline All-Red Time (s) & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & 2.0 \\
\hline Lost Time Adjust (s) & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 \\
\hline Total Lost Time (s) & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & 6.0 \\
\hline Lead/Lag & Lead & Lag & Lag \\
\hline Lead-Lag Optimize? & Yes & Yes & Yes \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & 3.0 \\
\hline Recall Mode & None & Min & & None & Min & & Min & None & & Min & None & None \\
\hline Walk Time (s) & & 7.0 & & & 7.0 & & & 7.0 & & & 7.0 & 7.0 \\
\hline Flash Dont Walk (s) & & 11.0 & & & 11.0 & & & 11.0 & & & 11.0 & 11.0 \\
\hline Pedestrian Calls (\#/hr) & & 10 & & & 10 & & & 0 & & & 10 & 10 \\
\hline Act Effict Green (s) & 6.2 & 30.7 & & 5.3 & 25.7 & & 7.0 & 18.5 & & 7.0 & 18.5 & 18.5 \\
\hline Actuated g/C Ratio & 0.08 & 0.39 & & 0.07 & 0.33 & & 0.09 & 0.23 & & 0.09 & 0.23 & 0.23 \\
\hline \(\mathrm{V} / \mathrm{C}\) Ratio & 0.48 & 0.41 & & 0.19 & 0.83 & & 0.54 & 0.81 & & 0.51 & 0.71 & 0.09 \\
\hline Control Delay & 53.8 & 19.7 & & 44.2 & 38.6 & & 53.6 & 46.9 & & 52.3 & 40.4 & 0.3 \\
\hline
\end{tabular}


Splits and Phases: 7: Birch St/Crystal Ave \& NH 102 (E Broadway)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & NBL & NBT & NBR & SBL & SBT & SBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & \({ }^{*}\) & 个4 & 「 & \({ }^{*} 1\) & 4 & & \% & 4 & \({ }^{7}\) & 7 & 4 & \% \\
\hline Traffic Volume (vph) & 20 & 220 & 115 & 345 & 270 & 0 & 190 & 280 & 20 & 40 & 370 & 530 \\
\hline Future Volume (vph) & 20 & 220 & 115 & 345 & 270 & 0 & 190 & 280 & 20 & 40 & 370 & 530 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 110 & & 90 & 360 & & 0 & 190 & & 180 & 0 & & 210 \\
\hline Storage Lanes & 1 & & 1 & 2 & & 0 & 1 & & 1 & 1 & & \\
\hline Taper Length ( ft ) & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & & 0.850 & & & & & & 0.850 & & & 0.850 \\
\hline Fit Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (prot) & 1736 & 3471 & 1553 & 3335 & 3438 & 0 & 1752 & 1845 & 1568 & 1752 & 1845 & 1568 \\
\hline Flt Permitted & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (perm) & 1736 & 3471 & 1553 & 3335 & 3438 & 0 & 1752 & 1845 & 1568 & 1752 & 1845 & 1568 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & & 327 & & & & & & 400 & & & 182 \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance (ft) & & 639 & & & 476 & & & 532 & & & 387 & \\
\hline Travel Time (s) & & 14.5 & & & 10.8 & & & 12.1 & & & 8.8 & \\
\hline Peak Hour Factor & 0.84 & 0.84 & 0.84 & 0.79 & 0.79 & 0.79 & 0.86 & 0.86 & 0.86 & 0.99 & 0.99 & 0.99 \\
\hline Heavy Vehicles (\%) & 4\% & 4\% & 4\% & 5\% & 5\% & 5\% & 3\% & 3\% & 3\% & 3\% & 3\% & 3\% \\
\hline Adj. Flow (vph) & 24 & 262 & 137 & 437 & 342 & 0 & 221 & 326 & 23 & 40 & 374 & 535 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 24 & 262 & 137 & 437 & 342 & 0 & 221 & 326 & 23 & 40 & 374 & 535 \\
\hline Turn Type & Prot & NA & Perm & Prot & NA & & Prot & NA & Free & Prot & NA & pt+ov \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & 7 & 4 & & 3 & 8 & 81 \\
\hline Permitted Phases & & 2 & 2 & & 6 & & & 4 & Free & & 8 & \\
\hline Detector Phase & 5 & 2 & 2 & 1 & 6 & & 7 & 4 & & 3 & 8 & 81 \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 8.0 & 8.0 & 8.0 & 8.0 & 8.0 & & 6.0 & 8.0 & & 7.0 & 8.0 & \\
\hline Minimum Split (s) & 14.0 & 21.0 & 21.0 & 14.0 & 21.0 & & 12.0 & 21.0 & & 13.0 & 21.0 & \\
\hline Total Split (s) & 14.0 & 23.0 & 23.0 & 21.0 & 30.0 & & 20.0 & 33.0 & & 13.0 & 26.0 & \\
\hline Total Split (\%) & 15.6\% & 25.6\% & 25.6\% & 23.3\% & 33.3\% & & 22.2\% & 36.7\% & & 14.4\% & 28.9\% & \\
\hline Maximum Green (s) & 8.0 & 17.0 & 17.0 & 15.0 & 24.0 & & 14.0 & 27.0 & & 7.0 & 20.0 & \\
\hline Yellow Time (s) & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & \\
\hline All-Red Time (s) & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & \\
\hline Lost Time Adjust (s) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Total Lost Time (s) & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Lead/Lag & Lead & Lag & Lag & Lead & Lag & & Lead & Lag & & Lead & Lag & \\
\hline Lead-Lag Optimize? & Yes & Yes & Yes & Yes & Yes & & Yes & Yes & & Yes & Yes & \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & Max & C-Max & C-Max & None & Max & & None & None & & None & None & \\
\hline Walk Time (s) & & 5.0 & 5.0 & & 5.0 & & & 5.0 & & & 5.0 & \\
\hline Flash Dont Walk (s) & & 10.0 & 10.0 & & 10.0 & & & 10.0 & & & 10.0 & \\
\hline Pedestrian Calls (\#/hr) & & 0 & 0 & & 0 & & & 0 & & & 0 & \\
\hline Act Effct Green (s) & 8.6 & 18.1 & 18.1 & 14.6 & 24.0 & & 13.5 & 31.6 & 90.0 & 7.0 & 19.9 & 40.4 \\
\hline Actuated g/C Ratio & 0.10 & 0.20 & 0.20 & 0.16 & 0.27 & & 0.15 & 0.35 & 1.00 & 0.08 & 0.22 & 0.45 \\
\hline v/c Ratio & 0.14 & 0.38 & 0.24 & 0.81 & 0.37 & & 0.84 & 0.50 & 0.01 & 0.29 & 0.92 & 0.67 \\
\hline Control Delay & 40.2 & 33.5 & 1.0 & 45.9 & 20.2 & & 65.1 & 27.9 & 0.0 & 45.2 & 64.3 & 17.0 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & NBL & NBT & NBR & SBL & SBT & SBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Total Delay & 40.2 & 33.5 & 1.0 & 45.9 & 20.2 & & 65.1 & 27.9 & 0.0 & 45.2 & 64.3 & 17.0 \\
\hline LOS & D & C & A & D & C & & E & C & A & D & E & B \\
\hline Approach Delay & & 23.3 & & & 34.6 & & & 41.2 & & & 36.8 & \\
\hline Approach LOS & & C & & & C & & & D & & & D & \\
\hline Queue Length 50th (tt) & 13 & 69 & 0 & 91 & 85 & & 123 & 157 & 0 & 22 & 208 & 149 \\
\hline Queue Length 95th (tt) & 35 & 98 & 0 & 131 & 61 & & \#223 & 230 & 0 & 54 & \#374 & 265 \\
\hline Internal Link Dist ( t ) & & 559 & & & 396 & & & 452 & & & 307 & \\
\hline Turn Bay Length (ft) & 110 & & 90 & 360 & & & 190 & & 180 & & & 210 \\
\hline Base Capacity (vph) & 166 & 696 & 572 & 555 & 916 & & 272 & 647 & 1568 & 136 & 410 & 795 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & , & & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.14 & 0.38 & 0.24 & 0.79 & 0.37 & & 0.81 & 0.50 & 0.01 & 0.29 & 0.91 & 0.67 \\
\hline
\end{tabular}

\section*{Intersection Summary}

\section*{Area Type: \\ Other}

Cycle Length: 90
Actuated Cycle Length: 90
Offset: \(30(33 \%)\), Referenced to phase 2:NBT, Start of Yellow
Natural Cycle: 80
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.92
Intersection Signal Delay: 35.0
Intersection LOS: D
Intersection Capacity Utilization 66.5\% ICU Level of Service C
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 11: Folsom Rd/Tsienneto Rd \& Crystal Av/NH 28


13: Applebees/Linlew Dr \& NH 28
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(-1\) & \(\rightarrow\) & 2 & 1 & - & 1 & 3 & 7 & \(\rho\) & 6 & \(\downarrow\) & 4 \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & 7 & 中 \({ }_{6}\) & & \% & \(\uparrow \uparrow\) & & & \(\uparrow\) & 「 & & \(\uparrow\) & " \\
\hline Traffic Volume (vph) & 30 & 825 & 0 & 0 & 830 & 40 & 5 & 0 & 5 & 10 & 0 & 40 \\
\hline Future Volume (vph) & 30 & 825 & 0 & 0 & 830 & 40 & 5 & 0 & 5 & 10 & 0 & 40 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 110 & & 0 & 115 & & 150 & 0 & & 0 & 0 & & 0 \\
\hline Storage Lanes & 1 & & 0 & 1 & & 0 & 0 & & 1 & 0 & & 1 \\
\hline Taper Length (ft) & 50 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 0.95 & 0.95 & 1.00 & 0.95 & 0.95 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Frt & & & & & 0.993 & & & & 0.850 & & & 0.850 \\
\hline Flt Protected & 0.950 & & & & & & & 0.950 & & & 0.950 & \\
\hline Satd. Flow (prot) & 1687 & 3374 & 0 & 1863 & 3514 & 0 & 0 & 1805 & 1615 & 0 & 1787 & 1599 \\
\hline Flt Permitted & 0.950 & & & & & & & 0.976 & & & 0.976 & \\
\hline Satd. Flow (perm) & 1687 & 3374 & 0 & 1863 & 3514 & 0 & 0 & 1854 & 1615 & 0 & 1836 & 1599 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & & & & 6 & & & & 109 & & & 109 \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance (ft) & & 277 & & & 671 & & & 218 & & & 433 & \\
\hline Travel Time (s) & & 6.3 & & & 15.3 & & & 5.0 & & & 9.8 & \\
\hline Peak Hour Factor & 0.83 & 0.83 & 0.83 & 0.92 & 0.92 & 0.92 & 0.50 & 0.50 & 0.50 & 0.90 & 0.90 & 0.90 \\
\hline Heavy Vehicles (\%) & 7\% & 7\% & 7\% & 2\% & 2\% & 2\% & 0\% & 0\% & 0\% & 1\% & 1\% & 1\% \\
\hline Adj. Flow (vph) & 36 & 994 & 0 & 0 & 902 & 43 & 10 & 0 & 10 & 11 & 0 & 44 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 36 & 994 & 0 & 0 & 945 & 0 & 0 & 10 & 10 & 0 & 11 & 44 \\
\hline Turn Type & Prot & NA & & Prot & NA & & Perm & NA & Perm & Perm & NA & Perm \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & & 8 & & & 4 & \\
\hline Permitted Phases & & & & & 6 & & 8 & 8 & 8 & 4 & & 4 \\
\hline Detector Phase & 5 & 2 & & 1 & 6 & & 8 & 8 & 8 & 4 & 4 & 4 \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 8.0 & 8.0 & & 5.0 & 8.0 & & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 \\
\hline Minimum Split ( s ) & 14.0 & 46.0 & & 11.0 & 43.0 & & 33.0 & 33.0 & 33.0 & 33.0 & 33.0 & 33.0 \\
\hline Total Split (s) & 14.0 & 46.0 & & 11.0 & 43.0 & & 33.0 & 33.0 & 33.0 & 33.0 & 33.0 & 33.0 \\
\hline Total Split (\%) & 15.6\% & 51.1\% & & 12.2\% & 47.8\% & & 36.7\% & 36.7\% & 36.7\% & 36.7\% & 36.7\% & 36.7\% \\
\hline Maximum Green ( s ) & 8.0 & 40.0 & & 5.0 & 37.0 & & 27.0 & 27.0 & 27.0 & 27.0 & 27.0 & 27.0 \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 \\
\hline All-Red Time (s) & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 \\
\hline Lost Time Adjust (s) & 0.0 & 0.0 & & 0.0 & 0.0 & & & 0.0 & 0.0 & & 0.0 & 0.0 \\
\hline Total Lost Time (s) & 6.0 & 6.0 & & 6.0 & 6.0 & & & 6.0 & 6.0 & & 6.0 & 6.0 \\
\hline Lead/Lag & Lead & Lag & & Lead & Lag & & & & & & & \\
\hline Lead-Lag Optimize? & Yes & Yes & & Yes & Yes & & & & & & & \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
\hline Recall Mode & None & C-Max & & None & None & & None & None & None & None & None & None \\
\hline Act Effct Green (s) & 8.4 & 78.7 & & & 69.8 & & & 6.3 & 6.3 & & 6.3 & 6.3 \\
\hline Actuated g/C Ratio & 0.09 & 0.87 & & & 0.78 & & & 0.07 & 0.07 & & 0.07 & 0.07 \\
\hline \(\mathrm{v} / \mathrm{c}\) Ratio & 0.23 & 0.34 & & & 0.35 & & & 0.08 & 0.05 & & 0.09 & 0.21 \\
\hline Control Delay & 47.1 & 1.4 & & & 5.2 & & & 39.8 & 0.4 & & 40.0 & 2.2 \\
\hline Queue Delay & 0.0 & 0.0 & & & 0.0 & & & 0.0 & 0.0 & & 0.0 & 0.0 \\
\hline Total Delay & 47.1 & 1.4 & & & 5.2 & & & 39.8 & 0.4 & & 40.0 & 2.2 \\
\hline LOS & D & A & & & A & & & D & A & & D & A \\
\hline Approach Delay & & 3.0 & & & 5.2 & & & 20.1 & & & 9.7 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & - & \(\rightarrow\) & 2 & H & 4 & 6 & * & \(\checkmark\) & \(\rho\) & ¢ & 4 & 4 \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Approach LOS & & A & & & A & & & C & & & A & \\
\hline Queue Length 50th (ft) & 22 & 33 & & & 118 & & & 6 & 0 & & 6 & 0 \\
\hline Queue Length 95th (ft) & m47 & 42 & & & 179 & & & 12 & 0 & & 22 & 0 \\
\hline Internal Link Dist (ft) & & 197 & & & 591 & & & 138 & & & 353 & \\
\hline Turn Bay Length (ft) & 110 & & & & & & & & & & & \\
\hline Base Capacity (vph) & 157 & 2949 & & & 2728 & & & 556 & 560 & & 550 & 556 \\
\hline Starvation Cap Reductn & 0 & 0 & & & 0 & & & 0 & 0 & & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & & & 0 & & & 0 & 0 & & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & & & 0 & & & 0 & 0 & & 0 & 0 \\
\hline Reduced v/c Ratio & 0.23 & 0.34 & & & 0.35 & & & 0.02 & 0.02 & & 0.02 & 0.08 \\
\hline
\end{tabular}

Intersection Summary
Area Type: Other
Cycle Length: 90
Actuated Cycle Length: 90
Offset: 13 (14\%), Referenced to phase 2:EBT, Start of Yellow
Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.35
Intersection Signal Delay: 4.4
Intersection LOS: A
Intersection Capacity Utilization 47.5\% ICU Level of Service A
Analysis Period (min) 15
\(m\) Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 13: Applebees/Linlew Dr \& NH 28

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & & 1 & \(\longleftarrow\) & 4 & 4 & \(\dagger\) & \(p\) & - & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \({ }^{7} \%\) & \(\uparrow{ }^{1}\) & & * & 中 \({ }_{5}\) & & \({ }^{*}\) & \(\uparrow\) & & & \(\uparrow\) & T \\
\hline Traffic Volume (vph) & 420 & 830 & 5 & 5 & 875 & 60 & 10 & 5 & 5 & 60 & 5 & 400 \\
\hline Future Volume (vph) & 420 & 830 & 5 & 5 & 875 & 60 & 10 & 5 & 5 & 60 & 5 & 400 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 200 & & 0 & 205 & & 150 & 0 & & 0 & 0 & & 220 \\
\hline Storage Lanes & 2 & & 0 & 1 & & 0 & 1 & & 0 & 0 & & 1 \\
\hline Taper Length (ft) & 200 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 0.97 & 0.95 & 0.95 & 1.00 & 0.95 & 0.95 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Frt & & 0.999 & & & 0.990 & & & 0.925 & & & & 0.850 \\
\hline Fit Protected & 0.950 & & & 0.950 & & & 0.950 & & & & 0.956 & \\
\hline Satd. Flow (prot) & 3303 & 3402 & 0 & 1736 & 3436 & 0 & 1805 & 1758 & 0 & 0 & 1763 & 1568 \\
\hline Flt Permitted & 0.950 & & & 0.950 & & & 0.709 & & & & 0.733 & \\
\hline Satd. Flow (perm) & 3303 & 3402 & 0 & 1736 & 3436 & 0 & 1347 & 1758 & 0 & 0 & 1352 & 1568 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & 1 & & & 10 & & & 7 & & & & 68 \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance (ft) & & 412 & & & 486 & & & 151 & & & 446 & \\
\hline Travel Time (s) & & 9.4 & & & 11.0 & & & 3.4 & & & 10.1 & \\
\hline Peak Hour Factor & 0.83 & 0.83 & 0.83 & 0.97 & 0.97 & 0.97 & 0.67 & 0.67 & 0.67 & 0.90 & 0.90 & 0.90 \\
\hline Heavy Vehicles (\%) & 6\% & 6\% & 6\% & 4\% & 4\% & 4\% & 0\% & 0\% & 0\% & 3\% & 3\% & 3\% \\
\hline Adj. Flow (vph) & 506 & 1000 & 6 & 5 & 902 & 62 & 15 & 7 & 7 & 67 & 6 & 444 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 506 & 1006 & 0 & 5 & 964 & 0 & 15 & 14 & 0 & 0 & 73 & 444 \\
\hline Turn Type & Prot & NA & & Prot & NA & & Perm & NA & & Perm & NA & pttov \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & & 8 & & & 4 & 45 \\
\hline Permitted Phases & & & & & & & 8 & 8 & & 4 & & \\
\hline Detector Phase & 5 & 2 & & 1 & 6 & & 8 & 8 & & 4 & 4 & 45 \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 5.0 & 8.0 & & 5.0 & 8.0 & & 5.0 & 5.0 & & 8.0 & 8.0 & \\
\hline Minimum Split (s) & 14.0 & 53.0 & & 11.0 & 22.0 & & 22.0 & 22.0 & & 22.0 & 22.0 & \\
\hline Total Split (s) & 23.0 & 57.0 & & 11.0 & 45.0 & & 22.0 & 22.0 & & 22.0 & 22.0 & \\
\hline Total Split (\%) & 25.6\% & 63.3\% & & 12.2\% & 50.0\% & & 24.4\% & 24.4\% & & 24.4\% & 24.4\% & \\
\hline Maximum Green (s) & 17.0 & 51.0 & & 5.0 & 39.0 & & 16.0 & 16.0 & & 16.0 & 16.0 & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & \\
\hline All-Red Time (s) & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & \\
\hline Lost Time Adjust (s) & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & & & 6.0 & \\
\hline Lead/Lag & Lead & Lag & & Lead & Lag & & & & & & & \\
\hline Lead-Lag Optimize? & Yes & Yes & & Yes & Yes & & & & & & & \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & None & C-Min & & None & Min & & None & None & & None & None & \\
\hline Walk Time (s) & & 5.0 & & & 5.0 & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline Flash Dont Walk (s) & & 11.0 & & & 11.0 & & 11.0 & 11.0 & & 11.0 & 11.0 & \\
\hline Pedestrian Calls (\#/hr) & & 0 & & & 0 & & 0 & 0 & & 0 & 0 & \\
\hline Act Effct Green (s) & 16.7 & 58.0 & & 5.2 & 37.5 & & 17.8 & 17.8 & & & 17.8 & 40.5 \\
\hline Actuated g/C Ratio & 0.19 & 0.64 & & 0.06 & 0.42 & & 0.20 & 0.20 & & & 0.20 & 0.45 \\
\hline v/c Ratio & 0.83 & 0.46 & & 0.05 & 0.67 & & 0.06 & 0.04 & & & 0.27 & 0.60 \\
\hline Control Delay & 48.2 & 9.5 & & 33.2 & 23.0 & & 30.2 & 22.0 & & & 33.6 & 19.4 \\
\hline Queue Delay & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & & 0.0 & 0.0 \\
\hline
\end{tabular}


Splits and Phases: 22: VIP Dr/Connector Rd \& NH 28

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & \(\leftarrow\) & 4 & & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & WBT & WBR & SBL & SBR \\
\hline Lane Configurations & * & 44 & 44 & 7 & \% & 「 \\
\hline Traffic Volume (vph) & 55 & 1775 & 1590 & 220 & 90 & 95 \\
\hline Future Volume (vph) & 55 & 1775 & 1590 & 220 & 90 & 95 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 200 & & & 150 & 360 & 0 \\
\hline Storage Lanes & 1 & & & 1 & 1 & 1 \\
\hline Taper Length (ft) & 25 & & & & 25 & \\
\hline Lane Util. Factor & 1.00 & 0.95 & 0.95 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & & & 0.850 & & 0.850 \\
\hline Fit Protected & 0.950 & & & & 0.950 & \\
\hline Satd. Flow (prot) & 1770 & 3539 & 3539 & 1583 & 1770 & 1583 \\
\hline Flt Permitted & 0.077 & & & & 0.950 & \\
\hline Satd. Flow (perm) & 143 & 3539 & 3539 & 1583 & 1770 & 1583 \\
\hline Right Turn on Red & & & & Yes & & Yes \\
\hline Satd. Flow (RTOR) & & & & 239 & & 24 \\
\hline Link Speed (mph) & & 30 & 30 & & 30 & \\
\hline Link Distance (ft) & & 463 & 580 & & 704 & \\
\hline Travel Time (s) & & 10.5 & 13.2 & & 16.0 & \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 \\
\hline Adj. Flow (vph) & 60 & 1929 & 1728 & 239 & 98 & 103 \\
\hline \multicolumn{7}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 60 & 1929 & 1728 & 239 & 98 & 103 \\
\hline Turn Type & pm+pt & NA & NA & pm+ov & Prot & \(\mathrm{pm}+\mathrm{ov}\) \\
\hline Protected Phases & 5 & 2 & 6 & 4 & 4 & 5 \\
\hline Permitted Phases & 2 & & & 6 & & 4 \\
\hline Detector Phase & 5 & 2 & 6 & 4 & 4 & 5 \\
\hline \multicolumn{7}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 \\
\hline Minimum Split (s) & 11.0 & 20.0 & 20.0 & 11.0 & 11.0 & 11.0 \\
\hline Total Split (s) & 11.0 & 66.0 & 55.0 & 14.0 & 14.0 & 11.0 \\
\hline Total Split (\%) & 13.8\% & 82.5\% & 68.8\% & 17.5\% & 17.5\% & 13.8\% \\
\hline Maximum Green (s) & 5.0 & 60.0 & 49.0 & 8.0 & 8.0 & 5.0 \\
\hline Yellow Time (s) & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 \\
\hline All-Red Time (s) & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 \\
\hline Lost Time Adjust (s) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Lost Time (s) & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 \\
\hline Lead/Lag & Lead & & Lag & & & Lead \\
\hline Lead-Lag Optimize? & Yes & & Yes & & & Yes \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
\hline Recall Mode & None & None & None & None & None & None \\
\hline Act Effct Green (s) & 54.0 & 54.0 & 45.8 & 61.3 & 7.6 & 18.9 \\
\hline Actuated g/C Ratio & 0.73 & 0.73 & 0.62 & 0.83 & 0.10 & 0.26 \\
\hline v/c Ratio & 0.28 & 0.75 & 0.79 & 0.18 & 0.54 & 0.24 \\
\hline Control Delay & 5.8 & 7.9 & 14.5 & 0.6 & 46.1 & 21.6 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 5.8 & 7.9 & 14.5 & 0.6 & 46.1 & 21.6 \\
\hline LOS & A & A & B & A & D & C \\
\hline Approach Delay & & 7.9 & 12.8 & & 33.5 & \\
\hline Approach LOS & & A & B & & C & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & 4 & & & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & WBT & WBR & SBL & SBR \\
\hline Queue Length 50th (ft) & 6 & 217 & 308 & 0 & 48 & 32 \\
\hline Queue Length 95th (ft) & 14 & 289 & 405 & 11 & \#103 & 73 \\
\hline Internal Link Dist (ft) & & 383 & 500 & & 624 & \\
\hline Turn Bay Length (ft) & 200 & & & 150 & 360 & \\
\hline Base Capacity (vph) & 217 & 2848 & 2409 & 1332 & 197 & 423 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.28 & 0.68 & 0.72 & 0.18 & 0.50 & 0.24 \\
\hline \multicolumn{7}{|l|}{Intersection Summary} \\
\hline \multicolumn{7}{|l|}{Area Type: Other} \\
\hline \multicolumn{7}{|l|}{Cycle Length: 80} \\
\hline \multicolumn{7}{|l|}{Actuated Cycle Length: 74} \\
\hline \multicolumn{7}{|l|}{Natural Cycle: 60} \\
\hline \multicolumn{7}{|l|}{Control Type: Actuated-Uncoordinated} \\
\hline \multicolumn{7}{|l|}{Maximum v/c Ratio: 0.79} \\
\hline \multicolumn{4}{|l|}{Intersection Signal Delay: 11.4} & \multicolumn{3}{|r|}{Intersection LOS: B} \\
\hline \multicolumn{4}{|l|}{Intersection Capacity Utilization 64.1\%} & \multicolumn{3}{|r|}{ICU Level of Service C} \\
\hline \multicolumn{7}{|l|}{Analysis Period (min) 15} \\
\hline \multicolumn{7}{|l|}{\# 95th percentile volume exceeds capacity, queue may be longer.} \\
\hline \multicolumn{7}{|l|}{Queue shown is maximum after two cycles.} \\
\hline
\end{tabular}

Splits and Phases: 25: NH 28 \& Rockingham Road

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & NBL & NBT & NBR & SBL & SBT & SBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & 7 & 今 & & \％ & \(\uparrow\) & 7 & \％ & ち & & \％ & ち & \\
\hline Traffic Volume（vph） & 30 & 50 & 20 & 10 & 40 & 90 & 20 & 230 & 90 & 70 & 280 & 40 \\
\hline Future Volume（vph） & 30 & 50 & 20 & 10 & 40 & 90 & 20 & 230 & 90 & 70 & 280 & 40 \\
\hline Ideal Flow（vphpl） & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length（ft） & 200 & & 150 & 190 & & 190 & 135 & & 0 & 120 & & 0 \\
\hline Storage Lanes & 1 & & 0 & 1 & & 1 & 1 & & 0 & 1 & & 0 \\
\hline Taper Length（ft） & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util．Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & 0.958 & & & & 0.850 & & 0.958 & & & 0.981 & \\
\hline Flt Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（prot） & 1752 & 1767 & 0 & 1736 & 1827 & 1553 & 1770 & 1785 & 0 & 1787 & 1845 & 0 \\
\hline Flt Permitted & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（perm） & 1752 & 1767 & 0 & 1736 & 1827 & 1553 & 1770 & 1785 & 0 & 1787 & 1845 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd．Flow（RTOR） & & 20 & & & & 123 & & 29 & & & 11 & \\
\hline Link Speed（mph） & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance（ft） & & 481 & & & 347 & & & 479 & & & 371 & \\
\hline Travel Time（s） & & 10.9 & & & 7.9 & & & 10.9 & & & 8.4 & \\
\hline Peak Hour Factor & 0.82 & 0.82 & 0.82 & 0.81 & 0.81 & 0.81 & 0.68 & 0.68 & 0.68 & 0.78 & 0.78 & 0.78 \\
\hline Heavy Vehicles（\％） & 3\％ & 3\％ & 3\％ & 4\％ & 4\％ & 4\％ & 2\％ & 2\％ & 2\％ & 1\％ & 1\％ & 1\％ \\
\hline Adj．Flow（vph） & 37 & 61 & 24 & 12 & 49 & 111 & 29 & 338 & 132 & 90 & 359 & 51 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic（\％）} \\
\hline Lane Group Flow（vph） & 37 & 85 & 0 & 12 & 49 & 111 & 29 & 470 & 0 & 90 & 410 & 0 \\
\hline Turn Type & Prot & NA & & Prot & NA & \(p m+o v\) & Prot & NA & & Prot & NA & \\
\hline Protected Phases & 1 & 6 & & 5 & 2 & 3 & 3 & 8 & & 7 & 4 & \\
\hline Permitted Phases & & & & & & 2 & & & & & & \\
\hline Detector Phase & 1 & 6 & & 5 & 2 & 3 & 3 & 8 & & 7 & 4 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial（s） & 8.0 & 8.0 & & 8.0 & 8.0 & 8.0 & 8.0 & 8.0 & & 8.0 & 8.0 & \\
\hline Minimum Split（s） & 14.0 & 14.0 & & 14.0 & 14.0 & 14.0 & 14.0 & 20.0 & & 14.0 & 20.0 & \\
\hline Total Split（s） & 14.0 & 14.0 & & 14.0 & 14.0 & 14.0 & 14.0 & 38.0 & & 14.0 & 38.0 & \\
\hline Total Split（\％） & 17．5\％ & 17．5\％ & & 17．5\％ & 17．5\％ & 17．5\％ & 17．5\％ & 47．5\％ & & 17．5\％ & 47．5\％ & \\
\hline Maximum Green（s） & 8.0 & 8.0 & & 8.0 & 8.0 & 8.0 & 8.0 & 32.0 & & 8.0 & 32.0 & \\
\hline Yellow Time（s） & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & & 4.0 & 4.0 & \\
\hline All－Red Time（s） & 2.0 & 2.0 & & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & & 2.0 & 2.0 & \\
\hline Lost Time Adjust（s） & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Total Lost Time（s） & 6.0 & 6.0 & & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Lead／Lag & Lead & Lag & & Lead & Lag & Lead & Lead & Lag & & Lead & Lag & \\
\hline Lead－Lag Optimize？ & Yes & Yes & & Yes & Yes & Yes & Yes & Yes & & Yes & Yes & \\
\hline Vehicle Extension（s） & 3.0 & 3.0 & & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & None & None & & None & Max & None & None & None & & None & None & \\
\hline Act Effct Green（s） & 9.1 & 11.3 & & 9.1 & 9.1 & 25.0 & 9.1 & 20.9 & & 9.1 & 20.9 & \\
\hline Actuated g／C Ratio & 0.16 & 0.19 & & 0.16 & 0.16 & 0.43 & 0.16 & 0.36 & & 0.16 & 0.36 & \\
\hline v／c Ratio & 0.14 & 0.24 & & 0.04 & 0.17 & 0.15 & 0.11 & 0.71 & & 0.32 & 0.61 & \\
\hline Control Delay & 31.0 & 23.2 & & 30.9 & 31.1 & 4.7 & 30.9 & 23.1 & & 33.1 & 20.6 & \\
\hline Queue Delay & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Total Delay & 31.0 & 23.2 & & 30.9 & 31.1 & 4.7 & 30.9 & 23.1 & & 33.1 & 20.6 & \\
\hline LOS & C & C & & C & C & A & C & C & & C & C & \\
\hline Approach Delay & & 25.6 & & & 14.1 & & & 23.6 & & & 22.9 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & NBL & NBT & NBR & SBL & SBT & SBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Approach LOS & & C & & & B & & & C & & & C & \\
\hline Queue Length 50th (ft) & 11 & 20 & & 4 & 15 & 0 & 9 & 115 & & 29 & 99 & \\
\hline Queue Length 95th (ft) & 41 & 66 & & 19 & 50 & 23 & 29 & 179 & & 76 & 192 & \\
\hline Internal Link Dist (ft) & & 401 & & & 267 & & & 399 & & & 291 & \\
\hline Turn Bay Length (ft) & 200 & & & 190 & & 190 & 135 & & & 120 & & \\
\hline Base Capacity (vph) & 274 & 357 & & 271 & 285 & 737 & 276 & 1094 & & 279 & 1124 & \\
\hline Starvation Cap Reductn & 0 & 0 & & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & \\
\hline Spillback Cap Reductn & 0 & 0 & & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & \\
\hline Storage Cap Reductn & 0 & 0 & & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & \\
\hline Reduced v/c Ratio & 0.14 & 0.24 & & 0.04 & 0.17 & 0.15 & 0.11 & 0.43 & & 0.32 & 0.36 & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline \multicolumn{13}{|l|}{Area Type: Other} \\
\hline \multicolumn{13}{|l|}{Cycle Length: 80} \\
\hline \multicolumn{13}{|l|}{Actuated Cycle Length: 58.2} \\
\hline \multicolumn{13}{|l|}{Natural Cycle: 65} \\
\hline \multicolumn{13}{|l|}{Control Type: Actuated-Uncoordinated} \\
\hline \multicolumn{13}{|l|}{Maximum v/c Ratio: 0.71} \\
\hline \multicolumn{4}{|l|}{Intersection Signal Delay: 22.2} & \multicolumn{9}{|c|}{Intersection LOS: C} \\
\hline \multicolumn{4}{|l|}{Intersection Capacity Utilization 47.6\%} & \multicolumn{9}{|c|}{ICU Level of Service A} \\
\hline \multicolumn{13}{|l|}{Analysis Period (min) 15} \\
\hline
\end{tabular}

Splits and Phases: 18: Tsienneto Rd \& NH 28 Byp S/NH 28 Byp N

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 7 & \(\rightarrow\) & \(\rangle\) & \(\checkmark\) & \(\leftarrow\) & 4 & 4 & \(\uparrow\) & \(p\) & \(\checkmark\) & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & 7 & F & & \% & F & & \% & F & & * & \(\uparrow\) & 7 \\
\hline Traffic Volume (vph) & 50 & 350 & 5 & 10 & 380 & 10 & 5 & 50 & 10 & 10 & 50 & 50 \\
\hline Future Volume (vph) & 50 & 350 & 5 & 10 & 380 & 10 & 5 & 50 & 10 & 10 & 50 & 50 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (tt) & 275 & & O & 75 & & 100 & 75 & & 0 & 210 & & 210 \\
\hline Storage Lanes & 1 & & 0 & 1 & & 0 & 1 & & 0 & , & & 1 \\
\hline Taper Length (t) & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & 0.998 & & & 0.996 & & & 0.975 & & & & 0.850 \\
\hline Flt Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (prot) & 1770 & 1859 & 0 & 1770 & 1855 & 0 & 1770 & 1816 & 0 & 1770 & 1863 & 1583 \\
\hline Flt Permitted & 0.297 & & & 0.476 & & & 0.722 & & & 0.715 & & \\
\hline Satd. Flow (perm) & 553 & 1859 & 0 & 887 & 1855 & 0 & 1345 & 1816 & 0 & 1332 & 1863 & 1583 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & 1 & & & 2 & & & 11 & & & & 54 \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance ( t ) & & 314 & & & 303 & & & 290 & & & 341 & \\
\hline Travel Time (s) & & 7.1 & & & 6.9 & & & 6.6 & & & 7.8 & \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 \\
\hline Adj. Flow (vph) & 54 & 380 & 5 & 11 & 413 & 11 & 5 & 54 & 11 & 11 & 54 & 54 \\
\hline \multicolumn{13}{|l|}{Shared Lane Trafic (\%)} \\
\hline Lane Group Flow (vph) & 54 & 385 & 0 & 11 & 424 & 0 & 5 & 65 & 0 & 11 & 54 & 54 \\
\hline Turn Type & pm+pt & NA & & pm+pt & NA & & Perm & NA & & Perm & NA & pm+ov \\
\hline Protected Phases & 7 & 4 & & 3 & 8 & & & 2 & & & 6 & 7 \\
\hline Permitted Phases & 4 & & & 8 & & & 2 & & & 6 & & 6 \\
\hline Detector Phase & 7 & 4 & & 3 & 8 & & 2 & 2 & & 6 & 6 & 7 \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial ( \(s\) ) & 5.0 & 5.0 & & 5.0 & 5.0 & & 5.0 & 5.0 & & 5.0 & 5.0 & 5.0 \\
\hline Minimum Split (s) & 11.0 & 28.0 & & 11.0 & 28.0 & & 28.0 & 28.0 & & 28.0 & 28.0 & 11.0 \\
\hline Total Split (s) & 11.0 & 31.0 & & 11.0 & 31.0 & & 28.0 & 28.0 & & 28.0 & 28.0 & 11.0 \\
\hline Total Split (\%) & 15.7\% & 44.3\% & & 15.7\% & 44.3\% & & 40.0\% & 40.0\% & & 40.0\% & 40.0\% & 15.7\% \\
\hline Maximum Green (s) & 5.0 & 25.0 & & 5.0 & 25.0 & & 22.0 & 22.0 & & 22.0 & 22.0 & 5.0 \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 \\
\hline All-Red Time (s) & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & 2.0 \\
\hline Lost Time Adjust (s) & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 \\
\hline Total Lost Time (s) & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & 6.0 \\
\hline Lead/Lag & Lead & Lag & & Lead & Lag & & & & & & & Lead \\
\hline Lead-Lag Optimize? & Yes & Yes & & Yes & Yes & & & & & & & Yes \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & 3.0 \\
\hline Recall Mode & None & None & & None & None & & Max & Max & & Max & Max & None \\
\hline Walk Time (s) & & 7.0 & & & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & \\
\hline Flash Dont Waik (s) & & 15.0 & & & 15.0 & & 15.0 & 15.0 & & 15.0 & 15.0 & \\
\hline Pedestrian Calls (\#/hr) & & 0 & & & 0 & & 0 & 0 & & 0 & 0 & \\
\hline Act Effct Green (s) & 25.9 & 25.0 & & 22.5 & 18.7 & & 22.6 & 22.6 & & 22.6 & 22.6 & 33.9 \\
\hline Actuated g/C Ratio & 0.42 & 0.40 & & 0.36 & 0.30 & & 0.37 & 0.37 & & 0.37 & 0.37 & 0.55 \\
\hline v/c Ratio & 0.16 & 0.51 & & 0.03 & 0.75 & & 0.01 & 0.10 & & 0.02 & 0.08 & 0.06 \\
\hline Control Delay & 10.2 & 16.8 & & 8.9 & 29.1 & & 16.4 & 14.6 & & 16.4 & 16.5 & 3.5 \\
\hline Queue Delay & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 10.2 & 16.8 & & 8.9 & 29.1 & & 16.4 & 14.6 & & 16.4 & 16.5 & 3.5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\rangle\) & \(\rightarrow\) & 7 & \(\checkmark\) & \(\leftarrow\) & 4 & 4 & \(\uparrow\) & \(p\) & \(\checkmark\) & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline LOS & B & B & & A & C & & B & B & & B & B & A \\
\hline Approach Delay & & 16.0 & & & 28.6 & & & 14.7 & & & 10.6 & \\
\hline Approach LOS & & B & & & C & & & B & & & B & \\
\hline Queue Length 50th (ft) & 11 & 94 & & 2 & 148 & & 1 & 14 & & 3 & 14 & 0 \\
\hline Queue Length 95th (ft) & 27 & 213 & & 9 & 239 & & 8 & 42 & & 14 & 40 & 17 \\
\hline Internal Link Dist (ft) & & 234 & & & 223 & & & 210 & & & 261 & \\
\hline Turn Bay Length (ft) & 275 & & & 75 & & & 75 & & & 210 & & 210 \\
\hline Base Capacity (vph) & 332 & 871 & & 395 & 770 & & 490 & 669 & & 486 & 680 & 891 \\
\hline Starvation Cap Reductn & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.16 & 0.44 & & 0.03 & 0.55 & & 0.01 & 0.10 & & 0.02 & 0.08 & 0.06 \\
\hline
\end{tabular}

Intersection Summary
Area Type:
```

Other

```

Cycle Length: 70
Actuated Cycle Length: 61.9
Natural Cycle: 70
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.75
Intersection Signal Delay: 20.4
Intersection LOS: C
Intersection Capacity Utilization 47.0\%
ICU Level of Service A
Analysis Period (min) 15
Splits and Phases: 23: NH 28 Byp N \& Connector Road



19: NH 102 EB/NH 102 WB \& Connector Road
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \% & 7 & 4 & \(\uparrow\) & \(\downarrow\) & \(\downarrow\) & & & & \\
\hline Lane Group & EBL & EBR & NBL & NBT & SBT & SBR & \(\varnothing 2\) & \(\varnothing 5\) & \(\varnothing 6\) & 87 \\
\hline Approach LOS & D & & & A & A & & & & & \\
\hline Queue Length 50th ( t ) & 167 & & 4 & 12 & 54 & 0 & & & & \\
\hline Queue Length 95th (t) & \#513 & & 13 & 37 & 87 & 17 & & & & \\
\hline Internal Link Dist (ft) & 392 & & & 659 & 178 & & & & & \\
\hline Turn Bay Length (tt) & & & 120 & & & 90 & & & & \\
\hline Base Capacity (vph) & 560 & & 533 & 946 & 980 & 1493 & & & & \\
\hline Starvation Cap Reductn & 0 & & 0 & , & 509 & 120 & & & & \\
\hline Spillback Cap Reductn & 0 & & 0 & 0 & 0 & 0 & & & & \\
\hline Storage Cap Reductn & 0 & & 0 & 0 & 0 & 0 & & & & \\
\hline Reduced v/c Ratio & 0.86 & & 0.04 & 0.07 & 0.44 & 0.51 & & & & \\
\hline \multicolumn{11}{|l|}{Intersection Summary} \\
\hline \multicolumn{11}{|l|}{Area Type: Other} \\
\hline \multicolumn{11}{|l|}{Cycle Length: 90} \\
\hline \multicolumn{11}{|l|}{Actuated Cycle Length: 69.4} \\
\hline \multicolumn{11}{|l|}{Natural Cycle: 65} \\
\hline \multicolumn{11}{|l|}{Control Type: Actuated-Uncoordinated} \\
\hline \multicolumn{11}{|l|}{Maximum v/c Ratio: 0.86} \\
\hline \multicolumn{4}{|l|}{Intersection Signal Delay: 17.2} & \multicolumn{7}{|c|}{Intersection LOS: B} \\
\hline \multicolumn{4}{|l|}{Intersection Capacity Utilization 49.7\%} & \multicolumn{4}{|c|}{ICU Level of Service A} & & & \\
\hline \multicolumn{11}{|l|}{Analysis Period (min) 15} \\
\hline \multicolumn{11}{|l|}{\# 95th percentile volume exceeds capacity, queue may be longer.} \\
\hline \multicolumn{11}{|l|}{Queue shown is maximum after two cycles.} \\
\hline
\end{tabular}

Splits and Phases: 19: NH 102 EB/NH 102 WB \& Connector Road


\begin{tabular}{llrrrrrrrrr}
\hline
\end{tabular}

\section*{APPENDIX Q-4: ALTERNATIVE C INTERSECTION CAPACITY}

ANALYSES - SYNCHRO PRINTSOUTS - PM PEAK HOUR

Lanes, Volumes, Timings
/ \& : NH 102 \& Exit 4 SB Off

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Lane Group & EBL & EBT & WBT & WBR & SBL & SBR \\
\hline Lane Configurations & & 44 & 坐虫 & & \({ }^{7}\) & \% \({ }^{\text {F }}\) \\
\hline Traffic Volume (vph) & 0 & 1255 & 1330 & 0 & 125 & 1325 \\
\hline Future Volume (vph) & 0 & 1255 & 1330 & 0 & 125 & 1325 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Lane Width (ft) & 12 & 12 & 12 & 12 & 16 & 12 \\
\hline Lane Util. Factor & 1.00 & 0.95 & 0.95 & 1.00 & 1.00 & 0.88 \\
\hline Fit & & & & & & 0.850 \\
\hline Flt Protected & & & & & 0.950 & \\
\hline Satd. Flow (prot) & 0 & 3471 & 3406 & 0 & 1930 & 2682 \\
\hline Flt Permitted & & & & & 0.950 & \\
\hline Satd. Flow (perm) & 0 & 3471 & 3406 & 0 & 1930 & 2682 \\
\hline Right Turn on Red & & & & Yes & & No \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrr} 
Satd. Flow (RTOR) & & & & & & \\
Link Speed (mph) & & 30 & 30 & & 25 & \\
Link Distance (ft) & & 712 & 388 & & 212 & \\
Travel Time (s) & 0.93 & 0.93 & 0.88 & 0.88 & 0.89 & 0.89 \\
Peak Hour Factor & \(4 \%\) & \(4 \%\) & \(6 \%\) & \(6 \%\) & \(6 \%\) & \(6 \%\) \\
Heavy Vehicles (\%) & 0 & 1349 & 1511 & 0 & 140 & 1489 \\
Adj. Flow (vph) & 0 & 1349 & 1511 & 0 & 140 & 1489 \\
Shared Lane Traffic (\%) & No & No & No & No & No & No \\
Lane Group Flow (vph) & Left & Left & Left & Right & Left & Right
\end{tabular}
\begin{tabular}{lrrr} 
Median Width(ft) & 24 & 24 & 16 \\
Link Offset(ft) & 0 & 0 & 0 \\
Crosswalk Width(ft) & 16 & 16 & 16
\end{tabular}
\begin{tabular}{lrrrrrr} 
Two way Left Turn Lane & & & & & \\
Headway Factor & 1.00 & 1.00 & 1.00 & 1.00 & 0.85 & 1.00 \\
Turning Speed (mph) & 15 & & & 9 & 15 & 9 \\
Number of Detectors & & 3 & 3 & & 3 & 3 \\
Detector Template & Thru & Thru & Left & \\
Leading Detector (ft) & 256 & 256 & 256 & 256 \\
Trailing Detector (ft) & -5 & -5 & -5 & -5 \\
Detector 1 Position(ft) & -5 & -5 & -5 & -5 \\
Detector 1 Size(ft) & 50 & 50 & 50 & 50 \\
Detector 1 Type & Cl+Ex & Cl+Ex & Cl+Ex & Cl+Ex \\
Detector 1 Channel & & & & 0.0 & 0.0 \\
Detector 1 Extend (s) & 0.0 & 0.0 & 0.0 & 0.0 \\
Detector 1 Queue (s) & 0.0 & 0.0 & 0.0 & 0.0 \\
Detector 1 Delay (s) & 0.0 & 0.0 & 0 & 0.0 \\
Detector 2 Position(ft) & 125 & 125 & 125 & 125 \\
Detector 2 Size(ft) & 6 & 6 & 6 & 6 \\
Detector 2 Type & Cl+Ex & Cl+Ex & Cl+Ex & Cl+Ex \\
Detector 2 Channel & & & & \\
Detector 2 Extend (s) & 0.0 & 0.0 & & 0.0 & 0.0 \\
Detector 3 Position(ft) & 250 & 250 & 250 & 250 \\
Detector 3 Size(ft) & 6 & 6 & 6 & 6 \\
Detector 3 Type & Cl+Ex & Cl+Ex & Cl+Ex & Cl+Ex
\end{tabular}

Detector 3 Channel

Lanes, Volumes, Timings
/ D: NH 102 \& Exit 4 SB Off
\begin{tabular}{lrrrrr}
\hline & & & & & \\
& & & & & \\
& & & & \\
\hline
\end{tabular}

Intersection Signal Delay: \(58.9 \quad\) Intersection LOS: E
Intersection Capacity Utilization 95.1\%
ICU Level of Service F
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
\(m\) Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 7: NH 102 \& Exit 4 SB Off


Lanes，Volumes，Timings
28：NH 102 \＆Exit 4 NB Off
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & NBL2 & NBL & NBR & SEL & SER & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & \％\({ }^{1}\) & & Tr & & & F＊＊ & 坐年 & & & 伞革 & F \\
\hline Traffic Volume（vph） & 1250 & 0 & 910 & 0 & 0 & 1085 & 295 & 0 & 0 & 420 & 240 \\
\hline Future Volume（vph） & 1250 & 0 & 910 & 0 & 0 & 1085 & 295 & 0 & 0 & 420 & 240 \\
\hline Ideal Flow（vphpl） & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length（ft） & & 0 & 0 & 0 & 0 & 550 & & 0 & 0 & & 0 \\
\hline Storage Lanes & & 2 & 2 & 0 & 0 & 2 & & 0 & 0 & & 1 \\
\hline Taper Length（ft） & & 25 & & 25 & & 25 & & & 25 & & \\
\hline Lane Util．Factor & 0.97 & 1.00 & 0.88 & 1.00 & 1.00 & 0.97 & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 \\
\hline Frt & & & 0.850 & & & & & & & & 0.850 \\
\hline Flt Protected & 0.950 & & & & & 0.950 & & & & & \\
\hline Satd．Flow（prot） & 3242 & 0 & 2632 & 0 & 0 & 3335 & 3438 & 0 & 0 & 3505 & 1568 \\
\hline Flt Permitted & 0.950 & & & & & 0.950 & & & & & \\
\hline Satd．Flow（perm） & 3242 & 0 & 2632 & 0 & 0 & 3335 & 3438 & 0 & 0 & 3505 & 1568 \\
\hline Right Turn on Red & & & No & & & & & Yes & & & Yes \\
\hline Satd．Flow（RTOR） & & & & & & & & & & & 261 \\
\hline Link Speed（mph） & & 25 & & 30 & & & 30 & & & 30 & \\
\hline Link Distance（ft） & & 856 & & 390 & & & 760 & & & 857 & \\
\hline Travel Time（s） & & 23.3 & & 8.9 & & & 17.3 & & & 19.5 & \\
\hline Peak Hour Factor & 0.88 & 0.88 & 0.88 & 0.92 & 0.92 & 0.94 & 0.94 & 0.94 & 0.92 & 0.92 & 0.92 \\
\hline Heavy Vehicles（\％） & 8\％ & 8\％ & 8\％ & 2\％ & 2\％ & 5\％ & 5\％ & 5\％ & 3\％ & 3\％ & 3\％ \\
\hline Adj．Flow（vph） & 1420 & 0 & 1034 & 0 & 0 & 1154 & 314 & 0 & 0 & 457 & 261 \\
\hline \multicolumn{12}{|l|}{Shared Lane Traffic（\％） 0} \\
\hline Lane Group Flow（vph） & 1420 & 0 & 1034 & 0 & 0 & 1154 & 314 & 0 & 0 & 457 & 261 \\
\hline Enter Blocked Intersection & No \\
\hline Lane Alignment & Left & Left & Right & Left & Right & Left & Left & Right & Left & Right & Right \\
\hline Median Width（ft） & & 24 & & 0 & & & 24 & & & 24 & \\
\hline Link Offset（ft） & & 12 & & 0 & & & 0 & & & 0 & \\
\hline Crosswalk Width（ft） & & 16 & & 16 & & & 16 & & & 16 & \\
\hline \multicolumn{12}{|l|}{Two way Left Turn Lane} \\
\hline Headway Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Turning Speed（mph） & 15 & 15 & 25 & 15 & 9 & 15 & & 9 & 15 & & 25 \\
\hline Number of Detectors & 3 & & 3 & & & 3 & 3 & & & 3 & 0 \\
\hline \multicolumn{12}{|l|}{Detector Template} \\
\hline Leading Detector（ft） & 256 & & 256 & & & 256 & 256 & & & 256 & 0 \\
\hline Trailing Detector（ft） & －5 & & －5 & & & －5 & －5 & & & －5 & 0 \\
\hline Detector 1 Position（ft） & －5 & & －5 & & & －5 & －5 & & & －5 & －5 \\
\hline Detector 1 Size（ft） & 55 & & 55 & & & 55 & 55 & & & 55 & 50 \\
\hline Detector 1 Type & Cl＋Ex & & Cl＋Ex & & & CI＋Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) \\
\hline \multicolumn{12}{|l|}{Detector 1 Channel} \\
\hline Detector 1 Extend（s） & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & 0.0 \\
\hline Detector 1 Queue（s） & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & 0.0 \\
\hline Detector 1 Delay（s） & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & 0.0 \\
\hline Detector 2 Position（ft） & 125 & & 125 & & & 125 & 125 & & & 125 & \\
\hline Detector 2 Size（ft） & 6 & & 6 & & & 6 & 6 & & & 6 & \\
\hline Detector 2 Type & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & Cl＋Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline \multicolumn{12}{|l|}{Detector 2 Channel} \\
\hline Detector 2 Extend（s） & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & \\
\hline Detector 3 Position（ft） & 250 & & 250 & & & 250 & 250 & & & 250 & \\
\hline Detector 3 Size（ft） & 6 & & 6 & & & 6 & 6 & & & 6 & \\
\hline
\end{tabular}

Lanes, Volumes, Timings
2
\$: NH 102 \& Exit 4 NB Off
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & NBL2 & NBL & NBR & SEL & SER & NEL & NET & NER & SWL & SWT & SWR \\
\hline Detector 3 Type & \(\mathrm{Cl}+\mathrm{Ex}\) & & Cl+Ex & & & \(\mathrm{Cl}+\mathrm{EX}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline \multicolumn{12}{|l|}{Detector 3 Channel} \\
\hline Detector 3 Extend (s) & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & \\
\hline Turn Type & Prot & & Prot & & & Prot & NA & & & NA & Free \\
\hline Protected Phases & 8 & & 8 & & & 5 & 2 & & & 6 & \\
\hline Permitted Phases & & & & & & & & & & & Free \\
\hline Detector Phase & 8 & & 2 & & & 5 & 2 & & & 6 & \\
\hline \multicolumn{12}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 10.0 & & 10.0 & & & 5.0 & 8.0 & & & 8.0 & \\
\hline Minimum Split (s) & 16.0 & & 16.0 & & & 11.0 & 42.0 & & & 31.0 & \\
\hline Total Split (s) & 60.0 & & 60.0 & & & 48.0 & 80.0 & & & 32.0 & \\
\hline Total Split (\%) & 42.9\% & & 42.9\% & & & 34.3\% & 57.1\% & & & 22.9\% & \\
\hline Maximum Green (s) & 54.0 & & 54.0 & & & 42.0 & 74.0 & & & 26.0 & \\
\hline Yellow Time (s) & 2.0 & & 2.0 & & & 2.0 & 2.0 & & & 2.0 & \\
\hline All-Red Time (s) & 4.0 & & 4.0 & & & 4.0 & 4.0 & & & 4.0 & \\
\hline Lost Time Adjust (s) & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & 6.0 & & 6.0 & & & 6.0 & 6.0 & & & 6.0 & \\
\hline Lead/Lag & & & & & & Lead & & & & Lag & \\
\hline \multicolumn{12}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 3.0 & & 3.0 & & & 3.0 & 3.0 & & & 3.0 & \\
\hline Recall Mode & None & & None & & & None & C-Min & & & C-Min & \\
\hline Walk Time (s) & & & & & & & 7.0 & & & 7.0 & \\
\hline Flash Dont Walk (s) & & & & & & & 29.0 & & & 17.0 & \\
\hline Pedestrian Calls (\#/hr) & & & & & & & 0 & & & 0 & \\
\hline Act Effict Green (s) & 54.0 & & 54.0 & & & 42.0 & 74.0 & & & 26.0 & 140.0 \\
\hline Actuated g/C Ratio & 0.39 & & 0.39 & & & 0.30 & 0.53 & & & 0.19 & 1.00 \\
\hline v/c Ratio & 1.14 & & 1.02 & & & 1.15 & 0.17 & & & 0.70 & 0.17 \\
\hline Control Delay & 111.0 & & 75.3 & & & 98.3 & 2.8 & & & 60.0 & 0.2 \\
\hline Queue Delay & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & 0.0 \\
\hline Total Delay & 111.0 & & 75.3 & & & 98.3 & 2.8 & & & 60.0 & 0.2 \\
\hline LOS & F & & E & & & F & A & & & E & A \\
\hline Approach Delay & & 96.0 & & & & & 77.9 & & & 38.3 & \\
\hline Approach LOS & & F & & & & & E & & & D & \\
\hline Queue Length 50th (ft) & \(\sim 774\) & & \(\sim 565\) & & & \(\sim 625\) & 20 & & & 207 & 0 \\
\hline Queue Length 95th ( t ) & \#877 & & \#685 & & & m\#680 & m21 & & & 270 & 0 \\
\hline Internal Link Dist (ft) & & 776 & & 310 & & & 680 & & & 777 & \\
\hline Turn Bay Length (ft) & & & & & & 550 & & & & & \\
\hline Base Capacity (vph) & 1250 & & 1015 & & & 1000 & 1817 & & & 650 & 1568 \\
\hline Starvation Cap Reductn & 0 & & 0 & & & 0 & 0 & & & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & & 0 & & & 0 & 0 & & & 0 & 0 \\
\hline Storage Cap Reductn & 0 & & 0 & & & 0 & 0 & & & 0 & 0 \\
\hline Reduced v/c Ratio & 1.14 & & 1.02 & & & 1.15 & 0.17 & & & 0.70 & 0.17 \\
\hline
\end{tabular}

\section*{Intersection Summary}

Area Type: Other
Cycle Length: 140
Actuated Cycle Length: 140
Offset: \(53(38 \%)\), Referenced to phase 2:NET and 6:SWT, Start of Yellow
Natural Cycle: 150

Lanes, Volumes, Timings
2 : NH 102 \& Exit 4 NB Off
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.15
Intersection Signal Delay: 81.3
Intersection Capacity Utilization 94.2\%
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
\(m\) Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 8: NH 102 \& Exit 4 NB Off


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\Rightarrow\) & & & & \(\leftarrow\) & & & \(\uparrow\) & & & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Detector 3 Type & & Cl+Ex & Cl+Ex & Cl+Ex & Cl+Ex & & & & & Cl+Ex & & Cl+Ex \\
\hline \multicolumn{13}{|l|}{} \\
\hline Detector 3 Extend (s) & & 0.0 & 0.0 & 0.0 & 0.0 & & & & & 0.0 & & 0.0 \\
\hline Turn Type & & NA & Free & Prot & NA & & & & & Prot & & Prot \\
\hline Protected Phases & & 2 & & 1 & 6 & & & & & 4 & & 4 \\
\hline Permitted Phases & & & Free & & & & & & & & & \\
\hline Detector Phase & & 2 & & 1 & 6 & & & & & 4 & & 4 \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & & 9.0 & & 4.0 & 9.0 & & & & & 4.0 & & 4.0 \\
\hline Minimum Split (s) & & 21.0 & & 10.0 & 21.0 & & & & & 10.0 & & 10.0 \\
\hline Total Split (s) & & 33.0 & & 23.0 & 56.0 & & & & & 34.0 & & 34.0 \\
\hline Total Split (\%) & & 36.7\% & & 25.6\% & 62.2\% & & & & & 37.8\% & & 37.8\% \\
\hline Maximum Green (s) & & 27.0 & & 17.0 & 50.0 & & & & & 28.0 & & 28.0 \\
\hline Yellow Time (s) & & 4.0 & & 4.0 & 4.0 & & & & & 4.0 & & 4.0 \\
\hline All-Red Time (s) & & 2.0 & & 2.0 & 2.0 & & & & & 2.0 & & 2.0 \\
\hline Lost Time Adjust (s) & & 0.0 & & 0.0 & 0.0 & & & & & 0.0 & & 0.0 \\
\hline Total Lost Time (s) & & 6.0 & & 6.0 & 6.0 & & & & & 6.0 & & 6.0 \\
\hline Lead/Lag & & Lag & & Lead & & & & & & & & \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & & 5.0 & & 3.0 & 5.0 & & & & & 3.0 & & 3.0 \\
\hline Recall Mode & & C-Min & & None & C-Min & & & & & None & & None \\
\hline Walk Time (s) & & 7.0 & & & 7.0 & & & & & & & \\
\hline Flash Dont Walk (s) & & 8.0 & & & 8.0 & & & & & & & \\
\hline Pedestrian Calls (\#/hr) & & 0 & & & 0 & & & & & & & \\
\hline Act Effict Green (s) & & 36.1 & 90.0 & 14.2 & 56.3 & & & & & 21.7 & & 21.7 \\
\hline Actuated g/C Ratio & & 0.40 & 1.00 & 0.16 & 0.63 & & & & & 0.24 & & 0.24 \\
\hline v/c Ratio & & 0.53 & 0.35 & 0.69 & 0.33 & & & & & 0.24 & & 0.81 \\
\hline Control Delay & & 24.5 & 0.6 & 21.4 & 0.4 & & & & & 26.6 & & 28.6 \\
\hline Queue Delay & & 0.0 & 0.0 & 0.0 & 0.0 & & & & & 0.0 & & 0.0 \\
\hline Total Delay & & 24.5 & 0.6 & 21.4 & 0.4 & & & & & 26.6 & & 28.6 \\
\hline LOS & & C & A & c & A & & & & & C & & C \\
\hline Approach Delay & & 14.4 & & & 4.7 & & & & & & 28.0 & \\
\hline Approach LOS & & B & & & A & & & & & & C & \\
\hline Queue Length 50th (tt) & & 172 & 0 & 5 & 0 & & & & & 45 & & 120 \\
\hline Queue Length 95th (tt) & & 247 & 0 & m0 & mo & & & & & 68 & & 221 \\
\hline Internal Link Dist (tt) & & 771 & & & 613 & & & 406 & & & 501 & \\
\hline Turn Bay Length (ft) & & & 350 & & & & & & & & & \\
\hline Base Capacity (vph) & & 1392 & 1553 & 324 & 2151 & & & & & 1047 & & 623 \\
\hline Starvation Cap Reductn & & 0 & 0 & 0 & 0 & & & & & 0 & & 0 \\
\hline Spillback Cap Reductn & & 0 & 0 & 0 & 0 & & & & & 0 & & 0 \\
\hline Storage Cap Reductn & & 0 & 0 & 0 & 0 & & & & & 0 & & 0 \\
\hline Reduced v/c Ratio & & 0.53 & 0.35 & 0.57 & 0.33 & & & & & 0.19 & & 0.69 \\
\hline
\end{tabular}

\section*{Intersection Summary}

Area Type: Other
Cycle Length: 90
Actuated Cycle Length: 90
Offset: 51 (57\%), Referenced to phase 2:EBT and 6:WBT, Start of Yellow
Natural Cycle: 60

Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.81
Intersection Signal Delay: 14.3 Intersection LOS: B
Intersection Capacity Utilization 70.4\% ICU Level of Service C
Analysis Period (min) 15
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 2: Exit 5 SB On/Exit 5 SB Off \& NH 28

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & & 1 & & 4 & 4 & \(\dagger\) & \(p\) & ( & \(\downarrow\) & 4 \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \({ }^{7}\) & 平4 & & & 靳 & \({ }^{7}\) & \({ }^{*}\) & & 7 & & & \\
\hline Traffic Volume (vph) & 440 & 380 & 0 & 0 & 455 & 230 & 320 & 0 & 370 & 0 & 0 & 0 \\
\hline Future Volume (vph) & 440 & 380 & 0 & 0 & 455 & 230 & 320 & 0 & 370 & 0 & 0 & 0 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Lane Util. Factor & 1.00 & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & & & & & 0.850 & & & 0.850 & & & \\
\hline Flt Protected & 0.950 & & & & & & 0.950 & & & & & \\
\hline Satd. Flow (prot) & 1752 & 3505 & 0 & 0 & 3505 & 1568 & 1703 & 0 & 1524 & 0 & 0 & 0 \\
\hline Flt Permitted & 0.950 & & & & & & 0.950 & & & & & \\
\hline Satd. Flow (perm) & 1752 & 3505 & 0 & 0 & 3505 & 1568 & 1703 & 0 & 1524 & 0 & 0 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & & & & & 253 & & & 418 & & & \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 35 & & & 30 & \\
\hline Link Distance (ft) & & 693 & & & 542 & & & 867 & & & 392 & \\
\hline Travel Time (s) & & 15.8 & & & 12.3 & & & 16.9 & & & 8.9 & \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.91 & 0.91 & 0.91 & 0.67 & 0.67 & 0.67 & 0.92 & 0.92 & 0.92 \\
\hline Heavy Vehicles (\%) & 3\% & 3\% & 3\% & 3\% & 3\% & 3\% & 6\% & 6\% & 6\% & 2\% & 2\% & 2\% \\
\hline Adj. Flow (vph) & 478 & 413 & 0 & 0 & 500 & 253 & 478 & 0 & 552 & 0 & 0 & 0 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 478 & 413 & 0 & 0 & 500 & 253 & 478 & 0 & 552 & 0 & 0 & 0 \\
\hline Enter Blocked Intersection & No \\
\hline Lane Alignment & Left & Left & Right & Left & Left & Right & Right & Left & Right & Left & Left & Right \\
\hline Median Width(f) & & 36 & & & 42 & & & 12 & & & 12 & \\
\hline Link Offset(ft) & & 0 & & & 0 & & & 0 & & & 36 & \\
\hline Crosswalk Width(ft) & & 16 & & & 16 & & & 16 & & & 16 & \\
\hline \multicolumn{13}{|l|}{Two way Left Turn Lane} \\
\hline Headway Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Turning Speed (mph) & 15 & & 9 & 15 & & 25 & 15 & & 25 & 15 & & 9 \\
\hline Number of Detectors & 3 & 3 & & & 3 & 3 & 3 & & 0 & & & \\
\hline Detector Template & Left & & & & & Right & Left & & & & & \\
\hline Leading Detector ( ft ) & 256 & 256 & & & 256 & 256 & 256 & & 0 & & & \\
\hline Trailing Detector (ft) & -5 & -5 & & & -5 & -5 & -5 & & 0 & & & \\
\hline Detector 1 Position(ft) & -5 & -5 & & & -5 & -5 & -5 & & -5 & & & \\
\hline Detector 1 Size(ft) & 50 & 50 & & & 50 & 50 & 50 & & 50 & & & \\
\hline Detector 1 Type & CI+Ex & CI+Ex & & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \\
\hline \multicolumn{13}{|l|}{Detector 1 Channel} \\
\hline Detector 1 Extend (s) & 0.0 & 0.0 & & & 0.0 & 0.0 & 0.0 & & 0.0 & & & \\
\hline Detector 1 Queue (s) & 0.0 & 0.0 & & & 0.0 & 0.0 & 0.0 & & 0.0 & & & \\
\hline Detector 1 Delay (s) & 0.0 & 0.0 & & & 0.0 & 0.0 & 0.0 & & 0.0 & & & \\
\hline Detector 2 Position(ft) & 125 & 125 & & & 125 & 125 & 125 & & & & & \\
\hline Detector 2 Size(ft) & 6 & 6 & & & 6 & 6 & 6 & & & & & \\
\hline Detector 2 Type & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & & & & \\
\hline \multicolumn{13}{|l|}{Detector 2 Channel} \\
\hline Detector 2 Extend (s) & 0.0 & 0.0 & & & 0.0 & 0.0 & 0.0 & & & & & \\
\hline Detector 3 Position(ft) & 250 & 250 & & & 250 & 250 & 250 & & & & & \\
\hline Detector 3 Size(ft) & 6 & 6 & & & 6 & 6 & 6 & & & & & \\
\hline Detector 3 Type & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & Cl+Ex & CI+Ex & & & & & \\
\hline \multicolumn{13}{|l|}{Detector 3 Channel} \\
\hline Detector 3 Extend (s) & 0.0 & 0.0 & & & 0.0 & 0.0 & 0.0 & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 3: Exit 5 NB Off & 28 & & & & & & & & & & \multicolumn{2}{|l|}{01/23/2018} \\
\hline & 4 & \(\rightarrow\) & 7 & \(\dagger\) & 4 & 4 & 4 & 4 & \(p\) & \(\pm\) & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Turn Type & Prot & NA & & & NA & Free & Prot & & Prot & & & \\
\hline Protected Phases & 5 & 2 & & & 6 & & 8 & & 8 & & & \\
\hline Permitted Phases & & 2 & & & 6 & Free & & & & & & \\
\hline Detector Phase & 5 & 2 & & & 6 & & 8 & & 8 & & & \\
\hline Switch Phase & & & & & & & & & & & & \\
\hline Minimum Initial (s) & 4.0 & 16.0 & & & 16.0 & & 4.0 & & 4.0 & & & \\
\hline Minimum Split (s) & 10.0 & 23.0 & & & 23.0 & & 11.0 & & 11.0 & & & \\
\hline Total Split (s) & 33.0 & 56.0 & & & 23.0 & & 34.0 & & 34.0 & & & \\
\hline Total Split (\%) & 36.7\% & 62.2\% & & & 25.6\% & & 37.8\% & & 37.8\% & & & \\
\hline Maximum Green (s) & 27.0 & 50.0 & & & 17.0 & & 28.0 & & 28.0 & & & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & & 4.0 & & 4.0 & & 4.0 & & & \\
\hline All-Red Time (s) & 2.0 & 2.0 & & & 2.0 & & 2.0 & & 2.0 & & & \\
\hline Lost Time Adjust (s) & 0.0 & 0.0 & & & 0.0 & & 0.0 & & 0.0 & & & \\
\hline Total Lost Time (s) & 6.0 & 6.0 & & & 6.0 & & 6.0 & & 6.0 & & & \\
\hline Lead/Lag & Lead & & & & Lag & & & & & & & \\
\hline Lead-Lag Optimize? & & & & & & & & & & & & \\
\hline Vehicle Extension (s) & 5.0 & 5.0 & & & 5.0 & & 3.0 & & 3.0 & & & \\
\hline Recall Mode & None & C-Min & & & C-Min & & None & & None & & & \\
\hline Walk Time (s) & & 7.0 & & & 7.0 & & & & & & & \\
\hline Flash Dont Walk (s) & & 10.0 & & & 10.0 & & & & & & & \\
\hline Pedestrian Calls (\#/hr) & & 0 & & & 0 & & & & & & & \\
\hline Act Effct Green (s) & 26.9 & 50.1 & & & 17.1 & 90.0 & 27.9 & & 27.9 & & & \\
\hline Actuated g/C Ratio & 0.30 & 0.56 & & & 0.19 & 1.00 & 0.31 & & 0.31 & & & \\
\hline \(v / \mathrm{C}\) Ratio & 0.91 & 0.21 & & & 0.75 & 0.16 & 0.91 & & 0.73 & & & \\
\hline Control Delay & 31.8 & 3.6 & & & 42.5 & 0.2 & 53.0 & & 13.2 & & & \\
\hline Queue Delay & 0.0 & 0.0 & & & 0.0 & 0.0 & 0.0 & & 0.0 & & & \\
\hline Total Delay & 31.8 & 3.6 & & & 42.5 & 0.2 & 53.0 & & 13.2 & & & \\
\hline LOS & C & A & & & D & A & D & & B & & & \\
\hline Approach Delay & & 18.8 & & & 28.3 & & & 31.7 & & & & \\
\hline Approach LOS & & B & & & C & & & C & & & & \\
\hline Queue Length 50th (ft) & 261 & 10 & & & 142 & 0 & 258 & & 57 & & & \\
\hline Queue Length 95th (ft) & \#440 & 9 & & & 198 & 0 & 254 & & 48 & & & \\
\hline Internal Link Dist (ft) & & 613 & & & 462 & & & 787 & & & 312 & \\
\hline Turn Bay Length (ft) & & & & & & & & & & & & \\
\hline Base Capacity (vph) & 525 & 1949 & & & 667 & 1568 & 529 & & 762 & & & \\
\hline Starvation Cap Reductn & 0 & 0 & & & 0 & 0 & 0 & & 0 & & & \\
\hline Spillback Cap Reductn & 0 & 0 & & & 0 & 0 & 0 & & 0 & & & \\
\hline Storage Cap Reductn & 0 & 0 & & & 0 & 0 & 0 & & 0 & & & \\
\hline Reduced v/c Ratio & 0.91 & 0.21 & & & 0.75 & 0.16 & 0.90 & & 0.72 & & & \\
\hline
\end{tabular}

\section*{Intersection Summary}

\section*{Area Type: Other}

Cycle Length: 90

\section*{Actuated Cycle Length: 90}

Offset: \(0(0 \%)\), Referenced to phase 2:EBT and 6:WBT, Start of Yellow, Master Intersection
Natural Cycle: 90
Control Type: Actuated-Coordinated

\section*{Maximum v/c Ratio: 0.91}

Intersection Signal Delay: \(26.4 \quad\) Intersection LOS: C
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 3: Exit 5 NB Off \& NH 28

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & & \(\uparrow\) & 7 & & \＄ & & \({ }^{7}\) & 个 & & \({ }_{1}\) & 个家 & \\
\hline Traffic Volume（vph） & 10 & 5 & 210 & 10 & 0 & 10 & 270 & 820 & 120 & 5 & 590 & 130 \\
\hline Future Volume（vph） & 10 & 5 & 210 & 10 & 0 & 10 & 270 & 820 & 120 & 5 & 590 & 130 \\
\hline Ideal Flow（vphpl） & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length（tt） & 0 & & 225 & 0 & & 0 & 350 & & 0 & 100 & & \\
\hline Storage Lanes & 0 & & 1 & 0 & & 0 & 1 & & 0 & 1 & & \\
\hline Taper Length（t） & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util．Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.95 & 0.95 & 1.00 & 0.95 & 0.95 \\
\hline Fit & & & 0.850 & & 0.932 & & & 0.981 & & & 0.973 & \\
\hline Flt Protected & & 0.967 & & & 0.976 & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（prot） & 0 & 1801 & 1583 & 0 & 1728 & 0 & 1770 & 3472 & 0 & 1770 & 3444 & \\
\hline Flt Permitted & & 0.871 & & & 0.834 & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（perm） & 0 & 1622 & 1583 & 0 & 1477 & 0 & 1770 & 3472 & 0 & 1770 & 3444 & \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd．Flow（RTOR） & & & 228 & & 182 & & & 28 & & & 31 & \\
\hline Link Speed（mph） & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance（ ft ） & & 593 & & & 447 & & & 750 & & & 330 & \\
\hline Travel Time（s） & & 13.5 & & & 10.2 & & & 17.0 & & & 7.5 & \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.25 & 0.25 & 0.25 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 \\
\hline Heary Vehicles（\％） & 2\％ & 2\％ & 2\％ & 0\％ & 0\％ & 0\％ & 2\％ & 2\％ & 2\％ & 2\％ & 2\％ & 2\％ \\
\hline Adj．Flow（vph） & 11 & 5 & 228 & 40 & 0 & 40 & 293 & 891 & 130 & 5 & 641 & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrrrrrrr} 
\\
Shared Lane Traffic（\％） & & & & & & 40 & 293 & 891 & 130 & 5 & 641 & 141 \\
Lane Group Flow（vph） & 0 & 16 & 228 & 0 & 80 & 0 & 293 & 1021 & 0 & 5 & 782 & 0 \\
Enter Blocked Intersection & No \\
Lane Alignment & Left & Left & Right & Left & Left & Right & Left & Leff & Right & Left & Left & Right \\
Median Width（t） & & 0 & & & 0 & & & 12 & & & 12 & \\
Link Offset（ft） & & 0 & & & 0 & & & 0 & & & 0 & \\
Crosswalk Width（ft） & & 16 & & & 16 & & & 16 & & & 16 &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{\multirow[t]{2}{*}{Two way Left Turn Lane}} \\
\hline & & & & & & & & & & & & \\
\hline Headway Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Turning Speed（mph） & 15 & & 9 & 15 & & 9 & 15 & & 9 & 15 & & \\
\hline Number of Detectors & 3 & 3 & 1 & 3 & 1 & & 3 & 3 & & 3 & 3 & \\
\hline Detector Template & Left & Thru & Right & Left & & & Left & Thru & & Left & Thru & \\
\hline Leading Detector（tt） & 256 & 256 & 45 & 256 & 45 & & 256 & 256 & & 256 & 256 & \\
\hline Trailing Detector（ft） & －5 & －5 & －5 & －5 & －5 & & －5 & －5 & & －5 & － 5 & \\
\hline Detector 1 Position（ft） & －5 & －5 & －5 & －5 & －5 & & －5 & －5 & & －5 & －5 & \\
\hline Detector 1 Size（t） & 50 & 50 & 50 & 50 & 50 & & 50 & 50 & & 50 & 50 & \\
\hline Detector 1 Type & Cl＋Ex & Cl＋Ex & Cl＋Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & Cl＋Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & Cl＋Ex & \\
\hline \multicolumn{13}{|l|}{Detector 1 Channel} \\
\hline Detector 1 Extend（s） & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 1 Queue（s） & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 1 Delay（s） & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 2 Position（t） & 125 & 125 & & 125 & & & 125 & 125 & & 125 & 125 & \\
\hline Detector 2 Size（tt） & 6 & 6 & & 6 & & & 6 & 6 & & ， & 6 & \\
\hline Detector 2 Type & Cl＋Ex & Cl＋Ex & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & Cl＋Ex & Cl＋Ex & & Cl＋Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline \multicolumn{13}{|l|}{Detector 2 Channel} \\
\hline Detector 2 Extend（s） & 0.0 & 0.0 & & 0.0 & & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 3 Position（t） & 250 & 250 & & 250 & & & 250 & 250 & & 250 & 250 & \\
\hline Detector 3 Size（t） & 6 & 6 & & 6 & & & 6 & 6 & & ． & ， & \\
\hline
\end{tabular}

\footnotetext{
4A Zone 27：30 am 08／03／2016 Alt C 2040 PM Peak
LC
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Detector 3 Type & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & CI+Ex & \\
\hline \multicolumn{13}{|l|}{Detector 3 Channel} \\
\hline Detector 3 Extend (s) & 0.0 & 0.0 & & 0.0 & & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Turn Type & Perm & NA & custom & Perm & NA & & Prot & NA & & Prot & NA & \\
\hline Protected Phases & & 8 & & & 4 & & 5 & 2 & & 1 & 6 & \\
\hline Permitted Phases & 8 & & 6 & 4 & & & & & & & & \\
\hline Detector Phase & 8 & 8 & 6 & 4 & 4 & & 5 & 2 & & 1 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 5.0 & 5.0 & 8.0 & 5.0 & 5.0 & & 5.0 & 8.0 & & 5.0 & 8.0 & \\
\hline Minimum Split (s) & 24.0 & 24.0 & 24.0 & 24.0 & 24.0 & & 24.0 & 24.0 & & 11.0 & 24.0 & \\
\hline Total Split (s) & 24.0 & 24.0 & 36.0 & 24.0 & 24.0 & & 30.0 & 55.0 & & 11.0 & 36.0 & \\
\hline Total Split (\%) & 26.7\% & 26.7\% & 40.0\% & 26.7\% & 26.7\% & & 33.3\% & 61.1\% & & 12.2\% & 40.0\% & \\
\hline Maximum Green (s) & 18.0 & 18.0 & 30.0 & 18.0 & 18.0 & & 24.0 & 49.0 & & 5.0 & 30.0 & \\
\hline Yellow Time (s) & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & \\
\hline All-Red Time (s) & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & 0.0 & & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Total Lost Time (s) & & 6.0 & 6.0 & & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Lead/Lag & & & Lag & & & & Lead & Lag & & Lead & Lag & \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & None & None & Min & None & None & & None & Min & & None & Min & \\
\hline Walk Time (s) & 7.0 & 7.0 & 7.0 & 7.0 & 7.0 & & 7.0 & 7.0 & & & 7.0 & \\
\hline Flash Dont Walk (s) & 11.0 & 11.0 & 11.0 & 11.0 & 11.0 & & 11.0 & 11.0 & & & 11.0 & \\
\hline Pedestrian Calls (\#/hr) & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & & & 0 & \\
\hline Act Effct Green (s) & & 6.8 & 27.1 & & 6.8 & & 16.9 & 50.8 & & 5.4 & 27.1 & \\
\hline Actuated g/C Ratio & & 0.10 & 0.41 & & 0.10 & & 0.26 & 0.77 & & 0.08 & 0.41 & \\
\hline \(\mathrm{v} / \mathrm{c}\) Ratio & & 0.10 & 0.29 & & 0.25 & & 0.65 & 0.38 & & 0.03 & 0.55 & \\
\hline Control Delay & & 33.5 & 3.7 & & 1.9 & & 31.0 & 4.8 & & 34.8 & 17.5 & \\
\hline Queue Delay & & 0.0 & 0.0 & & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Total Delay & & 33.5 & 3.7 & & 1.9 & & 31.0 & 4.8 & & 34.8 & 17.5 & \\
\hline LOS & & C & A & & A & & C & A & & C & B & \\
\hline Approach Delay & & 5.7 & & & 1.9 & & & 10.7 & & & 17.6 & \\
\hline Approach LOS & & A & & & A & & & B & & & B & \\
\hline Queue Length 50th (ft) & & 7 & 0 & & 0 & & 118 & 63 & & 2 & 127 & \\
\hline Queue Length 95th (ft) & & 26 & 43 & & 0 & & 199 & 170 & & 13 & 212 & \\
\hline Internal Link Dist (ft) & & 513 & & & 367 & & & 670 & & & 250 & \\
\hline Turn Bay Length (ft) & & & 225 & & & & 350 & & & 100 & & \\
\hline Base Capacity (vph) & & 475 & 890 & & 561 & & 692 & 2683 & & 144 & 1700 & \\
\hline Starvation Cap Reductn & & 0 & 0 & & 0 & & 0 & 0 & & 0 & 0 & \\
\hline Spillback Cap Reductn & & 0 & 0 & & 0 & & 0 & 0 & & 0 & 0 & \\
\hline Storage Cap Reductn & & 0 & 0 & & 0 & & 0 & 0 & & 0 & 0 & \\
\hline Reduced v/c Ratio & & 0.03 & 0.26 & & 0.14 & & 0.42 & 0.38 & & 0.03 & 0.46 & \\
\hline
\end{tabular}

\section*{ntersection Summary}
Area Type: Other

Cycle Length: 90
Actuated Cycle Length: 66.2
Natural Cycle: 75
Control Type: Actuated-Uncoordinated

5 8: NH 102 \& St. Charles Street/Londonderry Road
Maximum v/c Ratio: 0.65
Intersection Signal Delay: 12.1 Intersection LOS: B
Intersection Capacity Utilization 62.0\% ICU Level of Service B
Analysis Period (min) 15
Splits and Phases: 9: NH 102 \& St. Charles Street/Londonderry Road


\begin{tabular}{lrrrr} 
Shared Lane Traffic (\%) & & & & \\
Lane Group Flow (vph) & 0 & 74 & 0 & 0 \\
Enter Blocked Intersection & No & No & No & No \\
\hline Lane Alignment & Left & Left & Right & Left
\end{tabular}
\begin{tabular}{lrlrrrrrr} 
Lane Alignment & Left & Left & Right & Left & Left & Right & Left & Left
\end{tabular} Right \begin{tabular}{ll} 
Left & Left
\end{tabular} Right
\begin{tabular}{lrrrrrrrrrrrr}
\hline Two way Left Turn Lane & & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Headway Factor & 1.00 & 1.00 \\
\hline Turning Speed (mph) & 15 & & 9 & 15 & & 9 & 15 & & 9 & 15 & & 9
\end{tabular}


\footnotetext{
4A Zone 2 7:30 am 08/03/2016 Alt C 2040 PM Peak
LC
}

Lanes, Volumes, Timings
6
10: NH 102 \& Fordway/Madden Hill Road
01/23/2018


\section*{Intersection Summary \\ Area Type: Other}

Cycle Length: 90
Actuated Cycle Length: 86.5
Natural Cycle: 90
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.94
Intersection Signal Delay: 32.3 Intersection LOS: C
Intersection Capacity Utilization 84.3\% ICU Level of Service E
\(\zeta\) ग0: NH 102 \& Fordway/Madden Hill Road
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 10: NH 102 \& Fordway/Madden Hill Road
\begin{tabular}{|c|c|c|}
\hline 年砍 & \(\chi_{64}\) & \\
\hline 61 s & 29 s & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & NBL & NBT & NBR & SBL & SBT & SBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & \({ }^{1}\) & \(\dagger\) & & 7 & 4 & 「' & \({ }^{7}\) & F & & 7 & \(\dagger\) & \\
\hline Traffic Volume (vph) & 70 & 310 & 20 & 130 & 400 & 60 & 80 & 390 & 30 & 50 & 270 & 60 \\
\hline Future Volume (vph) & 70 & 310 & 20 & 130 & 400 & 60 & 80 & 390 & 30 & 50 & 270 & 60 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 70 & & 0 & 245 & & 245 & 390 & & 0 & 110 & & , \\
\hline Storage Lanes & 1 & & 0 & 1 & & 1 & 1 & & 0 & 1 & & 0 \\
\hline Taper Length ( ft ) & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & 0.991 & & & & 0.850 & & 0.989 & & & 0.973 & \\
\hline FIt Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (prot) & 1752 & 1828 & 0 & 1752 & 1845 & 1568 & 1787 & 1860 & 0 & 1787 & 1830 & 0 \\
\hline Filt Permitted & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (perm) & 1752 & 1828 & 0 & 1752 & 1845 & 1568 & 1787 & 1860 & 0 & 1787 & 1830 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & 4 & & & & 116 & & 5 & & & 12 & \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance (ft) & & 361 & & & 411 & & & 477 & & & 530 & \\
\hline Travel Time (s) & & 8.2 & & & 9.3 & & & 10.8 & & & 12.0 & \\
\hline Peak Hour Factor & 0.91 & 0.91 & 0.91 & 0.93 & 0.93 & 0.93 & 0.95 & 0.95 & 0.95 & 0.94 & 0.94 & 0.94 \\
\hline Heavy Vehicles (\%) & 3\% & 3\% & 3\% & 3\% & 3\% & 3\% & 1\% & 1\% & 1\% & 1\% & 1\% & 1\% \\
\hline Adj. Flow (vph) & 77 & 341 & 22 & 140 & 430 & 65 & 84 & 411 & 32 & 53 & 287 & 64 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%) 0} \\
\hline Lane Group Flow (vph) & 77 & 363 & 0 & 140 & 430 & 65 & 84 & 443 & 0 & 53 & 351 & 0 \\
\hline Turn Type & Prot & NA & & Prot & NA & pm+ov & Prot & NA & & Prot & NA & \\
\hline Protected Phases & 3 & 8 & & 7 & 4 & 5 & 5 & 2 & & 1 & 6 & \\
\hline Permitted Phases & & & & & & 4 & & & & & & \\
\hline Detector Phase & 3 & 8 & & 7 & 4 & 5 & 5 & 2 & & 1 & 6 & \\
\hline Switch Phase & & & & & & & & . & & & & \\
\hline Minimum Initial (s) & 4.0 & 5.0 & & 4.0 & 10.0 & 4.0 & 4.0 & 10.0 & & 4.0 & 9.0 & \\
\hline Minimum Split (s) & 10.0 & 24.0 & & 11.0 & 24.0 & 16.0 & 16.0 & 24.0 & & 11.0 & 24.0 & \\
\hline Total Split (s) & 14.0 & 26.0 & & 18.0 & 30.0 & 16.0 & 16.0 & 30.0 & & 11.0 & 25.0 & \\
\hline Total Split (\%) & 16.5\% & 30.6\% & & 21.2\% & 35.3\% & 18.8\% & 18.8\% & 35.3\% & & 12.9\% & 29.4\% & \\
\hline Maximum Green (s) & 8.0 & 20.0 & & 12.0 & 24.0 & 10.0 & 10.0 & 24.0 & & 5.0 & 19.0 & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & & 4.0 & 4.0 & \\
\hline All-Red Time (s) & 2.0 & 2.0 & & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & & 2.0 & 2.0 & \\
\hline Lost Time Adjust (s) & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Total Lost Time (s) & 6.0 & 6.0 & & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Lead/Lag & Lead & Lag & & Lead & Lag & Lead & Lead & Lag & & Lead & Lag & \\
\hline Lead-Lag Optimize? & Yes & Yes & & Yes & Yes & Yes & Yes & Yes & & Yes & Yes & \\
\hline Vehicle Extension (S) & 3.0 & 3.0 & & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & None & None & & None & None & None & None & Max & & None & None & \\
\hline Act Effct Green (s) & 7.5 & 18.7 & & 10.6 & 21.3 & 36.1 & 8.6 & 26.7 & & 5.2 & 21.5 & \\
\hline Actuated g/C Ratio & 0.10 & 0.24 & & 0.14 & 0.28 & 0.47 & 0.11 & 0.35 & & 0.07 & 0.28 & \\
\hline \(\mathrm{v} / \mathrm{c}\) Ratio & 0.45 & 0.81 & & 0.58 & 0.84 & 0.08 & 0.42 & 0.68 & & 0.43 & 0.68 & \\
\hline Control Delay & 45.3 & 45.4 & & 44.4 & 44.1 & 0.8 & 41.9 & 32.2 & & 50.7 & 36.7 & \\
\hline Queue Delay & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Total Delay & 45.3 & 45.4 & & 44.4 & 44.1 & 0.8 & 41.9 & 32.2 & & 50.7 & 36.7 & \\
\hline LOS & D & D & & D & D & A & D & C & & D & D & \\
\hline Approach Delay & & 45.3 & & & 39.8 & & & 33.7 & & & 38.5 & \\
\hline
\end{tabular}

Zone 3
7: NH 102 (E Broadway) \& Birch St/Crystal Av
\begin{tabular}{lrrrrrrrrrr}
\hline Lane Group & NBL & NBT & NBR & SBL & SBT & SBR & NEL & NET & NER & SWL \\
\hline Approach LOS & & \(D\) & & \(D\) & & & \(C\) & & SWT & SWR \\
Queue Length 50th ( ft\()\) & 40 & 183 & 71 & 214 & 0 & 43 & 219 & 28 & 172 \\
Queue Length 95th (ft) & 83 & \(\# 331\) & & 129 & \(\# 368\) & 5 & 87 & \(\# 379\) & \(\# 74\) & \(\# 321\) \\
Internal Link Dist (ft) & & 281 & & 331 & & & 397 & & 450 \\
Turn Bay Length (ft) & 70 & & 245 & & 245 & 390 & & 110 & \\
Base Capacity (vph) & 190 & 501 & 286 & 603 & 836 & 243 & 650 & 122 & 523 \\
Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
Reduced v/c Ratio & 0.41 & 0.72 & 0.49 & 0.71 & 0.08 & 0.35 & 0.68 & 0.43 & 0.67
\end{tabular}

Intersection Summary
Area Type: Other
Cycle Length: 85
Actuated Cycle Length: 76.7
Natural Cycle: 75
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.84

Intersection Signal Delay: 39.2
Intersection Capacity Utilization 87.2\%
Intersection LOS: D
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 7: NH 102 (E Broadway) \& Birch St/Crystal Av

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & NBL & NBT & NBR & SBL & SBT & SBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & 7 & 番 & 7 & \% & 44 & & 7 & 4 & 「 & \% & 4 & SWR \\
\hline Traffic Volume (vph) & 80 & 330 & 140 & 560 & 530 & 0 & 320 & 500 & 120 & 50 & 290 & 590 \\
\hline Future Volume (vph) & 80 & 330 & 140 & 560 & 530 & 0 & 320 & 500 & 120 & 50 & 290 & 590 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length ( ft ) & 110 & & 90 & 360 & & 0 & 190 & & 180 & 0 & & 210 \\
\hline Storage Lanes & 1 & & 1 & 2 & & 0 & 1 & & 1 & 1 & & \\
\hline Taper Length (ft) & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & & 0.850 & & & & & & 0.850 & & & 0.850 \\
\hline Flt Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (prot) & 1770 & 3539 & 1583 & 3433 & 3539 & 0 & 1770 & 1863 & 1583 & 1787 & 1881 & 1599 \\
\hline Flt Permitted & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (perm) & 1770 & 3539 & 1583 & 3433 & 3539 & 0 & 1770 & 1863 & 1583 & 1787 & 1881 & 1599 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & & 268 & & & & & & 208 & & & 149 \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance (ft) & & 639 & & & 495 & & & 532 & & & 387 & \\
\hline Travel Time (s) & & 14.5 & & & 11.3 & & & 12.1 & & & 8.8 & \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.94 & 0.94 & 0.94 & 0.96 & 0.96 & 0.96 & 0.95 & 0.95 & 0.95 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 1\% & 1\% & 1\% \\
\hline Adj. Flow (vph) & 87 & 359 & 152 & 596 & 564 & 0 & 333 & 521 & 125 & 53 & 305 & 621 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%) \(\%\) (\% 62} \\
\hline Lane Group Flow (vph) & 87 & 359 & 152 & 596 & 564 & 0 & 333 & 521 & 125 & 53 & 305 & 621 \\
\hline Turn Type & Prot & NA & Perm & Prot & NA & & Prot & NA & Perm & Prot & NA & pm+ov \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & 7 & 4 & & 3 & 8 & \\
\hline Permitted Phases & & & 2 & & & & & & 4 & & & 8 \\
\hline Detector Phase & 5 & 2 & 2 & 1 & 6 & & 7 & 4 & 4 & 3 & 8 & \\
\hline \multicolumn{13}{|l|}{Switch Phase 8} \\
\hline Minimum Initial (s) & 8.0 & 8.0 & 8.0 & 8.0 & 8.0 & & 8.0 & 8.0 & 8.0 & 8.0 & 8.0 & 8.0 \\
\hline Minimum Split (s) & 14.0 & 22.0 & 22.0 & 14.0 & 22.0 & & 14.0 & 22.0 & 22.0 & 14.0 & 22.0 & 14.0 \\
\hline Total Split (s) & 17.0 & 23.0 & 23.0 & 28.0 & 34.0 & & 31.0 & 41.0 & 41.0 & 18.0 & 28.0 & 28.0 \\
\hline Total Split (\%) & 15.5\% & 20.9\% & 20.9\% & 25.5\% & 30.9\% & & 28.2\% & 37.3\% & 37.3\% & 16.4\% & 25.5\% & 25.5\% \\
\hline Maximum Green (s) & 11.0 & 17.0 & 17.0 & 22.0 & 28.0 & & 25.0 & 35.0 & 35.0 & 12.0 & 22.0 & 22.0 \\
\hline Yellow Time (s) & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 \\
\hline All-Red Time (s) & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 \\
\hline Lost Time Adjust (s) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Lost Time (s) & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 \\
\hline Lead/Lag & Lead & Lag & Lag & Lead & Lag & & Lead & Lag & Lag & Lead & Lag & Lead \\
\hline Lead-Lag Optimize? & Yes & Yes & Yes & Yes & Yes & & Yes & Yes & Yes & Yes & Yes & Yes \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
\hline Recall Mode & None & C-Max & C-Max & None & None & & None & None & None & None & None & None \\
\hline Walk Time (s) & & 5.0 & 5.0 & & 5.0 & & & 5.0 & 5.0 & & 5.0 & \\
\hline Flash Dont Walk (s) & & 11.0 & 11.0 & & 11.0 & & & 11.0 & 11.0 & & 11.0 & \\
\hline Pedestrian Calls (\#/hr) & & 0 & 0 & & 0 & & & 0 & 0 & & 0 & \\
\hline Act Effct Green (s) & 9.9 & 19.9 & 19.9 & 22.1 & 34.8 & & 23.4 & 37.6 & 37.6 & 9.3 & 20.6 & 48.7 \\
\hline Actuated g/C Ratio & 0.09 & 0.18 & 0.18 & 0.20 & 0.32 & & 0.21 & 0.34 & 0.34 & 0.08 & 0.19 & 0.44 \\
\hline v/c Ratio & 0.54 & 0.56 & 0.30 & 0.87 & 0.50 & & 0.89 & 0.82 & 0.18 & 0.35 & 0.87 & 0.79 \\
\hline Control Delay & 60.7 & 46.1 & 1.5 & 69.2 & 34.7 & & 67.2 & 45.7 & 0.6 & 53.8 & 67.4 & 27.5 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrrrrrr}
\hline Lane Group & NBL & NBT & NBR & SBL & SBT & SBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Total Delay & 60.7 & 46.1 & 1.5 & 69.2 & 34.7 & 67.2 & 45.7 & 0.6 & 53.8 & 67.4 & 27.5 \\
LOS & E & D & A & E & C & & E & D & A & D & E & C \\
Approach Delay & & 36.9 & & & 52.4 & & & 47.3 & & & 41.4 & \\
Approach LOS & & D & & & D & & & D & & & D & \\
Queue Length 50th (ft) & 59 & 126 & 0 & 184 & 121 & 225 & 329 & 0 & 36 & 207 & 280 \\
Queue Length 95th (ft) & 112 & 177 & 0 & \(\# 316\) & 200 & & \(\# 374\) & \(\# 536\) & 0 & 75 & \(\# 345\) & 438 \\
Internal Link Dist (ft) & & 559 & & & 415 & & 452 & & & 307 & \\
Turn Bay Length (ft) & 110 & & 90 & 360 & & 190 & & 180 & & & 210 \\
Base Capacity (vph) & 177 & 640 & 506 & 700 & 1120 & 402 & 636 & 677 & 194 & 376 & 795 \\
Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
Reduced v/c Ratio & 0.49 & 0.56 & 0.30 & 0.85 & 0.50 & 0.83 & 0.82 & 0.18 & 0.27 & 0.81 & 0.78
\end{tabular}

Intersection Summary
Area Type: Other
Cycle Length: 110
Actuated Cycle Length: 110
Offset: 16 (15\%), Referenced to phase 2:NBT, Start of Yellow
Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.89
Intersection Signal Delay: 45.7
Intersection Capacity Utilization 78.4\%
Intersection LOS: D
ICU Level of Service D
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 11: Folsom Rd/Tsienneto Rd \& NH 28 S/NH 28

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & \% &  & & \% & 性 & & & \(\uparrow\) & 7 & & \(\uparrow\) & SWR \\
\hline Traffic Volume (vph) & 90 & 1225 & 5 & 20 & 1030 & 100 & 15 & 10 & 15 & 10 & 10 & 30 \\
\hline Future Volume (vph) & 90 & 1225 & 5 & 20 & 1030 & 100 & 15 & 10 & 15 & 10 & 10 & 30 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length ( ft ) & 100 & & 0 & 115 & & 0 & 0 & & 0 & 0 & & , \\
\hline Storage Lanes & 1 & & 0 & 1 & & 0 & 0 & & 1 & 0 & & \\
\hline Taper Length (ft) & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 0.95 & 0.95 & 1.00 & 0.95 & 0.95 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & 0.999 & & & 0.987 & & & & 0.850 & & & 0.850 \\
\hline Flt Protected & 0.950 & & & 0.950 & & & & 0.971 & & & 0.976 & \\
\hline Satd. Flow (prot) & 1787 & 3571 & 0 & 1787 & 3528 & 0 & 0 & 1845 & 1615 & 0 & 1836 & 1599 \\
\hline Flt Permitted & 0.950 & & & 0.950 & & & & 0.799 & & & 0.827 & \\
\hline Satd. Flow (perm) & 1787 & 3571 & 0 & 1787 & 3528 & 0 & 0 & 1518 & 1615 & 0 & 1556 & 1599 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & 1 & & & 13 & & & & 149 & & & 149 \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance (ft) & & 277 & & & 652 & & & 230 & & & 387 & \\
\hline Travel Time (s) & & 6.3 & & & 14.8 & & & 5.2 & & & 8.8 & \\
\hline Peak Hour Factor & 0.97 & 0.97 & 0.97 & 0.95 & 0.95 & 0.95 & 0.90 & 0.90 & 0.90 & 0.80 & 0.80 & 0.80 \\
\hline Heavy Vehicles (\%) & 1\% & 1\% & 1\% & 1\% & 1\% & 1\% & 0\% & 0\% & 0\% & 1\% & 1\% & 1\% \\
\hline Adj. Flow (vph) & 93 & 1263 & 5 & 21 & 1084 & 105 & 17 & 11 & 17 & 13 & 13 & 38 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 93 & 1268 & 0 & 21 & 1189 & 0 & 0 & 28 & 17 & 0 & 26 & 38 \\
\hline Turn Type & Prot & NA & & Prot & NA & & Perm & NA & Perm & Perm & NA & Perm \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & & 8 & & & 4 & \\
\hline Permitted Phases & & & & & & & 8 & & 8 & 4 & 4 & 4 \\
\hline Detector Phase & 5 & 2 & & 1 & 6 & & 8 & 8 & 8 & 4 & 4 & 4 \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 5.0 & 8.0 & & 5.0 & 8.0 & & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 \\
\hline Minimum Split (s) & 26.0 & 63.0 & & 11.0 & 48.0 & & 21.0 & 21.0 & 21.0 & 21.0 & 21.0 & 21.0 \\
\hline Total Split (s) & 27.0 & 78.0 & & 11.0 & 62.0 & & 21.0 & 21.0 & 21.0 & 21.0 & 21.0 & 21.0 \\
\hline Total Split (\%) & 24.5\% & 70.9\% & & 10.0\% & 56.4\% & & 19.1\% & 19.1\% & 19.1\% & 19.1\% & 19.1\% & 19.1\% \\
\hline Maximum Green (s) & 21.0 & 72.0 & & 5.0 & 56.0 & & 15.0 & 15.0 & 15.0 & 15.0 & 15.0 & 15.0 \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 \\
\hline All-Red Time (s) & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 \\
\hline Lost Time Adjust (s) & 0.0 & 0.0 & & 0.0 & 0.0 & & & 0.0 & 0.0 & & 0.0 & 0.0 \\
\hline Total Lost Time (s) & 6.0 & 6.0 & & 6.0 & 6.0 & & & 6.0 & 6.0 & & 6.0 & 6.0 \\
\hline Lead/Lag & Lead & Lag & & Lead & Lag & & & & & & & \\
\hline Lead-Lag Optimize? & Yes & Yes & & Yes & Yes & & & & & & & \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
\hline Recall Mode & None & C-Max & & None & Max & & None & None & None & None & None & None \\
\hline Walk Time (s) & & 7.0 & & & 7.0 & & 7.0 & 7.0 & 7.0 & 7.0 & 7.0 & 7.0 \\
\hline Flash Dont Walk (s) & & 11.0 & & & 11.0 & & 8.0 & 8.0 & 8.0 & 8.0 & 8.0 & 8.0 \\
\hline Pedestrian Calls (\#/hr) & & 0 & & & 0 & & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Act Effct Green (s) & 11.0 & 88.4 & & 6.9 & 79.5 & & & 7.5 & 7.5 & & 7.5 & 7.5 \\
\hline Actuated g/C Ratio & 0.10 & 0.80 & & 0.06 & 0.72 & & & 0.07 & 0.07 & & 0.07 & 0.07 \\
\hline v/c Ratio & 0.52 & 0.44 & & 0.19 & 0.47 & & & 0.27 & 0.07 & & 0.25 & 0.15 \\
\hline Control Delay & 54.5 & 9.2 & & 51.0 & 10.5 & & & 54.6 & 0.5 & & 53.5 & 1.3 \\
\hline Queue Delay & 0.0 & 0.0 & & 0.0 & 0.0 & & & 0.0 & 0.0 & & 0.0 & 0.0 \\
\hline
\end{tabular}

13: Applebee's/Linlew \(\operatorname{Dr} \& N H 28\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\cdots\) & \} & 2 & m & \(k\) & ¢ & \(\bar{y}\) & \(\lambda\) & ra & 5 & 4 & \(\cdots\) \\
\hline Lane Group & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Total Delay & 54.5 & 9.2 & & 51.0 & 10.5 & & & 54.6 & 0.5 & & 53.5 & 1.3 \\
\hline LOS & D & A & & D & B & & & D & A & & D & A \\
\hline Approach Delay & & 12.3 & & & 11.2 & & & 34.1 & & & 22.5 & \\
\hline Approach LOS & & B & & & B & & & C & & & C & \\
\hline Queue Length 50th (ft) & 63 & 247 & & 15 & 221 & & & 19 & 0 & & 18 & 0 \\
\hline Queue Length 95th (ft) & m96 & 442 & & m20 & 280 & & & 48 & 0 & & 40 & 0 \\
\hline Internal Link Dist (ft) & & 197 & & & 572 & & & 150 & & & 307 & \\
\hline Turn Bay Length (ft) & 100 & & & 115 & & & & & & & & \\
\hline Base Capacity (vph) & 341 & 2868 & & 111 & 2554 & & & 207 & 348 & & 212 & 346 \\
\hline Starvation Cap Reductn & 0 & 0 & & 0 & 0 & & & 0 & 0 & & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & & - & 0 & & & 0 & 0 & & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & & 0 & 0 & & & 0 & 0 & & 0 & 0 \\
\hline Reduced v/c Ratio & 0.27 & 0.44 & & 0.19 & 0.47 & & & 0.14 & 0.05 & & 0.12 & 0.11 \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline \multicolumn{13}{|l|}{Area Type: Other} \\
\hline \multicolumn{13}{|l|}{Cycle Length: 110} \\
\hline \multicolumn{13}{|l|}{Actuated Cycle Length: 110} \\
\hline \multicolumn{13}{|l|}{Offset: 49 (45\%), Referenced to phase 2:SET, Start of Yellow} \\
\hline \multicolumn{13}{|l|}{Natural Cycle: 95} \\
\hline \multicolumn{13}{|l|}{Control Type: Actuated-Coordinated} \\
\hline \multicolumn{13}{|l|}{Maximum v/c Ratio: 0.52} \\
\hline \multicolumn{5}{|l|}{Intersection Signal Delay: 12.4} & \multicolumn{8}{|l|}{Intersection LOS: B} \\
\hline \multicolumn{5}{|l|}{Intersection Capacity Utilization 61.2\%} & \multicolumn{8}{|l|}{ICU Level of Service B} \\
\hline \multicolumn{13}{|l|}{Analysis Period (min) 15} \\
\hline \multicolumn{13}{|l|}{m Volume for 95 th percentile queue is metered by upstream signal.} \\
\hline
\end{tabular}

Splits and Phases: 13: Applebee's/Linlew Dr \& NH 28

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\rangle\) & \(\rightarrow\) & \% & \(t\) & & & 4 & \(\uparrow\) & \(p\) & & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & 7* & \(\uparrow \uparrow\) & & 7 & 个t & & \% & A & & & \(\uparrow\) & 7 \\
\hline Traffic Volume (vph) & 530 & 1270 & 5 & 5 & 1080 & 70 & 40 & 10 & 10 & 80 & 5 & 490 \\
\hline Future Volume (vph) & 530 & 1270 & 5 & 5 & 1080 & 70 & 40 & 10 & 10 & 80 & 5 & 490 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (tt) & 200 & & 150 & 205 & & 150 & 0 & & 0 & 0 & & 220 \\
\hline Storage Lanes & 2 & & 0 & 1 & & 0 & 1 & & 0 & 0 & & 1 \\
\hline Taper Length (t) & 150 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Utill. Factor & 0.97 & 0.95 & 0.95 & 1.00 & 0.95 & 0.95 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & 0.999 & & & 0.991 & & & 0.925 & & & & 0.850 \\
\hline Flt Protected & 0.950 & & & 0.950 & & & 0.950 & & & & 0.955 & \\
\hline Satd. Flow (prot) & 3467 & 3571 & 0 & 1770 & 3507 & 0 & 1805 & 1758 & 0 & 0 & 1814 & 1615 \\
\hline Flt Permitted & 0.950 & & & 0.950 & & & 0.693 & & & & 0.720 & \\
\hline Satd. Flow (perm) & 3467 & 3571 & , & 1770 & 3507 & 0 & 1317 & 1758 & , & 0 & 1368 & 1615 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & 1 & & & 7 & & & 13 & & & & 30 \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance ( t ) & & 877 & & & 314 & & & 151 & & & 476 & \\
\hline Travel Time (s) & & 19.9 & & & 7.1 & & & 3.4 & & & 10.8 & \\
\hline Peak Hour Factor & 0.84 & 0.84 & 0.84 & 0.90 & 0.90 & 0.90 & 0.78 & 0.78 & 0.78 & 0.86 & 0.86 & 0.86 \\
\hline Heavy Vehicles (\%) & 1\% & 1\% & 1\% & 2\% & 2\% & 2\% & 0\% & 0\% & 0\% & 0\% & 0\% & 0\% \\
\hline Adj. Flow (vph) & 631 & 1512 & 6 & 6 & 1200 & 78 & 51 & 13 & 13 & 93 & 6 & 570 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 631 & 1518 & 0 & 6 & 1278 & 0 & 51 & 26 & 0 & 0 & 99 & 570 \\
\hline Turn Type & Prot & NA & & Prot & NA & & Perm & NA & & Perm & NA & pm+ov \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & & 8 & & & 4 & 5 \\
\hline Permitted Phases & & & & & & & 8 & 8 & & 4 & & 4 \\
\hline Detector Phase & 5 & 2 & & 1 & 6 & & 8 & 8 & & 4 & 4 & 5 \\
\hline \multicolumn{13}{|l|}{Switch Phase 4 d 40} \\
\hline Minimum Initial (s) & 5.0 & 8.0 & & 5.0 & 8.0 & & 5.0 & 5.0 & & 8.0 & 8.0 & 5.0 \\
\hline Minimum Split (s) & 11.0 & 53.0 & & 11.0 & 50.0 & & 22.0 & 22.0 & & 22.0 & 22.0 & 11.0 \\
\hline Total Split (s) & 34.0 & 72.0 & & 11.0 & 49.0 & & 27.0 & 27.0 & & 27.0 & 27.0 & 34.0 \\
\hline Total Split (\%) & 30.9\% & 65.5\% & & 10.0\% & 44.5\% & & 24.5\% & 24.5\% & & 24.5\% & 24.5\% & 30.9\% \\
\hline Maximum Green (s) & 28.0 & 66.0 & & 5.0 & 43.0 & & 21.0 & 21.0 & & 21.0 & 21.0 & 28.0 \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 \\
\hline All-Red Time (s) & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & 2.0 \\
\hline Lost Time Adjust (s) & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & & 0.0 & 0.0 \\
\hline Total Lost Time (s) & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & & & 6.0 & 6.0 \\
\hline Lead/Lag & Lead & Lag & & Lead & Lag & & & & & & & Lead \\
\hline Lead-Lag Optimize? & Yes & Yes & & Yes & Yes & & & & & & & Yes \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & 3.0 \\
\hline Recall Mode & None & C-Max & & None & None & & None & None & & None & None & None \\
\hline Walk Time (s) & & 5.0 & & & 5.0 & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline Flash Dont Walk (s) & & 11.0 & & & 11.0 & & 11.0 & 11.0 & & 11.0 & 11.0 & \\
\hline Pedestrian Calls (\#/hr) & & 0 & & & 0 & & 0 & 0 & & 0 & 0 & \\
\hline Act Effict Green (s) & 29.0 & 82.1 & & 6.0 & 49.7 & & 13.3 & 13.3 & & & 13.3 & 48.3 \\
\hline Actuated g/C Ratio & 0.26 & 0.75 & & 0.05 & 0.45 & & 0.12 & 0.12 & & & 0.12 & 0.44 \\
\hline \(\mathrm{v} / \mathrm{C}\) Ratio & 0.69 & 0.57 & & 0.06 & 0.80 & & 0.32 & 0.12 & & & 0.60 & 0.79 \\
\hline Control Delay & 40.5 & 8.6 & & 41.2 & 47.6 & & 47.9 & 26.9 & & & 59.8 & 32.6 \\
\hline Queue Delay & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & & 0.0 & 0.0 \\
\hline
\end{tabular}

22: VIP Dr/Connector Rd \& NH 28 Lanes, Volumes, Timings
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & & 1 & \[
\leftarrow
\] & & 4 & \(\dagger\) & \(>\) & & \(\frac{1}{\downarrow}\) & 4 \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Total Delay & 40.5 & 8.6 & & 41.2 & 47.6 & & 47.9 & 26.9 & & & 59.8 & 32.6 \\
\hline LOS & D & A & & D & D & & D & C & & & E & C \\
\hline Approach Delay & & 18.0 & & & 47.5 & & & 40.8 & & & 36.7 & \\
\hline Approach LOS & & B & & & D & & & D & & & D & \\
\hline Queue Length 50th (ft) & 198 & 185 & & 4 & 498 & & 33 & 8 & & & 67 & 304 \\
\hline Queue Length 95th (ft) & 243 & 393 & & m9 & \#610 & & 58 & 27 & & & 112 & 384 \\
\hline Internal Link Dist (ft) & & 797 & & & 234 & & & 71 & & & 396 & \\
\hline Turn Bay Length (ft) & 200 & & & 205 & & & & & & & & 220 \\
\hline Base Capacity (vph) & 961 & 2664 & & 96 & 1588 & & 251 & 346 & & & 261 & 748 \\
\hline Starvation Cap Reductn & 0 & 0 & & 0 & 0 & & 0 & 0 & & & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & & 0 & 0 & & 0 & 0 & & & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & & 0 & 0 & & 0 & 0 & & & 0 & 0 \\
\hline Reduced v/c Ratio & 0.66 & 0.57 & & 0.06 & 0.80 & & 0.20 & 0.08 & & & 0.38 & 0.76 \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline \multicolumn{13}{|l|}{Area Type: Other} \\
\hline \multicolumn{13}{|l|}{Cycle Length: 110} \\
\hline \multicolumn{13}{|l|}{Actuated Cycle Length: 110} \\
\hline \multicolumn{13}{|l|}{Offset: 0 (0\%), Referenced to phase 2:EBT, Start of Yellow} \\
\hline \multicolumn{13}{|l|}{Natural Cycle: 90} \\
\hline \multicolumn{13}{|l|}{Control Type: Actuated-Coordinated} \\
\hline \multicolumn{13}{|l|}{Maximum v/c Ratio: 0.80} \\
\hline \multicolumn{5}{|l|}{Intersection Signal Delay: 30.5} & \multicolumn{8}{|l|}{Intersection LOS: C} \\
\hline \multicolumn{13}{|l|}{Intersection Capacity Utilization 81.6\% ICU Level of Service D} \\
\hline \multicolumn{13}{|l|}{Analysis Period (min) 15} \\
\hline \multicolumn{13}{|l|}{\# 95th percentile volume exceeds capacity, queue may be longer.} \\
\hline \multicolumn{13}{|l|}{Queue shown is maximum after two cycles.} \\
\hline \multicolumn{13}{|l|}{\(m\) Volume for 95 th percentile queue is metered by upstream signal.} \\
\hline
\end{tabular}

Splits and Phases: 22: VIP Dr/Connector Rd \& NH 28

\begin{tabular}{lrrrrrrr}
\hline & & & & & & & \\
\cline { 6 - 8 } & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrr}
\hline & & & \(\leftarrow\) & \multirow{6}{l}{} \\
& & \(\rightarrow\) & & & & \\
Lane Group & EBT & WBT & WBR & SBL & SBR \\
\hline Queue Length 50th (ft) & 17 & 185 & 277 & 4 & 54 & 21 \\
Queue Length 95th (ft) & \(\# 77\) & 298 & \(\# 417\) & 18 & 103 & 51 \\
Internal Link Dist (ft) & & 383 & 500 & & 624 & \\
Turn Bay Length (ft) & 200 & & & 150 & 360 & \\
Base Capacity (vph) & 237 & 2626 & 2046 & 1373 & 377 & 517 \\
Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 \\
Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 \\
Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 \\
Reduced vic Ratio & 0.57 & 0.62 & 0.76 & 0.23 & 0.34 & 0.16
\end{tabular}

Intersection Summary
Area Type: Other
Cycle Length: 75
Actuated Cycle Length: 67.5
Natural Cycle: 70
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.81

Intersection Signal Delay: 13.4
Intersection Capacity Utilization 68.0\%
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 25: NH 28 \& Rockingham Road

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & NBL & NBT & NBR & SBL & SBT & SBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & * & ち & & 7 & 4 & \(\overline{ }\) & 7 & A & & * & 今 & \\
\hline Traffic Volume (vph) & 30 & 70 & 30 & 30 & 30 & 50 & 40 & 660 & 70 & 20 & 180 & 30 \\
\hline Future Volume (vph) & 30 & 70 & 30 & 30 & 30 & 50 & 40 & 660 & 70 & 20 & 180 & 30 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 200 & & 0 & 190 & & 190 & 135 & & 0 & 120 & & 0 \\
\hline Storage Lanes & 1 & & 0 & 1 & & 1 & 1 & & 0 & 1 & & 0 \\
\hline Taper Length (ft) & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & 0.955 & & & & 0.850 & & 0.986 & & & 0.979 & \\
\hline Flt Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (prot) & 1770 & 1779 & 0 & 1787 & 1881 & 1599 & 1805 & 1873 & 0 & 1805 & 1860 & 0 \\
\hline Flt Permitted & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (perm) & 1770 & 1779 & 0 & 1787 & 1881 & 1599 & 1805 & 1873 & 0 & 1805 & 1860 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & 21 & & & & 123 & & 9 & & & 13 & \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance (ft) & & 481 & & & 347 & & & 479 & & & 371 & \\
\hline Travel Time (s) & & 10.9 & & & 7.9 & & & 10.9 & & & 8.4 & \\
\hline Peak Hour Factor & 0.99 & 0.99 & 0.99 & 0.95 & 0.95 & 0.95 & 0.89 & 0.89 & 0.89 & 0.93 & 0.93 & 0.93 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 1\% & 1\% & 1\% & 0\% & 0\% & 0\% & 0\% & 0\% & 0\% \\
\hline Adj. Flow (vph) & 30 & 71 & 30 & 32 & 32 & 53 & 45 & 742 & 79 & 22 & 194 & 32 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 30 & 101 & 0 & 32 & 32 & 53 & 45 & 821 & 0 & 22 & 226 & 0 \\
\hline Turn Type & Prot & NA & & Prot & NA & pt+ov & Prot & NA & & Prot & NA & \\
\hline Protected Phases & 1 & 6 & & 5 & 2 & 23 & 3 & 8 & & 7 & 4 & \\
\hline Permitted Phases & & 6 & & & 2 & & & & & & & \\
\hline Detector Phase & 1 & 6 & & 5 & 2 & 23 & 3 & 8 & & 7 & 4 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 5.0 & 8.0 & & 5.0 & 8.0 & & 8.0 & 8.0 & & 5.0 & 8.0 & \\
\hline Minimum Split (s) & 11.0 & 14.0 & & 11.0 & 14.0 & & 14.0 & 28.0 & & 11.0 & 14.0 & \\
\hline Total Split (s) & 11.0 & 14.0 & & 11.0 & 14.0 & & 14.0 & 41.0 & & 14.0 & 41.0 & \\
\hline Total Split (\%) & 13.8\% & 17.5\% & & 13.8\% & 17.5\% & & 17.5\% & 51.3\% & & 17.5\% & 51.3\% & \\
\hline Maximum Green (s) & 5.0 & 8.0 & & 5.0 & 8.0 & & 8.0 & 35.0 & & 8.0 & 35.0 & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & \\
\hline All-Red Time (s) & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & \\
\hline Lost Time Adjust (s) & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Total Lost Time (s) & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Lead/Lag & Lead & Lag & \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & None & None & & None & Max & & None & None & & None & None & \\
\hline Walk Time (s) & & & & & & & & 7.0 & & & & \\
\hline Flash Dont Walk (s) & & & & & & & & 15.0 & & & & \\
\hline Pedestrian Calls (\#/hr) & & & & & & & & 0 & & & & \\
\hline Act Effct Green (s) & 5.2 & 8.3 & & 5.2 & 8.3 & 22.9 & 8.3 & 34.8 & & 6.5 & 31.4 & \\
\hline Actuated g/C Ratio & 0.08 & 0.13 & & 0.08 & 0.13 & 0.36 & 0.13 & 0.55 & & 0.10 & 0.49 & \\
\hline v/c Ratio & 0.21 & 0.40 & & 0.22 & 0.13 & 0.08 & 0.19 & 0.80 & & 0.12 & 0.24 & \\
\hline Control Delay & 36.5 & 30.2 & & 36.6 & 31.4 & 0.2 & 32.0 & 23.4 & & 32.5 & 12.3 & \\
\hline Queue Delay & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\cdots\) & \(\uparrow\) & 「 & \(\omega\) & \(\downarrow\) & \(\downarrow\) & 4 & \(\nearrow\) & \(\downarrow\) & \(\downarrow\) & \(\checkmark\) & 4 \\
\hline Lane Group & NBL & NBT & NBR & SBL & SBT & SBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Total Delay & 36.5 & 30.2 & & 36.6 & 31.4 & 0.2 & 32.0 & 23.4 & & 32.5 & 12.3 & \\
\hline LOS & D & C & & D & C & A & C & C & & C & B & \\
\hline Approach Delay & & 31.6 & & & 18.7 & & & 23.9 & & & 14.1 & \\
\hline Approach LOS & & C & & & B & & & C & & & B & \\
\hline Queue Length 50th (ft) & 9 & 24 & & 10 & 9 & 0 & 13 & 140 & & 7 & 47 & \\
\hline Queue Length 95th (ft) & 41 & 86 & & 43 & 41 & 0 & 52 & \#636 & & 32 & 113 & \\
\hline Internal Link Dist (ft) & & 401 & & & 267 & & & 399 & & & 291 & \\
\hline Turn Bay Length (ft) & 200 & & & 190 & & 190 & 135 & & & 120 & & \\
\hline Base Capacity (vph) & 145 & 251 & & 146 & 247 & 655 & 236 & 1079 & & 236 & 1074 & \\
\hline Starvation Cap Reductn & 0 & 0 & & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & \\
\hline Spillback Cap Reductn & 0 & 0 & & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & \\
\hline Storage Cap Reductn & 0 & 0 & & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & \\
\hline Reduced v/c Ratio & 0.21 & 0.40 & & 0.22 & 0.13 & 0.08 & 0.19 & 0.76 & & 0.09 & 0.21 & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline \multicolumn{13}{|l|}{Area Type: Other} \\
\hline \multicolumn{13}{|l|}{Cycle Length: 80} \\
\hline \multicolumn{13}{|l|}{Actuated Cycle Length: 63.5} \\
\hline \multicolumn{13}{|l|}{Natural Cycle: 80} \\
\hline \multicolumn{13}{|l|}{Control Type: Actuated-Uncoordinated} \\
\hline \multicolumn{13}{|l|}{Maximum v/c Ratio: 0.80} \\
\hline \multicolumn{4}{|l|}{Intersection Signal Delay: 22.4} & \multicolumn{9}{|c|}{Intersection LOS: C} \\
\hline \multicolumn{4}{|l|}{Intersection Capacity Utilization 57.3\%} & \multicolumn{9}{|c|}{ICU Level of Service B} \\
\hline \multicolumn{13}{|l|}{Analysis Period (min) 15} \\
\hline \multicolumn{13}{|l|}{\# 95th percentile volume exceeds capacity, queue may be longer.} \\
\hline \multicolumn{13}{|l|}{Queue shown is maximum after two cycles.} \\
\hline
\end{tabular}

Splits and Phases: 18: Tsienneto Rd \& NH 28 Byp NB/NH 28 Byp SB


23: NH 28 Byp SB \& Connector Road
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \% & 5 & & \% & F & & 7 & \(\dagger\) & & \% & \(\uparrow\) & \\
\hline Traffic Volume (vph) & 60 & 460 & 5 & 10 & 490 & 10 & 5 & 60 & 10 & 10 & 60 & 70 \\
\hline Future Volume (vph) & 60 & 460 & 5 & 10 & 490 & 10 & 5 & 60 & 10 & 10 & 60 & 70 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 275 & & 0 & 75 & & 100 & 75 & & 0 & 210 & & 210 \\
\hline Storage Lanes & 1 & & 0 & 1 & & 0 & 1 & & 0 & 1 & & \\
\hline Taper Length (t) & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & 0.999 & & & 0.997 & & & 0.978 & & & & 0.850 \\
\hline Flt Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (prot) & 1770 & 1861 & 0 & 1770 & 1857 & 0 & 1770 & 1822 & 0 & 1770 & 1863 & 1583 \\
\hline Flt Permitted & 0.223 & & & 0.356 & & & 0.715 & & & 0.708 & & \\
\hline Satd. Flow (perm) & 415 & 1861 & 0 & 663 & 1857 & 0 & 1332 & 1822 & 0 & 1319 & 1863 & 1583 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & 1 & & & 2 & & & 11 & & & & 76 \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance ( t ) & & 310 & & & 410 & & & 481 & & & 432 & \\
\hline Travel Time (s) & & 7.0 & & & 9.3 & & & 10.9 & & & 9.8 & \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 \\
\hline Adj. Flow (vph) & 65 & 500 & 5 & 11 & 533 & 11 & 5 & 65 & 11 & 11 & 65 & 76 \\
\hline
\end{tabular}

Shared Lane Traffic (\%)
Lane Group Flow (vph)
\begin{tabular}{lrrrrrrrrrr}
76 \\
Turn Type & \(\mathrm{pm}+\mathrm{pt}\) & NA & \(\mathrm{pm}+\mathrm{pt}\) & NA & Perm & NA & Perm & NA & pm+ov \\
Protected Phases & 7 & 4 & 3 & 8 & & 2 & & 6 \\
Permitted Phases & 4 & & 8 & & 2 & & 6 & & 6 \\
Detector Phase & 7 & 4 & 3 & 8 & 2 & 2 & 6 & 6 & 7
\end{tabular}

Switch Phase
\begin{tabular}{lrrrrrrrrr} 
Minimum Initial (s) & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 \\
Minimum Split (s) & 11.0 & 28.0 & 11.0 & 28.0 & 28.0 & 28.0 & 28.0 & 28.0 & 11.0 \\
Total Split (s) & 11.0 & 31.0 & 11.0 & 31.0 & 28.0 & 28.0 & 28.0 & 28.0 & 11.0 \\
Total Split (\%) & \(15.7 \%\) & \(44.3 \%\) & \(15.7 \%\) & \(44.3 \%\) & \(40.0 \%\) & \(40.0 \%\) & \(40.0 \%\) & \(40.0 \%\) & \(15.7 \%\) \\
Maximum Green (s) & 5.0 & 25.0 & 5.0 & 25.0 & 22.0 & 22.0 & 22.0 & 22.0 & 5.0 \\
Yellow Time (s) & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 \\
All-Red Time (s) & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 \\
Lost Time Adjust (s) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Total Lost Time (s) & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 \\
Lead/Lag & Lead & Lag & Lead & Lag & & & & & Lead \\
Lead-ag Optimize? & Yes & Yes & Yes & Yes & & & & Yes \\
Vehicle Extension (s) & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
Recall Mode & None & Max & None & None & Max & Max & None & None & None \\
Walk Time (s) & & 7.0 & & 7.0 & 7.0 & 7.0 & 7.0 & 7.0 & \\
Flash Dont Walk (s) & & 15.0 & & 15.0 & 15.0 & 15.0 & 15.0 & 15.0 & 0 \\
Pedestrian Calls (\#/hr) & & 0 & & 0 & 0 & 0 & 0 & 0 & \\
Act Effct Green (s) & 31.9 & 30.9 & 28.4 & 24.5 & 22.1 & 22.1 & 22.1 & 22.1 & 33.1 \\
Actuated g/C Ratio & 0.47 & 0.46 & 0.42 & 0.36 & 0.33 & 0.33 & 0.33 & 0.33 & 0.49 \\
vcc Ratio & 0.22 & 0.59 & 0.03 & 0.80 & 0.01 & 0.13 & 0.03 & 0.11 & 0.09 \\
Control Delay & 10.6 & 18.3 & 8.8 & 31.2 & 16.8 & 15.8 & 17.0 & 17.6 & 3.2 \\
Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Total Delay & 10.6 & 18.3 & 8.8 & 31.2 & 16.8 & 15.8 & 17.0 & 17.6 & 3.2 \\
& & & & & & & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\geqslant\) & \(\rightarrow\) & 7 & \(\checkmark\) & \(\leftarrow\) & 1 & 4 & \(\uparrow\) & \(p\) & \(\checkmark\) & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline LOS & B & B & & A & C & & B & B & & B & B & A \\
\hline Approach Delay & & 17.4 & & & 30.8 & & & 15.8 & & & 10.4 & \\
\hline Approach LOS & & B & & & C & & & B & & & B & \\
\hline Queue Length 50th (ft) & 13 & 135 & & 2 & 208 & & 2 & 20 & & 3 & 20 & 0 \\
\hline Queue Length 95th (ft) & 31 & \#331 & & 9 & \#373 & & 8 & 48 & & 14 & 46 & 19 \\
\hline Internal Link Dist (ft) & & 230 & & & 330 & & & 401 & & & 352 & \\
\hline Turn Bay Length ( t ) & 275 & & & 75 & & & 75 & & & 210 & & 210 \\
\hline Base Capacity (vph) & 298 & 857 & & 362 & 695 & & 437 & 606 & & 433 & 612 & 819 \\
\hline Starvation Cap Reductn & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & & 0 & 0 & & 0 & 0 & & , & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.22 & 0.59 & & 0.03 & 0.78 & & 0.01 & 0.13 & & 0.03 & 0.11 & 0.09 \\
\hline
\end{tabular}

\section*{Intersection Summary}

\section*{Area Type: Other}

Cycle Length: 70
Actuated Cycle Length: 67.2
Natural Cycle: 70
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.80

Intersection Signal Delay: 22.0
Intersection LOS: C
Intersection Capacity Utilization \(52.8 \%\)
ICU Level of Service A
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 23: NH 28 Byp SB \& Connector Road


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & * & 7 & 4 & \(\uparrow\) & \(\downarrow\) & \(\checkmark\) & & & & \\
\hline Lane Group & EBL & EBR & NBL & NBT & SBT & SBR & \(\varnothing 2\) & \(\varnothing 5\) & \(\varnothing 6\) & 07 \\
\hline Approach LOS & D & & & C & A & & & & & \\
\hline Queue Length 50th (ft) & 403 & & 14 & 60 & 62 & 5 & & & & \\
\hline Queue Length 95th (ft) & \#654 & & 35 & 107 & 98 & 0 & & & & \\
\hline Internal Link Dist (t) & 395 & & & 659 & 178 & & & & & \\
\hline Turn Bay Length (t) & & & 120 & & & 90 & & & & \\
\hline Base Capacity (vph) & 857 & & 374 & 548 & 597 & 480 & & & & \\
\hline Starvation Cap Reductn & 0 & & 0 & 0 & 276 & 260 & & & & \\
\hline Spillback Cap Reductn & 0 & & 0 & 0 & 0 & 0 & & & & \\
\hline Storage Cap Reductn & 0 & & 0 & 0 & 0 & 0 & & & & \\
\hline Reduced v/c Ratio & 0.88 & & 0.12 & 0.26 & 0.50 & 0.65 & & & & \\
\hline \multicolumn{11}{|l|}{Intersection Summary} \\
\hline \multicolumn{11}{|l|}{Area Type: Other} \\
\hline \multicolumn{11}{|l|}{Cycle Length: 90} \\
\hline \multicolumn{11}{|l|}{Actuated Cycle Length: 83.5} \\
\hline \multicolumn{11}{|l|}{Natural Cycle: 90} \\
\hline \multicolumn{11}{|l|}{Control Type: Actuated-Uncoordinated} \\
\hline \multicolumn{11}{|l|}{Maximum v/c Ratio: 0.88} \\
\hline \multicolumn{4}{|l|}{Intersection Signal Delay: 19.4} & \multicolumn{7}{|c|}{Intersection LOS: B} \\
\hline \multicolumn{4}{|l|}{Intersection Capacity Utilization 63.7\%} & \multicolumn{7}{|c|}{ICU Level of Service B} \\
\hline \multicolumn{11}{|l|}{Analysis Period (min) 15} \\
\hline \multicolumn{11}{|l|}{\# 95th percentile volume exceeds capacity, queue may be longer.} \\
\hline
\end{tabular}

Splits and Phases: 19: NH 102 EB/NH 102 WB \& Connector Road

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\checkmark\) & 4 & \(\uparrow\) & \(p\) & & \(\downarrow\) & & & & \\
\hline Lane Group & WBL & WBR & NBT & NBR & SBL & SBT & \(\varnothing 1\) & \(\emptyset 2\) & \(\varnothing 6\) & \(\emptyset 8\) \\
\hline Lane Configurations & \% & & \(\uparrow\) & F & \% & \(\uparrow\) & & & & \\
\hline Traffic Volume (vph) & 70 & 10 & 680 & 150 & 30 & 710 & & & & \\
\hline Future Volume (vph) & 70 & 10 & 680 & 150 & 30 & 710 & & & & \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & & & & \\
\hline Storage Length (ft) & 0 & 0 & & 90 & 100 & & & & & \\
\hline Storage Lanes & 1 & 0 & & 1 & 1 & & & & & \\
\hline Taper Length (ft) & 25 & & & & 25 & & & & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & & & & \\
\hline Fit & 0.979 & & & 0.850 & & & & & & \\
\hline Flt Protected & 0.960 & & & & 0.950 & & & & & \\
\hline Satd. Flow (prot) & 1771 & 0 & 1900 & 1615 & 1805 & 1900 & & & & \\
\hline Flt Permitted & 0.960 & & & & 0.312 & & & & & \\
\hline Satd. Flow (perm) & 1771 & 0 & 1900 & 1615 & 593 & 1900 & & & & \\
\hline Right Turn on Red & & Yes & & Yes & & & & & & \\
\hline Satd. Flow (RTOR) & 8 & & & 125 & & & & & & \\
\hline Link Speed (mph) & 30 & & 30 & & & 30 & & & & \\
\hline Link Distance (ft) & 524 & & 258 & & & 288 & & & & \\
\hline Travel Time (s) & 11.9 & & 5.9 & & & 6.5 & & & & \\
\hline Peak Hour Factor & 0.87 & 0.67 & 0.95 & 0.84 & 0.73 & 0.96 & & & & \\
\hline Heavy Vehicles (\%) & 1\% & 0\% & 0\% & 0\% & 0\% & 0\% & & & & \\
\hline Adj. Flow (vph) & 80 & 15 & 716 & 179 & 41 & 740 & & & & \\
\hline \multicolumn{11}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 95 & 0 & 716 & 179 & 41 & 740 & & & & \\
\hline Turn Type & Prot & & NA & Perm & custom & NA & & & & \\
\hline Protected Phases & 7 & & 68 & & 5 & 28 & 1 & 2 & 6 & 8 \\
\hline Permitted Phases & & & & 68 & 2 & & & & & \\
\hline Detector Phase & 7 & & 68 & 68 & 5 & 28 & & & & \\
\hline \multicolumn{11}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 5.0 & & & & 5.0 & & 5.0 & 5.0 & 5.0 & 5.0 \\
\hline Minimum Split (s) & 11.0 & & & & 11.0 & & 11.0 & 9.0 & 9.0 & 26.5 \\
\hline Total Split (s) & 14.0 & & & & 11.0 & & 11.0 & 19.0 & 19.0 & 46.0 \\
\hline Total Split (\%) & 15.6\% & & & & 12.2\% & & 12\% & 21\% & 21\% & 51\% \\
\hline Maximum Green (s) & 8.0 & & & & 5.0 & & 5.0 & 15.0 & 15.0 & 40.0 \\
\hline Yellow Time (s) & 4.0 & & & & 4.0 & & 4.0 & 3.0 & 3.0 & 4.0 \\
\hline All-Red Time (s) & 2.0 & & & & 2.0 & & 2.0 & 1.0 & 1.0 & 2.0 \\
\hline Lost Time Adjust (s) & 0.0 & & & & 0.0 & & & & & \\
\hline Total Lost Time (s) & 6.0 & & & & 6.0 & & & & & \\
\hline Lead/Lag & Lead & & & & Lead & & Lead & Lag & Lag & Lag \\
\hline Lead-Lag Optimize? & Yes & & & & Yes & & Yes & Yes & Yes & Yes \\
\hline Vehicle Extension (s) & 3.0 & & & & 3.0 & & 3.0 & 3.0 & 3.0 & 3.0 \\
\hline Recall Mode & None & & & & None & & None & Min & Min & None \\
\hline Act Effct Green (s) & 8.1 & & 57.0 & 57.0 & 13.6 & 57.0 & & & & \\
\hline Actuated g/C Ratio & 0.10 & & 0.68 & 0.68 & 0.16 & 0.68 & & & & \\
\hline \(\mathrm{v} / \mathrm{c}\) Ratio & 0.54 & & 0.55 & 0.16 & 0.24 & 0.57 & & & & \\
\hline Control Delay & 47.4 & & 2.1 & 0.5 & 29.1 & 6.7 & & & & \\
\hline Queue Delay & 0.0 & & 0.3 & 0.1 & 0.0 & 0.0 & & & & \\
\hline Total Delay & 47.4 & & 2.4 & 0.6 & 29.1 & 6.7 & & & & \\
\hline LOS & D & & A & A & C & A & & & & \\
\hline Approach Delay & 47.4 & & 2.1 & & & 7.9 & & & & \\
\hline
\end{tabular}


\section*{APPENDIX R-1: ALTERNATIVE D INTERSECTION CAPACITY ANALYSES - HCM 2000 PRINTOUTS - AM PEAK HOUR}

HCM Signalized Intersection Capacity Analysis
Z: NH 102 \& Exit 4 SB Off


C Critical Lane Group

HCM Signalized Intersection Capacity Analysis
2 \＆：NH 102 \＆Exit 4 NB Off
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & NBL2 & NBL & NBR & SEL & SER & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & 77 & & 「7\％ & & & \({ }^{*}{ }^{*}\) & 性 & & & 个个 & F \\
\hline Traffic Volume（vph） & 455 & 0 & 330 & 0 & 0 & 1310 & 170 & 0 & 0 & 1080 & 360 \\
\hline Future Volume（vph） & 455 & 0 & 330 & 0 & 0 & 1310 & 170 & 0 & 0 & 1080 & 360 \\
\hline Ideal Flow（vphpl） & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time（s） & 6.0 & & 6.0 & & & 6.0 & 6.0 & & & 6.0 & 4.0 \\
\hline Lane Util．Factor & 0.97 & & 0.88 & & & 0.97 & 0.95 & & & 0.95 & 1.00 \\
\hline Fit & 1.00 & & 0.85 & & & 1.00 & 1.00 & & & 1.00 & 0.85 \\
\hline Flt Protected & 0.95 & & 1.00 & & & 0.95 & 1.00 & & & 1.00 & 1.00 \\
\hline Satd．Flow（prot） & 3242 & & 2632 & & & 3335 & 3438 & & & 3505 & 1568 \\
\hline Flt Permitted & 0.95 & & 1.00 & & & 0.95 & 1.00 & & & 1.00 & 1.00 \\
\hline Satd．Flow（perm） & 3242 & & 2632 & & & 3335 & 3438 & & & 3505 & 1568 \\
\hline Peak－hour factor，PHF & 0.88 & 0.88 & 0.88 & 0.92 & 0.92 & 0.94 & 0.94 & 0.94 & 0.92 & 0.92 & 0.92 \\
\hline Adj．Flow（vph） & 517 & 0 & 375 & 0 & 0 & 1394 & 181 & 0 & 0 & 1174 & 391 \\
\hline RTOR Reduction（vph） & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Lane Group Flow（vph） & 517 & 0 & 375 & 0 & 0 & 1394 & 181 & 0 & 0 & 1174 & 391 \\
\hline Heavy Vehicles（\％） & 8\％ & 8\％ & 8\％ & 2\％ & 2\％ & 5\％ & 5\％ & 5\％ & 3\％ & 3\％ & 3\％ \\
\hline Turn Type & Prot & & Prot & & & Prot & NA & & & NA & Free \\
\hline Protected Phases & 8 & & 8 & & & 5 & 2 & & & 6 & \\
\hline Permitted Phases & & & & & & & & & & & Free \\
\hline Actuated Green，G（s） & 23.0 & & 23.0 & & & 60.0 & 115.0 & & & 49.0 & 150.0 \\
\hline Effective Green，g（s） & 23.0 & & 23.0 & & & 60.0 & 115.0 & & & 49.0 & 150.0 \\
\hline Actuated g／C Ratio & 0.15 & & 0.15 & & & 0.40 & 0.77 & & & 0.33 & 1.00 \\
\hline Clearance Time（s） & 6.0 & & 6.0 & & & 6.0 & 6.0 & & & 6.0 & \\
\hline Vehicle Extension（s） & 3.0 & & 3.0 & & & 3.0 & 3.0 & & & 3.0 & \\
\hline Lane Grp Cap（vph） & 497 & & 403 & & & 1334 & 2635 & & & 1144 & 1568 \\
\hline v／s Ratio Prot & c0．16 & & 0.14 & & & c0．42 & 0.05 & & & c0．33 & \\
\hline v／s Ratio Perm & & & & & & & & & & & 0.25 \\
\hline v／c Ratio & 1.04 & & 0.93 & & & 1.04 & 0.07 & & & 1.03 & 0.25 \\
\hline Uniform Delay，d1 & 63.5 & & 62.7 & & & 45.0 & 4.3 & & & 50.5 & 0.0 \\
\hline Progression Factor & 1.00 & & 1.00 & & & 0.61 & 1.73 & & & 1.00 & 1.00 \\
\hline Incremental Delay，d2 & 51.2 & & 28.0 & & & 28.7 & 0.0 & & & 33.5 & 0.4 \\
\hline Delay（s） & 114.7 & & 90.7 & & & 56.0 & 7.5 & & & 84.0 & 0.4 \\
\hline Level of Service & F & & F & & & E & A & & & F & A \\
\hline Approach Delay（s） & & 104.6 & & 0.0 & & & 50.5 & & & 63.1 & \\
\hline Approach LOS & & F & & A & & & D & & & E & \\
\hline
\end{tabular}
\begin{tabular}{lrlrl}
\hline Intersection Summary & & \\
\hline HCM 2000 Control Delay & 67.3 & HCM 2000 Level of Service & E \\
\hline HCM 2000 Volume to Capacity ratio & 1.04 & & 18.0 \\
\hline Actuated Cycle Length（s） & 150.0 & Sum of lost time（s） & F \\
\hline Intersection Capacity Utilization & \(96.2 \%\) & ICU Level of Service & \\
\hline Analysis Period（min） & 15 & & \\
C Critical Lane Group & & & \\
\hline
\end{tabular}

HCM Signalized Intersection Capacity Analysis
3 2：Exit 5 SB On／Exit 5 SB Off \＆NH 28
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\Rightarrow\) & & & \(\checkmark\) & \(\leftarrow\) & & 4 & \(\uparrow\) & & & \(\downarrow\) & \(\downarrow\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & 个个 & 「 & \％ & \(4 \uparrow\) & & & & & \％\({ }^{*}\) & & \\
\hline Traffic Volume（vph） & 0 & 585 & 460 & 285 & 685 & 0 & 0 & 0 & 0 & 110 & 0 & 360 \\
\hline Future Volume（vph） & 0 & 585 & 460 & 285 & 685 & 0 & 0 & 0 & 0 & 110 & 0 & 360 \\
\hline Ideal Flow（vphpl） & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time（s） & & 6.0 & 4.0 & 6.0 & 6.0 & & & & & 6.0 & & 6.0 \\
\hline Lane Util．Factor & & 0.95 & 1.00 & 1.00 & 0.95 & & & & & 0.97 & & 1.00 \\
\hline Fit & & 1.00 & 0.85 & 1.00 & 1.00 & & & & & 1.00 & & 0.85 \\
\hline Flt Protected & & 1.00 & 1.00 & 0.95 & 1.00 & & & & & 0.95 & & 1.00 \\
\hline Satd．Flow（prot） & & 3167 & 1417 & 1687 & 3374 & & & & & 3303 & & 1524 \\
\hline Flt Permitted & & 1.00 & 1.00 & 0.95 & 1.00 & & & & & 0.95 & & 1.00 \\
\hline Satd．Flow（perm） & & 3167 & 1417 & 1687 & 3374 & & & & & 3303 & & 1524 \\
\hline Peak－hour factor，PHF & 0.92 & 0.92 & 0.92 & 0.73 & 0.73 & 0.73 & 0.92 & 0.92 & 0.92 & 0.74 & 0.74 & 0.74 \\
\hline Adj．Flow（vph） & 0 & 636 & 500 & 390 & 938 & 0 & 0 & 0 & 0 & 149 & 0 & 486 \\
\hline RTOR Reduction（vph） & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 96 \\
\hline Lane Group Flow（vph） & 0 & 636 & 500 & 390 & 938 & 0 & 0 & 0 & 0 & 149 & 0 & 390 \\
\hline Heary Vehicles（\％） & 14\％ & 14\％ & 14\％ & 7\％ & 7\％ & 7\％ & 2\％ & 2\％ & 2\％ & 6\％ & 6\％ & 6\％ \\
\hline Turn Type & & NA & Free & Prot & NA & & & & & Prot & & Prot \\
\hline Protected Phases & & 2 & & 1 & 6 & & & & & 4 & & \\
\hline Permitted Phases & & & Free & & & & & & & & & \\
\hline Actuated Green，G（s） & & 32.1 & 110.0 & 28.8 & 66.9 & & & & & 31.1 & & 31.1 \\
\hline Effective Green， g （s） & & 32.1 & 110.0 & 28.8 & 66.9 & & & & & 31.1 & & 31.1 \\
\hline Actuated g／C Ratio & & 0.29 & 1.00 & 0.26 & 0.61 & & & & & 0.28 & & 0.28 \\
\hline Clearance Time（s） & & 6.0 & & 6.0 & 6.0 & & & & & 6.0 & & 6.0 \\
\hline Vehicle Extension（s） & & 5.0 & & 3.0 & 5.0 & & & & & 3.0 & & 3.0 \\
\hline Lane Grp Cap（vph） & & 924 & 1417 & 441 & 2052 & & & & & 933 & & 430 \\
\hline \(\mathrm{V} / \mathrm{s}\) Ratio Prot & & c0．20 & & c0．23 & 0.28 & & & & & 0.05 & & 0.26 \\
\hline \(\mathrm{v} / \mathrm{s}\) Ratio Perm & & & 0.35 & & & & & & & & & \\
\hline \(\mathrm{v} / \mathrm{C}\) Ratio & & 0.69 & 0.35 & 0.88 & 0.46 & & & & & 0.16 & & 0.91 \\
\hline Uniform Delay，d1 & & 34.5 & 0.0 & 39.0 & 11.7 & & & & & 29.6 & & 38.1 \\
\hline Progression Factor & & 1.00 & 1.00 & 0.40 & 0.08 & & & & & 1.00 & & 1.00 \\
\hline Incremental Delay，d2 & & 4.2 & 0.7 & 16.0 & 0.4 & & & & & 0.1 & & 22.3 \\
\hline Delay（s） & & 38.7 & 0.7 & 31.4 & 1.3 & & & & & 29.7 & & 60.4 \\
\hline Level of Service & & D & A & c & A & & & & & C & & \\
\hline Approach Delay（s） & & 22.0 & & & 10.1 & & & 0.0 & & & 53.2 & \\
\hline Approach LOS & & C & & & B & & & A & & & D & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
\hline Intersection Summary & & \\
\hline HCM 2000 Control Delay & 23.3 & HCM 2000 Level of Service & C \\
HCM 2000 Volume to Capacity ratio & 0.82 & Sum of lost time（s） & 18.0 \\
\hline Actuated Cycle Length（s） & 110.0 & C \\
\hline Intersection Capacity Utilization & \(71.4 \%\) & ICU Level of Service & \\
\hline Analysis Period（min） & 15 & & \\
C Critical Lane Group & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \({ }^{7}\) & \(\uparrow \uparrow\) & & & 性 & F & \% & & F & & & \\
\hline Traffic Volume (vph) & 485 & 210 & 0 & 0 & 520 & 350 & 450 & 0 & 160 & 0 & 0 & 0 \\
\hline Future Volume (vph) & 485 & 210 & 0 & 0 & 520 & 350 & 450 & 0 & 160 & 0 & 0 & 0 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time (s) & 6.0 & 6.0 & & & 6.0 & 4.0 & 6.0 & & 6.0 & & & \\
\hline Lane Util. Factor & 1.00 & 0.95 & & & 0.95 & 1.00 & 1.00 & & 1.00 & & & \\
\hline Fit & 1.00 & 1.00 & & & 1.00 & 0.85 & 1.00 & & 0.85 & & & \\
\hline Flt Protected & 0.95 & 1.00 & & & 1.00 & 1.00 & 0.95 & & 1.00 & & & \\
\hline Satd. Flow (prot) & 1641 & 3282 & & & 3438 & 1538 & 1656 & & 1482 & & & \\
\hline Flt Permitted & 0.95 & 1.00 & & & 1.00 & 1.00 & 0.95 & & 1.00 & & & \\
\hline Satd. Flow (perm) & 1641 & 3282 & & & 3438 & 1538 & 1656 & & 1482 & & & \\
\hline Peak-hour factor, PHF & 0.87 & 0.87 & 0.87 & 0.90 & 0.90 & 0.90 & 0.78 & 0.78 & 0.78 & 0.92 & 0.92 & 0.92 \\
\hline Adj. Flow (vph) & 557 & 241 & , & 0 & 578 & 389 & 577 & 0 & 205 & 0 & , & 0 \\
\hline RTOR Reduction (vph) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 128 & 0 & 0 & 0 \\
\hline Lane Group Flow (vph) & 557 & 241 & 0 & 0 & 578 & 389 & 577 & 0 & 77 & 0 & 0 & 0 \\
\hline Heavy Vehicles (\%) & 10\% & 10\% & 10\% & 5\% & 5\% & 5\% & 9\% & 9\% & 9\% & 2\% & 2\% & 2\% \\
\hline Turn Type & Prot & NA & & & NA & Free & Prot & & Prot & & & \\
\hline Protected Phases & 5 & 2 & & & 6 & & 8 & & 8 & & & \\
\hline Permitted Phases & & 2 & & & 6 & Free & & & & & & \\
\hline Actuated Green, G (s) & 36.0 & 61.0 & & & 19.0 & 110.0 & 37.0 & & 37.0 & & & \\
\hline Effective Green, \(\mathrm{g}(\mathrm{s})\) & 36.0 & 61.0 & & & 19.0 & 110.0 & 37.0 & & 37.0 & & & \\
\hline Actuated g/C Ratio & 0.33 & 0.55 & & & 0.17 & 1.00 & 0.34 & & 0.34 & & & \\
\hline Clearance Time (s) & 6.0 & 6.0 & & & 6.0 & & 6.0 & & 6.0 & & & \\
\hline Vehicle Extension (s) & 5.0 & 5.0 & & & 5.0 & & 3.0 & & 3.0 & & & \\
\hline Lane Grp Cap (vph) & 537 & 1820 & & & 593 & 1538 & 557 & & 498 & & & \\
\hline \(\mathrm{v} / \mathrm{s}\) Ratio Prot & c0.34 & 0.07 & & & c0.17 & & c0.35 & & 0.05 & & & \\
\hline v/s Ratio Perm & & & & & & 0.25 & & & & & & \\
\hline v/c Ratio & 1.04 & 0.13 & & & 0.97 & 0.25 & 1.04 & & 0.15 & & & \\
\hline Uniform Delay, d1 & 37.0 & 11.8 & & & 45.3 & 0.0 & 36.5 & & 25.6 & & & \\
\hline Progression Factor & 0.27 & 0.17 & & & 1.00 & 1.00 & 1.00 & & 1.00 & & & \\
\hline Incremental Delay, d2 & 43.7 & 0.1 & & & 31.2 & 0.4 & 47.7 & & 0.1 & & & \\
\hline Delay (s) & 53.5 & 2.1 & & & 76.5 & 0.4 & 84.2 & & 25.7 & & & \\
\hline Level of Service & D & A & & & E & A & F & & C & & & \\
\hline Approach Delay (s) & & 38.0 & & & 45.9 & & & 68.9 & & & 0.0 & \\
\hline Approach LOS & & D & & & D & & & E & & & A & \\
\hline
\end{tabular}
\begin{tabular}{lrlr} 
Intersection Summary & & & \\
\hline HCM 2000 Control Delay & 50.5 & HCM 2000 Level of Service & D \\
HCM 2000 Volume to Capacity ratio & 1.02 & & 18.0 \\
\hline Actuated Cycle Length (s) & 110.0 & Sum of lost time (s) & C \\
\hline Intersection Capacity Utilization & \(71.4 \%\) & ICU Level of Service & \\
\hline Analysis Period (min) & 15 & & \\
C Critical Lane Group & & & \\
\hline
\end{tabular}

HCM Signalized Intersection Capacity Analysis
5 . : NH 102 \& St. Charles Street/Londonderry Road
01/02/2018
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & & \({ }_{*}^{*}\) & 7 & & * & & F & 瑯 & & \% & 4t & \\
\hline Traffic Volume (vph) & 10 & 0 & 160 & 0 & 0 & 1 & 100 & 500 & 5 & 5 & 1110 & 30 \\
\hline Future Volume (vph) & 10 & 0 & 160 & 0 & 0 & 1 & 100 & 500 & 5 & 5 & 1110 & 30 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time (s) & & 6.0 & 6.0 & & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Lane Util. Factor & & 1.00 & 1.00 & & 1.00 & & 1.00 & 0.95 & & 1.00 & 0.95 & \\
\hline Fit & & 1.00 & 0.85 & & 0.86 & & 1.00 & 1.00 & & 1.00 & 1.00 & \\
\hline Flt Protected & & 0.95 & 1.00 & & 1.00 & & 0.95 & 1.00 & & 0.95 & 1.00 & \\
\hline Satd. Flow (prot) & & 1770 & 1583 & & 1644 & & 1770 & 3534 & & 1770 & 3525 & \\
\hline Flt Permitted & & 1.00 & 1.00 & & 1.00 & & 0.95 & 1.00 & & 0.95 & 1.00 & \\
\hline Satd. Flow (perm) & & 1863 & 1583 & & 1644 & & 1770 & 3534 & & 1770 & 3525 & \\
\hline Peak-hour factor, PHF & 0.92 & 0.92 & 0.92 & 0.25 & 0.25 & 0.25 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 \\
\hline Adj. Flow (vph) & 11 & 0 & 174 & 0 & 0 & 4 & 109 & 543 & 5 & 5 & 1207 & 33 \\
\hline RTOR Reduction (vph) & 0 & 0 & 65 & 0 & 4 & 0 & 0 & 1 & 0 & 0 & 2 & 0 \\
\hline Lane Group Flow (vph) & 0 & 11 & 109 & 0 & 0 & 0 & 109 & 547 & 0 & 5 & 1238 & 0 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 0\% & 0\% & 0\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% \\
\hline Turn Type & Perm & NA & custom & & NA & & Prot & NA & & Prot & NA & \\
\hline Protected Phases & & 8 & & & 4 & & 5 & 2 & & 1 & 6 & \\
\hline Permitted Phases & 8 & & 6 & 4 & & & & & & & & \\
\hline Actuated Green, G (s) & & 1.2 & 44.8 & & 1.2 & & 7.8 & 51.8 & & 0.8 & 44.8 & \\
\hline Effective Green, g (s) & & 1.2 & 44.8 & & 1.2 & & 7.8 & 51.8 & & 0.8 & 44.8 & \\
\hline Actuated g/C Ratio & & 0.02 & 0.62 & & 0.02 & & 0.11 & 0.72 & & 0.01 & 0.62 & \\
\hline Clearance Time (s) & & 6.0 & 6.0 & & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Vehicle Extension (s) & & 3.0 & 3.0 & & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Lane Grp Cap (vph) & & 31 & 987 & & 27 & & 192 & 2549 & & 19 & 2199 & \\
\hline \(\mathrm{v} / \mathrm{s}\) Ratio Prot & & & & & 0.00 & & c0.06 & 0.15 & & 0.00 & c0.35 & \\
\hline v/s Ratio Perm & & c0.01 & 0.07 & & & & & & & & & \\
\hline \(\mathrm{v} / \mathrm{c}\) Ratio & & 0.35 & 0.11 & & 0.00 & & 0.57 & 0.21 & & 0.26 & 0.56 & \\
\hline Uniform Delay, d1 & & 34.9 & 5.5 & & 34.7 & & 30.4 & 3.3 & & 35.2 & 7.8 & \\
\hline Progression Factor & & 1.00 & 1.00 & & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & \\
\hline Incremental Delay, d2 & & 6.9 & 0.0 & & 0.0 & & 3.8 & 0.0 & & 7.3 & 0.3 & \\
\hline Delay (s) & & 41.8 & 5.5 & & 34.7 & & 34.2 & 3.3 & & 42.5 & 8.2 & \\
\hline Level of Service & & D & A & & C & & C & A & & D & A & \\
\hline Approach Delay (s) & & 7.7 & & & 34.7 & & & 8.5 & & & 8.3 & \\
\hline Approach LOS & & A & & & C & & & A & & & A & \\
\hline
\end{tabular}
\begin{tabular}{lrlrl|}
\hline Intersection Summary & & \\
\hline HCM 2000 Control Delay & 8.3 & HCM 2000 Level of Service & A \\
HCM 2000 Volume to Capacity ratio & 0.56 & & 18.0 \\
\hline Actuated Cycle Length (s) & 71.8 & Sum of lost time (s) & C \\
Intersection Capacity Utilization & \(64.5 \%\) & ICU Level of Service & \\
\hline Analysis Period (min) & 15 & & \\
C Critical Lane Group & & & \\
\hline
\end{tabular}

HCM Signalized Intersection Capacity Analysis
6 10: NH 102 \& Fordway/Madden Hill Road
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & & \$ & & & \$ & & & F & & & \(\uparrow\) & \\
\hline Traffic Volume (vph) & 10 & 20 & 10 & 350 & 0 & 30 & 0 & 420 & 110 & 15 & 585 & 0 \\
\hline Future Volume (vph) & 10 & 20 & 10 & 350 & 0 & 30 & 0 & 420 & 110 & 15 & 585 & 0 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time (s) & & 6.0 & & & 6.0 & & & 6.0 & & & 6.0 & \\
\hline Lane Util. Factor & & 1.00 & & & 1.00 & & & 1.00 & & & 1.00 & \\
\hline Fit & & 0.97 & & & 0.99 & & & 0.97 & & & 1.00 & \\
\hline Flt Protected & & 0.99 & & & 0.96 & & & 1.00 & & & 1.00 & \\
\hline Satd. Flow (prot) & & 1776 & & & 1745 & & & 1710 & & & 1807 & \\
\hline FIt Permitted & & 0.87 & & & 0.69 & & & 1.00 & & & 0.98 & \\
\hline Satd. Flow (perm) & & 1573 & & & 1268 & & & 1710 & & & 1776 & \\
\hline Peak-hour factor, PHF & 0.60 & 0.60 & 0.60 & 0.96 & 0.96 & 0.96 & 0.89 & 0.89 & 0.89 & 0.86 & 0.86 & 0.86 \\
\hline Adj. Flow (vph) & 17 & 33 & 17 & 365 & 0 & 31 & 0 & 472 & 124 & 17 & 680 & \\
\hline RTOR Reduction (vph) & O & 11 & 0 & 0 & 23 & 0 & 0 & 11 & 0 & 0 & 0 & \\
\hline Lane Group Flow (vph) & 0 & 56 & 0 & 0 & 373 & 0 & 0 & 585 & 0 & 0 & 697 & \\
\hline Heary Vehicles (\%) & 2\% & 2\% & 2\% & 3\% & 3\% & 3\% & 8\% & 8\% & 8\% & 5\% & 5\% & 5\% \\
\hline Turn Type & Perm & NA & & Perm & NA & & & NA & & Perm & NA & \\
\hline Protected Phases & & 4 & & & 4 & & & 2 & & & 2 & \\
\hline Permitted Phases & 4 & & & 4 & & & & & & 2 & & \\
\hline Actuated Green, G (s) & & 27.3 & & & 27.3 & & & 38.4 & & & 38.4 & \\
\hline Effective Green, \(\mathrm{g}(\mathrm{s})\) & & 27.3 & & & 27.3 & & & 38.4 & & & 38.4 & \\
\hline Actuated g/C Ratio & & 0.35 & & & 0.35 & & & 0.49 & & & 0.49 & \\
\hline Clearance Time (s) & & 6.0 & & & 6.0 & & & 6.0 & & & 6.0 & \\
\hline Vehicle Extension (s) & & 3.0 & & & 3.0 & & & 3.0 & & & 3.0 & \\
\hline Lane Grp Cap (vph) & & 552 & & & 445 & & & 845 & & & 877 & \\
\hline v/s Ratio Prot & & & & & & & & 0.34 & & & & \\
\hline v/s Ratio Perm & & 0.04 & & & c0. 29 & & & & & & c0.39 & \\
\hline \(\mathrm{v} / \mathrm{C}\) Ratio & & 0.10 & & & 0.84 & & & 0.69 & & & 0.79 & \\
\hline Uniform Delay, d1 & & 16.9 & & & 23.2 & & & 15.1 & & & 16.4 & \\
\hline Progression Factor & & 1.00 & & & 1.00 & & & 1.00 & & & 1.00 & \\
\hline Incremental Delay, d2 & & 0.1 & & & 12.9 & & & 2.5 & & & 5.0 & \\
\hline Delay (s) & & 17.0 & & & 36.1 & & & 17.6 & & & 21.4 & \\
\hline Level of Service & & B & & & D & & & B & & & C & \\
\hline Approach Delay (s) & & 17.0 & & & 36.1 & & & 17.6 & & & 21.4 & \\
\hline Approach LOS & & B & & & D & & & B & & & C & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
\hline Intersection Summary & & \\
\hline HCM 2000 Control Delay & 23.2 & HCM 2000 Level of Service & C \\
HCM 2000 Volume to Capacity ratio & 0.81 & Sum of lost time (s) & 12.0 \\
Actuated Cycle Length (s) & 77.7 & E \\
Intersection Capacity Utilization & \(82.1 \%\) & ICU Level of Service & \\
\hline Analysis Period (min) & 15 & & \\
C Critical Lane Group & & &
\end{tabular}

Zone 3
2040 Alt D Zone 3 AM Peak
7: Birch St/Crystal Ave \& NH 102 (E Broadway)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \({ }^{\circ}\) & F & & \% & F & & \% & F & & 7 & \(\uparrow\) & \\
\hline Traffic Volume (vph) & 80 & 200 & 90 & 20 & 520 & 60 & 60 & 290 & 30 & 70 & 240 & 30 \\
\hline Future Volume (vph) & 80 & 200 & 90 & 20 & 520 & 60 & 60 & 290 & 30 & 70 & 240 & 30 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time (s) & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & 6.0 \\
\hline Lane Util. Factor & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & 1.00 \\
\hline Fit & 1.00 & 0.95 & & 1.00 & 0.98 & & 1.00 & 0.99 & & 1.00 & 1.00 & 0.85 \\
\hline Flt Protected & 0.95 & 1.00 & & 0.95 & 1.00 & & 0.95 & 1.00 & & 0.95 & 1.00 & 1.00 \\
\hline Satd. Flow (prot) & 1656 & 1662 & & 1703 & 1765 & & 1719 & 1784 & & 1703 & 1792 & 1524 \\
\hline Flt Permitted & 0.95 & 1.00 & & 0.95 & 1.00 & & 0.95 & 1.00 & & 0.95 & 1.00 & 1.00 \\
\hline Satd. Flow (perm) & 1656 & 1662 & & 1703 & 1765 & & 1719 & 1784 & & 1703 & 1792 & 1524 \\
\hline Peak-hour factor, PHF & 0.96 & 0.96 & 0.96 & 0.94 & 0.94 & 0.94 & 0.85 & 0.85 & 0.85 & 0.91 & 0.91 & 0.91 \\
\hline Adj. Flow (vph) & 83 & 208 & 94 & 21 & 553 & 64 & 71 & 341 & 35 & 77 & 264 & 33 \\
\hline RTOR Reduction (vph) & 0 & 17 & 0 & 0 & 4 & 0 & 0 & 4 & 0 & 0 & 0 & 26 \\
\hline Lane Group Flow (vph) & 83 & 285 & 0 & 21 & 613 & 0 & 71 & 372 & 0 & 77 & 264 & \\
\hline Heavy Vehicles (\%) & 9\% & 9\% & 9\% & 6\% & 6\% & 6\% & 5\% & 5\% & 5\% & 6\% & 6\% & 6\% \\
\hline Parking (\#/hr) & & & 0 & & & & & & & & & \\
\hline Turn Type & Prot & NA & Perm \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & 3 & 8 & & 7 & , & \\
\hline Permitted Phases & & & & & & & & & & & & \\
\hline Actuated Green, G (s) & 4.6 & 36.0 & & 2.3 & 33.7 & & 7.4 & 19.2 & & 7.5 & 19.3 & 19.3 \\
\hline Effective Green, \(\mathrm{g}(\mathrm{s}\) ) & 4.6 & 36.0 & & 2.3 & 33.7 & & 7.4 & 19.2 & & 7.5 & 19.3 & 19.3 \\
\hline Actuated g/C Ratio & 0.05 & 0.40 & & 0.03 & 0.38 & & 0.08 & 0.22 & & 0.08 & 0.22 & 0.22 \\
\hline Clearance Time (s) & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & 6.0 \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & 3.0 \\
\hline Lane Grp Cap (vph) & 85 & 672 & & 44 & 668 & & 142 & 384 & & 143 & 388 & 330 \\
\hline v/s Ratio Prot & c0.05 & 0.17 & & 0.01 & c0.35 & & 0.04 & c0.21 & & c0.05 & 0.15 & \\
\hline v/s Ratio Perm & & & & & & & & & & & & 0.00 \\
\hline v/c Ratio & 0.98 & 0.42 & & 0.48 & 0.92 & & 0.50 & 0.97 & & 0.54 & 0.68 & 0.02 \\
\hline Uniform Delay, d1 & 42.1 & 19.0 & & 42.8 & 26.3 & & 39.0 & 34.6 & & 39.1 & 32.0 & 27.4 \\
\hline Progression Factor & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & 1.00 \\
\hline Incremental Delay, d2 & 89.0 & 0.4 & & 7.9 & 17.4 & & 2.8 & 37.3 & & 3.9 & 4.9 & 0.0 \\
\hline Delay (s) & 131.1 & 19.5 & & 50.7 & 43.7 & & 41.8 & 71.9 & & 43.0 & 36.9 & 27.4 \\
\hline Level of Service & F & B & & D & D & & D & E & & D & D & C \\
\hline Approach Delay (s) & & 43.5 & & & 44.0 & & & 67.1 & & & 37.3 & \\
\hline Approach LOS & & D & & & D & & & E & & & D & \\
\hline
\end{tabular}

Intersection Summary
\begin{tabular}{lr}
\hline HCM 2000 Control Delay & 48.1 \\
HCM 2000 Volume to Capacity ratio & 0.89 \\
Actuated Cycle Length (s) & 89.0 \\
Intersection Capacity Utilization & \(76.4 \%\) \\
Analysis Period (min) & 15
\end{tabular}

C Critical Lane Group

Zone 3
8: N. High St/N. High St \& Ash St Ext
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \% & \(\rangle\) & 4 & \(\uparrow\) & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & \% & 「 & & \(\uparrow\) & \(\uparrow\) & 7 \\
\hline Traffic Volume (vph) & 370 & 20 & 5 & 100 & 80 & 270 \\
\hline Future Volume (vph) & 370 & 20 & 5 & 100 & 80 & 270 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 0 & 120 & 0 & & & 220 \\
\hline Storage Lanes & 1 & 1 & 0 & & & 1 \\
\hline Taper Length (ft) & 25 & & 25 & & & \\
\hline Lane Utill. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & 0.850 & & & & 0.850 \\
\hline Flt Protected & 0.950 & & & 0.998 & & \\
\hline Satd. Flow (prot) & 1719 & 1538 & 0 & 1823 & 1863 & 1583 \\
\hline Flt Permitted & 0.950 & & & 0.998 & & \\
\hline Satd. Flow (perm) & 1719 & 1538 & 0 & 1823 & 1863 & 1583 \\
\hline Link Speed (mph) & 30 & & & 30 & 30 & \\
\hline Link Distance (ft) & 322 & & & 309 & 292 & \\
\hline Travel Time (s) & 7.3 & & & 7.0 & 6.6 & \\
\hline Peak Hour Factor & 0.89 & 0.89 & 0.91 & 0.91 & 0.93 & 0.93 \\
\hline Heavy Vehicles (\%) & 5\% & 5\% & 4\% & 4\% & 2\% & 2\% \\
\hline Adj. Flow (vph) & 416 & 22 & 5 & 110 & 86 & 290 \\
\hline \multicolumn{7}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 416 & 22 & 0 & 115 & 86 & 290 \\
\hline Sign Control & Stop & & & Stop & Stop & \\
\hline
\end{tabular}

Intersection Summary
Area Type: Other
Control Type: Unsignalized
Intersection Capacity Utilization 36.5\% ICU Level of Service A
Analysis Period (min) 15
\begin{tabular}{lr} 
Intersection \\
\hline Intersection Delay, s/veh & 17.9 \\
Intersection LOS & C
\end{tabular}
\begin{tabular}{lrrrrrr} 
Movement & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & \(\$\) & \(\mathbf{7}\) & & 4 & \(\uparrow\) & 7 \\
Traffic Vol, veh/h & 370 & 20 & 5 & 100 & 80 & 270 \\
Future Vol, veh/h & 370 & 20 & 5 & 100 & 80 & 270 \\
Peak Hour Factor & 0.89 & 0.89 & 0.91 & 0.91 & 0.93 & 0.93 \\
Heavy Vehicles, \% & 5 & 5 & 4 & 4 & 2 & 2 \\
Munt Flow & 416 & 22 & 5 & 110 & 86 & 290 \\
Number of Lanes & 1 & 1 & 0 & 1 & 1 & 1
\end{tabular}
\begin{tabular}{lrrr} 
Approach & EB & NB & SB \\
\hline Opposing Approach & & SB & NB \\
Opposing Lanes & 0 & 2 & 1 \\
Conflicting Approach Left & SB & EB & \\
Conflicting Lanes Left & 2 & 2 & 0 \\
Conficting Approach Right & NB & & EB \\
Conflicting Lanes Right & 1 & 0 & 2 \\
HCM Control Delay & 24.8 & 11.2 & 12 \\
HCM LOS & C & B & B \\
\hline
\end{tabular}
\begin{tabular}{lrrrrr}
\hline Lane & NBLn1 & EBLn1 & EBLn2 & SBLLn1 & SBLn2 \\
\hline Vol Left, \% & \(5 \%\) & \(100 \%\) & \(0 \%\) & \(0 \%\) & \(0 \%\) \\
Vol Thur, \% & \(95 \%\) & \(0 \%\) & \(0 \%\) & \(100 \%\) & \(0 \%\) \\
Vol Right, \% & \(0 \%\) & \(0 \%\) & \(100 \%\) & \(0 \%\) & \(100 \%\) \\
Sign Control & Stop & Stop & Stop & Stop & Stop \\
Traffic Vol by Lane & 105 & 370 & 20 & 80 & 270 \\
LT Vol & 5 & 370 & 0 & 0 & 0 \\
Through Vol & 100 & 0 & 0 & 80 & 0 \\
RT Vol & 0 & 0 & 20 & 0 & 270 \\
Lane Flow Rate & 115 & 416 & 22 & 86 & 290 \\
Geometry Grp & 4 & 7 & 7 & 7 & 7 \\
Degree of Util (X) & 0.206 & 0.745 & 0.033 & 0.148 & 0.443 \\
Departure Headway (Hd) & 6.428 & 6.453 & 5.242 & 6.209 & 5.499 \\
Convergence, Y/N & Yes & Yes & Yes & Yes & Yes \\
Cap & 557 & 561 & 683 & 577 & 653 \\
Service Time & 4.479 & 4.182 & 2.97 & 3.953 & 3.242 \\
HCM Lane V/C Ratio & 0.206 & 0.742 & 0.032 & 0.149 & 0.444 \\
HCM Control Delay & 11.2 & 25.7 & 8.1 & 10 & 12.6 \\
HCM Lane LOS & B & D & A & A & B \\
HCM 95th-tile Q & 0.8 & 6.4 & 0.1 & 0.5 & 2.3 \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrr}
\hline Lane Group & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & & & & A & F & \\
Traffic Volume (vph) & 10 & 0 & 0 & 470 & 350 & 20 \\
Future Volume (vph) & 10 & 0 & 0 & 470 & 350 & 20 \\
Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
Ft & & & & & 0.993 & \\
FIt Protected & 0.950 & & & & & \\
Satd. Flow (prot) & 1008 & 0 & 0 & 1827 & 1780 & 0 \\
FIt Permitted & 0.950 & & & & \\
Satd. Flow (perm) & 1008 & 0 & 0 & 1827 & 1780 & 0 \\
Link Speed (mph) & 30 & & & 30 & 30 & \\
Link Distance (tt) & 160 & & & 224 & 319 & \\
Travel Time (s) & 3.6 & & & 5.1 & 7.3 & \\
Peak Hour Factor & 0.44 & 0.44 & 0.95 & 0.95 & 0.96 & 0.96 \\
Heavy Vehicles (\%) & \(79 \%\) & \(79 \%\) & \(4 \%\) & \(4 \%\) & \(6 \%\) & \(6 \%\) \\
Adj. Flow (vph) & 23 & 0 & 0 & 495 & 365 & 21 \\
Shared Lane Traffic (\%) & & & & & & \\
Lane Group Flow (vph) & 23 & 0 & 0 & 495 & 386 & 0 \\
Sign Control & Stop & & & Free & Free &
\end{tabular}
\begin{tabular}{ll} 
Intersection Summary & \\
\hline Area Type: Other & \\
Control Type: Unsignalized \\
Intersection Capacity Utilization 34.7\% & \\
Analysis Period (min) 15 & ICU Level of Service A
\end{tabular}
\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 0.5 & & & & & \\
\hline Movement & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & & & & A & F & \\
Traffic Vol, veh/h & 10 & 0 & 0 & 470 & 350 & 20 \\
Future Vol, veh/h & 10 & 0 & 0 & 470 & 350 & 20 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & - & - & - & - \\
Veh in Median Storage, \# & 0 & - & - & 0 & 0 & - \\
Grade, \% & 0 & - & - & 0 & 0 & - \\
Peak Hour Factor & 44 & 44 & 95 & 95 & 96 & 96 \\
Heavy Vehicles, \% & 79 & 79 & 4 & 4 & 6 & 6 \\
Mvmt Flow & 23 & 0 & 0 & 495 & 365 & 21
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & SEL & SET & SER & NWL & NWT & NWR \\
\hline Lane Configurations & & ¢ & & & ¢ & & & \$ & & & \(\uparrow\) & \\
\hline Traffic Volume (vph) & 50 & 410 & 10 & 30 & 280 & 10 & 20 & 10 & 80 & 10 & 0 & 30 \\
\hline Future Volume (vph) & 50 & 410 & 10 & 30 & 280 & 10 & 20 & 10 & 80 & 10 & 0 & 30 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 150 & & 150 & 150 & & 150 & 0 & & 0 & 150 & & 150 \\
\hline Storage Lanes & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 \\
\hline Taper Length (ft) & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & 0.997 & & & 0.996 & & & 0.902 & & & 0.899 & \\
\hline Fit Protected & & 0.995 & & & 0.995 & & & 0.991 & & & 0.988 & \\
\hline Satd. Flow (prot) & 0 & 1762 & 0 & 0 & 1793 & 0 & 0 & 1665 & 0 & 0 & 1688 & 0 \\
\hline Flt Permitted & & 0.995 & & & 0.995 & & & 0.991 & & & 0.988 & \\
\hline Satd. Flow (perm) & 0 & 1762 & 0 & 0 & 1793 & 0 & 0 & 1665 & 0 & 0 & 1688 & 0 \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance (ft) & & 327 & & & 240 & & & 246 & & & 251 & \\
\hline Travel Time (s) & & 7.4 & & & 5.5 & & & 5.6 & & & 5.7 & \\
\hline Peak Hour Factor & 0.89 & 0.89 & 0.89 & 0.96 & 0.96 & 0.96 & 0.65 & 0.65 & 0.65 & 0.67 & 0.67 & 0.67 \\
\hline Heavy Vehicles (\%) & 7\% & 7\% & 7\% & 5\% & 5\% & 5\% & 2\% & 2\% & 2\% & 0\% & 0\% & 0\% \\
\hline Adj. Flow (vph) & 56 & 461 & 11 & 31 & 292 & 10 & 31 & 15 & 123 & 15 & 0 & 45 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 528 & 0 & 0 & 333 & 0 & 0 & 169 & 0 & 0 & 60 & 0 \\
\hline Sign Control & & Free & & & Free & & & Stop & & & Stop & \\
\hline
\end{tabular}

Intersection Summary
Area Type: Other
Control Type: Unsignalized
Intersection Capacity Utilization 48.8\%
ICU Level of Service A
Analysis Period (min) 15
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Intersection} \\
\hline Int Delay, s/veh & \multicolumn{12}{|l|}{3.3} \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & SEL & SET & SER & NWL & & NWR \\
\hline Lane Configurations & & ¢ & & & \({ }_{4}\) & & & ¢ & & & 4 & \\
\hline Traffic Vol, veh/h & 50 & 410 & 10 & 30 & 280 & 10 & 20 & 10 & 80 & 10 & 0 & 30 \\
\hline Future Vol, veh/h & 50 & 410 & 10 & 30 & 280 & 10 & 20 & 10 & 80 & 10 & 0 & 30 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control F & Free & Free & Free & Free & Free & Free & Stop & Stop & Stop & Stop & Stop & Stop \\
\hline RT Channelized & . & - & None & . & & None & . & . & Yield & - & & None \\
\hline Storage Length & - & - & - & - & - & . & - & - & . & - & . & . \\
\hline Veh in Median Storage, \# & \# & 0 & - & - & 0 & - & - & 0 & - & . & 0 & . \\
\hline Grade, \% & - & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - \\
\hline Peak Hour Factor & 89 & 89 & 89 & 96 & 96 & 96 & 65 & 65 & 65 & 67 & 67 & 67 \\
\hline Heavy Vehicles, \% & 7 & 7 & 7 & 5 & 5 & 5 & 2 & 2 & 2 & 0 & 0 & 0 \\
\hline Mumt Flow & 56 & 461 & 11 & 31 & 292 & 10 & 31 & 15 & 123 & 15 & 0 & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & NBL & NBT & NBR & SBL & SBT & SBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & \% & 个 \(\uparrow\) & F & \%* & \(\uparrow \uparrow\) & & \% 7 & \(\uparrow\) & F & 7 & \(\uparrow\) & \(7{ }^{7}\) \\
\hline Traffic Volume (vph) & 20 & 200 & 140 & 590 & 190 & 0 & 160 & 220 & 30 & 30 & 310 & 770 \\
\hline Future Volume (vph) & 20 & 200 & 140 & 590 & 190 & 0 & 160 & 220 & 30 & 30 & 310 & 770 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time (s) & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & & 6.0 & 6.0 & 4.0 & 6.0 & 6.0 & 6.0 \\
\hline Lane Util. Factor & 1.00 & 0.95 & 1.00 & 0.97 & 0.95 & & 0.97 & 1.00 & 1.00 & 1.00 & 1.00 & 0.88 \\
\hline Fit & 1.00 & 1.00 & 0.85 & 1.00 & 1.00 & & 1.00 & 1.00 & 0.85 & 1.00 & 1.00 & 0.85 \\
\hline Flt Protected & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & 1.00 \\
\hline Satd. Flow (prot) & 1736 & 3471 & 1553 & 3335 & 3438 & & 3400 & 1845 & 1568 & 1752 & 1845 & 2760 \\
\hline Flt Permitted & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & 1.00 \\
\hline Satd. Flow (perm) & 1736 & 3471 & 1553 & 3335 & 3438 & & 3400 & 1845 & 1568 & 1752 & 1845 & 2760 \\
\hline Peak-hour factor, PHF & 0.84 & 0.84 & 0.84 & 0.79 & 0.79 & 0.79 & 0.86 & 0.86 & 0.86 & 0.99 & 0.99 & 0.99 \\
\hline Adj. Flow (vph) & 24 & 238 & 167 & 747 & 241 & 0 & 186 & 256 & 35 & 30 & 313 & 778 \\
\hline RTOR Reduction (vph) & 0 & 0 & 125 & 0 & 0 & O & 0 & 0 & 0 & 0 & 0 & 124 \\
\hline Lane Group Flow (vph) & 24 & 238 & 42 & 747 & 241 & 0 & 186 & 256 & 35 & 30 & 313 & 654 \\
\hline Heavy Vehicles (\%) & 4\% & 4\% & 4\% & 5\% & 5\% & 5\% & 3\% & 3\% & 3\% & 3\% & 3\% & 3\% \\
\hline Turn Type & Prot & NA & pm+ov & Prot & NA & & Prot & NA & Free & Prot & NA & pt+ov \\
\hline Protected Phases & 1 & 6 & 7 & 5 & 2 & & 3 & 8 & & 7 & , & 45 \\
\hline Permitted Phases & & 6 & 6 & & 2 & & & 8 & Free & & 4 & \\
\hline Actuated Green, G (s) & 12.7 & 15.1 & 22.6 & 22.9 & 25.3 & & 7.0 & 20.5 & 90.0 & 7.5 & 21.0 & 43.9 \\
\hline Effective Green, \(\mathrm{g}(\mathrm{s})\) & 12.7 & 15.1 & 22.6 & 22.9 & 25.3 & & 7.0 & 20.5 & 90.0 & 7.5 & 21.0 & 43.9 \\
\hline Actuated g/C Ratio & 0.14 & 0.17 & 0.25 & 0.25 & 0.28 & & 0.08 & 0.23 & 1.00 & 0.08 & 0.23 & 0.49 \\
\hline Clearance Time (s) & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Lane Grp Cap (vph) & 244 & 582 & 493 & 848 & 966 & & 264 & 420 & 1568 & 146 & 430 & 1346 \\
\hline \(\mathrm{v} / \mathrm{s}\) Ratio Prot & 0.01 & c0.07 & 0.01 & c0. 22 & 0.07 & & 0.05 & c0.14 & & 0.02 & c0.17 & 0.24 \\
\hline \(\mathrm{v} / \mathrm{s}\) Ratio Perm & & & 0.02 & & & & & & c0.02 & & & \\
\hline v/c Ratio & 0.10 & 0.41 & 0.09 & 0.88 & 0.25 & & 0.70 & 0.61 & 0.02 & 0.21 & 0.73 & 0.49 \\
\hline Uniform Delay, d1 & 33.7 & 33.5 & 25.8 & 32.2 & 25.0 & & 40.5 & 31.2 & 0.0 & 38.5 & 31.9 & 15.5 \\
\hline Progression Factor & 1.00 & 1.00 & 1.00 & 0.90 & 0.89 & & 1.00 & 1.00 & 1.00 & 0.72 & 0.64 & 0.58 \\
\hline Incremental Delay, d2 & 0.2 & 0.5 & 0.1 & 10.1 & 0.6 & & 8.3 & 2.5 & 0.0 & 0.5 & 4.5 & 0.2 \\
\hline Delay (s) & 33.8 & 33.9 & 25.9 & 39.2 & 22.8 & & 48.8 & 33.7 & 0.0 & 28.4 & 24.8 & 9.2 \\
\hline Level of Service & C & C & C & D & C & & D & C & A & C & C & A \\
\hline Approach Delay (s) & & 30.8 & & & 35.2 & & & 37.1 & & & 14.1 & \\
\hline Approach LOS & & C & & & D & & & D & & & B & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
\hline Intersection Summary & & & \\
\hline HCM 2000 Control Delay & 27.0 & HCM 2000 Level of Service & C \\
HCM 2000 Volume to Capacity ratio & 0.73 & & 24.0 \\
Actuated Cycle Length (s) & 90.0 & Sum of lost time (s) & C \\
Intersection Capacity Utilization & \(64.5 \%\) & ICU Level of Service & \\
Analysis Period (min) & 15 & & \\
C Critical Lane Group & & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\ldots\) & 厄 & \(\nearrow\) & 7 & 5 & － & \\
\hline Movement & NWL & NWR & NET & NER & SWL & SWT & \\
\hline Lane Configurations & \％ & 7 & 个个 & 7 & 7 & \(\uparrow \uparrow\) & \\
\hline Traffic Volume（vph） & 300 & 70 & 580 & 370 & 60 & 810 & \\
\hline Future Volume（vph） & 300 & 70 & 580 & 370 & 60 & 810 & \\
\hline Ideal Flow（vphpl） & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & \\
\hline Total Lost time（s） & 6.0 & 6.0 & 6.0 & 4.0 & 6.0 & 6.0 & \\
\hline Lane Utill Factor & 1.00 & 1.00 & 0.95 & 1.00 & 1.00 & 0.95 & \\
\hline Fit & 1.00 & 0.85 & 1.00 & 0.85 & 1.00 & 1.00 & \\
\hline Flt Protected & 0.95 & 1.00 & 1.00 & 1.00 & 0.95 & 1.00 & \\
\hline Satd．Flow（prot） & 1770 & 1583 & 3505 & 1568 & 1770 & 3539 & \\
\hline Flt Permitted & 0.95 & 1.00 & 1.00 & 1.00 & 0.23 & 1.00 & \\
\hline Satd．Flow（perm） & 1770 & 1583 & 3505 & 1568 & 429 & 3539 & \\
\hline Peak－hour factor，PHF & 0.83 & 0.83 & 0.86 & 0.86 & 0.81 & 0.81 & \\
\hline Adj．Flow（vph） & 361 & 84 & 674 & 430 & 74 & 1000 & \\
\hline RTOR Reduction（vph） & 0 & 10 & 0 & 0 & 0 & 0 & \\
\hline Lane Group Flow（vph） & 361 & 74 & 674 & 430 & 74 & 1000 & \\
\hline Heavy Vehicles（\％） & 2\％ & 2\％ & 3\％ & 3\％ & 2\％ & 2\％ & \\
\hline Turn Type & Prot & pm＋ov & NA & Free & pm＋pt & NA & \\
\hline Protected Phases & 1256 & 7 & 8 & & 7 & 34 & \\
\hline Permitted Phases & & 1256 & & Free & 34 & & \\
\hline Actuated Green，G（s） & 40.4 & 47.9 & 20.5 & 90.0 & 34.0 & 34.0 & \\
\hline Effective Green， \(\mathrm{g}(\mathrm{s})\) & 40.4 & 47.9 & 20.5 & 90.0 & 34.0 & 34.0 & \\
\hline Actuated g／C Ratio & 0.45 & 0.53 & 0.23 & 1.00 & 0.38 & 0.38 & \\
\hline Clearance Time（s） & & 6.0 & 6.0 & & 6.0 & & \\
\hline Vehicle Extension（s） & & 3.0 & 3.0 & & 3.0 & & \\
\hline Lane Grp Cap（vph） & 794 & 948 & 798 & 1568 & 273 & 1336 & \\
\hline \(\mathrm{v} / \mathrm{s}\) Ratio Prot & c0． 20 & 0.01 & c0． 19 & & 0.02 & c0． 28 & \\
\hline \(\mathrm{v} / \mathrm{s}\) Ratio Perm & & 0.04 & & c0． 27 & 0.08 & & \\
\hline v／c Ratio & 0.45 & 0.08 & 0.84 & 0.27 & 0.27 & 0.75 & \\
\hline Uniform Delay，d1 & 17.2 & 10.3 & 33.2 & 0.0 & 27.8 & 24.3 & \\
\hline Progression Factor & 1.00 & 1.00 & 0.58 & 1.00 & 1.00 & 1.00 & \\
\hline Incremental Delay，d2 & 0.4 & 0.0 & 5.6 & 0.3 & 0.5 & 2.3 & \\
\hline Delay（s） & 17.6 & 10.3 & 24.7 & 0.3 & 28.3 & 26.6 & \\
\hline Level of Service & B & B & C & A & C & c & \\
\hline Approach Delay（s） & 16.2 & & 15.2 & & & 26.7 & \\
\hline Approach LOS & B & & B & & & c & \\
\hline \multicolumn{8}{|l|}{Intersection Summary} \\
\hline \multicolumn{3}{|l|}{HCM 2000 Control Delay} & 20.1 & & HCM 2000 L & Level of Service & C \\
\hline \multicolumn{3}{|l|}{HCM 2000 Volume to Capacity ratio} & 0.69 & & & & \\
\hline \multicolumn{3}{|l|}{Actuated Cycle Length（s）} & 90.0 & & Sum of lost & time（s） & 24.0 \\
\hline \multicolumn{3}{|l|}{Intersection Capacity Utilization} & 53．5\％ & & CU Level of & Service & A \\
\hline \multicolumn{3}{|l|}{Analysis Period（min）} & 15 & & & & \\
\hline \multicolumn{3}{|l|}{c Critical Lane Group} & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\rightarrow\) & \(\rightarrow\) & 2 & \(\cdots\) & & C & ＋ & \(\nearrow\) & \(\rho\) & 4 & \(\checkmark\) & 4 \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & 7 & 譥 & & 7 & 个官 & & & \(\uparrow\) & 7 & & \(\uparrow\) & \({ }^{\prime \prime}\) \\
\hline Traffic Volume（vph） & 160 & 980 & 0 & O & 980 & 50 & 5 & ， & 5 & 20 & 4 & 180 \\
\hline Future Volume（vph） & 160 & 980 & 0 & 0 & 980 & 50 & 5 & 0 & 5 & 20 & 0 & 180 \\
\hline Ideal Flow（vphpl） & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time（s） & 6.0 & 6.0 & & & 6.0 & & & 6.0 & 6.0 & & 6.0 & 6.0 \\
\hline Lane Util．Factor & 1.00 & 0.95 & & & 0.95 & & & 1.00 & 1.00 & & 1.00 & 1.00 \\
\hline Fit & 1.00 & 1.00 & & & 0.99 & & & 1.00 & 0.85 & & 1.00 & 0.85 \\
\hline Fit Protected & 0.95 & 1.00 & & & 1.00 & & & 0.95 & 1.00 & & 0.95 & 1.00 \\
\hline Satd．Flow（prot） & 1687 & 3374 & & & 3514 & & & 1805 & 1615 & & 1787 & 1599 \\
\hline FIt Permitted & 0.95 & 1.00 & & & 1.00 & & & 1.00 & 1.00 & & 1.00 & 1.00 \\
\hline Satd．Flow（perm） & 1687 & 3374 & & & 3514 & & & 1900 & 1615 & & 1881 & 1599 \\
\hline Peak－hour factor，PHF & 0.83 & 0.83 & 0.83 & 0.92 & 0.92 & 0.92 & 0.50 & 0.50 & 0.50 & 0.90 & 0.90 & 0.90 \\
\hline Adj．Flow（vph） & 193 & 1181 & 0 & ， & 1065 & 54 & 10 & 0 & 10 & 22 & 0 & 200 \\
\hline RTOR Reduction（vph） & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 10 & ， & 0 & 82 \\
\hline Lane Group Flow（vph） & 193 & 1181 & 0 & 0 & 1116 & 0 & 0 & 10 & 0 & 0 & 22 & 118 \\
\hline Heavy Vehicles（\％） & 7\％ & 7\％ & 7\％ & 2\％ & 2\％ & 2\％ & 0\％ & 0\％ & 0\％ & 1\％ & 1\％ & 1\％ \\
\hline Turn Type & Prot & NA & & Prot & NA & & Perm & NA & Perm & Perm & NA & \(\mathrm{pm}+\mathrm{ov}\) \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & & 8 & & & 4 & 5 \\
\hline Permitted Phases & & & & & 6 & & 8 & 8 & 8 & 4 & & \\
\hline Actuated Green，G（s） & 18.9 & 74.6 & & & 49.7 & & & 3.4 & 3.4 & & 3.4 & 22.3 \\
\hline Effective Green， g （ s ） & 18.9 & 74.6 & & & 49.7 & & & 3.4 & 3.4 & & 3.4 & 22.3 \\
\hline Actuated g／C Ratio & 0.21 & 0.83 & & & 0.55 & & & 0.04 & 0.04 & & 0.04 & 0.25 \\
\hline Clearance Time（s） & 6.0 & 6.0 & & & 6.0 & & & 6.0 & 6.0 & & 6.0 & 6.0 \\
\hline Vehicle Extension（s） & 3.0 & 3.0 & & & 3.0 & & & 3.0 & 3.0 & & 3.0 & 3.0 \\
\hline Lane Grp Cap（vph） & 354 & 2796 & & & 1940 & & & 71 & 61 & & 71 & 502 \\
\hline v／s Ratio Prot & c0．11 & 0.35 & & & c0．32 & & & & & & & c0．05 \\
\hline v／s Ratio Perm & & & & & & & & 0.01 & 0.00 & & 0.01 & 0.02 \\
\hline v／c Ratio & 0.55 & 0.42 & & & 0.58 & & & 0.14 & 0.01 & & 0.31 & 0.24 \\
\hline Uniform Delay，d1 & 31.7 & 2.0 & & & 13.2 & & & 41.9 & 41.7 & & 42.2 & 27.0 \\
\hline Progression Factor & 0.97 & 1.99 & & & 1.46 & & & 1.00 & 1.00 & & 1.00 & 1.00 \\
\hline Incremental Delay，d2 & 1.5 & 0.4 & & & 0.4 & & & 0.9 & 0.0 & & 2.5 & 0.2 \\
\hline Delay（s） & 32.2 & 4.4 & & & 19.7 & & & 42.8 & 41.7 & & 44.6 & 27.3 \\
\hline Level of Service & C & A & & & B & & & D & D & & D & C \\
\hline Approach Delay（s） & & 8.3 & & & 19.7 & & & 42.3 & & & 29.0 & \\
\hline Approach LOS & & A & & & B & & & D & & & C & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline \multicolumn{2}{|l|}{HCM 2000 Control Delay} & & 14.9 & & CM 2000 L & evel of S & Service & & B & & & \\
\hline \multicolumn{2}{|l|}{HCM 2000 Volume to Capacity ratio} & & 0.56 & & & & & & & & & \\
\hline \multicolumn{2}{|l|}{Actuated Cycle Length（s）} & & 90.0 & & um of lost & time（s） & & & 18.0 & & & \\
\hline \multicolumn{2}{|l|}{Intersection Capacity Utilization} & & 60．3\％ & & CU Level of & Service & & & B & & & \\
\hline \multicolumn{2}{|l|}{} & & 15 & & & & & & & & & \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Analysis Period（min） \\
c Critical Lane Group
\end{tabular}} & & & & & & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & 7\％ & 性 & & \％ & \(\uparrow \uparrow\) & 「 & \({ }^{7}\) & ち & & \％ & \(\uparrow\) & \\
\hline Traffic Volume（vph） & 140 & 990 & 20 & 5 & 940 & 340 & 10 & 5 & 5 & 110 & 5 & 180 \\
\hline Future Volume（vph） & 140 & 990 & 20 & 5 & 940 & 340 & 10 & 5 & 5 & 110 & 5 & 180 \\
\hline Ideal Flow（vphpl） & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time（s） & 6.0 & 6.0 & & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & & 6.0 & 6.0 & 6.0 \\
\hline Lane Utill．Factor & 0.97 & 0.95 & & 1.00 & 0.95 & 1.00 & 1.00 & 1.00 & & 0.95 & 0.95 & 1.00 \\
\hline Fit & 1.00 & 1.00 & & 1.00 & 1.00 & 0.85 & 1.00 & 0.93 & & 1.00 & 1.00 & 0.85 \\
\hline Flt Protected & 0.95 & 1.00 & & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & & 0.95 & 0.96 & 1.00 \\
\hline Satd．Flow（prot） & 3303 & 3396 & & 1736 & 3471 & 1553 & 1805 & 1758 & & 1665 & 1676 & 1568 \\
\hline Flt Permitted & 0.95 & 1.00 & & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & & 0.95 & 0.00 & 1.00 \\
\hline Satd．Flow（perm） & 3303 & 3396 & & 1736 & 3471 & 1553 & 1805 & 1758 & & 1665 & 0 & 1568 \\
\hline Peak－hour factor，PHF & 0.83 & 0.83 & 0.83 & 0.97 & 0.97 & 0.97 & 0.67 & 0.67 & 0.67 & 0.90 & 0.90 & 0.90 \\
\hline Adj．Flow（vph） & 169 & 1193 & 24 & 5 & 969 & 351 & 15 & 7 & & 122 & 6 & 200 \\
\hline RTOR Reduction（vph） & 0 & 1 & 0 & 0 & 0 & 133 & 0 & 7 & 0 & 0 & 0 & 135 \\
\hline Lane Group Flow（vph） & 169 & 1216 & 0 & 5 & 969 & 218 & 15 & 7 & 0 & 63 & 65 & 65 \\
\hline Heary Vehicles（\％） & 6\％ & 6\％ & 6\％ & 4\％ & 4\％ & 4\％ & 0\％ & 0\％ & 0\％ & 3\％ & 3\％ & 3\％ \\
\hline Turn Type & Prot & NA & & Prot & NA & pm＋ov & Prot & NA & & Prot & NA & pt＋ov \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & 7 & 3 & 8 & & 7 & 4 & 45 \\
\hline Permitted Phases & & & & & & 6 & & 8 & & & & \\
\hline Actuated Green，G（s） & 9.2 & 55.4 & & 1.0 & 47.2 & 55.8 & 1.5 & 1.0 & & 8.6 & 8.6 & 23.3 \\
\hline Effective Green， \(\mathrm{g}(\mathrm{s})\) & 9.2 & 55.4 & & 1.0 & 47.2 & 55.8 & 1.5 & 1.0 & & 8.6 & 8.6 & 23.3 \\
\hline Actuated g／C Ratio & 0.10 & 0.62 & & 0.01 & 0.52 & 0.62 & 0.02 & 0.01 & & 0.10 & 0.10 & 0.26 \\
\hline Clearance Time（s） & 6.0 & 6.0 & & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Vehicle Extension（s） & 3.0 & 3.0 & & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Lane Grp Cap（vph） & 337 & 2090 & & 19 & 1820 & 962 & 30 & 19 & & 159 & 160 & 405 \\
\hline \(\mathrm{v} / \mathrm{s}\) Ratio Prot & 0.05 & c0．36 & & 0.00 & c0． 28 & 0.02 & c0．01 & 0.00 & & 0.04 & c0．04 & 0.04 \\
\hline v／s Ratio Perm & & & & & & 0.12 & & & & & & \\
\hline v／c Ratio & 0.50 & 0.58 & & 0.26 & 0.53 & 0.23 & 0.50 & 0.37 & & 0.40 & 0.41 & 0.16 \\
\hline Uniform Delay，d1 & 38.2 & 10.4 & & 44.1 & 14.1 & 7.6 & 43.9 & 44.2 & & 38.3 & 38.3 & 25.8 \\
\hline Progression Factor & 1.00 & 1.00 & & 1.08 & 0.90 & 7.08 & 1.00 & 1.00 & & 1.00 & 1.00 & 1.00 \\
\hline Incremental Delay，d2 & 1.2 & 1.2 & & 6.5 & 0.3 & 0.1 & 12.5 & 11.9 & & 1.6 & 1.7 & 0.2 \\
\hline Delay（s） & 39.4 & 11.6 & & 54.0 & 12.9 & 53.6 & 56.4 & 56.1 & & 39.9 & 40.0 & 26.0 \\
\hline Level of Service & D & B & & D & B & D & E & E & & D & D & C \\
\hline Approach Delay（s） & & 14.9 & & & 23.9 & & & 56.2 & & & 31.4 & \\
\hline Approach LOS & & B & & & C & & & E & & & c & \\
\hline
\end{tabular}
\begin{tabular}{lrlr} 
Intersection Summary & & \\
\hline HCM 2000 Control Delay & 21.0 & HCM 2000 Level of Service & C \\
HCM 2000 Volume to Capacity ratio & 0.58 & & 24.0 \\
Actuated Cycle Length（s） & 90.0 & Sum of lost time（s） & B \\
Intersection Capacity Utilization & \(57.0 \%\) & ICU Level of Service & \\
Analysis Period（min） & 15 & & \\
C Critical Lane Group & & &
\end{tabular}
\begin{tabular}{lrrrrrr}
\hline & & & & & & \\
& & & & & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Intersection Summary Other & \\
\hline Area Type: \begin{tabular}{l} 
Control Type: Unsignalized \\
Intersection Capacity Utilization \(52.9 \%\) \\
Analysis Period (min) 15
\end{tabular} \\
ICU Level of Service A
\end{tabular}
\begin{tabular}{lrrrrrrr}
\hline Intersection \\
\hline Int Delay, s/veh & 6.2 & & & & & & \\
\hline
\end{tabular}


\begin{tabular}{lrrrrrr}
\hline & & & & & & \\
& & & & & & \\
\hline
\end{tabular}

\begin{tabular}{lrlrl}
\hline Intersection Summary & & \\
\hline HCM 2000 Control Delay & 19.2 & HCM 2000 Level of Service & B \\
HCM 2000 Volume to Capacity ratio & 0.70 & & 12.0 \\
\hline Actuated Cycle Length (s) & 90.0 & Sum of lost time (s) & H \\
Intersection Capacity Utilization & \(122.3 \%\) & ICU Level of Service & \\
Analysis Period (min) & 15 & & \\
C Critical Lane Group & & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & \(\downarrow\) & \(\cdots\) & \(\uparrow\) & \(\xlongequal{ }\) & \(\triangle\) & 3 & 4 & \(\star\) & \(\downarrow\) \\
\hline Movement & SBL & SBR & NWL & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & & & Y & 7 & \% & \(\uparrow \uparrow\) & & & \(\uparrow \uparrow\) & \(7{ }^{7}\) \\
\hline Traffic Volume (vph) & 0 & 0 & 0 & 135 & 0 & 1550 & 0 & 0 & 420 & 1245 \\
\hline Future Volume (vph) & 0 & 0 & 0 & 135 & 0 & 1550 & 0 & 0 & 420 & 1245 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time (s) & & & 6.0 & 6.0 & & 6.0 & & & 6.0 & 6.0 \\
\hline Lane Utill. Factor & & & 1.00 & 0.95 & & 0.95 & & & 0.95 & 0.88 \\
\hline Fit & & & 0.85 & 0.85 & & 1.00 & & & 1.00 & 0.85 \\
\hline Flt Protected & & & 1.00 & 1.00 & & 1.00 & & & 1.00 & 1.00 \\
\hline Satd. Flow (prot) & & & 1583 & 1504 & & 3539 & & & 3539 & 2787 \\
\hline Flt Permitted & & & 1.00 & 1.00 & & 1.00 & & & 1.00 & 1.00 \\
\hline Satd. Flow (perm) & & & 1583 & 1504 & & 3539 & & & 3539 & 2787 \\
\hline Peak-hour factor, PHF & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 \\
\hline Adj. Flow (vph) & 0 & 0 & 0 & 144 & 0 & 1649 & 0 & 0 & 447 & 1324 \\
\hline RTOR Reduction (vph) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 201 \\
\hline Lane Group Flow (vph) & 0 & 0 & 72 & 72 & 0 & 1649 & 0 & 0 & 447 & 1123 \\
\hline Turn Type & & & Prot & Prot & Perm & NA & & & NA & Perm \\
\hline Protected Phases & & & 4 & 4 & & 2 & & & 2 & \\
\hline Permitted Phases & & & & & 2 & & & & & 2 \\
\hline Actuated Green, G (s) & & & 10.7 & 10.7 & & 67.3 & & & 67.3 & 67.3 \\
\hline Effective Green, \(\mathrm{g}(\mathrm{s})\) & & & 10.7 & 10.7 & & 67.3 & & & 67.3 & 67.3 \\
\hline Actuated g/C Ratio & & & 0.12 & 0.12 & & 0.75 & & & 0.75 & 0.75 \\
\hline Clearance Time (s) & & & 6.0 & 6.0 & & 6.0 & & & 6.0 & 6.0 \\
\hline Vehicle Extension (s) & & & 3.0 & 3.0 & & 3.0 & & & 3.0 & 3.0 \\
\hline Lane Grp Cap (vph) & & & 188 & 178 & & 2646 & & & 2646 & 2084 \\
\hline \(\mathrm{v} / \mathrm{s}\) Ratio Prot & & & 0.05 & c0.05 & & c0.47 & & & 0.13 & \\
\hline v/s Ratio Perm & & & & & & & & & & 0.40 \\
\hline \(\mathrm{v} / \mathrm{C}\) Ratio & & & 0.38 & 0.40 & & 0.62 & & & 0.17 & 0.54 \\
\hline Uniform Delay, d1 & & & 36.6 & 36.7 & & 5.4 & & & 3.3 & 4.8 \\
\hline Progression Factor & & & 1.00 & 1.00 & & 0.51 & & & 1.00 & 1.00 \\
\hline Incremental Delay, d2 & & & 1.3 & 1.5 & & 0.7 & & & 0.1 & 1.0 \\
\hline Delay (s) & & & 37.9 & 38.2 & & 3.4 & & & 3.4 & 5.8 \\
\hline Level of Service & & & D & D & & A & & & A & A \\
\hline Approach Delay (s) & 0.0 & & 38.1 & & & 3.4 & & & 5.2 & \\
\hline Approach LOS & A & & D & & & A & & & A & \\
\hline \multicolumn{11}{|l|}{Intersection Summary} \\
\hline \multicolumn{3}{|l|}{HCM 2000 Control Delay} & 5.7 & & CM 2000 & Level of S & ervice & & A & \\
\hline \multicolumn{3}{|l|}{HCM 2000 Volume to Capacity ratio} & 0.59 & & & & & & & \\
\hline \multicolumn{3}{|l|}{Actuated Cycle Length (s)} & 90.0 & & um of lost & time (s) & & & 12.0 & \\
\hline \multicolumn{3}{|l|}{Intersection Capacity Utilization} & 97.8\% & & CU Level & Service & & & F & \\
\hline \multicolumn{3}{|l|}{Analysis Period (min)} & 15 & & & & & & & \\
\hline \multicolumn{2}{|l|}{c Critical Lane Group} & & & & & & & & & \\
\hline
\end{tabular}

16: NH 102 W/NH 102 E \& Bypass 28 S/Bypass 28 N \& E Derry Rd Lanes, Volumes, Timings
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\checkmark\) & \(\checkmark\) & 1 & \(\bullet\) & \(\cdots\) & \(\uparrow\) & 「 & - & \(\checkmark\) & \(\checkmark\) & \(\downarrow\) & , \\
\hline Lane Group & WBL2 & WBL & WBR & WBR2 & NBL & NBT & NBR & NBR2 & SBL2 & SBL & SBT & SBR \\
\hline Lane Configurations & & M & & & & 4 & & & & & 4 & \\
\hline Traffic Volume (vph) & 10 & 190 & 370 & 20 & 80 & 110 & 40 & 10 & 10 & 50 & 140 & 140 \\
\hline Future Volume (vph) & 10 & 190 & 370 & 20 & 80 & 110 & 40 & 10 & 10 & 50 & 140 & 140 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & & - & 150 & & 0 & & 150 & & & 0 & & 0 \\
\hline Storage Lanes & & 1 & 0 & & 0 & & 0 & & & 0 & & 0 \\
\hline Taper Length ( t ) & & 25 & & & 25 & & & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & 0.911 & & & & 0.972 & & & & & 0.945 & \\
\hline FIt Protected & & 0.983 & & & & 0.984 & & & & & 0.991 & \\
\hline Satd. Flow (prot) & 0 & 1652 & 0 & 0 & 0 & 1764 & 0 & 0 & 0 & 0 & 1663 & 0 \\
\hline FIt Permitted & & 0.983 & & & & 0.984 & & & & & 0.991 & \\
\hline Satd. Flow (perm) & 0 & 1652 & 0 & 0 & 0 & 1764 & 0 & 0 & 0 & 0 & 1663 & 0 \\
\hline Link Speed (mph) & & 30 & & & & 30 & & & & & 30 & \\
\hline Link Distance ( t ) & & 465 & & & & 456 & & & & & 371 & \\
\hline Travel Time (s) & & 10.6 & & & & 10.4 & & & & & 8.4 & \\
\hline Peak Hour Factor & 0.91 & 0.91 & 0.91 & 0.91 & 0.86 & 0.86 & 0.86 & 0.86 & 0.80 & 0.80 & 0.80 & 0.80 \\
\hline Heavy Vehicles (\%) & 3\% & 3\% & 3\% & 3\% & 3\% & 3\% & 3\% & 3\% & 7\% & 7\% & 7\% & 7\% \\
\hline Adj. Flow (vph) & 11 & 209 & 407 & 22 & 93 & 128 & 47 & 12 & 13 & 63 & 175 & 175 \\
\hline Shared Lane Traffic (\%) & & & & & & & & & & & & \\
\hline Lane Group Flow (vph) & 0 & 649 & 0 & 0 & 0 & 280 & 0 & 0 & 0 & 0 & 426 & 0 \\
\hline Sign Control & & Yield & & & & Yield & & & & & Yield & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline \multicolumn{13}{|l|}{Area Type: Other} \\
\hline \multicolumn{13}{|l|}{Control Type: Roundabout} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Intersection Capacity Utilization 95.8\%
Analysis Period (min) 15}} & \multicolumn{11}{|c|}{\multirow[t]{2}{*}{ICU Level of Service \(F\)}} \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \(\stackrel{ }{ }\) & \(\nearrow\) & \(\rho\) & \(\downarrow\) & \(\square\) & \(\downarrow\) & \(\checkmark\) & \(\downarrow\) \\
\hline Lane Group & NEL & NET & NER & NER2 & SWL2 & SWL & SWT & SWR \\
\hline Lane Configurations & & ¢ & & & & & 4 & \\
\hline Traffic Volume (vph) & 50 & 90 & 120 & 90 & 5 & 40 & 260 & 10 \\
\hline Future Volume (vph) & 50 & 90 & 120 & 90 & 5 & 40 & 260 & 10 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (tt) & 0 & & 150 & & & 150 & & \\
\hline Storage Lanes & 0 & & 0 & & & 0 & & 0 \\
\hline Taper Length ( t ) & 25 & & & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & 0.919 & & & & & 0.996 & \\
\hline FIt Protected & & 0.993 & & & & & 0.993 & \\
\hline Satd. Flow (prot) & 0 & 1605 & 0 & 0 & 0 & 0 & 1756 & 0 \\
\hline FIt Permitted & & 0.993 & & & & & 0.993 & \\
\hline Satd. Flow (perm) & 0 & 1605 & 0 & 0 & 0 & 0 & 1756 & 0 \\
\hline Link Speed (mph) & & 30 & & & & & 30 & \\
\hline Link Distance ( ft ) & & 400 & & & & & 528 & \\
\hline Travel Time (s) & & 9.1 & & & & & 12.0 & \\
\hline Peak Hour Factor & 0.60 & 0.60 & 0.60 & 0.60 & 0.83 & 0.83 & 0.83 & 0.83 \\
\hline Heavy Vehicles (\%) & 8\% & 8\% & 8\% & 8\% & 7\% & 7\% & 7\% & 7\% \\
\hline Adj. Flow (vph) & 83 & 150 & 200 & 150 & 6 & 48 & 313 & 12 \\
\hline Shared Lane Traffic (\%) & & & & & & & & \\
\hline Lane Group Flow (vph) & 0 & 583 & 0 & 0 & 0 & 0 & 379 & 0 \\
\hline Sign Control & & Yield & & & & & Yield & \\
\hline \multicolumn{9}{|l|}{Intersection Summary} \\
\hline
\end{tabular}
\begin{tabular}{lrrrrr}
\hline Intersection & & & & \\
\hline Intersection Delay, s/veh21.9 & & & & \\
Intersection LOS & C & & & & \\
\hline Approach & WB & NB & SB & SW \\
\hline Entry Lanes & 1 & 1 & 1 & 1 & 1 \\
Conflicting Circle Lanes & 1 & 1 & 1 & 1 & 1 \\
Adj Approach Flow, veh/h & 649 & 280 & 426 & 583 & 379 \\
Demand Flow Rate, veh/h & 668 & 288 & 455 & 405 \\
Vehicles Circulating, veh/h & 542 & 555 & 714 & 336 & 963 \\
Vehicles Exiting, veh/h & 301 & 411 & 654 & 833 & 0 \\
Ped Vol Crossing Leg, \#/h & 0 & 0 & 0 & 0 & 0 \\
Ped Cap Adj & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
Approach Delay, s/veh & 28.3 & 9.3 & 20.7 & 14.1 & 33.4 \\
Approach LOS & D & C & C & B & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrr}
\hline Lane & Left & Left & Left & Left & Left \\
\hline Designated Moves & LR & LTR & LTR & LTR & LTR \\
Assumed Moves & LR & LTR & LTR & LTR & LTR \\
RT Channelized & & & & & \\
Lane Util & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
Follow-Up Headway, s 2.609 & 2.609 & 2.609 & 2.609 & 2.609 \\
Critical Headway, s & 4.976 & 4.976 & 4.976 & 4.976 & 4.976 \\
Entry Flow, veh/h & 668 & 288 & 455 & 630 & 405 \\
Cap Entry Lane, veh/h & 794 & 783 & 666 & 980 & 517 \\
Entry HV Adj Factor & 0.971 & 0.973 & 0.936 & 0.925 & 0.935 \\
Flow Entry, veh/h & 649 & 280 & 426 & 583 & 379 \\
Cap Entry, veh/h & 771 & 762 & 623 & 906 & 483 \\
VIC Ratio & 0.841 & 0.368 & 0.683 & 0.643 & 0.784 \\
Control Delay, s/veh & 28.3 & 9.3 & 20.7 & 14.1 & 33.4 \\
LOS & D & A & C & B & D \\
95th \%tile Queue, veh & 10 & 2 & 5 & 5 & 7
\end{tabular}

17: Pinkerton St/Nesmith Rd \& NH 28 Bypass
Lanes, Volumes, Timings

\begin{tabular}{ll}
\hline Intersection \\
Int Delay, \(\mathrm{s} / \mathrm{veh}\) & 41.2
\end{tabular}
Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Configurations & & \({ }^{*}\) & F & & 4 & & & \({ }_{4}\) & & & 4 & \\
\hline Traffic Vol, veh/h & 10 & 20 & 230 & 10 & 40 & 50 & 390 & 140 & 10 & 10 & 110 & 20 \\
\hline Future Vol, veh/h & 10 & 20 & 230 & 10 & 40 & 50 & 390 & 140 & 10 & 10 & 110 & 20 \\
\hline Conflicting Peds, \#hr & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
\hline
\end{tabular}
Sign Control Stop Stop Stop Stop Stop Stop Free Free Free Free Free Free
RT Channelized - . None - . None - . None . . None
Storage Length
Veh in Median Storage, \#
Grade, \% .
Peak Hour Factor
Heavy Vehicles, \%
Mumt Flow
\begin{tabular}{rrrrrrrrrrrr}
82 & 82 & 82 & 70 & 70 & 70 & 75 & 75 & 75 & 71 & 71 & 71 \\
8 & 8 & 8 & 5 & 5 & 5 & 3 & 3 & 3 & 4 & 4 & 4 \\
12 & 24 & 280 & 14 & 57 & 71 & 520 & 187 & 13 & 14 & 155 & 28
\end{tabular}

\begin{tabular}{lrrrrrrrl} 
Minor Lane/Major Mvmt & NBL & NBT & NBREBLn1 & EBLn2WBLn1 & SBL & SBT & SBR \\
\hline Capacity (veh/h) & 1386 & - & - & 43 & 860 & 106 & 1360 & - \\
HCM Lane V/C Ratio & 0.375 & - & -0.851 & 0.326 & 1.348 & 0.01 & - & - \\
HCM Control Delay (s) & 9.1 & 0 & -237.3 & 11.2 & 280.7 & 7.7 & 0 & - \\
HCM Lane LOS & A & A & - & F & B & F & A & A \\
HCM 95th \%tile Q(veh) & 1.8 & - & - & 3.3 & 1.4 & 10 & 0 & - \\
HCM & & & & -
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & NBL & NBT & NBR & SBL & SBT & SBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & \({ }^{*}\) & \(\uparrow\) & & \({ }^{7}\) & \(\uparrow\) & 「 & 7 & 个to & & 7 & 㻢 & \\
\hline Traffic Volume（vph） & 30 & 50 & 20 & 80 & 40 & 200 & 40 & 310 & 70 & 70 & 570 & 50 \\
\hline Future Volume（vph） & 30 & 50 & 20 & 80 & 40 & 200 & 40 & 310 & 70 & 70 & 570 & 50 \\
\hline Ideal Flow（vphpl） & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time（s） & 6.0 & 6.0 & & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Lane Util．Factor & 1.00 & 1.00 & & 1.00 & 1.00 & 1.00 & 1.00 & 0.95 & & 1.00 & 0.95 & \\
\hline Fit & 1.00 & 0.96 & & 1.00 & 1.00 & 0.85 & 1.00 & 0.97 & & 1.00 & 0.99 & \\
\hline Fit Protected & 0.95 & 1.00 & & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & & 0.95 & 1.00 & \\
\hline Satd．Flow（prot） & 1752 & 1767 & & 1736 & 1827 & 1553 & 1770 & 3441 & & 1787 & 3531 & \\
\hline Fit Permitted & 0.95 & 1.00 & & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & & 0.95 & 1.00 & \\
\hline Satd．Flow（perm） & 1752 & 1767 & & 1736 & 1827 & 1553 & 1770 & 3441 & & 1787 & 3531 & \\
\hline Peak－hour factor，PHF & 0.82 & 0.82 & 0.82 & 0.81 & 0.81 & 0.81 & 0.68 & 0.68 & 0.68 & 0.78 & 0.78 & 0.78 \\
\hline Adj．Flow（vph） & 37 & 61 & 24 & 99 & 49 & 247 & 59 & 456 & 103 & 90 & 731 & 64 \\
\hline RTOR Reduction（vph） & 0 & 17 & 0 & 0 & 0 & 121 & 0 & 24 & 0 & 0 & 8 & 0 \\
\hline Lane Group Flow（vph） & 37 & 68 & 0 & 99 & 49 & 126 & 59 & 535 & 0 & 90 & 787 & 0 \\
\hline Heavy Vehicles（\％） & 3\％ & 3\％ & 3\％ & 4\％ & 4\％ & 4\％ & 2\％ & 2\％ & 2\％ & 1\％ & 1\％ & 1\％ \\
\hline Turn Type & Prot & NA & & Prot & NA & pt＋ov & Prot & NA & & Prot & NA & \\
\hline Protected Phases & 1 & 6 & & 5 & 2 & 23 & 3 & 8 & & 7 & 4 & \\
\hline \multicolumn{13}{|l|}{Permitted Phases} \\
\hline Actuated Green，G（s） & 4.4 & 14.3 & & 6.1 & 16.0 & 30.2 & 8.2 & 25.6 & & 6.1 & 23.5 & \\
\hline Effective Green，g（s） & 4.4 & 14.3 & & 6.1 & 16.0 & 30.2 & 8.2 & 25.6 & & 6.1 & 23.5 & \\
\hline Actuated g／C Ratio & 0.06 & 0.19 & & 0.08 & 0.21 & 0.40 & 0.11 & 0.34 & & 0.08 & 0.31 & \\
\hline Clearance Time（s） & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Vehicle Extension（s） & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Lane Grp Cap（vph） & 101 & 332 & & 139 & 384 & 616 & 190 & 1157 & & 143 & 1090 & \\
\hline v／s Ratio Prot & 0.02 & 0.04 & & c0．06 & 0.03 & c0．08 & 0.03 & 0.16 & & c0．05 & c0．22 & \\
\hline \multicolumn{13}{|l|}{v／s Ratio Perm} \\
\hline v／c Ratio & 0.37 & 0.20 & & 0.71 & 0.13 & 0.20 & 0.31 & 0.46 & & 0.63 & 0.72 & \\
\hline Uniform Delay，d1 & 34.5 & 26.1 & & 34.1 & 24.4 & 15.1 & 31.3 & 19.8 & & 33.9 & 23.4 & \\
\hline Progression Factor & 1.00 & 1.00 & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & & 1.00 & 1.00 & \\
\hline Incremental Delay，d2 & 2.2 & 0.3 & & 15.8 & 0.7 & 0.2 & 0.9 & 0.3 & & 8.4 & 2.4 & \\
\hline Delay（s） & 36.8 & 26.4 & & 50.0 & 25.1 & 15.2 & 32.3 & 20.1 & & 42.3 & 25.8 & \\
\hline Level of Service & D & C & & D & C & B & C & C & & D & C & \\
\hline Approach Delay（s） & & 29.5 & & & 25.2 & & & 21.3 & & & 27.5 & \\
\hline Approach LOS & & C & & & C & & & C & & & C & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
\hline Intersection Summary & & \\
\hline HCM 2000 Control Delay & 25.2 & HCM 2000 Level of Service & C \\
HCM 2000 Volume to Capacity ratio & 0.56 & & 24.0 \\
Actuated Cycle Length（s） & 76.1 & Sum of lost time（s） & A \\
Intersection Capacity Utilization & \(51.4 \%\) & ICU Level of Service & \\
Analysis Period（min） & 15 & & \\
c Critical Lane Group & & &
\end{tabular}






\section*{APPENDIX R-2: ALTERNATIVE D INTERSECTION CAPACITY} ANALYSES - HCM 2000 PRINTOUTS - PM PEAK HOUR

HCM Signalized Intersection Capacity Analysis
1. ネ. NH 102 \& Exit 4 SB Off

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & NBL2 & NBL & NBR & SEL & SER & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & 71 & & 「「゙ & & & \(7 \%\) & 个个 & & & 个4 & ＊ \\
\hline Traffic Volume（vph） & 1245 & 0 & 1005 & 0 & 0 & 1050 & 360 & 0 & 0 & 500 & 235 \\
\hline Future Volume（vph） & 1245 & 0 & 1005 & 0 & 0 & 1050 & 360 & 0 & 0 & 500 & 235 \\
\hline Ideal Flow（vphpl） & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time（s） & 6.0 & & 6.0 & & & 6.0 & 6.0 & & & 6.0 & 4.0 \\
\hline Lane Util．Factor & 0.97 & & 0.88 & & & 0.97 & 0.95 & & & 0.95 & 1.00 \\
\hline Fit & 1.00 & & 0.85 & & & 1.00 & 1.00 & & & 1.00 & 0.85 \\
\hline Fit Protected & 0.95 & & 1.00 & & & 0.95 & 1.00 & & & 1.00 & 1.00 \\
\hline Satd．Flow（prot） & 3242 & & 2632 & & & 3335 & 3438 & & & 3505 & 1568 \\
\hline Flt Permitted & 0.95 & & 1.00 & & & 0.95 & 1.00 & & & 1.00 & 1.00 \\
\hline Satd．Flow（perm） & 3242 & & 2632 & & & 3335 & 3438 & & & 3505 & 1568 \\
\hline Peak－hour factor，PHF & 0.88 & 0.88 & 0.88 & 0.92 & 0.92 & 0.94 & 0.94 & 0.94 & 0.92 & 0.92 & 0.92 \\
\hline Adj．Flow（vph） & 1415 & 0 & 1142 & 0 & 0 & 1117 & 383 & 0 & 0 & 543 & 255 \\
\hline RTOR Reduction（vph） & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Lane Group Flow（vph） & 1415 & 0 & 1142 & 0 & 0 & 1117 & 383 & 0 & 0 & 543 & 255 \\
\hline Heavy Vehicles（\％） & 8\％ & 8\％ & 8\％ & 2\％ & 2\％ & 5\％ & 5\％ & 5\％ & 3\％ & 3\％ & 3\％ \\
\hline Turn Type & Prot & & Prot & & & Prot & NA & & & NA & Free \\
\hline Protected Phases & 8 & & 8 & & & 5 & 2 & & & 6 & \\
\hline Permitted Phases & & & & & & & & & & & Free \\
\hline Actuated Green，G（s） & 55.0 & & 55.0 & & & 42.0 & 73.0 & & & 25.0 & 140.0 \\
\hline Effective Green，g（s） & 55.0 & & 55.0 & & & 42.0 & 73.0 & & & 25.0 & 140.0 \\
\hline Actuated g／C Ratio & 0.39 & & 0.39 & & & 0.30 & 0.52 & & & 0.18 & 1.00 \\
\hline Clearance Time（s） & 6.0 & & 6.0 & & & 6.0 & 6.0 & & & 6.0 & \\
\hline Vehicle Extension（s） & 3.0 & & 3.0 & & & 3.0 & 3.0 & & & 3.0 & \\
\hline Lane Grp Cap（vph） & 1273 & & 1034 & & & 1000 & 1792 & & & 625 & 1568 \\
\hline v／s Ratio Prot & c0．44 & & 0.43 & & & c0．33 & 0.11 & & & c0．15 & \\
\hline v／s Ratio Perm & & & & & & & & & & & 0.16 \\
\hline v／c Ratio & 1.11 & & 1.10 & & & 1.12 & 0.21 & & & 0.87 & 0.16 \\
\hline Uniform Delay，d1 & 42.5 & & 42.5 & & & 49.0 & 18.0 & & & 55.9 & 0.0 \\
\hline Progression Factor & 1.00 & & 1.00 & & & 0.44 & 0.21 & & & 1.00 & 1.00 \\
\hline Incremental Delay，d2 & 61.7 & & 61.2 & & & 60.1 & 0.1 & & & 15.2 & 0.2 \\
\hline Delay（s） & 104.2 & & 103.7 & & & 81.8 & 3.9 & & & 71.1 & 0.2 \\
\hline Level of Service & F & & F & & & F & A & & & E & A \\
\hline Approach Delay（s） & & 103.9 & & 0.0 & & & 61.9 & & & 48.4 & \\
\hline Approach LOS & & F & & A & & & E & & & D & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
\hline Intersection Summary & & \\
\hline HCM 2000 Control Delay & 81.8 & HCM 2000 Level of Service & F \\
HCM 2000 Volume to Capacity ratio & 1.06 & & 18.0 \\
\hline Actuated Cycle Length（s） & 140.0 & Sum of lost time（s） & F \\
Intersection Capacity Utilization & \(95.3 \%\) & ICU Level of Service & \\
Analysis Period（min） & 15 & & \\
c Critical Lane Group & & &
\end{tabular}

HCM Signalized Intersection Capacity Analysis
3
2: Exit 5 SB On/Exit 5 SB Off \& NH 28
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & 靳 & 7 & \({ }^{*}\) & 性 & & & & & \({ }^{17}\) & & F \\
\hline Traffic Volume (vph) & 0 & 650 & 460 & 165 & 580 & 0 & 0 & 0 & 0 & 185 & 0 & 390 \\
\hline Future Volume (vph) & 0 & 650 & 460 & 165 & 580 & 0 & 0 & 0 & 0 & 185 & 0 & 390 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time (s) & & 6.0 & 4.0 & 6.0 & 6.0 & & & & & 6.0 & & 6.0 \\
\hline Lane Util. Factor & & 0.95 & 1.00 & 1.00 & 0.95 & & & & & 0.97 & & 1.00 \\
\hline Fit & & 1.00 & 0.85 & 1.00 & 1.00 & & & & & 1.00 & & 0.85 \\
\hline Fil Protected & & 1.00 & 1.00 & 0.95 & 1.00 & & & & & 0.95 & & 1.00 \\
\hline Satd. Flow (prot) & & 3471 & 1553 & 1719 & 3438 & & & & & 3367 & & 1553 \\
\hline Flt Permitted & & 1.00 & 1.00 & 0.95 & 1.00 & & & & & 0.95 & & 1.00 \\
\hline Satd. Flow (perm) & & 3471 & 1553 & 1719 & 3438 & & & & & 3367 & & 1553 \\
\hline Peak-hour factor, PHF & 0.87 & 0.87 & 0.87 & 0.86 & 0.86 & 0.86 & 0.92 & 0.92 & 0.92 & 0.91 & 0.91 & 0.91 \\
\hline Adj. Flow (vph) & 0 & 747 & 529 & 192 & 674 & 0 & 0 & 0 & 0 & 203 & 0 & 429 \\
\hline RTOR Reduction (vph) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 179 \\
\hline Lane Group Flow (vph) & 0 & 747 & 529 & 192 & 674 & 0 & 0 & 0 & 0 & 203 & 0 & 250 \\
\hline Heavy Vehicles (\%) & 4\% & 4\% & 4\% & 5\% & 5\% & 5\% & 2\% & 2\% & 2\% & 4\% & 4\% & 4\% \\
\hline Turn Type & & NA & Free & Prot & NA & & & & & Prot & & Prot \\
\hline Protected Phases & & 2 & & 1 & 6 & & & & & 4 & &  \\
\hline Permitted Phases & & & Free & & & & & & & & & \\
\hline Actuated Green, G (s) & & 37.2 & 90.0 & 14.4 & 57.6 & & & & & 20.4 & & 20.4 \\
\hline Effective Green, g (s) & & 37.2 & 90.0 & 14.4 & 57.6 & & & & & 20.4 & & 20.4 \\
\hline Actuated g/C Ratio & & 0.41 & 1.00 & 0.16 & 0.64 & & & & & 0.23 & & 0.23 \\
\hline Clearance Time (s) & & 6.0 & & 6.0 & 6.0 & & & & & 6.0 & & 6.0 \\
\hline Vehicle Extension (s) & & 5.0 & & 3.0 & 5.0 & & & & & 3.0 & & 3.0 \\
\hline Lane Grp Cap (vph) & & 1434 & 1553 & 275 & 2200 & & & & & 763 & & 352 \\
\hline v/s Ratio Prot & & c0. 22 & & c0.11 & 0.20 & & & & & 0.06 & & c0.16 \\
\hline v/s Ratio Perm & & & 0.34 & & & & & & & & & \\
\hline v/c Ratio & & 0.52 & 0.34 & 0.70 & 0.31 & & & & & 0.27 & & 0.71 \\
\hline Uniform Delay, d1 & & 19.7 & 0.0 & 35.7 & 7.3 & & & & & 28.6 & & 32.1 \\
\hline Progression Factor & & 1.00 & 1.00 & 0.33 & 0.03 & & & & & 1.00 & & 1.00 \\
\hline Incremental Delay, d2 & & 1.4 & 0.6 & 6.1 & 0.2 & & & & & 0.2 & & 6.6 \\
\hline Delay (s) & & 21.1 & 0.6 & 18.0 & 0.4 & & & & & 28.8 & & 38.7 \\
\hline Level of Service & & C & A & B & A & & & & & C & & D \\
\hline Approach Delay (s) & & 12.6 & & & 4.3 & & & 0.0 & & & 35.5 & \\
\hline Approach LOS & & B & & & A & & & A & & & D & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
\hline Intersection Summary & & & \\
\hline HCM 2000 Control Delay & 15.2 & HCM 2000 Level of Service & B \\
HCM 2000 Volume to Capacity ratio & 0.61 & & \\
\hline Actuated Cycle Length (s) & 90.0 & Sum of lost time (s) & 18.0 \\
\hline Intersection Capacity Utilization & \(72.6 \%\) & ICU Level of Service & C \\
\hline Analysis Period (min) & 15 & & \\
c Critical Lane Group & & & \\
\hline
\end{tabular}

HCM Signalized Intersection Capacity Analysis
4 ：Exit 5 NB Off \＆NH 28
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & & \(\checkmark\) & \(\longleftarrow\) & 4 & 4 & 4 & \(p\) & & \(\downarrow\) & \(\downarrow\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \％ & 个个 & & & \(\uparrow \uparrow\) & 「 & \({ }^{7}\) & & 7 & & & \\
\hline Traffic Volume（vph） & 445 & 390 & 0 & 0 & 385 & 235 & 360 & 0 & 380 & 0 & 0 & 0 \\
\hline Future Volume（vph） & 445 & 390 & 0 & 0 & 385 & 235 & 360 & 0 & 380 & 0 & 0 & 0 \\
\hline Ideal Flow（vphpl） & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time（s） & 6.0 & 6.0 & & & 6.0 & 4.0 & 6.0 & & 6.0 & & & \\
\hline Lane Util．Factor & 1.00 & 0.95 & & & 0.95 & 1.00 & 1.00 & & 1.00 & & & \\
\hline Fit & 1.00 & 1.00 & & & 1.00 & 0.85 & 1.00 & & 0.85 & & & \\
\hline Flt Protected & 0.95 & 1.00 & & & 1.00 & 1.00 & 0.95 & & 1.00 & & & \\
\hline Satd．Flow（prot） & 1752 & 3505 & & & 3505 & 1568 & 1703 & & 1524 & & & \\
\hline Flt Permitted & 0.95 & 1.00 & & & 1.00 & 1.00 & 0.95 & & 1.00 & & & \\
\hline Satd．Flow（perm） & 1752 & 3505 & & & 3505 & 1568 & 1703 & & 1524 & & & \\
\hline Peak－hour factor，PHF & 0.92 & 0.92 & 0.92 & 0.91 & 0.91 & 0.91 & 0.67 & 0.67 & 0.67 & 0.92 & 0.92 & 0.92 \\
\hline Adj．Flow（vph） & 484 & 424 & 0 & 0 & 423 & 258 & 537 & 0 & 567 & 0 & 0 & 0 \\
\hline RTOR Reduction（vph） & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 269 & 0 & 0 & 0 \\
\hline Lane Group Flow（vph） & 484 & 424 & 0 & 0 & 423 & 258 & 537 & 0 & 298 & 0 & 0 & 0 \\
\hline Heavy Vehicles（\％） & 3\％ & 3\％ & 3\％ & 3\％ & 3\％ & 3\％ & 6\％ & 6\％ & 6\％ & 2\％ & 2\％ & 2\％ \\
\hline Turn Type & Prot & NA & & & NA & Free & Prot & & Prot & & & \\
\hline Protected Phases & 5 & 2 & & & 6 & & 8 & & 8 & & & \\
\hline Permitted Phases & & 2 & & & 6 & Free & & & & & & \\
\hline Actuated Green，G（s） & 25.0 & 48.6 & & & 17.6 & 90.0 & 29.4 & & 29.4 & & & \\
\hline Effective Green，g（s） & 25.0 & 48.6 & & & 17.6 & 90.0 & 29.4 & & 29.4 & & & \\
\hline Actuated g／C Ratio & 0.28 & 0.54 & & & 0.20 & 1.00 & 0.33 & & 0.33 & & & \\
\hline Clearance Time（s） & 6.0 & 6.0 & & & 6.0 & & 6.0 & & 6.0 & & & \\
\hline Vehicle Extension（s） & 5.0 & 5.0 & & & 5.0 & & 3.0 & & 3.0 & & & \\
\hline Lane Grp Cap（vph） & 486 & 1892 & & & 685 & 1568 & 556 & & 497 & & & \\
\hline v／s Ratio Prot & c0． 28 & 0.12 & & & c0．12 & & c0．32 & & 0.20 & & & \\
\hline v／s Ratio Perm & & & & & & 0.16 & & & & & & \\
\hline v／c Ratio & 1.00 & 0.22 & & & 0.62 & 0.16 & 0.97 & & 0.60 & & & \\
\hline Uniform Delay，d1 & 32.4 & 10.8 & & & 33.1 & 0.0 & 29.8 & & 25.4 & & & \\
\hline Progression Factor & 0.33 & 0.34 & & & 1.00 & 1.00 & 1.00 & & 1.00 & & & \\
\hline Incremental Delay，d2 & 36.8 & 0.3 & & & 4.1 & 0.2 & 29.4 & & 2.0 & & & \\
\hline Delay（s） & 47.5 & 3.9 & & & 37.3 & 0.2 & 59.2 & & 27.4 & & & \\
\hline Level of Service & D & A & & & D & A & E & & C & & & \\
\hline Approach Delay（s） & & 27.1 & & & 23.2 & & & 42.9 & & & 0.0 & \\
\hline Approach LOS & & C & & & C & & & D & & & A & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
\hline Intersection Summary & & & \\
\hline HCM 2000 Control Delay & 32.6 & HCM 2000 Level of Service & C \\
\hline HCM 2000 Volume to Capacity ratio & 0.89 & & \\
\hline Actuated Cycle Length（s） & 90.0 & Sum of lost time（s） & 18.0 \\
Intersection Capacity & Ctilization & \(72.6 \%\) & ICU Level of Service \\
\hline Analysis Period（min） & 15 & & \\
\hline C Critical Lane Group & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & & \(\uparrow\) & \({ }^{\text {F }}\) & & \(\uparrow\) & & 7 & 个 \({ }^{\text {a }}\) & & 7 & 龫 & \\
\hline Traffic Volume (vph) & 10 & 5 & 210 & 10 & 0 & 10 & 410 & 910 & 120 & 5 & 650 & 120 \\
\hline Future Volume (vph) & 10 & 5 & 210 & 10 & 0 & 10 & 410 & 910 & 120 & 5 & 650 & 120 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time (s) & & 6.0 & 6.0 & & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Lane Util. Factor & & 1.00 & 1.00 & & 1.00 & & 1.00 & 0.95 & & 1.00 & 0.95 & \\
\hline Frt & & 1.00 & 0.85 & & 0.93 & & 1.00 & 0.98 & & 1.00 & 0.98 & \\
\hline Flt Protected & & 0.97 & 1.00 & & 0.98 & & 0.95 & 1.00 & & 0.95 & 1.00 & \\
\hline Satd. Flow (prot) & & 1801 & 1583 & & 1729 & & 1770 & 3478 & & 1770 & 3457 & \\
\hline Flt Permitted & & 0.88 & 1.00 & & 0.83 & & 0.95 & 1.00 & & 0.95 & 1.00 & \\
\hline Satd. Flow (perm) & & 1636 & 1583 & & 1477 & & 1770 & 3478 & & 1770 & 3457 & \\
\hline Peak-hour factor, PHF & 0.92 & 0.92 & 0.92 & 0.25 & 0.25 & 0.25 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 \\
\hline Adj. Flow (vph) & 11 & 5 & 228 & 40 & 0 & 40 & 446 & 989 & 130 & 5 & 707 & 130 \\
\hline RTOR Reduction (vph) & 0 & 0 & 138 & 0 & 75 & 0 & 0 & 8 & 0 & 0 & 14 & 0 \\
\hline Lane Group Flow (vph) & 0 & 16 & 90 & 0 & 5 & 0 & 446 & 1111 & 0 & 5 & 823 & 0 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 0\% & 0\% & 0\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% \\
\hline Turn Type & Perm & NA & custom & Perm & NA & & Prot & NA & & Prot & NA & \\
\hline Protected Phases & & 8 & & & 4 & & 5 & 2 & & 1 & 6 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Permitted Phases & 8 & 6 & 4 & & & & \\
\hline Actuated Green, G (s) & 4.9 & 30.5 & 4.9 & 23.6 & 53.2 & 0.9 & 30.5 \\
\hline Effective Green, g (s) & 4.9 & 30.5 & 4.9 & 23.6 & 53.2 & 0.9 & 30.5 \\
\hline Actuated g/C Ratio & 0.06 & 0.40 & 0.06 & 0.31 & 0.69 & 0.01 & 0.40 \\
\hline Clearance Time (s) & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
\hline Lane Grp Cap (vph) & 104 & 627 & 93 & 542 & 2402 & 20 & 1369 \\
\hline v/s Ratio Prot & & & & c0.25 & 0.32 & 0.00 & c0.24 \\
\hline v/s Ratio Perm & c0.01 & 0.06 & 0.00 & & & & \\
\hline \(\mathrm{v} / \mathrm{c}\) Ratio & 0.15 & 0.14 & 0.05 & 0.82 & 0.46 & 0.25 & 0.60 \\
\hline Uniform Delay, d1 & 34.1 & 14.9 & 33.9 & 24.8 & 5.4 & 37.7 & 18.4 \\
\hline Progression Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Incremental Delay, d2 & 0.7 & 0.1 & 0.2 & 9.8 & 0.1 & 6.5 & 0.7 \\
\hline Delay (s) & 34.8 & 15.0 & 34.1 & 34.5 & 5.5 & 44.2 & 19.2 \\
\hline Level of Service & C & B & C & C & A & D & B \\
\hline Approach Delay (s) & 16.3 & & 34.1 & & 13.8 & & 19.3 \\
\hline Approach LOS & B & & C & & B & & B \\
\hline
\end{tabular}
\begin{tabular}{lrlrl}
\hline Intersection Summary & & \\
\hline HCM 2000 Control Delay & 16.3 & HCM 2000 Level of Service & B \\
\hline HCM 2000 Volume to Capacity ratio & 0.65 & & 18.0 \\
\hline Actuated Cycle Length (s) & 77.0 & Sum of lost time (s) & C \\
Intersection Capacity Utilization & \(71.1 \%\) & ICU Level of Service & \\
\hline Analysis Period (min) & 15 & & \\
C Critical Lane Group & & & \\
\hline
\end{tabular}

HCM Signalized Intersection Capacity Analysis
6 10: NH 102 \& Fordway/Madden Hill Road
12/28/2017
\begin{tabular}{lrrrrrrrrrrrr}
\hline Movement & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & & \(\$\) & & & \(\uparrow\) & & & \(\widehat{A}\) & & & \(\uparrow\) & \\
Traffic Volume (vph) & 20 & 30 & 5 & 260 & 0 & 40 & 0 & 790 & 130 & 15 & 420 & 0 \\
Future Volume (vph) & 20 & 30 & 5 & 260 & 0 & 40 & 0 & 790 & 130 & 15 & 420 & 0
\end{tabular}
\begin{tabular}{lrrrrrrrrrrrr} 
Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{\multirow[b]{2}{*}{1.00}} & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{\[
\begin{array}{r}
6.0 \\
1.00
\end{array}
\]}} & \multicolumn{3}{|l|}{} & \multicolumn{3}{|l|}{} \\
\hline Lane Util. Factor & & & & & & & \multicolumn{3}{|c|}{1.00} & \multicolumn{3}{|c|}{1.00} \\
\hline Fit & \multicolumn{3}{|c|}{0.99} & \multicolumn{3}{|c|}{0.98} & \multicolumn{3}{|c|}{0.98} & \multicolumn{3}{|c|}{1.00} \\
\hline Flt Protected & \multicolumn{3}{|c|}{0.98} & \multicolumn{3}{|c|}{0.96} & \multicolumn{3}{|c|}{1.00} & \multicolumn{3}{|c|}{1.00} \\
\hline Satd. Flow (prot) & \multicolumn{3}{|c|}{1808} & \multicolumn{3}{|c|}{1736} & \multicolumn{3}{|c|}{1726} & \multicolumn{3}{|c|}{1806} \\
\hline Flt Permitted & \multicolumn{3}{|c|}{0.87} & \multicolumn{3}{|c|}{0.74} & \multicolumn{3}{|c|}{1.00} & \multicolumn{3}{|c|}{0.80} \\
\hline Satd. Flow (perm) & \multicolumn{3}{|c|}{1610} & \multicolumn{3}{|c|}{1338} & \multicolumn{3}{|c|}{1726} & \multicolumn{3}{|c|}{1455} \\
\hline Peak-hour factor, PHF & 0.60 & 0.60 & 0.60 & 0.96 & 0.96 & 0.96 & 0.89 & 0.89 & 0.89 & 0.86 & 0.86 & 0.86 \\
\hline Adj. Flow (vph) & 33 & 50 & 8 & 271 & 0 & 42 & 0 & 888 & 146 & 17 & 488 & 0 \\
\hline RTOR Reduction (vph) & 0 & 4 & 0 & 0 & 28 & 0 & 0 & 7 & 0 & 0 & 0 & 0 \\
\hline Lane Group Flow (vph) & 0 & 87 & 0 & 0 & 285 & 0 & 0 & 1027 & 0 & 0 & 505 & 0 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 3\% & 3\% & 3\% & 8\% & 8\% & 8\% & 5\% & 5\% & 5\% \\
\hline Turn Type & Perm & NA & & Perm & NA & & & NA & & Perm & NA & \\
\hline Protected Phases & & 4 & & & 4 & & & 2 & & & & \\
\hline
\end{tabular}

\begin{tabular}{lrlr}
\hline Intersection Summary & & & \\
\hline HCM 2000 Control Delay & 30.2 & HCM 2000 Level of Service & C \\
HCM 2000 Volume to Capacity ratio & 0.94 & & \\
\hline Actuated Cycle Length (s) & 87.9 & Sum of lost time (s) & 12.0 \\
Intersection Capacity Utilization & \(86.3 \%\) & ICU Level of Service & E \\
\hline Analysis Period (min) & 15 & & \\
c Critical Lane Group & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\cdots\) & \(\uparrow\) & \(\stackrel{1}{1}\) & \(b\) & \(\downarrow\) & \(\downarrow\) & \(\stackrel{4}{ }\) & \(\varnothing\) & \(\bigcirc\) & \(\frac{1}{7}\) & \(\checkmark\) & 4 \\
\hline Movement & NBL & NBT & NBR & SBL & SBT & SBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & \% & F & & \% & \(\uparrow\) & \(\overline{7}\) & \({ }^{7}\) & \(\dagger\) & & \% & F & \\
\hline Traffic Volume (vph) & 70 & 320 & 30 & 110 & 370 & 40 & 100 & 450 & 40 & 50 & 340 & 80 \\
\hline Future Volume (vph) & 70 & 320 & 30 & 110 & 370 & 40 & 100 & 450 & 40 & 50 & 340 & 80 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time (s) & 6.0 & 6.0 & & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Lane Util. Factor & 1.00 & 1.00 & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & & 1.00 & 1.00 & \\
\hline Fit & 1.00 & 0.99 & & 1.00 & 1.00 & 0.85 & 1.00 & 0.99 & & 1.00 & 0.97 & \\
\hline Fit Protected & 0.95 & 1.00 & & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & & 0.95 & 1.00 & \\
\hline Satd. Flow (prot) & 1752 & 1821 & & 1752 & 1845 & 1568 & 1787 & 1858 & & 1787 & 1828 & \\
\hline FIt Permitted & 0.95 & 1.00 & & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & & 0.95 & 1.00 & \\
\hline Satd. Flow (perm) & 1752 & 1821 & & 1752 & 1845 & 1568 & 1787 & 1858 & & 1787 & 1828 & \\
\hline Peak-hour factor, PHF & 0.91 & 0.91 & 0.91 & 0.93 & 0.93 & 0.93 & 0.95 & 0.95 & 0.95 & 0.94 & 0.94 & 0.94 \\
\hline Adj. Flow (vph) & 77 & 352 & 33 & 118 & 398 & 43 & 105 & 474 & 42 & 53 & 362 & 85 \\
\hline RTOR Reduction (vph) & 0 & 4 & 0 & 0 & 0 & 29 & 0 & 3 & 0 & 0 & 9 & 0 \\
\hline Lane Group Flow (vph) & 77 & 381 & 0 & 118 & 398 & 14 & 105 & 513 & 0 & 53 & 438 & 0 \\
\hline Heary Vehicles (\%) & 3\% & 3\% & 3\% & 3\% & 3\% & 3\% & 1\% & 1\% & 1\% & 1\% & 1\% & 1\% \\
\hline Turn Type & Prot & NA & & Prot & NA & pm+ov & Prot & NA & & Prot & NA & \\
\hline Protected Phases & 3 & 8 & & 7 & 4 & 5 & 5 & 2 & & 1 & 6 & \\
\hline Permitted Phases & & & & & & 4 & & & & & & \\
\hline Actuated Green, G (s) & 7.1 & 18.4 & & 7.9 & 19.2 & 26.4 & 7.2 & 29.5 & & 2.8 & 25.1 & \\
\hline Effective Green, g (s) & 7.1 & 18.4 & & 7.9 & 19.2 & 26.4 & 7.2 & 29.5 & & 2.8 & 25.1 & \\
\hline Actuated g/C Ratio & 0.09 & 0.22 & & 0.10 & 0.23 & 0.32 & 0.09 & 0.36 & & 0.03 & 0.30 & \\
\hline Clearance Time (s) & 6.0 & 6.0 & & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Lane Grp Cap (vph) & 150 & 405 & & 167 & 428 & 615 & 155 & 663 & & 60 & 555 & \\
\hline \(\mathrm{v} / \mathrm{s}\) Ratio Prot & 0.04 & 0.21 & & c0.07 & c0.22 & 0.00 & c0.06 & c0.28 & & 0.03 & 0.24 & \\
\hline \(\mathrm{v} / \mathrm{s}\) Ratio Perm & & & & & & 0.01 & & & & & & \\
\hline v/c Ratio & 0.51 & 0.94 & & 0.71 & 0.93 & 0.02 & 0.68 & 0.77 & & 0.88 & 0.79 & \\
\hline Uniform Delay, d1 & 36.1 & 31.6 & & 36.2 & 31.0 & 19.3 & 36.6 & 23.6 & & 39.7 & 26.3 & \\
\hline Progression Factor & 1.00 & 1.00 & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & & 1.00 & 1.00 & \\
\hline Incremental Delay, d2 & 2.9 & 30.1 & & 12.8 & 26.5 & 0.0 & 11.1 & 8.6 & & 75.4 & 7.3 & \\
\hline Delay (s) & 39.0 & 61.6 & & 49.0 & 57.5 & 19.3 & 47.7 & 32.1 & & 115.1 & 33.7 & \\
\hline Level of Service & D & E & & D & E & B & D & C & & F & C & \\
\hline Approach Delay (s) & & 57.9 & & & 52.8 & & & 34.8 & & & 42.3 & \\
\hline Approach LOS & & E & & & D & & & C & & & D & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
\hline Intersection Summary & & & \\
\hline HCM 2000 Control Delay & 46.2 & HCM 2000 Level of Service & D \\
HCM 2000 Volume to Capacity ratio & 0.86 & Sum of lost time (s) & 24.0 \\
Actuated Cocle Length (s) & 8.6 & E \\
Intersection Capacity Utilization & \(89.4 \%\) & ICU Level of Service & \\
Analysis Period (min) & 15 & &
\end{tabular}
c Critical Lane Group
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 8: N.High St/N. & St \& & St & Ext & & & & Lanes, Volumes, Timings \\
\hline & 4 & & 4 & \(\uparrow\) & \(\frac{1}{7}\) & 4 & \\
\hline Lane Group & EBL & EBR & NBL & NBT & SBT & SBR & \\
\hline Lane Configurations & * & \% & & \(\uparrow\) & 4 & 「 & \\
\hline Traffic Volume (vph) & 790 & 10 & 5 & 160 & 100 & 350 & \\
\hline Future Volume (vph) & 790 & 10 & 5 & 160 & 100 & 350 & \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & \\
\hline Storage Length (ft) & 0 & 120 & 0 & & & 220 & \\
\hline Storage Lanes & 1 & 1 & 0 & & & 1 & \\
\hline Taper Length (ft) & 25 & & 25 & & & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & \\
\hline Fit & & 0.850 & & & & 0.850 & \\
\hline Flt Protected & 0.950 & & & 0.998 & & & \\
\hline Satd. Flow (prot) & 1787 & 1599 & 0 & 1859 & 1881 & 1599 & \\
\hline Flt Permitted & 0.950 & & & 0.998 & & & \\
\hline Satd. Flow (perm) & 1787 & 1599 & 0 & 1859 & 1881 & 1599 & \\
\hline Link Speed (mph) & 30 & & & 30 & 30 & & \\
\hline Link Distance (ft) & 322 & & & 309 & 354 & & \\
\hline Travel Time (s) & 7.3 & & & 7.0 & 8.0 & & \\
\hline Peak Hour Factor & 0.90 & 0.90 & 0.87 & 0.87 & 0.87 & 0.87 & \\
\hline Heavy Vehicles (\%) & 1\% & 1\% & 2\% & 2\% & 1\% & 1\% & \\
\hline Adj. Flow (vph) & 878 & 11 & 6 & 184 & 115 & 402 & \\
\hline Shared Lane Traffic (\%) & & & & & & & \\
\hline Lane Group Flow (vph) & 878 & 11 & 0 & 190 & 115 & 402 & \\
\hline Sign Control & Stop & & & Stop & Stop & & \\
\hline
\end{tabular}

Intersection Summary
Area Type: Other
Control Type: Unsignalized
Intersection Capacity Utilization 65.6\%
ICU Level of Service C
Analysis Period (min) 15

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Movement & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & \({ }^{7}\) & 7 & & \(\uparrow\) & 4 & 「 \\
\hline Traffic Vol, veh/h & 790 & 10 & 5 & 160 & 100 & 350 \\
\hline Future Vol, veh/h & 790 & 10 & 5 & 160 & 100 & 350 \\
\hline Peak Hour Factor & 0.90 & 0.90 & 0.87 & 0.87 & 0.87 & 0.87 \\
\hline Heavy Vehicles, \% & 1 & 1 & 2 & 2 & 1 & 1 \\
\hline Mumt Flow & 878 & 11 & 6 & 184 & 115 & 402 \\
\hline Number of Lanes & 1 & 1 & 0 & 1 & 1 & 1 \\
\hline Approach & EB & & NB & & SB & \\
\hline Opposing Approach & & & SB & & NB & \\
\hline Opposing Lanes & 0 & & 2 & & 1 & \\
\hline Conflicting Approach Left & SB & & EB & & & \\
\hline Conflicting Lanes Left & 2 & & 2 & & 0 & \\
\hline Conflicting Approach Right & NB & & & & EB & \\
\hline Conflicting Lanes Right & 1 & & 0 & & 2 & \\
\hline HCM Control Delay & 351.4 & & 17.2 & & 23.2 & \\
\hline HCM LOS & F & & C & & C & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrr} 
Lane & NBLn1 & EBLn1 & EBLn2 & SBLn1 & SBLn2 \\
\hline Vol Left, \% & \(3 \%\) & \(100 \%\) & \(0 \%\) & \(0 \%\) & \(0 \%\) \\
\hline Vol Thru, \% & \(97 \%\) & \(0 \%\) & \(0 \%\) & \(100 \%\) & \(0 \%\) \\
Vol Right, \% & \(0 \%\) & \(0 \%\) & \(100 \%\) & \(0 \%\) & \(100 \%\) \\
Sign Control & Stop & Stop & Stop & Stop & Stop \\
Traffic Vol by Lane & 165 & 790 & 10 & 100 & 350 \\
\hline LT Vol & 5 & 790 & 0 & 0 & 0 \\
Through Vol & 160 & 0 & 0 & 100 & 0 \\
RT Vol & 0 & 0 & 10 & 0 & 350 \\
Lane Flow Rate & 190 & 878 & 11 & 115 & 402 \\
Geometry Grp & 4 & 7 & 7 & 7 & 7 \\
Degre of Util (X) & 0.372 & 1.733 & 0.018 & 0.217 & 0.683 \\
Departure Headway (Hd) & 8.951 & 7.109 & 5.891 & 8.584 & 7.859 \\
Convergence, Y/N & Yes & Yes & Yes & Yes & Yes \\
Cap & 406 & 518 & 611 & 421 & 463 \\
Service Time & 6.951 & 4.809 & 3.591 & 6.284 & 5.559 \\
HCM Lane VIC Ratio & 0.468 & 1.695 & 0.018 & 0.273 & 0.868 \\
HCM Control Delay & 17.2 & 355.7 & 8.7 & 13.6 & 25.9 \\
\hline HCM Lane LOS & \(C\) & \(F\) & A & B & \(D\) \\
HCM 95th-tile Q & 1.7 & 52.6 & 0.1 & 0.8 & 5.1 \\
& & & & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \% & & 4 & 4 & \(\downarrow\) & 4 \\
\hline Lane Group & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & \% & & & \(\uparrow\) & \(\uparrow\) & \\
\hline Traffic Volume (vph) & 10 & 0 & 0 & 950 & 450 & 10 \\
\hline Future Volume (vph) & 10 & 0 & 0 & 950 & 450 & 10 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & & & & 0.997 & \\
\hline Flt Protected & 0.950 & & & & & \\
\hline Satd. Flow (prot) & 1703 & 0 & 0 & 1881 & 1876 & 0 \\
\hline Flt Permitted & 0.950 & & & & & \\
\hline Satd. Flow (perm) & 1703 & 0 & 0 & 1881 & 1876 & 0 \\
\hline Link Speed (mph) & 30 & & & 30 & 30 & \\
\hline Link Distance (ft) & 160 & & & 224 & 319 & \\
\hline Travel Time (s) & 3.6 & & & 5.1 & 7.3 & \\
\hline Peak Hour Factor & 0.50 & 0.50 & 0.93 & 0.93 & 0.86 & 0.86 \\
\hline Heavy Vehicles (\%) & 6\% & 6\% & 1\% & 1\% & 1\% & 1\% \\
\hline Adj. Flow (vph) & 20 & 0 & 0 & 1022 & 523 & 12 \\
\hline Shared Lane Traffic (\%) & & & & & & \\
\hline Lane Group Flow (vph) & 20 & 0 & 0 & 1022 & 535 & 0 \\
\hline Sign Control & Stop & & & Free & Free & \\
\hline \multicolumn{7}{|l|}{Intersection Summary} \\
\hline \multicolumn{7}{|l|}{Area Type: Other} \\
\hline \multicolumn{7}{|l|}{Control Type: Unsignalized} \\
\hline \multicolumn{7}{|l|}{Intersection Capacity Utilization 66.4\% ICU Level of Service C} \\
\hline \multicolumn{7}{|l|}{Analysis Period (min) 15} \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 0.5 & & & & & \\
\hline Movement & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & 1 & & & - & F & \\
Traffic Vol, veh/h & 10 & 0 & 0 & 950 & 450 & 10 \\
Future Vol, veh/h & 10 & 0 & 0 & 950 & 450 & 10 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & - & - & - & - \\
Veh in Median Storage, \# & 0 & - & - & 0 & 0 & - \\
Grade, \% & 0 & - & - & 0 & 0 & - \\
Peak Hour Factor & 50 & 50 & 93 & 93 & 86 & 86 \\
Heavy Vehicles, \% & 6 & 6 & 1 & 1 & 1 & 1 \\
Mvmt Flow & 20 & 0 & 0 & 1022 & 523 & 12
\end{tabular}
Major/Minor Minor2 Major1 Major2
\begin{tabular}{lllllll} 
Conflicting Flow All & 1551 & 529 & 535 & 0 & - & 0
\end{tabular}
Stage 1 - 529 - . .

\begin{tabular}{lrrrrrl} 
Follow-up Hdwy & 3.554 & 3.354 & 2.209 & \(\cdot\) & \(\cdot\) & - \\
Pot Cap-1 Maneuver & 122 & 542 & 1038 & \(\cdot\) & - & - \\
Stage 1 & 583 & - & - & - & - & -
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Stage 2 & 341 & - & - & - & & \\
\hline Platoon blocked, \% & & & & - & - & \\
\hline Mov Cap-1 Maneuver & 122 & 542 & 1038 & - & - & \\
\hline Mov Cap-2 Maneuver & 122 & . & . & - & - & \\
\hline Stage 1 & 583 & - & & - & & \\
\hline Stage 2 & 341 & - & - & - & - & \\
\hline
\end{tabular}
\begin{tabular}{lrrr}
\hline Approach & EB & NB & SB \\
\hline HCM Control Delay, s & 40,2 & 0 & 0 \\
HCM LOS & E & &
\end{tabular}
\begin{tabular}{lrrrrl}
\hline Minor Lane/Major Mvmt & NBL & NBT EBLn1 & SBT & SBR \\
\hline Capacity (veh/h) & 1038 & -122 & - & - \\
HCM Lane V/C Ratio & - & -0.164 & - & - \\
HCM Control Delay (s) & 0 & -40.2 & - & - \\
HCM Lane LOS & A & - & E & - & - \\
HCM 95th \%tile Q(veh) & 0 & - & 0.6 & - & -
\end{tabular}

10: Franklin St/Franklin St Ext \& N High St/Folsom Rd

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & SEL & SET & SER & NWL & NWT & NWR \\
\hline Lane Configurations & & \(\dagger\) & & & 4 & & & * & & & ¢ & \\
\hline Traffic Volume (vph) & 50 & 900 & 10 & 20 & 260 & 10 & 50 & 20 & 170 & 30 & 10 & 10 \\
\hline Future Volume (vph) & 50 & 900 & 10 & 20 & 260 & 10 & 50 & 20 & 170 & 30 & 10 & 10 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 150 & & 150 & 150 & & 150 & 0 & & 0 & 150 & & 150 \\
\hline Storage Lanes & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 \\
\hline Taper Length (ft) & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Frt & & 0.999 & & & 0.995 & & & 0.904 & & & 0.973 & \\
\hline Flt Protected & & 0.997 & & & 0.997 & & & 0.990 & & & 0.971 & \\
\hline Satd. Flow (prot) & 0 & 1874 & 0 & 0 & 1848 & 0 & 0 & 1700 & 0 & 0 & 1795 & 0 \\
\hline Flt Permitted & & 0.997 & & & 0.997 & & & 0.990 & & & 0.971 & \\
\hline Satd. Flow (perm) & 0 & 1874 & 0 & 0 & 1848 & 0 & 0 & 1700 & 0 & 0 & 1795 & 0 \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance (ft) & & 327 & & & 240 & & & 246 & & & 251 & \\
\hline Travel Time (s) & & 7.4 & & & 5.5 & & & 5.6 & & & 5.7 & \\
\hline Peak Hour Factor & 0.94 & 0.94 & 0.94 & 0.88 & 0.88 & 0.88 & 0.67 & 0.67 & 0.67 & 0.82 & 0.82 & 0.82 \\
\hline Heavy Vehicles (\%) & 1\% & 1\% & 1\% & 2\% & 2\% & 2\% & 0\% & 0\% & 0\% & 0\% & 0\% & 0\% \\
\hline Adj. Flow (vph) & 53 & 957 & 11 & 23 & 295 & 11 & 75 & 30 & 254 & 37 & 12 & 12 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 1021 & 0 & 0 & 329 & 0 & 0 & 359 & 0 & 0 & 61 & 0 \\
\hline Sign Control & & Free & & & Free & & & Stop & & & Stop & \\
\hline
\end{tabular}

Intersection Summary
Area Type: Other

Control Type: Unsignalized
Intersection Capacity Utilization 84.6\%
ICU Level of Service E
Analysis Period (min) 15
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Intersection} \\
\hline Int Delay, s/veh & 37.8 & & & & & & & & & & & \\
\hline Movement EBL & EBL & EBT & EBR & WBL & WBT & WBR & SEL & SET & SER & NWL & NWT & NWR \\
\hline \multicolumn{2}{|l|}{Lane Configurations} & ¢ & & & ¢ & & & \(\dagger\) & & & \$ & \\
\hline Traffic Vol, veh/h & 50 & 900 & 10 & 20 & 260 & 10 & 50 & 20 & 170 & 30 & 10 & 10 \\
\hline Future Vol, veh/h & 50 & 900 & 10 & 20 & 260 & 10 & 50 & 20 & 170 & 30 & 10 & 10 \\
\hline Conflicting Peds, \#hr & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control Fro & Free & Free & Free & Free & Free & Free & Stop & Stop & Stop & Stop & Stop & Stop \\
\hline RT Channelized & - & - & None & - & - & None & . & & Yield & - & & None \\
\hline Storage Length & - & - & - & - & - & - & - & - & . & - & - & . \\
\hline Veh in Median Storage, \# & \# & 0 & - & - & 0 & . & - & 0 & - & - & 0 & - \\
\hline Grade, \% & - & 0 & - & - & 0 & - & \(\cdot\) & 0 & - & - & 0 & - \\
\hline Peak Hour Factor & 94 & 94 & 94 & 88 & 88 & 88 & 67 & 67 & 67 & 82 & 82 & 82 \\
\hline Heavy Vehicles, \% & 1 & , & , & 2 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & , \\
\hline Mumt Flow & 53 & 957 & 11 & 23 & 295 & 11 & 75 & 30 & 254 & 37 & 12 & 12 \\
\hline
\end{tabular}

\begin{tabular}{lrrrrrrr}
\hline Minor Lane/Major Mvmt & NWLn1 & EBL & EBT & EBR & WBL & WBT & WBR SELn1 \\
\hline Capacity (veh/h) & 76 & 1260 & - & -712 & - & -295 \\
HCM Lane V/C Ratio & 0.802 & 0.042 & - & -0.032 & - & -1.214 \\
HCM Control Delay (s) & 146 & 8 & 0 & -10.2 & 0 & -160.2 \\
HCM Lane LOS & F & A & A & - & B & A & - \\
HCM 95th \%tile Q(veh) & 3.9 & 0.1 & - & - & 0.1 & - & -16.2
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & NBL & NBT & NBR & SBL & SBT & SBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & \% & \(\uparrow \uparrow\) & 7 & \% \({ }^{*}\) & 4 \(\uparrow\) & & \(7{ }^{7}\) & \(\uparrow\) & 「 & \% & \(\uparrow\) & \(7 \times\) \\
\hline Traffic Volume (vph) & 70 & 340 & 190 & 650 & 530 & 0 & 300 & 480 & 110 & 30 & 250 & 930 \\
\hline Future Volume (vph) & 70 & 340 & 190 & 650 & 530 & 0 & 300 & 480 & 110 & 30 & 250 & 930 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time (s) & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & & 6.0 & 6.0 & 4.0 & 6.0 & 6.0 & 6.0 \\
\hline Lane Util. Factor & 1.00 & 0.95 & 1.00 & 0.97 & 0.95 & & 0.97 & 1.00 & 1.00 & 1.00 & 1.00 & 0.88 \\
\hline Fit & 1.00 & 1.00 & 0.85 & 1.00 & 1.00 & & 1.00 & 1.00 & 0.85 & 1.00 & 1.00 & 0.85 \\
\hline Flt Protected & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & 1.00 \\
\hline Satd. Flow (prot) & 1770 & 3539 & 1583 & 3433 & 3539 & & 3433 & 1863 & 1583 & 1787 & 1881 & 2814 \\
\hline Flt Permitted & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & 1.00 \\
\hline Satd. Flow (perm) & 1770 & 3539 & 1583 & 3433 & 3539 & & 3433 & 1863 & 1583 & 1787 & 1881 & 2814 \\
\hline Peak-hour factor, PHF & 0.92 & 0.92 & 0.92 & 0.94 & 0.94 & 0.94 & 0.96 & 0.96 & 0.96 & 0.95 & 0.95 & 0.95 \\
\hline Adj. Flow (vph) & 76 & 370 & 207 & 691 & 564 & 0 & 312 & 500 & 115 & 32 & 263 & 979 \\
\hline RTOR Reduction (vph) & 0 & 0 & 151 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 57 \\
\hline Lane Group Flow (vph) & 76 & 370 & 56 & 691 & 564 & 0 & 313 & 500 & 115 & 32 & 263 & 922 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 1\% & 1\% & 1\% \\
\hline Turn Type & Prot & NA & pm+ov & Prot & NA & & Prot & NA & Free & Prot & NA & ptoov \\
\hline Protected Phases & 1 & . & 7 & 5 & 2 & & 3 & & & 7 & , & 45 \\
\hline Permitted Phases & & 6 & 6 & & 2 & & & 8 & Free & & 4 & \\
\hline Actuated Green, G (s) & 11.0 & 16.7 & 25.4 & 29.3 & 35.0 & & 16.0 & 41.3 & 120.0 & 8.7 & 34.0 & 69.3 \\
\hline Effective Green, \(\mathrm{g}(\mathrm{s}\) ) & 11.0 & 16.7 & 25.4 & 29.3 & 35.0 & & 16.0 & 41.3 & 120.0 & 8.7 & 34.0 & 69.3 \\
\hline Actuated g/C Ratio & 0.09 & 0.14 & 0.21 & 0.24 & 0.29 & & 0.13 & 0.34 & 1.00 & 0.07 & 0.28 & 0.58 \\
\hline Clearance Time (s) & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Lane Grp Cap (vph) & 162 & 492 & 414 & 838 & 1032 & & 457 & 641 & 1583 & 129 & 532 & 1625 \\
\hline \(\mathrm{V} / \mathrm{s}\) Ratio Prot & 0.04 & c0.10 & 0.01 & c0.20 & 0.16 & & c0.09 & c0.27 & & 0.02 & 0.14 & 0.33 \\
\hline \(\mathrm{v} / \mathrm{s}\) Ratio Perm & & & 0.03 & & & & & & 0.07 & & & \\
\hline \(v / \mathrm{C}\) Ratio & 0.47 & 0.75 & 0.14 & 0.82 & 0.55 & & 0.68 & 0.78 & 0.07 & 0.25 & 0.49 & 0.57 \\
\hline Uniform Delay, d1 & 51.7 & 49.7 & 38.4 & 42.9 & 35.8 & & 49.6 & 35.3 & 0.0 & 52.6 & 35.8 & 15.9 \\
\hline Progression Factor & 1.00 & 1.00 & 1.00 & 1.13 & 0.76 & & 1.00 & 1.00 & 1.00 & 1.47 & 0.67 & 0.62 \\
\hline Incremental Delay, d2 & 2.1 & 10.2 & 0.2 & 5.9 & 1.8 & & 4.2 & 6.1 & 0.1 & 0.8 & 0.6 & 0.4 \\
\hline Delay (s) & 53.9 & 59.8 & 38.5 & 54.5 & 28.9 & & 53.8 & 41.4 & 0.1 & 78.0 & 24.7 & 10.3 \\
\hline Level of Service & D & E & D & D & C & & D & D & A & E & C & B \\
\hline Approach Delay (s) & & 52.4 & & & 43.0 & & & 40.5 & & & 14.9 & \\
\hline Approach LOS & & D & & & D & & & D & & & B & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
\hline Intersection Summary & & & \\
\hline HCM 2000 Control Delay & 35.2 & HCM 2000 Level of Service & D \\
HCM 2000 Volume to Capacity ratio & 0.80 & & \\
Actuated Cycle Length (s) & 120.0 & Sum of lost time (s) & 24.0 \\
Intersection Capacity Utilization & \(79.9 \%\) & ICU Level of Service & D \\
Analysis Period (min) & 15 & & \\
C Critical Lane Group & & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(m\) & 1 & 7 & T & 5 & \(\checkmark\) & \\
\hline Movement & NWL & NWR & NET & NER & SWL & SWT & \\
\hline Lane Configurations & \({ }^{7}\) & 「 & 44 & \% & \({ }^{*}\) & 性 & \\
\hline Traffic Volume (vph) & 310 & 110 & 800 & 530 & 90 & 920 & \\
\hline Future Volume (vph) & 310 & 110 & 800 & 530 & 90 & 920 & \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & \\
\hline Total Lost time (s) & 6.0 & 6.0 & 6.0 & 4.0 & 6.0 & 6.0 & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 0.95 & 1.00 & 1.00 & 0.95 & \\
\hline Fit & 1.00 & 0.85 & 1.00 & 0.85 & 1.00 & 1.00 & \\
\hline Fit Protected & 0.95 & 1.00 & 1.00 & 1.00 & 0.95 & 1.00 & \\
\hline Satd. Flow (prot) & 1787 & 1599 & 3574 & 1599 & 1787 & 3574 & \\
\hline Flt Permitted & 0.95 & 1.00 & 1.00 & 1.00 & 0.16 & 1.00 & \\
\hline Satd. Flow (perm) & 1787 & 1599 & 3574 & 1599 & 295 & 3574 & \\
\hline Peak-hour factor, PHF & 0.86 & 0.86 & 0.96 & 0.96 & 0.85 & 0.85 & \\
\hline Adj. Flow (vph) & 360 & 128 & 833 & 552 & 106 & 1082 & \\
\hline RTOR Reduction (vph) & 0 & 20 & 0 & 0 & 0 & 0 & \\
\hline Lane Group Flow (vph) & 360 & 108 & 833 & 552 & 106 & 1082 & \\
\hline Heavy Vehicles (\%) & 1\% & 1\% & 1\% & 1\% & 1\% & 1\% & \\
\hline Turn Type & Prot & pm+ov & NA & Free & pm+pt & NA & \\
\hline Protected Phases & 1256 & 7 & 8 & & 7 & 34 & \\
\hline Permitted Phases & & 1256 & & Free & 34 & & \\
\hline Actuated Green, G (s) & 52.0 & 60.7 & 41.3 & 120.0 & 56.0 & 56.0 & \\
\hline Effective Green, g (s) & 52.0 & 60.7 & 41.3 & 120.0 & 56.0 & 56.0 & \\
\hline Actuated g/C Ratio & 0.43 & 0.51 & 0.34 & 1.00 & 0.47 & 0.47 & \\
\hline Clearance Time (s) & & 6.0 & 6.0 & & 6.0 & & \\
\hline Vehicle Extension (s) & & 3.0 & 3.0 & & 3.0 & & \\
\hline Lane Grp Cap (vph) & 774 & 888 & 1230 & 1599 & 245 & 1667 & \\
\hline v/s Ratio Prot & c0. 20 & 0.01 & c0.23 & & 0.03 & c0.30 & \\
\hline v/s Ratio Perm & & 0.06 & & 0.35 & 0.17 & & \\
\hline v/c Ratio & 0.47 & 0.12 & 0.68 & 0.35 & 0.43 & 0.65 & \\
\hline Uniform Delay, d1 & 24.1 & 15.6 & 33.7 & 0.0 & 21.4 & 24.5 & \\
\hline Progression Factor & 1.00 & 1.00 & 1.15 & 1.00 & 1.00 & 1.00 & \\
\hline Incremental Delay, d2 & 0.4 & 0.1 & 1.0 & 0.4 & 1.2 & 0.9 & \\
\hline Delay (s) & 24.6 & 15.7 & 39.8 & 0.4 & 22.6 & 25.4 & \\
\hline Level of Service & C & B & D & A & C & C & \\
\hline Approach Delay (s) & 22.2 & & 24.1 & & & 25.1 & \\
\hline Approach LOS & C & & C & & & C & \\
\hline \multicolumn{8}{|l|}{Intersection Summary} \\
\hline \multicolumn{3}{|l|}{HCM 2000 Control Delay} & 24.2 & & HCM 2000 & Level of Service & C \\
\hline \multicolumn{3}{|l|}{HCM 2000 Volume to Capacity ratio} & 0.64 & & & & \\
\hline \multicolumn{3}{|l|}{Actuated Cycle Length (s)} & 120.0 & & Sum of lost & time (s) & 24.0 \\
\hline \multicolumn{3}{|l|}{Intersection Capacity Utilization} & 61.0\% & & CU Level & Service & B \\
\hline \multicolumn{3}{|l|}{Analysis Period (min)} & 15 & & & & \\
\hline \multicolumn{3}{|l|}{c Critical Lane Group} & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\cdots\) & * & ) & \(n\) & \(\cdots\) & 1 & V & \(\not\) & a & 5 & \(\checkmark\) & - \\
\hline Movement & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & \% & 性 & & \({ }^{7}\) & \(\uparrow{ }_{\text {个 }}\) & & & \(\uparrow\) & 7 & & \(\uparrow\) & " \\
\hline Traffic Volume (vph) & 380 & 1475 & 5 & 20 & 1290 & 120 & 15 & 10 & 15 & 10 & 10 & 160 \\
\hline Future Volume (vph) & 380 & 1475 & 5 & 20 & 1290 & 120 & 15 & 10 & 15 & 10 & 10 & 160 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time (s) & 6.0 & 6.0 & & 6.0 & 6.0 & & & 6.0 & 6.0 & & 6.0 & 6.0 \\
\hline Lane Utili. Factor & 1.00 & 0.95 & & 1.00 & 0.95 & & & 1.00 & 1.00 & & 1.00 & 1.00 \\
\hline Fit & 1.00 & 1.00 & & 1.00 & 0.99 & & & 1.00 & 0.85 & & 1.00 & 0.85 \\
\hline Flt Protected & 0.95 & 1.00 & & 0.95 & 1.00 & & & 0.97 & 1.00 & & 0.98 & 1.00 \\
\hline Satd. Flow (prot) & 1787 & 3573 & & 1787 & 3529 & & & 1844 & 1615 & & 1835 & 1599 \\
\hline Flt Permitted & 0.95 & 1.00 & & 0.95 & 1.00 & & & 0.80 & 1.00 & & 0.83 & 1.00 \\
\hline Satd. Flow (perm) & 1787 & 3573 & & 1787 & 3529 & & & 1518 & 1615 & & 1557 & 1599 \\
\hline Peak-hour factor, PHF & 0.97 & 0.97 & 0.97 & 0.95 & 0.95 & 0.95 & 0.90 & 0.90 & 0.90 & 0.80 & 0.80 & 0.80 \\
\hline Adj. Flow (vph) & 392 & 1521 & 5 & 21 & 1358 & 126 & 17 & 11 & 17 & 12 & 12 & 200 \\
\hline RTOR Reduction (vph) & 0 & 0 & 0 & , & 5 & 0 & 0 & 0 & 16 & & , & 19 \\
\hline Lane Group Flow (vph) & 392 & 1526 & 0 & 21 & 1479 & 0 & 0 & 28 & & 0 & 26 & 181 \\
\hline Heavy Vehicles (\%) & 1\% & 1\% & 1\% & 1\% & 1\% & 1\% & 0\% & 0\% & 0\% & 1\% & 1\% & 1\% \\
\hline Turn Type & Prot & NA & & Prot & NA & & Perm & NA & Perm & Perm & NA & pm+ov \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & & 8 & & & 4 & 5 \\
\hline Permitted Phases & & & & & & & 8 & & 8 & 4 & 4 & 4 \\
\hline Actuated Green, G (s) & 31.2 & 93.4 & & 3.3 & 65.5 & & & 5.3 & 5.3 & & 5.3 & 36.5 \\
\hline Effective Green, \(\mathrm{g}(\mathrm{s})\) & 31.2 & 93.4 & & 3.3 & 65.5 & & & 5.3 & 5.3 & & 5.3 & 36.5 \\
\hline Actuated g/C Ratio & 0.26 & 0.78 & & 0.03 & 0.55 & & & 0.04 & 0.04 & & 0.04 & 0.30 \\
\hline Clearance Time (s) & 6.0 & 6.0 & & 6.0 & 6.0 & & & 6.0 & 6.0 & & 6.0 & 6.0 \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & & 3.0 & 3.0 & & 3.0 & 3.0 \\
\hline Lane Grp Cap (vph) & 464 & 2780 & & 49 & 1926 & & & 67 & 71 & & 68 & 566 \\
\hline \(\mathrm{v} / \mathrm{s}\) Ratio Prot & c0.22 & 0.43 & & 0.01 & c0.42 & & & & & & & c0.08 \\
\hline \(\mathrm{v} / \mathrm{s}\) Ratio Perm & & & & & & & & 0.02 & 0.00 & & 0.02 & 0.03 \\
\hline v/c Ratio & 0.84 & 0.55 & & 0.43 & 0.77 & & & 0.42 & 0.01 & & 0.38 & 0.32 \\
\hline Uniform Delay, d1 & 42.1 & 5.1 & & 57.4 & 21.3 & & & 55.8 & 54.8 & & 55.8 & 32.2 \\
\hline Progression Factor & 0.97 & 1.30 & & 1.20 & 0.94 & & & 1.00 & 1.00 & & 1.00 & 1.00 \\
\hline Incremental Delay, d2 & 7.6 & 0.4 & & 4.6 & 2.3 & & & 4.2 & 0.1 & & 3.6 & 0.3 \\
\hline Delay (s) & 48.5 & 7.1 & & 73.7 & 22.4 & & & 60.0 & 54.9 & & 59.3 & 32.5 \\
\hline Level of Service & D & A & & E & C & & & E & D & & E & C \\
\hline Approach Delay (s) & & 15.6 & & & 23.1 & & & 58.1 & & & 35.6 & \\
\hline Approach LOS & & B & & & C & & & E & & & D & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline \multicolumn{3}{|l|}{HCM 2000 Control Delay} & 20.4 & \multicolumn{4}{|r|}{HCM 2000 Level of Service} & & \multirow[t]{2}{*}{C} & & & \\
\hline \multicolumn{3}{|l|}{HCM 2000 Volume to Capacity ratio} & 0.78 & & & & & & & & & \\
\hline \multicolumn{3}{|l|}{Actuated Cycle Length (s)} & 120.0 & \multicolumn{4}{|c|}{Sum of lost time (s)} & & \multicolumn{2}{|l|}{18.0} & & \\
\hline \multicolumn{3}{|l|}{Intersection Capacity Utilization} & 83.6\% & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{ICU Level of Service}} & & \multirow[t]{3}{*}{E} & & & \\
\hline \multicolumn{3}{|l|}{Analysis Period (min)} & 15 & & & & & & & & & \\
\hline \multicolumn{3}{|l|}{c Critical Lane Group} & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\rangle\) & \(\rightarrow\) & & \(t\) & \(\leftarrow\) & & 4 & \(\uparrow\) & 7 & \(\checkmark\) & \(\downarrow\) & \(\checkmark\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & 71 & 个 \({ }^{\text {a }}\) & & \％ & 个 \(\uparrow\) & \％ & \({ }^{1}\) & \(\hat{H}\) & & 7 & \(\uparrow\) & F \\
\hline Traffic Volume（vph） & 150 & 1550 & 10 & 5 & 1240 & 410 & 40 & 10 & 10 & 200 & ， & 280 \\
\hline Future Volume（vph） & 150 & 1550 & 10 & 5 & 1240 & 410 & 40 & 10 & 10 & 200 & 5 & 280 \\
\hline Ideal Flow（vphpl） & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time（s） & 6.0 & 6.0 & & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & & 6.0 & 6.0 & 6.0 \\
\hline Lane Util．Factor & 0.97 & 0.95 & & 1.00 & 0.95 & 1.00 & 1.00 & 1.00 & & 0.95 & 0.95 & 1.00 \\
\hline Fit & 1.00 & 1.00 & & 1.00 & 1.00 & 0.85 & 1.00 & 0.93 & & 1.00 & 1.00 & 0.85 \\
\hline Flt Protected & 0.95 & 1.00 & & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & & 0.95 & 0.95 & 1.00 \\
\hline Satd．Flow（prot） & 3467 & 3571 & & 1770 & 3539 & 1583 & 1805 & 1758 & & 1715 & 1723 & 1615 \\
\hline FIt Permitted & 0.95 & 1.00 & & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & & 0.95 & 0.45 & 1.00 \\
\hline Satd．Flow（perm） & 3467 & 3571 & & 1770 & 3539 & 1583 & 1805 & 1758 & & 1715 & 813 & 1615 \\
\hline Peak－hour factor，PHF & 0.84 & 0.84 & 0.84 & 0.90 & 0.90 & 0.90 & 0.78 & 0.78 & 0.78 & 0.86 & 0.86 & 0.86 \\
\hline Adj．Flow（vph） & 179 & 1845 & 12 & 6 & 1378 & 456 & 51 & 13 & 13 & 233 & 6 & 326 \\
\hline RTOR Reduction（vph） & 0 & 0 & ， & 0 & 0 & 133 & ， & 12 & & ， & 0 & 111 \\
\hline Lane Group Flow（vph） & 179 & 1857 & 0 & 6 & 1378 & 323 & 51 & 14 & 0 & 119 & 120 & 215 \\
\hline Heavy Vehicles（\％） & 1\％ & 1\％ & 1\％ & 2\％ & 2\％ & 2\％ & 0\％ & 0\％ & 0\％ & 0\％ & 0\％ & 0\％ \\
\hline Turn Type & Prot & NA & & Prot & NA & pm＋ov & Prot & NA & & Prot & NA & pt＋ov \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & 硡 & 3 & & & 7 & ， & 45 \\
\hline Permitted Phases & & 2 & & & 6 & 6 & & 8 & & & & \\
\hline Actuated Green，G（s） & 9.1 & 63.0 & & 1.0 & 54.9 & 76.8 & 7.7 & 10.1 & & 21.9 & 38.0 & 39.4 \\
\hline Effective Green， g （s） & 9.1 & 63.0 & & 1.0 & 54.9 & 76.8 & 7.7 & 10.1 & & 21.9 & 38.0 & 39.4 \\
\hline Actuated g／C Ratio & 0.08 & 0.52 & & 0.01 & 0.46 & 0.64 & 0.06 & 0.08 & & 0.18 & 0.32 & 0.33 \\
\hline Clearance Time（s） & 6.0 & 6.0 & & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Vehicle Extension（s） & 3.0 & 3.0 & & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Lane Grp Cap（vph） & 262 & 1874 & & 14 & 1619 & 1092 & 115 & 147 & & 312 & 423 & 530 \\
\hline v／s Ratio Prot & c0． 05 & c0．52 & & 0.00 & 0.39 & 0.05 & 0.03 & 0.01 & & c0．07 & 0.05 & c0．13 \\
\hline \(\mathrm{v} / \mathrm{s}\) Ratio Perm & & & & & & 0.15 & & & & & 0.04 & \\
\hline v／c Ratio & 0.68 & 0.99 & & 0.43 & 0.85 & 0.30 & 0.44 & 0.10 & & 0.38 & 0.28 & 0.41 \\
\hline Uniform Delay，d1 & 54.0 & 28.2 & & 59.2 & 28.9 & 9.6 & 54.1 & 50.7 & & 43.1 & 30.8 & 31.2 \\
\hline Progression Factor & 1.00 & 1.00 & & 1.00 & 0.74 & 0.07 & 1.00 & 1.00 & & 1.00 & 1.00 & 1.00 \\
\hline Incremental Delay，d2 & 7.2 & 18.7 & & 16.3 & 3.7 & 0.1 & 2.7 & 0.3 & & 0.8 & 0.4 & 0.5 \\
\hline Delay（s） & 61.2 & 46.9 & & 75.5 & 25.1 & 0.8 & 56.8 & 51.0 & & 43.9 & 31.2 & 31.7 \\
\hline Level of Service & E & D & & E & C & A & E & D & & D & C & C \\
\hline Approach Delay（s） & & 48.2 & & & 19.3 & & & 54.8 & & & 34.2 & \\
\hline Approach LOS & & D & & & B & & & D & & & C & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
\hline Intersection Summary & & \\
\hline HCM 2000 Control Delay & 34.8 & HCM 2000 Level of Service & C \\
HCM 2000 Volume to Capacity ratio & 0.84 & & 24.0 \\
Actuated Cycle Length（s） & 120.0 & Sum of lost time（s） & D \\
Intersection Capacity Utilization & \(74.7 \%\) & ICU Level of Service & \\
Analysis Period（min） & 15 & & \\
C Critical Lane Group & & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & - & 4 & & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & WBT & WBR & SBL & SBR \\
\hline Lane Configurations & \(\cdots\) & 44 & 禹 & & * & 「 \\
\hline Traffic Volume (vph) & 200 & 1770 & 1450 & 40 & 20 & 80 \\
\hline Future Volume (vph) & 200 & 1770 & 1450 & 40 & 20 & 80 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 300 & & & 0 & 0 & 175 \\
\hline Storage Lanes & 1 & & & 0 & 1 & 1 \\
\hline Taper Length (ft) & 25 & & & & 25 & \\
\hline Lane Util. Factor & 1.00 & 0.95 & 0.95 & 0.95 & 1.00 & 1.00 \\
\hline Fit & & & 0.996 & & & 0.850 \\
\hline Fit Protected & 0.950 & & & & 0.950 & \\
\hline Satd. Flow (prot) & 1770 & 3539 & 3525 & 0 & 1752 & 1568 \\
\hline Flt Permitted & 0.950 & & & & 0.950 & \\
\hline Satd. Flow (perm) & 1770 & 3539 & 3525 & 0 & 1752 & 1568 \\
\hline Link Speed (mph) & & 30 & 30 & & 30 & \\
\hline Link Distance (ft) & & 535 & 210 & & 522 & \\
\hline Travel Time (s) & & 12.2 & 4.8 & & 11.9 & \\
\hline Peak Hour Factor & 0.91 & 0.91 & 0.90 & 0.90 & 0.75 & 0.75 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 2\% & 3\% & 3\% \\
\hline Adj. Flow (vph) & 220 & 1945 & 1611 & 44 & 27 & 107 \\
\hline Shared Lane Traffic (\%) & & & & & & \\
\hline Lane Group Flow (vph) & 220 & 1945 & 1655 & 0 & 27 & 107 \\
\hline Sign Control & & Free & Free & & Stop & \\
\hline \multicolumn{7}{|l|}{Intersection Summary} \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{Area Type: Other
Control Type: Unsignalized}} \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{Intersection Capacity Utilization 65.8\% ICU Level of Service C} \\
\hline \multicolumn{7}{|l|}{Analysis Period (min) 15} \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 30.8 & & & & & \\
\hline Movement & EBL & EBT & WBT & WBR & SBL & SBR \\
\hline Lane Configurations & & 个4 & 个 & & & 1 \\
Traffic Vol, veh/h & 200 & 1770 & 1450 & 40 & 20 & 80 \\
Future Vol, veh/h & 200 & 1770 & 1450 & 40 & 20 & 80 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
Sign Control & Free & Free & Free & Free & Stop & Stop \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 300 & - & - & - & 0 & 175 \\
Veh in Median Storage, \# & - & 0 & 0 & - & 0 & - \\
Grade, \% & - & 0 & 0 & - & 0 & - \\
Peak Hour Factor & 91 & 91 & 90 & 90 & 75 & 75 \\
Heavy Vehicles, \% & 2 & 2 & 2 & 2 & 3 & 3 \\
Mvmt Flow & 220 & 1945 & 1611 & 44 & 27 & 107
\end{tabular}
\begin{tabular}{lrlllll}
\hline Major'Minor & Major1 & \multicolumn{1}{c}{ Major2 } & \multicolumn{2}{c}{ Minor2 } & \\
\hline Conflicting Flow All & 1655 & 0 & - & 0 & 3046 & 828 \\
\(\quad\) Stage 1 & - & - & - & - & 1633 & - \\
\(\quad\) Stage 2 & - & - & - & - & 1413 & - \\
Critical Hdwy & 4.14 & - & - & - & 6.86 & 6.96 \\
Critical Hdwy Stg 1 & - & - & - & - & 5.86 & - \\
Critical Hdwy Stg 2 & - & - & - & - & 5.86 & - \\
Follow-up Hdwy & 2.22 & - & - & - & 3.53 & 3.33 \\
Pot Cap-1 Maneuver & 386 & - & - & - & \(\sim 10\) & 312 \\
\(\quad\) Stage 1 & - & - & - & - & 143 & - \\
\(\quad\) Stage 2 & - & - & - & - & 189 & - \\
Platoon blocked, \% & & - & - & - & & \\
Mov Cap-1 Maneuver & 386 & - & - & - & \(\sim 4\) & 312 \\
Mov Cap-2 Maneuver & - & - & - & - & \(\sim 4\) & - \\
\(\quad\) Stage 1 & - & - & - & - & 61 & - \\
Stage 2 & - & - & - & - & 189 & -
\end{tabular}
\begin{tabular}{lrrr}
\hline Approach & EB & WB & SB \\
\hline HCM Control Delay, s & 2.6 & 0 & \(\$ 869.9\) \\
HCM LOS & & & F
\end{tabular}
\begin{tabular}{lrrrrrrr}
\hline Minor Lane/Major Mumt & EBL & EBT & WBT & WBR SBLn1 SBLn2 & & \\
\hline Capacity (veh/h) & 386 & - & - & - & 4 & 312 & \\
HCM Lane VC Ratio & 0.569 & - & - & -6.667 & 0.342 & \\
HCM Control Delay (s) & 26 & - & - & \(\$ 4259.8\) & 22.4 & \\
HCM Lane LOS & D & - & - & - & F & C & \\
HCM 95th \%otile Q(veh) & 3.4 & - & - & - & 4.9 & 1.5 & \\
Notes & & & & & \\
\(\sim\) Volume exceeds capacity & \$: Delay exceeds 300s & + Computation Not Defined & *: All major volume in platoon
\end{tabular}

c Critical Lane Group


C Critical Lane Group
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\downarrow\) & \(\cdots\) & \(\uparrow\) & \(\stackrel{4}{ }\) & \(\lambda\) & 7 & 5 & \(\checkmark\) & \(\vartheta\) \\
\hline Movement & SBL & SBR & NWL & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & & & * & 7 & \({ }^{7}\) & \(\uparrow \uparrow\) & & & 44 & T 7 \\
\hline Traffic Volume (vph) & 0 & 0 & 0 & 120 & 0 & 1380 & 0 & 0 & 375 & 1110 \\
\hline Future Volume (vph) & 0 & 0 & 0 & 120 & 0 & 1380 & 0 & 0 & 375 & 1110 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time (s) & & & 6.0 & 6.0 & & 6.0 & & & 6.0 & 6.0 \\
\hline Lane Util. Factor & & & 1.00 & 0.95 & & 0.95 & & & 0.95 & 0.88 \\
\hline Fit & & & 0.85 & 0.85 & & 1.00 & & & 1.00 & 0.85 \\
\hline Flt Protected & & & 1.00 & 1.00 & & 1.00 & & & 1.00 & 1.00 \\
\hline Satd. Flow (prot) & & & 1583 & 1504 & & 3539 & & & 3539 & 2787 \\
\hline Flt Permitted & & & 1.00 & 1.00 & & 1.00 & & & 1.00 & 1.00 \\
\hline Satd. Flow (perm) & & & 1583 & 1504 & & 3539 & & & 3539 & 2787 \\
\hline Peak-hour factor, PHF & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 \\
\hline Adj. Flow (vph) & 0 & 0 & 0 & 128 & 0 & 1468 & 0 & 0 & 399 & 1181 \\
\hline RTOR Reduction (vph) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 226 \\
\hline Lane Group Flow (vph) & 0 & 0 & 64 & 64 & 0 & 1468 & 0 & 0 & 399 & 955 \\
\hline Turn Type & & & Prot & Prot & Perm & NA & & & NA & Perm \\
\hline Protected Phases & & & 4 & 4 & & 2 & & & 2 & \\
\hline Permitted Phases & & & & & 2 & & & & & 2 \\
\hline Actuated Green, G (s) & & & 10.2 & 10.2 & & 67.8 & & & 67.8 & 67.8 \\
\hline Effective Green, g (s) & & & 10.2 & 10.2 & & 67.8 & & & 67.8 & 67.8 \\
\hline Actuated g/C Ratio & & & 0.11 & 0.11 & & 0.75 & & & 0.75 & 0.75 \\
\hline Clearance Time (s) & & & 6.0 & 6.0 & & 6.0 & & & 6.0 & 6.0 \\
\hline Vehicle Extension (s) & & & 3.0 & 3.0 & & 3.0 & & & 3.0 & 3.0 \\
\hline Lane Grp Cap (vph) & & & 179 & 170 & & 2666 & & & 2666 & 2099 \\
\hline v/s Ratio Prot & & & 0.04 & c0.04 & & c0.41 & & & 0.11 & \\
\hline v/s Ratio Perm & & & & & & & & & & 0.34 \\
\hline v/c Ratio & & & 0.36 & 0.38 & & 0.55 & & & 0.15 & 0.46 \\
\hline Uniform Delay, d1 & & & 36.9 & 37.0 & & 4.7 & & & 3.1 & 4.2 \\
\hline Progression Factor & & & 1.00 & 1.00 & & 0.50 & & & 1.00 & 1.00 \\
\hline Incremental Delay, d2 & & & 1.2 & 1.4 & & 0.6 & & & 0.1 & 0.7 \\
\hline Delay (s) & & & 38.1 & 38.4 & & 2.9 & & & 3.2 & 4.9 \\
\hline Level of Service & & & D & D & & A & & & A & A \\
\hline Approach Delay (s) & 0.0 & & 38.2 & & & 2.9 & & & 4.5 & \\
\hline Approach LOS & A & & D & & & A & & & A & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
\hline Intersection Summary & & & \\
\hline HCM 2000 Control Delay & 5.1 & HCM 2000 Level of Service & A \\
HCM 2000 Volume to Capacity ratio & 0.53 & & 12.0 \\
Actuated Cycle Length (s) & 90.0 & Sum of lost time (s) & E \\
Intersection Capacity Utilization & \(88.2 \%\) & ICU Level of Service & \\
Analysis Period (min) & 15 & &
\end{tabular}

C Critical Lane Group

Zone 5
2040 Alt D Zone 5 PM Peak
16: NH 102 W/NH 102 E \& Bypass 28 S/Bypass 28 N \& E Derry Rd
Lanes, Volumes, Timings
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\checkmark\) & \(\ldots\) & 4 & c & \(\cdots\) & \(\uparrow\) & \# & \(P\) & \(\checkmark\) & \(\checkmark\) & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group & WBL2 & WBL & WBR & WBR2 & NBL & NBT & NBR & NBR2 & SBL2 & SBL & SBT & SBR \\
\hline Lane Configurations & & \% & & & & 4 & & & & & \({ }_{4}\) & \\
\hline Traffic Volume (vph) & 10 & 220 & 360 & 30 & 80 & 120 & 70 & 10 & 10 & 390 & 190 & 30 \\
\hline Future Volume (vph) & 10 & 220 & 360 & 30 & 80 & 120 & 70 & 10 & 10 & 390 & 190 & 30 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Lane Utili. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & 0.915 & & & & 0.962 & & & & & 0.993 & \\
\hline Flt Protected & & 0.982 & & & & 0.986 & & & & & 0.969 & \\
\hline Satd. Flow (prot) & 0 & 1690 & 0 & 0 & 0 & 1767 & 0 & 0 & 0 & 0 & 1810 & 0 \\
\hline Flt Permitted & & 0.982 & & & & 0.986 & & & & & 0.969 & \\
\hline Satd. Flow (perm) & 0 & 1690 & 0 & 0 & 0 & 1767 & 0 & 0 & 0 & 0 & 1810 & 0 \\
\hline Link Speed (mph) & & 30 & & & & 30 & & & & & 30 & \\
\hline Link Distance (ft) & & 449 & & & & 456 & & & & & 370 & \\
\hline Travel Time (s) & & 10.2 & & & & 10.4 & & & & & 8.4 & \\
\hline Peak Hour Factor & 0.91 & 0.91 & 0.91 & 0.91 & 0.87 & 0.87 & 0.87 & 0.87 & 0.92 & 0.92 & 0.92 & 0.92 \\
\hline Heavy Vehicles (\%) & 1\% & 1\% & 1\% & 1\% & 2\% & 2\% & 2\% & 2\% & 1\% & 1\% & 1\% & 1\% \\
\hline Adj. Flow (vph) & 11 & 242 & 396 & 33 & 92 & 138 & 80 & 11 & 11 & 424 & 207 & 33 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 682 & 0 & 0 & 0 & 321 & 0 & 0 & 0 & 0 & 675 & 0 \\
\hline Sign Control & & Yield & & & & Yield & & & & & Yield & \\
\hline
\end{tabular}


\footnotetext{
Intersection Summary
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Intersection} \\
\hline \multicolumn{6}{|l|}{Intersection Delay, s/veh38.3} \\
\hline Intersection LOS & & & & & \\
\hline Approach & WB & NB & SB & NE & SW \\
\hline Entry Lanes & 1 & 1 & 1 & 1 & 1 \\
\hline Conflicting Circle Lanes & 1 & 1 & 1 & 1 & 1 \\
\hline Adj Approach Flow, veh/h & 682 & 321 & 675 & 667 & 247 \\
\hline Demand Flow Rate, veh/h & 688 & 328 & 681 & 674 & 252 \\
\hline Vehicles Circulating, veh/h & 563 & 1045 & 585 & 704 & 923 \\
\hline Vehicles Exiting, veh/h & 810 & 333 & 590 & 562 & 328 \\
\hline Ped Vol Crossing Leg, \#/h & 0 & 0 & 0 & 0 & 0 \\
\hline Ped Cap Adj & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
\hline Approach Delay, s/veh & 33.6 & 26.7 & 35.6 & 60.1 & 15.0 \\
\hline Approach LOS & D & D & E & F & C \\
\hline
\end{tabular}
\begin{tabular}{lrrrrr}
\hline Lane & Left & Left & Left & Left & Left \\
\hline Designated Moves & LR & LTR & LTR & LTR & LTR \\
Assumed Moves & LR & LTR & LTR & LTR & LTR \\
RT Channelized & & & & & \\
Lane Util & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
Follow-Up Headway, s 2.609 & 2.609 & 2.609 & 2.609 & 2.609 \\
Critical Headway,s & 4.976 & 4.976 & 4.976 & 4.976 & 4.976 \\
Entry Flow, veh/h & 688 & 328 & 681 & 674 & 252 \\
Cap Entry Lane, veh/h & 777 & 475 & 760 & 673 & 538 \\
Entry HV Adj Factor & 0.991 & 0.979 & 0.991 & 0.990 & 0.980 \\
Flow Entry, veh/h & 682 & 321 & 675 & 667 & 247 \\
Cap Entry, veh/h & 770 & 466 & 753 & 666 & 528 \\
V/C Ratio & 0.885 & 0.690 & 0.896 & 1.001 & 0.468 \\
Control Delay, s/veh & 33.6 & \(D\) & 26.7 & 65.6 & 60.1 \\
LOS & D & 5 & F & 15.0 \\
95th \%tile Queue, veh & 11 & & 12 & 16 & C \\
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \% & \(\rightarrow\) & 7 & \(\checkmark\) & \(\leftarrow\) & \(\pm\) & 4 & \(\uparrow\) & \(\rangle\) & \(\checkmark\) & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \(\uparrow\) & 7 & & ¢ & & & \({ }_{4}\) & & & \({ }^{4}\) & \\
\hline Traffic Volume (vph) & 5 & 50 & 500 & 10 & 30 & 20 & 320 & 130 & 10 & 25 & 110 & 10 \\
\hline Future Volume (vph) & 5 & 50 & 500 & 10 & 30 & 20 & 320 & 130 & 10 & 25 & 110 & 10 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 0 & & 50 & 0 & & 0 & - & & 0 & & & 0 \\
\hline Storage Lanes & 0 & & 1 & 0 & & 0 & 0 & & 0 & 0 & & 0 \\
\hline Taper Length (tt) & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & & 0.850 & & 0.956 & & & 0.997 & & & 0.991 & \\
\hline Flt Protected & & 0.995 & & & 0.992 & & & 0.966 & & & 0.992 & \\
\hline Satd. Flow (prot) & 0 & 1853 & 1583 & 0 & 1802 & 0 & 0 & 1812 & 0 & 0 & 1849 & 0 \\
\hline FIt Permitted & & 0.995 & & & 0.992 & & & 0.966 & & & 0.992 & \\
\hline Satd. Flow (perm) & 0 & 1853 & 1583 & 0 & 1802 & 0 & 0 & 1812 & 0 & 0 & 1849 & 0 \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance (tt) & & 168 & & & 453 & & & 475 & & & 436 & \\
\hline Travel Time (s) & & 3.8 & & & 10.3 & & & 10.8 & & & 9.9 & \\
\hline Peak Hour Factor & 0.88 & 0.88 & 0.88 & 0.82 & 0.82 & 0.82 & 0.93 & 0.93 & 0.93 & 0.91 & 0.91 & 0.91 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 0\% & 0\% & 0\% & 1\% & 1\% & 1\% & 1\% & 1\% & 1\% \\
\hline Adj. Flow (vph) & 6 & 57 & 568 & 12 & 37 & 24 & 344 & 140 & 11 & 27 & 121 & 11 \\
\hline Shared Lane Traffic (\%) & & & & & & & & & & & & \\
\hline Lane Group Flow (vph) & 0 & 63 & 568 & 0 & 73 & 0 & 0 & 495 & 0 & 0 & 159 & 0 \\
\hline Sign Control & & Stop & & & Stop & & & Free & & & Free & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline Area Type: & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{Control Type: Unsignalized} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Intersection Capacity Utilization 51.9\%
Analysis Period (min) 15}} & & & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{ICU Level of Service A}} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Intersection} \\
\hline Int Delay, s/veh 1 & 14.4 & & & & & & & & & & & \\
\hline Movement E & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \(\uparrow\) & 「 & & ¢ & & & ¢ & & & ¢ & \\
\hline Traffic Vol, veh/h & 5 & 50 & 500 & 10 & 30 & 20 & 320 & 130 & 10 & 25 & 110 & 10 \\
\hline Future Vol, veh/h & 5 & 50 & 500 & 10 & 30 & 20 & 320 & 130 & 10 & 25 & 110 & 10 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control Stop & Free & Free & Free & Free & Free & Free \\
\hline RT Channelized & - & - & None \\
\hline Storage Length & - & - & 50 & - & - & . & - & - & - & - & - & - \\
\hline Veh in Median Storage, \# & \# & 0 & . & . & 0 & . & . & 0 & . & . & 0 & - \\
\hline Grade, \% & - & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - \\
\hline Peak Hour Factor & 88 & 88 & 88 & 82 & 82 & 82 & 93 & 93 & 93 & 91 & 91 & 91 \\
\hline Heavy Vehicles, \% & 2 & 2 & 2 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline Mvmt Flow & 6 & 57 & 568 & 12 & 37 & 24 & 344 & 140 & 11 & 27 & 121 & 11 \\
\hline
\end{tabular}

\begin{tabular}{lrrrr}
\hline Approach & EB & WB & NB & SB \\
\hline HCM Control Delay, s & 17.2 & 78.3 & 5.7 & 1.3 \\
HCM LOS & C & F & &
\end{tabular}
\begin{tabular}{lrrrrrrrl}
\hline Minor Lane/Major Mvmt & NBL & NBT & NBREBLn1 EBLn2WBLn1 & SBL & SBT & SBR \\
\hline Capacity (veh/h) & 1459 & - & -168 & 923 & 116 & 1436 & - & - \\
HCM Lane V/C Ratio & 0.236 & - & -0.372 & 0.616 & 0.631 & 0.019 & - & - \\
HCM Control Delay (s) & 8.2 & 0 & - & 38.6 & 14.9 & 78.3 & 7.6 & 0 \\
- \\
HCM Lane LOS & A & A & - & E & B & F & A & A \\
HCM 95th \%tile Q(veh) & 0.9 & - & - & 1.6 & 4.4 & 3.2 & 0.1 & - \\
H & & & & & & & & \\
\end{tabular}




27: NH 102/NH 102 WB \& English Range Road
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 7 & 7 & 4 & 4 & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & Y & & * & \(\uparrow\) & \(\dagger\) & \\
\hline Traffic Volume (vph) & 10 & 10 & 40 & 780 & 500 & 10 \\
\hline Future Volume (vph) & 10 & 10 & 40 & 780 & 500 & 10 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 0 & 0 & 100 & & & 0 \\
\hline Storage Lanes & 1 & 0 & 1 & & & 0 \\
\hline Taper Length (ft) & 25 & & 25 & & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & 0.939 & & & & 0.996 & \\
\hline Flt Protected & 0.973 & & 0.950 & & & \\
\hline Satd. Flow (prot) & 1736 & 0 & 1787 & 1900 & 1874 & 0 \\
\hline Flt Permitted & 0.973 & & 0.950 & & & \\
\hline Satd. Flow (perm) & 1736 & 0 & 1787 & 1900 & 1874 & 0 \\
\hline Link Speed (mph) & 30 & & & 30 & 30 & \\
\hline Link Distance (ft) & 332 & & & 288 & 365 & \\
\hline Travel Time (s) & 7.5 & & & 6.5 & 8.3 & \\
\hline Peak Hour Factor & 0.64 & 0.77 & 0.71 & 0.90 & 0.75 & 0.55 \\
\hline Heavy Vehicles (\%) & 0\% & 0\% & 1\% & 0\% & 1\% & 0\% \\
\hline Adj. Flow (vph) & 16 & 13 & 56 & 867 & 667 & 18 \\
\hline Shared Lane Traffic (\%) & & & & & & \\
\hline Lane Group Flow (vph) & 29 & 0 & 56 & 867 & 685 & 0 \\
\hline Sign Control & Stop & & & Free & Free & \\
\hline \multicolumn{7}{|l|}{Intersection Summary} \\
\hline \multicolumn{7}{|l|}{Area Type: Other} \\
\hline \multicolumn{7}{|l|}{Control Type: Unsignalized} \\
\hline \multicolumn{7}{|l|}{Intersection Capacity Utilization 51.1\% ICU Level of Service A} \\
\hline \multicolumn{7}{|l|}{Analysis Period (min) 15} \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 0.9 & & & & & \\
\hline Movement & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & 10 & & 10 & \(\uparrow\) & F & \\
Traffic Vol, veh/h & 10 & 40 & 780 & 500 & 10 \\
Future Vol, veh/h & 10 & 10 & 40 & 780 & 500 & 10 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & 100 & - & - & - \\
Veh in Median Storage, \# & 0 & - & - & 0 & 0 & - \\
Grade, \% & 0 & - & - & 0 & 0 & - \\
Peak Hour Factor & 64 & 77 & 71 & 90 & 75 & 55 \\
Heavy Vehicles, \% & 0 & 0 & 1 & 0 & 1 & 0 \\
Mvmt Flow & 16 & 13 & 56 & 867 & 667 & 18
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Major/Minor & Minor2 & \multicolumn{7}{|c|}{Major1 Major2} \\
\hline Conflicting Flow All & 1655 & 676 & 685 & 85 & 0 & - & 0 & \\
\hline Stage 1 & 676 & - & & . & - & . & - & \\
\hline Stage 2 & 979 & - & & - & - & . & - & \\
\hline Critical Hdwy & 6.4 & 6.2 & 4.11 & & - & - & - & \\
\hline Critical Hdwy Stg 1 & 5.4 & . & & . & . & - & - & \\
\hline Critical Hdwy Stg 2 & 5.4 & - & & \(\cdot\) & - & - & - & \\
\hline Follow-up Hdwy & 3.5 & 3.3 & 2.209 & & - & - & - & \\
\hline Pot Cap-1 Maneuver & 109 & 457 & 913 & 13 & - & - & - & \\
\hline Stage 1 & 509 & . & & . & - & - & - & \\
\hline Stage 2 & 367 & - & & - & - & - & - & \\
\hline Platoon blocked, \% & & & & & - & - & - & \\
\hline Mov Cap-1 Maneuver & 102 & 457 & 913 & 13 & - & - & - & \\
\hline Mov Cap-2 Maneuver & 102 & - & & - & - & - & - & \\
\hline Stage 1 & 478 & - & & - & - & - & - & \\
\hline Stage 2 & 367 & - & & - & - & - & - & \\
\hline Approach & EB & & NB & B & & SB & & \\
\hline HCM Control Delay, s & 32.8 & & 0.6 & . 6 & & 0 & & \\
\hline HCM LOS & D & & & & & & & \\
\hline Minor Lane/Major Mvm & & NBL & & TE & BLn1 & SBT & SBR & \\
\hline Capacity (veh/h) & & 913 & & - & 158 & - & - & \\
\hline HCM Lane V/C Ratio & & 0.062 & & & 0.181 & - & - & \\
\hline HCM Control Delay (s) & & 9.2 & & - & 32.8 & - & - & \\
\hline HCM Lane LOS & & A & & - & D & - & - & \\
\hline HCM 95th \%tile Q(veh) & & 0.2 & & - & 0.6 & - & - & \\
\hline
\end{tabular}

\section*{APPENDIX R-3: ALTERNATIVE D INTERSECTION CAPACITY ANALYSES - SYNCHRO PRINTOUTS - AM PEAK HOUR}
\begin{tabular}{lrrrrr}
\hline & & & & & \\
& & & & & \\
\hline
\end{tabular}
Area Type: Other

Cycle Length: 75
Actuated Cycle Length: 75
Offset: \(0(0 \%)\), Referenced to phase 2:EBT and \(6: W B T\), Start of Yellow, Master Intersection
Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.00
Intersection Signal Delay: 36.3 Intersection LOS: D

Intersection Capacity Utilization 68.7\% ICU Level of Service C
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
\(m\) Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 7: NH 102 \& Exit 4 SB Off

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & NBL2 & NBL & NBR & SEL & SER & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & 7\％ & & 「\％ & & & \％19 & 虾 & & & 虫脊 & 7 \\
\hline Traffic Volume（vph） & 455 & 0 & 330 & 0 & 0 & 1310 & 170 & 0 & 0 & 1080 & 360 \\
\hline Future Volume（vph） & 455 & 0 & 330 & 0 & 0 & 1310 & 170 & 0 & 0 & 1080 & 360 \\
\hline Ideal Flow（vphpl） & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length（ft） & & 0 & 0 & 0 & 0 & 550 & & 0 & 0 & & 0 \\
\hline Storage Lanes & & 2 & 2 & 0 & 0 & 2 & & 0 & 0 & & 1 \\
\hline Taper Length（ t ） & & 25 & & 25 & & 25 & & & 25 & & \\
\hline Lane Util．Factor & 0.97 & 1.00 & 0.88 & 1.00 & 1.00 & 0.97 & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 \\
\hline Fit & & & 0.850 & & & & & & & & 0.850 \\
\hline Flt Protected & 0.950 & & & & & 0.950 & & & & & \\
\hline Satd．Flow（prot） & 3242 & 0 & 2632 & 0 & 0 & 3335 & 3438 & 0 & 0 & 3505 & 1568 \\
\hline Flt Permitted & 0.950 & & & & & 0.950 & & & & & \\
\hline Satd．Flow（perm） & 3242 & 0 & 2632 & 0 & 0 & 3335 & 3438 & 0 & 0 & 3505 & 1568 \\
\hline Right Turn on Red & & & No & & & & & Yes & & & Yes \\
\hline Satd．Flow（RTOR） & & & & & & & & & & & 167 \\
\hline Link Speed（mph） & & 25 & & 30 & & & 30 & & & 30 & \\
\hline Link Distance（ ft ） & & 856 & & 390 & & & 760 & & & 857 & \\
\hline Travel Time（s） & & 23.3 & & 8.9 & & & 17.3 & & & 19.5 & \\
\hline Peak Hour Factor & 0.88 & 0.88 & 0.88 & 0.92 & 0.92 & 0.94 & 0.94 & 0.94 & 0.92 & 0.92 & 0.92 \\
\hline Heavy Vehicles（\％） & 8\％ & 8\％ & 8\％ & 2\％ & 2\％ & 5\％ & 5\％ & 5\％ & 3\％ & 3\％ & 3\％ \\
\hline Adj．Flow（vph） & 517 & 0 & 375 & 0 & 0 & 1394 & 181 & 0 & 0 & 1174 & 391 \\
\hline \multicolumn{12}{|l|}{Shared Lane Traffic（\％）} \\
\hline Lane Group Flow（vph） & 517 & 0 & 375 & 0 & 0 & 1394 & 181 & 0 & 0 & 1174 & 391 \\
\hline Enter Blocked Intersection & No \\
\hline Lane Alignment & Left & Left & Right & Left & Right & Left & Left & Right & Left & Right & Right \\
\hline Median Width（ft） & & 24 & & 0 & & & 24 & & & 24 & \\
\hline Link Offset（ft） & & 12 & & 0 & & & 0 & & & 0 & \\
\hline Crosswalk Width（ft） & & 16 & & 16 & & & 16 & & & 16 & \\
\hline \multicolumn{12}{|l|}{Two way Left Turn Lane} \\
\hline Headway Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Turning Speed（mph） & 15 & 15 & 25 & 15 & 9 & 15 & & 9 & 15 & & 25 \\
\hline Number of Detectors & 3 & & 3 & & & 3 & 3 & & & 3 & 0 \\
\hline \multicolumn{12}{|l|}{Detector Template} \\
\hline Leading Detector（ft） & 256 & & 256 & & & 256 & 256 & & & 256 & 0 \\
\hline Trailing Detector（ft） & －5 & & －5 & & & －5 & －5 & & & －5 & 0 \\
\hline Detector 1 Position（ft） & －5 & & －5 & & & －5 & －5 & & & －5 & －5 \\
\hline Detector 1 Size（ft） & 55 & & 55 & & & 55 & 55 & & & 55 & 50 \\
\hline Detector 1 Type & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & Cl＋Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{EX}\) & \(\mathrm{Cl}+\mathrm{Ex}\) \\
\hline \multicolumn{12}{|l|}{Detector 1 Channel} \\
\hline Detector 1 Extend（s） & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & 0.0 \\
\hline Detector 1 Queue（s） & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & 0.0 \\
\hline Detector 1 Delay（s） & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & 0.0 \\
\hline Detector 2 Position（ft） & 125 & & 125 & & & 125 & 125 & & & 125 & \\
\hline Detector 2 Size（ft） & 6 & & 6 & & & 6 & 6 & & & 6 & \\
\hline Detector 2 Type & Cl＋Ex & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline \multicolumn{12}{|l|}{Detector 2 Channel} \\
\hline Detector 2 Extend（s） & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & \\
\hline Detector 3 Position（ft） & 250 & & 250 & & & 250 & 250 & & & 250 & \\
\hline Detector 3 Size（ft） & 6 & & 6 & & & 6 & 6 & & & 6 & \\
\hline
\end{tabular}

Lanes, Volumes, Timings
2. \%: NH 102 \& Exit 4 NB Off
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# & 1 & 1 & \(\cdots\) & - & \(\bar{y}\) & 7 & \(\not \square\) & 1 & 1 & k \\
\hline Lane Group & NBL2 & NBL & NBR & SEL & SER & NEL & NET & NER & SWL & SWT & SWR \\
\hline Detector 3 Type & Cl+Ex & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & Cl+Ex & & & Cl+Ex & \\
\hline \multicolumn{12}{|l|}{Detector 3 Channel} \\
\hline Detector 3 Extend (s) & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & \\
\hline Turn Type & Prot & & Prot & & & Prot & NA & & & NA & Free \\
\hline Protected Phases & 8 & & 8 & & & 5 & 2 & & & 6 & \\
\hline Permitted Phases & & & & & & & & & & & Free \\
\hline Detector Phase & 8 & & 2 & & & 5 & 2 & & & 6 & \\
\hline \multicolumn{12}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 10.0 & & 10.0 & & & 5.0 & 8.0 & & & 8.0 & \\
\hline Minimum Split (s) & 16.0 & & 16.0 & & & 11.0 & 42.0 & & & 31.0 & \\
\hline Total Split (s) & 29.0 & & 29.0 & & & 66.0 & 121.0 & & & 55.0 & \\
\hline Total Split (\%) & 19.3\% & & 19.3\% & & & 44.0\% & 80.7\% & & & 36.7\% & \\
\hline Maximum Green (s) & 23.0 & & 23.0 & & & 60.0 & 115.0 & & & 49.0 & \\
\hline Yellow Time (s) & 2.0 & & 2.0 & & & 2.0 & 2.0 & & & 2.0 & \\
\hline All-Red Time (s) & 4.0 & & 4.0 & & & 4.0 & 4.0 & & & 4.0 & \\
\hline Lost Time Adjust (s) & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & 6.0 & & 6.0 & & & 6.0 & 6.0 & & & 6.0 & \\
\hline Lead/Lag & & & & & & Lead & & & & Lag & \\
\hline \multicolumn{12}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 3.0 & & 3.0 & & & 3.0 & 3.0 & & & 3.0 & \\
\hline Recall Mode & None & & None & & & None & C-Min & & & C-Min & \\
\hline Walk Time (s) & & & & & & & 7.0 & & & 7.0 & \\
\hline Flash Dont Walk (s) & & & & & & & 29.0 & & & 17.0 & \\
\hline Pedestrian Calls (\#/hr) & & & & & & & 0 & & & 0 & \\
\hline Act Effct Green (s) & 23.0 & & 23.0 & & & 60.0 & 115.0 & & & 49.0 & 150.0 \\
\hline Actuated g/C Ratio & 0.15 & & 0.15 & & & 0.40 & 0.77 & & & 0.33 & 1.00 \\
\hline v/c Ratio & 1.04 & & 0.93 & & & 1.04 & 0.07 & & & 1.03 & 0.25 \\
\hline Control Delay & 111.4 & & 92.5 & & & 56.7 & 7.5 & & & 82.5 & 0.4 \\
\hline Queue Delay & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & 0.0 \\
\hline Total Delay & 111.4 & & 92.5 & & & 56.7 & 7.5 & & & 82.5 & 0.4 \\
\hline LOS & F & & F & & & E & A & & & F & A \\
\hline Approach Delay & & 03.4 & & & & & 51.1 & & & 62.0 & \\
\hline Approach LOS & & F & & & & & D & & & E & \\
\hline Queue Length 50th (ft) & ~280 & & 209 & & & \(\sim 738\) & 30 & & & \(\sim 642\) & 0 \\
\hline Queue Length 95th (ft) & \#384 & & \#305 & & & m\#763 & m32 & & & \#782 & 0 \\
\hline Internal Link Dist (ft) & & 776 & & 310 & & & 680 & & & 777 & \\
\hline Turn Bay Length (ft) & & & & & & 550 & & & & & \\
\hline Base Capacity (vph) & 497 & & 403 & & & 1334 & 2635 & & & 1144 & 1568 \\
\hline Starvation Cap Reductn & 0 & & 0 & & & 0 & 0 & & & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & & 0 & & & 0 & 0 & & & 0 & 0 \\
\hline Storage Cap Reductn & 0 & & 0 & & & 0 & 0 & & & 0 & 0 \\
\hline Reduced v/c Ratio & 1.04 & & 0.93 & & & 1.04 & 0.07 & & & 1.03 & 0.25 \\
\hline Intersection Summary & & & & & & & & & & & \\
\hline
\end{tabular}

Area Type: Other
Cycle Length: 150
Actuated Cycle Length: 150
Offset: \(6(4 \%)\), Referenced to phase 2:NET and 6:SWT, Start of Yellow
Natural Cycle: 150

Lanes, Volumes, Timings
2. \%: NH 102 \& Exit 4 NB Off

Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.04
Intersection Signal Delay: 66.9
Intersection Capacity Utilization 96.2\%
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 8: NH 102 \& Exit 4 NB Off

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\dagger\) & \(\rightarrow\) & 7 & \(\checkmark\) & \(\longleftarrow\) & 4 & 4 & \(\uparrow\) & 1 & \(\checkmark\) & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & ¢ \(\uparrow\) & P & \% & ¢ \(\uparrow\) & & & & & \% 71 & & F \\
\hline Traffic Volume (vph) & 0 & 585 & 460 & 285 & 685 & 0 & 0 & 0 & 0 & 110 & 0 & 360 \\
\hline Future Volume (vph) & 0 & 585 & 460 & 285 & 685 & 0 & 0 & 0 & 0 & 110 & 0 & 360 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (t) & 0 & & 350 & 0 & & 0 & 0 & & 0 & 0 & & 0 \\
\hline Storage Lanes & 0 & & 1 & 1 & & 0 & 0 & & 0 & 2 & & 1 \\
\hline Taper Length (ti) & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & 1.00 & 1.00 & 1.00 & 0.97 & 1.00 & 1.00 \\
\hline Fit & & & 0.850 & & & & & & & & & 0.850 \\
\hline Flt Protected & & & & 0.950 & & & & & & 0.950 & & \\
\hline Satd. Flow (prot) & 0 & 3167 & 1417 & 1687 & 3374 & 0 & 0 & 0 & 0 & 3303 & 0 & 1524 \\
\hline Flt Permitted & & & & 0.950 & & & & & & 0.950 & & \\
\hline Satd. Flow (perm) & 0 & 3167 & 1417 & 1687 & 3374 & 0 & 0 & 0 & 0 & 3303 & 0 & 1524 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & & 500 & & & & & & & & & 134 \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 35 & \\
\hline Link Distance (t) & & 851 & & & 693 & & & 486 & & & 581 & \\
\hline Travel Time (s) & & 19.3 & & & 15.8 & & & 11.0 & & & 11.3 & \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.73 & 0.73 & 0.73 & 0.92 & 0.92 & 0.92 & 0.74 & 0.74 & 0.74 \\
\hline Heavy Vehicles (\%) & 14\% & 14\% & 14\% & 7\% & 7\% & 7\% & 2\% & 2\% & 2\% & 6\% & 6\% & 6\% \\
\hline Adj. Flow (vph) & 0 & 636 & 500 & 390 & 938 & 0 & 0 & 0 & 0 & 149 & 0 & 486 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%) 0} \\
\hline Lane Group Flow (vph) & 0 & 636 & 500 & 390 & 938 & 0 & 0 & 0 & 0 & 149 & 0 & 486 \\
\hline Enter Blocked Intersection & No \\
\hline Lane Alignment & Left & Right & Right & Left & Left & Right & Left & Left & Right & RNA & Left & Right \\
\hline Median Width(t) & & 36 & & & 36 & & & 24 & & & 24 & \\
\hline Link Offset(ft) & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Crosswalk Width(t) & & 16 & & & 16 & & & 16 & & & 16 & \\
\hline \multicolumn{13}{|l|}{Two way Left Turn Lane} \\
\hline Headway Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Turning Speed (mph) & 15 & & 25 & 15 & & 9 & 15 & & 9 & 15 & & 9 \\
\hline Number of Detectors & & 3 & 2 & 3 & 3 & & & & & 3 & & 2 \\
\hline Detector Template & & Thru & Right & Left & Thru & & & & & Left & & \\
\hline Leading Detector ( ft ) & & 256 & 131 & 256 & 256 & & & & & 256 & & 206 \\
\hline Trailing Detector (t) & & -5 & -5 & -5 & -5 & & & & & -5 & & -5 \\
\hline Detector 1 Position(tt) & & -5 & -5 & -5 & -5 & & & & & -5 & & -5 \\
\hline Detector 1 Size(t) & & 50 & 50 & 50 & 50 & & & & & 50 & & 50 \\
\hline Detector 1 Type & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & CI+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & & & & & CItEx & & \(\mathrm{Cl}+\mathrm{Ex}\) \\
\hline \multicolumn{13}{|l|}{Detector 1 Channel} \\
\hline Detector 1 Extend (s) & & 0.0 & 0.0 & 0.0 & 0.0 & & & & & 0.0 & & 0.0 \\
\hline Detector 1 Queue (s) & & 0.0 & 0.0 & 0.0 & 0.0 & & & & & 0.0 & & 0.0 \\
\hline Detector 1 Delay (s) & & 0.0 & 0.0 & 0.0 & 0.0 & & & & & 0.0 & & 0.0 \\
\hline Detector 2 Position(t) & & 125 & 125 & 125 & 125 & & & & & 125 & & 200 \\
\hline Detector 2 Size(tt) & & 6 & 6 & 6 & 6 & & & & & 6 & & 6 \\
\hline Detector 2 Type & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & & & & Cl+Ex & & \(\mathrm{Cl}+\mathrm{Ex}\) \\
\hline \multicolumn{13}{|l|}{Detector 2 Channel Cltex} \\
\hline Detector 2 Extend (s) & & 0.0 & 0.0 & 0.0 & 0.0 & & & & & 0.0 & & 0.0 \\
\hline Detector 3 Position(tt) & & 250 & & 250 & 250 & & & & & 250 & & \\
\hline Detector 3 Size(ft) & & 6 & & 6 & 6 & & & & & 6 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\rangle\) & & 7 & \(\checkmark\) & \(\leftarrow\) & 4 & 4 & \(\uparrow\) & P & & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Detector 3 Type & & Cl+Ex & & Cl+Ex & Cl+Ex & & & & & Cl+Ex & & \\
\hline Detector 3 Channel & & & & & & & & & & & & \\
\hline Detector 3 Extend (s) & & 0.0 & & 0.0 & 0.0 & & & & & 0.0 & & \\
\hline Turn Type & & NA & Free & Prot & NA & & & & & Prot & & Prot \\
\hline Protected Phases & & 2 & & 1 & 6 & & & & & & & 4 \\
\hline Permitted Phases & & & Free & & & & & & & & & \\
\hline Detector Phase & & 2 & & 1 & 6 & & & & & 4 & & 4 \\
\hline Switch Phase & & & & & & & & & & & & \\
\hline Minimum Initial (s) & & 9.0 & & 4.0 & 9.0 & & & & & 4.0 & & 4.0 \\
\hline Minimum Split (s) & & 21.0 & & 10.0 & 21.0 & & & & & 10.0 & & 10.0 \\
\hline Total Split (s) & & 34.0 & & 37.0 & 71.0 & & & & & 39.0 & & 39.0 \\
\hline Total Split (\%) & & 30.9\% & & 33.6\% & 64.5\% & & & & & 35.5\% & & 35.5\% \\
\hline Maximum Green (s) & & 28.0 & & 31.0 & 65.0 & & & & & 33.0 & & 33.0 \\
\hline Yellow Time (s) & & 4.0 & & 4.0 & 4.0 & & & & & 4.0 & & 4.0 \\
\hline All-Red Time (s) & & 2.0 & & 2.0 & 2.0 & & & & & 2.0 & & 2.0 \\
\hline Lost Time Adjust (s) & & 0.0 & & 0.0 & 0.0 & & & & & 0.0 & & 0.0 \\
\hline Total Lost Time (s) & & 6.0 & & 6.0 & 6.0 & & & & & 6.0 & & 6.0 \\
\hline Lead/Lag & & Lag & & Lead & & & & & & & & \\
\hline Lead-Lag Optimize? & & & & & & & & & & & & \\
\hline Vehicle Extension (s) & & 5.0 & & 3.0 & 5.0 & & & & & 3.0 & & 3.0 \\
\hline Recall Mode & & C-Min & & None & C-Min & & & & & None & & None \\
\hline Walk Time (s) & & 7.0 & & & 7.0 & & & & & & & \\
\hline Flash Dont Walk (s) & & 8.0 & & & 8.0 & & & & & & & \\
\hline Pedestrian Calls (\#hr) & & 0 & & & 0 & & & & & & & \\
\hline Act Effit Green (s) & & 32.1 & 110.0 & 28.8 & 66.9 & & & & & 31.1 & & 31.1 \\
\hline Actuated g/C Ratio & & 0.29 & 1.00 & 0.26 & 0.61 & & & & & 0.28 & & 0.28 \\
\hline \(\mathrm{V} / \mathrm{c}\) Ratio & & 0.69 & 0.35 & 0.88 & 0.46 & & & & & 0.16 & & 0.92 \\
\hline Control Delay & & 40.5 & 0.7 & 34.3 & 1.4 & & & & & 29.4 & & 52.0 \\
\hline Queue Delay & & 0.0 & 0.0 & 0.0 & 0.0 & & & & & 0.0 & & 0.0 \\
\hline Total Delay & & 40.5 & 0.7 & 34.3 & 1.4 & & & & & 29.4 & & 52.0 \\
\hline LOS & & D & A & c & A & & & & & C & & D \\
\hline Approach Delay & & 23.0 & & & 11.0 & & & & & & 46.7 & \\
\hline Approach LOS & & C & & & B & & & & & & D & \\
\hline Queue Length 50th (tt) & & 221 & 0 & 48 & 12 & & & & & 39 & & 247 \\
\hline Queue Length 95th (tt) & & 290 & 0 & m41 & 11 & & & & & 52 & & 273 \\
\hline Internal Link Dist (tt) & & 771 & & & 613 & & & 406 & & & 501 & \\
\hline Turn Bay Length (ft) & & & 350 & & & & & & & & & \\
\hline Base Capacity (vph) & & 925 & 1417 & 475 & 2051 & & & & & 990 & & 551 \\
\hline Starvation Cap Reductn & & 0 & 0 & 0 & 0 & & & & & & & 0 \\
\hline Spillback Cap Reductn & & 0 & 0 & 0 & 0 & & & & & 0 & & 0 \\
\hline Storage Cap Reductn & & 0 & 0 & 0 & 0 & & & & & 0 & & 0 \\
\hline Reduced v/c Ratio & & 0.69 & 0.35 & 0.82 & 0.46 & & & & & 0.15 & & 0.88 \\
\hline
\end{tabular}
Intersection Summary \(\quad\) Other
Area Type:
Cycle Length: \(110 \quad\) Actuated Cycle Length: 110
Offset: 61 ( \(55 \%\) ), Referenced to phase 2:EBT and \(6:\) WBT, Start of Yellow
Natural Cycle: 90

Lanes, Volumes, Timings
3 : Exit 5 SB On/Exit 5 SB Off \& NH 28
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.92
Intersection Signal Delay: 22.7
Intersection LOS: C
Intersection Capacity Utilization 71.4\%
ICU Level of Service C
Analysis Period (min) 15
\(m\) Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 2: Exit 5 SB On/Exit 5 SB Off \& NH 28

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \({ }^{*}\) & 㱐年 & & & 44 & 「 & \％ & & 7 & & & \\
\hline Traffic Volume（vph） & 485 & 210 & 0 & 0 & 520 & 350 & 450 & 0 & 160 & 0 & 0 & 0 \\
\hline Future Volume（vph） & 485 & 210 & 0 & 0 & 520 & 350 & 450 & 0 & 160 & 0 & 0 & 0 \\
\hline Ideal Flow（vphpl） & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Lane Util．Factor & 1.00 & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Frt & & & & & & 0.850 & & & 0.850 & & & \\
\hline Flt Protected & 0.950 & & & & & & 0.950 & & & & & \\
\hline Satd．Flow（prot） & 1641 & 3282 & 0 & 0 & 3438 & 1538 & 1656 & 0 & 1482 & 0 & 0 & 0 \\
\hline Flt Permitted & 0.950 & & & & & & 0.950 & & & & & \\
\hline Satd．Flow（perm） & 1641 & 3282 & 0 & 0 & 3438 & 1538 & 1656 & 0 & 1482 & 0 & 0 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd．Flow（RTOR） & & & & & & 389 & & & 193 & & & \\
\hline Link Speed（mph） & & 30 & & & 30 & & & 35 & & & 30 & \\
\hline Link Distance（ft） & & 693 & & & 542 & & & 867 & & & 392 & \\
\hline Travel Time（s） & & 15.8 & & & 12.3 & & & 16.9 & & & 8.9 & \\
\hline Peak Hour Factor & 0.87 & 0.87 & 0.87 & 0.90 & 0.90 & 0.90 & 0.78 & 0.78 & 0.78 & 0.92 & 0.92 & 0.92 \\
\hline Heavy Vehicles（\％） & 10\％ & 10\％ & 10\％ & 5\％ & 5\％ & 5\％ & 9\％ & 9\％ & 9\％ & 2\％ & 2\％ & 2\％ \\
\hline Adj．Flow（vph） & 557 & 241 & 0 & 0 & 578 & 389 & 577 & 0 & 205 & 0 & 0 & 0 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic（\％）} \\
\hline Lane Group Flow（vph） & 557 & 241 & 0 & 0 & 578 & 389 & 577 & 0 & 205 & 0 & 0 & 0 \\
\hline Enter Blocked Intersection & No \\
\hline Lane Alignment & Left & Left & Right & Left & Right & Right & Right & Left & Right & Left & Left & Right \\
\hline Median Width（ft） & & 36 & & & 42 & & & 12 & & & 12 & \\
\hline Link Offset（ft） & & 0 & & & 0 & & & 0 & & & 36 & \\
\hline Crosswalk Width（ft） & & 16 & & & 16 & & & 16 & & & 16 & \\
\hline \multicolumn{13}{|l|}{Two way Left Turn Lane} \\
\hline Headway Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Turning Speed（mph） & 15 & & 9 & 15 & & 25 & 15 & & 9 & 15 & & 9 \\
\hline Number of Detectors & 3 & 3 & & & 3 & 2 & 3 & & 0 & & & \\
\hline Detector Template & Left & Thru & & & Thru & Right & Left & & & & & \\
\hline Leading Detector（ft） & 256 & 256 & & & 256 & 131 & 256 & & 0 & & & \\
\hline Trailing Detector（ft） & －5 & －5 & & & －5 & －5 & －5 & & 0 & & & \\
\hline Detector 1 Position（ft） & －5 & －5 & & & －5 & －5 & －5 & & －5 & & & \\
\hline Detector 1 Size（ft） & 50 & 50 & & & 50 & 50 & 50 & & 50 & & & \\
\hline Detector 1 Type & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \\
\hline \multicolumn{13}{|l|}{Detector 1 Channel} \\
\hline Detector 1 Extend（s） & 0.0 & 0.0 & & & 0.0 & 0.0 & 0.0 & & 0.0 & & & \\
\hline Detector 1 Queue（s） & 0.0 & 0.0 & & & 0.0 & 0.0 & 0.0 & & 0.0 & & & \\
\hline Detector 1 Delay（s） & 0.0 & 0.0 & & & 0.0 & 0.0 & 0.0 & & 0.0 & & & \\
\hline Detector 2 Position（ft） & 125 & 125 & & & 125 & 125 & 125 & & & & & \\
\hline Detector 2 Size（ft） & 6 & 6 & & & 6 & 6 & 6 & & & & & \\
\hline Detector 2 Type & \(\mathrm{Cl}+\mathrm{Ex}\) & CI＋Ex & & & Cl＋Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{EX}\) & & & & & \\
\hline \multicolumn{13}{|l|}{Detector 2 Channel} \\
\hline Detector 2 Extend（s） & 0.0 & 0.0 & & & 0.0 & 0.0 & 0.0 & & & & & \\
\hline Detector 3 Position（ft） & 250 & 250 & & & 250 & & 250 & & & & & \\
\hline Detector 3 Size（ft） & 6 & 6 & & & 6 & & 6 & & & & & \\
\hline Detector 3 Type & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & & & \\
\hline \multicolumn{13}{|l|}{Detector 3 Channel} \\
\hline Detector 3 Extend（s） & 0.0 & 0.0 & & & 0.0 & & 0.0 & & & & & \\
\hline
\end{tabular}

Lanes, Volumes, Timings
4 3: Exit 5 NB Off \& NH 28
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & & \(\checkmark\) & \[
\longleftarrow
\] & & 4 & \(\dagger\) & \(p\) & & \(\downarrow\) & \(\pm\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Turn Type & Prot & NA & & & NA & Free & Prot & & Prot & & & \\
\hline Protected Phases & 5 & 2 & & & 6 & & 8 & & 8 & & & \\
\hline Permitted Phases & & 2 & & & 6 & Free & & & & & & \\
\hline Detector Phase & 5 & 2 & & & 6 & & 8 & & 8 & & & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 4.0 & 16.0 & & & 16.0 & & 4.0 & & 4.0 & & & \\
\hline Minimum Split (s) & 10.0 & 23.0 & & & 23.0 & & 10.0 & & 10.0 & & & \\
\hline Total Split (s) & 42.0 & 67.0 & & & 25.0 & & 43.0 & & 43.0 & & & \\
\hline Total Split (\%) & 38.2\% & 60.9\% & & & 22.7\% & & 39.1\% & & 39.1\% & & & \\
\hline Maximum Green (s) & 36.0 & 61.0 & & & 19.0 & & 37.0 & & 37.0 & & & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & & 4.0 & & 4.0 & & 4.0 & & & \\
\hline All-Red Time (s) & 2.0 & 2.0 & & & 2.0 & & 2.0 & & 2.0 & & & \\
\hline Lost Time Adjust (s) & 0.0 & 0.0 & & & 0.0 & & 0.0 & & 0.0 & & & \\
\hline Total Lost Time (s) & 6.0 & 6.0 & & & 6.0 & & 6.0 & & 6.0 & & & \\
\hline Lead/Lag & Lead & & & & Lag & & & & & & & \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 5.0 & 5.0 & & & 5.0 & & 3.0 & & 3.0 & & & \\
\hline Recall Mode & None & C-Min & & & C-Min & & None & & None & & & \\
\hline Walk Time (s) & & 7.0 & & & 7.0 & & & & & & & \\
\hline Flash Dont Walk (s) & & 10.0 & & & 10.0 & & & & & & & \\
\hline Pedestrian Calls (\#/hr) & & 0 & & & 0 & & & & & & & \\
\hline Act Effct Green (s) & 36.0 & 61.0 & & & 19.0 & 110.0 & 37.0 & & 37.0 & & & \\
\hline Actuated g/C Ratio & 0.33 & 0.55 & & & 0.17 & 1.00 & 0.34 & & 0.34 & & & \\
\hline \(\mathrm{v} / \mathrm{c}\) Ratio & 1.04 & 0.13 & & & 0.97 & 0.25 & 1.04 & & 0.33 & & & \\
\hline Control Delay & 57.4 & 2.2 & & & 77.1 & 0.4 & 84.5 & & 6.1 & & & \\
\hline Queue Delay & 0.0 & 0.0 & & & 0.0 & 0.0 & 0.0 & & 0.0 & & & \\
\hline Total Delay & 57.4 & 2.2 & & & 77.1 & 0.4 & 84.5 & & 6.1 & & & \\
\hline LOS & E & A & & & E & A & F & & A & & & \\
\hline Approach Delay & & 40.7 & & & 46.3 & & & 63.9 & & & & \\
\hline Approach LOS & & D & & & D & & & E & & & & \\
\hline Queue Length 50th (ft) & \(\sim 419\) & 3 & & & 215 & 0 & \(\sim 440\) & & 6 & & & \\
\hline Queue Length 95th (ft) & \#573 & 4 & & & \#331 & 0 & \#512 & & 35 & & & \\
\hline Internal Link Dist (ft) & & 613 & & & 462 & & & 787 & & & 312 & \\
\hline \multicolumn{13}{|l|}{Turn Bay Length ( ft )} \\
\hline Base Capacity (vph) & 537 & 1820 & & & 593 & 1538 & 557 & & 626 & & & \\
\hline Starvation Cap Reductn & 0 & 0 & & & 0 & 0 & 0 & & 0 & & & \\
\hline Spillback Cap Reductn & 0 & 0 & & & 0 & 0 & 0 & & 0 & & & \\
\hline Storage Cap Reductn & 0 & 0 & & & 0 & 0 & 0 & & 0 & & & \\
\hline Reduced v/c Ratio & 1.04 & 0.13 & & & 0.97 & 0.25 & 1.04 & & 0.33 & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline \multicolumn{13}{|l|}{Area Type: Other} \\
\hline \multicolumn{13}{|l|}{Cycle Length: 110} \\
\hline \multicolumn{13}{|l|}{Actuated Cycle Length: 110} \\
\hline \multicolumn{13}{|l|}{Offset: \(0(0 \%\), Referenced to phase 2:EBT and 6:WBT, Start of Yellow, Master Intersection} \\
\hline \multicolumn{13}{|l|}{Natural Cycle: 110} \\
\hline \multicolumn{13}{|l|}{Control Type: Actuated-Coordinated} \\
\hline \multicolumn{13}{|l|}{Maximum v/c Ratio: 1.04} \\
\hline Intersection Signal Delay: & & & & & ersection & LOS: D & & & & & & \\
\hline
\end{tabular}

Intersection Capacity Utilization 71.4\%
ICU Level of Service C
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 3: Exit 5 NB Off \& NH 28

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & & \(\uparrow\) & \({ }^{7}\) & & \(\uparrow\) & & 7 & 刺 & & \({ }^{*}\) & 瑯 & \\
\hline Traffic Volume (vph) & 10 & 0 & 160 & 0 & 0 & 1 & 100 & 500 & 5 & 5 & 1110 & 30 \\
\hline Future Volume (vph) & 10 & 0 & 160 & 0 & 0 & 1 & 100 & 500 & 5 & 5 & 1110 & 30 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 0 & & 225 & 0 & & 0 & 350 & & 0 & 100 & & 0 \\
\hline Storage Lanes & 0 & & 1 & 0 & & 0 & 1 & & 0 & 1 & & 0 \\
\hline Taper Length (ft) & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.95 & 0.95 & 1.00 & 0.95 & 0.95 \\
\hline Frt & & & 0.850 & & 0.865 & & & 0.999 & & & 0.996 & \\
\hline Flt Protected & & 0.950 & & & & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (prot) & 0 & 1770 & 1583 & 0 & 1644 & 0 & 1770 & 3536 & 0 & 1770 & 3525 & 0 \\
\hline Flt Permitted & & & & & & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (perm) & 0 & 1863 & 1583 & 0 & 1644 & 0 & 1770 & 3536 & 0 & 1770 & 3525 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & & 182 & & 381 & & & 2 & & & 4 & \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance (ft) & & 593 & & & 447 & & & 750 & & & 330 & \\
\hline Travel Time (s) & & 13.5 & & & 10.2 & & & 17.0 & & & 7.5 & \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.25 & 0.25 & 0.25 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 0\% & 0\% & 0\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% \\
\hline Adj. Flow (vph) & 11 & 0 & 174 & 0 & 0 & 4 & 109 & 543 & 5 & 5 & 1207 & 33 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 11 & 174 & 0 & 4 & 0 & 109 & 548 & 0 & 5 & 1240 & 0 \\
\hline Enter Blocked Intersection & No \\
\hline Lane Alignment & Left & Left & Right \\
\hline Median Width(ft) & & 0 & & & 0 & & & 12 & & & 12 & \\
\hline Link Offset(ft) & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Crosswalk Width(ft) & & 16 & & & 16 & & & 16 & & & 16 & \\
\hline \multicolumn{13}{|l|}{Two way Left Turn Lane} \\
\hline Headway Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Turning Speed (mph) & 15 & & 9 & 15 & & 9 & 15 & & 9 & 15 & & 9 \\
\hline Number of Detectors & 3 & 3 & 1 & 3 & 1 & & 3 & 3 & & 3 & 3 & \\
\hline Detector Template & Left & Thru & Right & Left & & & Left & Thru & & Left & Thru & \\
\hline Leading Detector (ft) & 256 & 256 & 45 & 256 & 45 & & 256 & 256 & & 256 & 256 & \\
\hline Trailing Detector (ft) & -5 & -5 & -5 & -5 & -5 & & -5 & -5 & & -5 & -5 & \\
\hline Detector 1 Position(ft) & -5 & -5 & -5 & -5 & -5 & & -5 & -5 & & -5 & -5 & \\
\hline Detector 1 Size(ft) & 50 & 50 & 50 & 50 & 50 & & 50 & 50 & & 50 & 50 & \\
\hline Detector 1 Type & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline \multicolumn{13}{|l|}{Detector 1 Channel} \\
\hline Detector 1 Extend (s) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 1 Queue (s) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 1 Delay (s) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 2 Position(ft) & 125 & 125 & & 125 & & & 125 & 125 & & 125 & 125 & \\
\hline Detector 2 Size(ft) & 6 & 6 & & 6 & & & 6 & 6 & & 6 & 6 & \\
\hline Detector 2 Type & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline \multicolumn{13}{|l|}{Detector 2 Channel} \\
\hline Detector 2 Extend (s) & 0.0 & 0.0 & & 0.0 & & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 3 Position(ft) & 250 & 250 & & 250 & & & 250 & 250 & & 250 & 250 & \\
\hline Detector 3 Size(ft) & 6 & 6 & & 6 & & & 6 & 6 & & 6 & 6 & \\
\hline
\end{tabular}

Lanes, Volumes, Timings
5 g: NH 102 \& St. Charles Street/Londonderry Road
01/23/2018
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Detector 3 Type & \(\mathrm{Cl}+\mathrm{Ex}\) & Cl+Ex & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline Detector 3 Channel & & & & & & & & & & & & \\
\hline Detector 3 Extend (s) & 0.0 & 0.0 & & 0.0 & & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Turn Type & Perm & NA & custom & & NA & & Prot & NA & & Prot & NA & \\
\hline Protected Phases & & 8 & & & 4 & & 5 & 2 & & 1 & 6 & \\
\hline Permitted Phases & 8 & & 6 & 4 & & & & & & & & \\
\hline Detector Phase & 8 & 8 & 6 & 4 & 4 & & 5 & 2 & & 1 & 6 & \\
\hline Switch Phase & & & & & & & & & & & & \\
\hline Minimum Initial (s) & 5.0 & 5.0 & 8.0 & 5.0 & 5.0 & & 5.0 & 8.0 & & 5.0 & 8.0 & \\
\hline Minimum Split (s) & 24.0 & 24.0 & 24.0 & 24.0 & 24.0 & & 24.0 & 24.0 & & 11.0 & 24.0 & \\
\hline Total Split (s) & 24.0 & 24.0 & 42.0 & 24.0 & 24.0 & & 24.0 & 55.0 & & 11.0 & 42.0 & \\
\hline Total Split (\%) & 26.7\% & 26.7\% & 46.7\% & 26.7\% & 26.7\% & & 26.7\% & 61.1\% & & 12.2\% & 46.7\% & \\
\hline Maximum Green (s) & 18.0 & 18.0 & 36.0 & 18.0 & 18.0 & & 18.0 & 49.0 & & 5.0 & 36.0 & \\
\hline Yellow Time (s) & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & \\
\hline All-Red Time (s) & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & 0.0 & & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Total Lost Time (s) & & 6.0 & 6.0 & & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Lead/Lag & & & Lag & & & & Lead & Lag & & Lead & Lag & \\
\hline Lead-Lag Optimize? & & & & & & & & & & & & \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & None & None & Min & None & None & & None & Min & & None & Min & \\
\hline Walk Time (s) & 7.0 & 7.0 & 7.0 & 7.0 & 7.0 & & 7.0 & 7.0 & & & 7.0 & \\
\hline Flash Dont Walk (s) & 11.0 & 11.0 & 11.0 & 11.0 & 11.0 & & 11.0 & 11.0 & & & 11.0 & \\
\hline Pedestrian Calls (\#/hr) & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & & & 0 & \\
\hline Act Effct Green (s) & & 6.3 & 42.7 & & 6.0 & & 9.3 & 57.0 & & 5.1 & 42.7 & \\
\hline Actuated g/C Ratio & & 0.10 & 0.69 & & 0.10 & & 0.15 & 0.92 & & 0.08 & 0.69 & \\
\hline \(\mathrm{v} / \mathrm{c}\) Ratio & & 0.06 & 0.15 & & 0.01 & & 0.41 & 0.17 & & 0.03 & 0.51 & \\
\hline Control Delay & & 27.9 & 1.9 & & 0.0 & & 29.7 & 2.3 & & 29.8 & 8.8 & \\
\hline Queue Delay & & 0.0 & 0.0 & & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Total Delay & & 27.9 & 1.9 & & 0.0 & & 29.7 & 2.3 & & 29.8 & 8.8 & \\
\hline LOS & & C & A & & A & & C & A & & C & A & \\
\hline Approach Delay & & 3.5 & & & & & & 6.9 & & & 8.9 & \\
\hline Approach LOS & & A & & & & & & A & & & A & \\
\hline Queue Length 50th (ft) & & 3 & 0 & & 0 & & 34 & 0 & & 2 & 104 & \\
\hline Queue Length 95th (ft) & & 19 & 27 & & 0 & & 89 & 82 & & 13 & 305 & \\
\hline Internal Link Dist (ft) & & 513 & & & 367 & & & 670 & & & 250 & \\
\hline Turn Bay Length (ft) & & & 225 & & & & 350 & & & 100 & & \\
\hline Base Capacity (vph) & & 552 & 1146 & & 755 & & 524 & 3276 & & 145 & 2428 & \\
\hline Starvation Cap Reductn & & 0 & 0 & & 0 & & 0 & 0 & & 0 & 0 & \\
\hline Spillback Cap Reductn & & 0 & 0 & & 0 & & 0 & 0 & & 0 & 0 & \\
\hline Storage Cap Reductn & & 0 & 0 & & 0 & & 0 & 0 & & 0 & 0 & \\
\hline Reduced v/c Ratio & & 0.02 & 0.15 & & 0.01 & & 0.21 & 0.17 & & 0.03 & 0.51 & \\
\hline
\end{tabular}

\section*{Intersection Summary}

Area Type: Other
Cycle Length: 90
Actuated Cycle Length: 62
Natural Cycle: 80
Control Type: Actuated-Uncoordinated

Lanes, Volumes, Timings
S 9:: NH 102 \& St. Charles Street/Londonderry Road
Maximum v/c Ratio: 0.51
Intersection Signal Delay: \(7.8 \quad\) Intersection LOS: A
Intersection Capacity Utilization 64.5\%
Analysis Period (min) 15
ICU Level of Service C

Splits and Phases: 9: NH 102 \& St. Charles Street/Londonderry Road

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & & \(\uparrow\) & & & * & & & \(\uparrow\) & & & 4 & \\
\hline Traffic Volume (vph) & 10 & 20 & 10 & 350 & 0 & 30 & 0 & 420 & 110 & 15 & 585 & 0 \\
\hline Future Volume (vph) & 10 & 20 & 10 & 350 & 0 & 30 & 0 & 420 & 110 & 15 & 585 & 0 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & 0.966 & & & 0.989 & & & 0.972 & & & & \\
\hline Fit Protected & & 0.987 & & & 0.956 & & & & & & 0.999 & \\
\hline Satd. Flow (prot) & 0 & 1776 & 0 & 0 & 1744 & 0 & 0 & 1710 & 0 & 0 & 1808 & 0 \\
\hline Flt Permitted & & 0.874 & & & 0.694 & & & & & & 0.981 & \\
\hline Satd. Flow (perm) & 0 & 1573 & 0 & 0 & 1266 & 0 & 0 & 1710 & 0 & 0 & 1775 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & 17 & & & 36 & & & 21 & & & & \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance (ft) & & 356 & & & 493 & & & 1124 & & & 603 & \\
\hline Travel Time (s) & & 8.1 & & & 11.2 & & & 25.5 & & & 13.7 & \\
\hline Peak Hour Factor & 0.60 & 0.60 & 0.60 & 0.96 & 0.96 & 0.96 & 0.89 & 0.89 & 0.89 & 0.86 & 0.86 & 0.86 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 3\% & 3\% & 3\% & 8\% & 8\% & 8\% & 5\% & 5\% & 5\% \\
\hline Adj. Flow (vph) & 17 & 33 & 17 & 365 & 0 & 31 & 0 & 472 & 124 & 17 & 680 & 0 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 67 & 0 & 0 & 396 & 0 & 0 & 596 & 0 & 0 & 697 & 0 \\
\hline Enter Blocked Intersection & No \\
\hline Lane Alignment & Left & Left & Right \\
\hline Median Width(ft) & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Link Offset(ft) & & -22 & & & 0 & & & 0 & & & 0 & \\
\hline Crosswalk Width(ft) & & 16 & & & 16 & & & 16 & & & 16 & \\
\hline \multicolumn{13}{|l|}{Two way Left Turn Lane} \\
\hline Headway Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Turning Speed (mph) & 15 & & 9 & 15 & & 9 & 15 & & 9 & 15 & & 9 \\
\hline Number of Detectors & 3 & 1 & & 3 & 2 & & & 2 & & 3 & 2 & \\
\hline Detector Template & Left & & & Left & & & & & & Left & & \\
\hline Leading Detector ( ft ) & 256 & 45 & & 256 & 131 & & & 131 & & 256 & 131 & \\
\hline Trailing Detector ( ft ) & -5 & -5 & & -5 & -5 & & & -5 & & -5 & -5 & \\
\hline Detector 1 Position(ft) & -5 & -5 & & -5 & -5 & & & -5 & & -5 & -5 & \\
\hline Detector 1 Size(ft) & 50 & 50 & & 50 & 50 & & & 50 & & 50 & 50 & \\
\hline Detector 1 Type & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & & Cl+Ex & Cl+Ex & & & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline Detector 1 Channel & & & & & & & & & & & & \\
\hline Detector 1 Extend (s) & 0.0 & 0.0 & & 0.0 & 0.0 & & & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 1 Queue (s) & 0.0 & 0.0 & & 0.0 & 0.0 & & & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 1 Delay (s) & 0.0 & 0.0 & & 0.0 & 0.0 & & & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 2 Position(ft) & 125 & & & 125 & 125 & & & 125 & & 125 & 125 & \\
\hline Detector 2 Size(ft) & 6 & & & 6 & 6 & & & 6 & & 6 & 6 & \\
\hline Detector 2 Type & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline \multicolumn{13}{|l|}{Detector 2 Channel} \\
\hline Detector 2 Extend (s) & 0.0 & & & 0.0 & 0.0 & & & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 3 Position(ft) & 250 & & & 250 & & & & & & 250 & & \\
\hline Detector 3 Size(ft) & 6 & & & 6 & & & & & & 6 & & \\
\hline Detector 3 Type & Cl+Ex & & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & & & & \(\mathrm{Cl}+\mathrm{Ex}\) & & \\
\hline \multicolumn{13}{|l|}{Detector 3 Channel} \\
\hline Detector 3 Extend (s) & 0.0 & & & 0.0 & & & & & & 0.0 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Turn Type & Perm & NA & & Perm & NA & & & NA & & Perm & NA & \\
\hline Protected Phases & & 4 & & & 4 & & & 2 & & & 2 & \\
\hline Permitted Phases & 4 & & & 4 & & & & & & 2 & & \\
\hline Detector Phase & 4 & 4 & & 4 & 4 & & & 2 & & 2 & 2 & \\
\hline Switch Phase & & & & & & & & & & & & \\
\hline Minimum Initial (s) & 5.0 & 5.0 & & 5.0 & 5.0 & & & 5.0 & & 5.0 & 5.0 & \\
\hline Minimum Split (s) & 24.0 & 24.0 & & 24.0 & 24.0 & & & 24.0 & & 24.0 & 24.0 & \\
\hline Total Split (s) & 39.0 & 39.0 & & 39.0 & 39.0 & & & 51.0 & & 51.0 & 51.0 & \\
\hline Total Split (\%) & 43.3\% & 43.3\% & & 43.3\% & 43.3\% & & & 56.7\% & & 56.7\% & 56.7\% & \\
\hline Maximum Green (s) & 33.0 & 33.0 & & 33.0 & 33.0 & & & 45.0 & & 45.0 & 45.0 & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & & 4.0 & & 4.0 & 4.0 & \\
\hline All-Red Time (s) & 2.0 & 2.0 & & 2.0 & 2.0 & & & 2.0 & & 2.0 & 2.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & & 6.0 & & & 6.0 & & & 6.0 & & & 6.0 & \\
\hline Lead/Lag & & & & & & & & & & & & \\
\hline Lead-Lag Optimize? & & & & & & & & & & & & \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & None & None & & None & None & & & Min & & Min & Min & \\
\hline Walk Time (s) & 7.0 & 7.0 & & 7.0 & 7.0 & & & 7.0 & & 7.0 & 7.0 & \\
\hline Flash Dont Walk (s) & 11.0 & 11.0 & & 11.0 & 11.0 & & & 11.0 & & 11.0 & 11.0 & \\
\hline Pedestrian Calls (\#/hr) & 0 & 0 & & 0 & 0 & & & 0 & & 0 & 0 & \\
\hline Act Effct Green (s) & & 27.3 & & & 27.3 & & & 38.5 & & & 38.5 & \\
\hline Actuated g/C Ratio & & 0.35 & & & 0.35 & & & 0.49 & & & 0.49 & \\
\hline v/c Ratio & & 0.12 & & & 0.85 & & & 0.70 & & & 0.80 & \\
\hline Control Delay & & 15.4 & & & 41.6 & & & 21.0 & & & 26.0 & \\
\hline Queue Delay & & 0.0 & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Delay & & 15.4 & & & 41.6 & & & 21.0 & & & 26.0 & \\
\hline LOS & & B & & & D & & & C & & & C & \\
\hline Approach Delay & & 15.4 & & & 41.6 & & & 21.0 & & & 26.0 & \\
\hline Approach LOS & & B & & & D & & & C & & & C & \\
\hline Queue Length 50th (ft) & & 18 & & & 183 & & & 238 & & & 311 & \\
\hline Queue Length 95th (ft) & & 28 & & & \#345 & & & 356 & & & 428 & \\
\hline Internal Link Dist (ft) & & 276 & & & 413 & & & 1044 & & & 523 & \\
\hline Turn Bay Length (ft) & & & & & & & & & & & & \\
\hline Base Capacity (vph) & & 706 & & & 581 & & & 1041 & & & 1072 & \\
\hline Starvation Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Spillback Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Storage Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Reduced v/c Ratio & & 0.09 & & & 0.68 & & & 0.57 & & & 0.65 & \\
\hline
\end{tabular}

\section*{Intersection Summary}

Area Type:
Other
Cycle Length: 90
Actuated Cycle Length: 78.4
Natural Cycle: 65
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.85

Intersection Signal Delay: 27.4
Intersection Capacity Utilization 82.1\%

Intersection LOS: C
ICU Level of Service E

Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 10: NH 102 \& Fordway/Madden Hill Road

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \% & \(\dagger\) & & 7 & F & & \({ }^{7}\) & † & & 7 & \(\uparrow\) & F \\
\hline Traffic Volume (vph) & 80 & 200 & 90 & 20 & 520 & 60 & 60 & 290 & 30 & 70 & 240 & 30 \\
\hline Future Volume (vph) & 80 & 200 & 90 & 20 & 520 & 60 & 60 & 290 & 30 & 70 & 240 & 30 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 390 & & 0 & 110 & & 0 & 70 & & 0 & 245 & & 245 \\
\hline Storage Lanes & 1 & & 0 & 1 & & 0 & 1 & & 0 & 1 & & 1 \\
\hline Taper Length (ft) & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & 0.953 & & & 0.984 & & & 0.986 & & & & 0.850 \\
\hline Flt Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (prot) & 1656 & 1661 & 0 & 1703 & 1764 & 0 & 1719 & 1784 & 0 & 1703 & 1792 & 1524 \\
\hline Flt Permitted & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (perm) & 1656 & 1661 & 0 & 1703 & 1764 & 0 & 1719 & 1784 & 0 & 1703 & 1792 & 1524 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & 29 & & & 7 & & & 5 & & & & 182 \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance (ft) & & 505 & & & 530 & & & 361 & & & 411 & \\
\hline Travel Time (s) & & 11.5 & & & 12.0 & & & 8.2 & & & 9.3 & \\
\hline Peak Hour Factor & 0.96 & 0.96 & 0.96 & 0.94 & 0.94 & 0.94 & 0.85 & 0.85 & 0.85 & 0.91 & 0.91 & 0.91 \\
\hline Heavy Vehicles (\%) & 9\% & 9\% & 9\% & 6\% & 6\% & 6\% & 5\% & 5\% & 5\% & 6\% & 6\% & 6\% \\
\hline Parking (\#/hr) & & & 0 & & & & & & & & & \\
\hline Adj. Flow (vph) & 83 & 208 & 94 & 21 & 553 & 64 & 71 & 341 & 35 & 77 & 264 & 33 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 83 & 302 & 0 & 21 & 617 & 0 & 71 & 376 & 0 & 77 & 264 & 33 \\
\hline Turn Type & Prot & NA & Perm \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & 3 & 8 & & 7 & 4 & \\
\hline Permitted Phases & & & & & & & & & & & & 4 \\
\hline Detector Phase & 5 & 2 & & 1 & 6 & & 3 & 8 & & 7 & 4 & 4 \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 4.0 & 5.0 & & 4.0 & 10.0 & & 4.0 & 10.0 & & 4.0 & 9.0 & 9.0 \\
\hline Minimum Split (s) & 10.0 & 30.0 & & 10.0 & 30.0 & & 10.0 & 25.0 & & 10.0 & 25.0 & 25.0 \\
\hline Total Split (s) & 12.0 & 39.0 & & 12.0 & 39.0 & & 14.0 & 25.0 & & 14.0 & 25.0 & 25.0 \\
\hline Total Split (\%) & 13.3\% & 43.3\% & & 13.3\% & 43.3\% & & 15.6\% & 27.8\% & & 15.6\% & 27.8\% & 27.8\% \\
\hline Maximum Green (s) & 6.0 & 33.0 & & 6.0 & 33.0 & & 8.0 & 19.0 & & 8.0 & 19.0 & 19.0 \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 \\
\hline All-Red Time (s) & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & 2.0 \\
\hline Lost Time Adjust (s) & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 \\
\hline Total Lost Time (s) & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & 6.0 \\
\hline Lead/Lag & Lead & Lag & Lag \\
\hline Lead-Lag Optimize? & Yes & Yes & Yes \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & 3.0 \\
\hline Recall Mode & None & Min & & None & Min & & Min & None & & Min & None & None \\
\hline Walk Time (s) & & 7.0 & & & 7.0 & & & 7.0 & & & 7.0 & 7.0 \\
\hline Flash Dont Walk (s) & & 11.0 & & & 11.0 & & & 11.0 & & & 11.0 & 11.0 \\
\hline Pedestrian Calls (\#/hr) & & 10 & & & 10 & & & 0 & & & 10 & 10 \\
\hline Act Effct Green (s) & 6.1 & 36.0 & & 5.9 & 31.5 & & 7.4 & 19.3 & & 7.5 & 19.3 & 19.3 \\
\hline Actuated g/C Ratio & 0.07 & 0.42 & & 0.07 & 0.37 & & 0.09 & 0.23 & & 0.09 & 0.23 & 0.23 \\
\hline \(\mathrm{v} / \mathrm{C}\) Ratio & 0.71 & 0.42 & & 0.18 & 0.94 & & 0.48 & 0.93 & & 0.52 & 0.65 & 0.07 \\
\hline Control Delay & 74.1 & 19.0 & & 43.5 & 52.4 & & 50.4 & 66.0 & & 52.2 & 40.8 & 0.3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Queue Delay & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 74.1 & 19.0 & & 43.5 & 52.4 & & 50.4 & 66.0 & & 52.2 & 40.8 & 0.3 \\
\hline LOS & E & B & & D & D & & D & E & & D & D & A \\
\hline Approach Delay & & 30.9 & & & 52.1 & & & 63.6 & & & 39.6 & \\
\hline Approach LOS & & C & & & D & & & E & & & D & \\
\hline Queue Length 50th (ft) & 47 & 89 & & 12 & 332 & & 39 & 212 & & 43 & 140 & 0 \\
\hline Queue Length 95th (ft) & \#125 & 193 & & 35 & \#554 & & 77 & \#360 & & 87 & \#240 & 0 \\
\hline Internal Link Dist (tt) & & 425 & & & 450 & & & 281 & & & 331 & \\
\hline Turn Bay Length (ft) & 390 & & & 110 & & & 70 & & & 245 & & 245 \\
\hline Base Capacity (vph) & 117 & 753 & & 120 & 693 & & 162 & 404 & & 161 & 404 & 485 \\
\hline Starvation Cap Reductn & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & , & 0 \\
\hline Storage Cap Reductn & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.71 & 0.40 & & 0.17 & 0.89 & & 0.44 & 0.93 & & 0.48 & 0.65 & 0.07 \\
\hline
\end{tabular}

\section*{Intersection Summary}

Area Type: Other
Cycle Length: 90
Actuated Cycle Length: 85.6
Natural Cycle: 90
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.94
Intersection Signal Delay: 47.9
Intersection LOS: D
Intersection Capacity Utilization 76.4\% ICU Level of Service D
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 7: Birch St/Crystal Ave \& NH 102 (E Broadway)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & NBL & NBT & NBR & SBL & SBT & SBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & \({ }^{7}\) & 个4 & 「 & \({ }^{1 \%}\) & 44 & & 17 & \(\uparrow\) & \({ }^{\mathbf{7}}\) & 7 & 4 & あ゙「 \\
\hline Traffic Volume（vph） & 20 & 200 & 140 & 590 & 190 & 0 & 160 & 220 & 30 & 30 & 310 & 770 \\
\hline Future Volume（vph） & 20 & 200 & 140 & 590 & 190 & 0 & 160 & 220 & 30 & 30 & 310 & 770 \\
\hline Ideal Flow（vphpl） & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length（ft） & 80 & & 180 & 525 & & 190 & 200 & & 200 & 160 & & 0 \\
\hline Storage Lanes & 1 & & 1 & 2 & & 0 & 2 & & 1 & 1 & & \\
\hline Taper Length（ ft ） & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util．Factor & 1.00 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 & 0.97 & 1.00 & 1.00 & 1.00 & 1.00 & 0.88 \\
\hline Frt & & & 0.850 & & & & & & 0.850 & & & 0.850 \\
\hline Flt Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（prot） & 1736 & 3471 & 1553 & 3335 & 3438 & 0 & 3400 & 1845 & 1568 & 1752 & 1845 & 2760 \\
\hline Flt Permitted & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（perm） & 1736 & 3471 & 1553 & 3335 & 3438 & 0 & 3400 & 1845 & 1568 & 1752 & 1845 & 2760 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd．Flow（RTOR） & & & 182 & & & & & & 327 & & & 243 \\
\hline Link Speed（mph） & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance（ft） & & 639 & & & 723 & & & 532 & & & 387 & \\
\hline Travel Time（s） & & 14.5 & & & 16.4 & & & 12.1 & & & 8.8 & \\
\hline Peak Hour Factor & 0.84 & 0.84 & 0.84 & 0.79 & 0.79 & 0.79 & 0.86 & 0.86 & 0.86 & 0.99 & 0.99 & 0.99 \\
\hline Heavy Vehicles（\％） & 4\％ & 4\％ & 4\％ & 5\％ & 5\％ & 5\％ & 3\％ & 3\％ & 3\％ & 3\％ & 3\％ & 3\％ \\
\hline Adj．Flow（vph） & 24 & 238 & 167 & 747 & 241 & 0 & 186 & 256 & 35 & 30 & 313 & 778 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic（\％）} \\
\hline Lane Group Flow（vph） & 24 & 238 & 167 & 747 & 241 & 0 & 186 & 256 & 35 & 30 & 313 & 778 \\
\hline Turn Type & Prot & NA & pm＋ov & Prot & NA & & Prot & NA & Free & Prot & NA & pt＋ov \\
\hline Protected Phases & 1 & 6 & 7 & 5 & 2 & & 3 & 8 & & 7 & 4 & 45 \\
\hline Permitted Phases & & 6 & 6 & & 2 & & & 8 & Free & & 4 & \\
\hline Detector Phase & 1 & 6 & 7 & 5 & 2 & & 3 & 8 & & 7 & 4 & 45 \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial（s） & 8.0 & 5.0 & 7.0 & 7.0 & 5.0 & & 7.0 & 5.0 & & 7.0 & 5.0 & \\
\hline Minimum Split（s） & 14.0 & 20.0 & 13.0 & 13.0 & 20.0 & & 13.0 & 20.0 & & 13.0 & 20.0 & \\
\hline Total Split（s） & 19.0 & 22.0 & 13.0 & 28.0 & 31.0 & & 13.0 & 27.0 & & 13.0 & 27.0 & \\
\hline Total Split（\％） & 21．1\％ & 24．4\％ & 14．4\％ & 31．1\％ & 34．4\％ & & 14．4\％ & 30．0\％ & & 14．4\％ & 30．0\％ & \\
\hline Maximum Green（s） & 13.0 & 16.0 & 7.0 & 22.0 & 25.0 & & 7.0 & 21.0 & & 7.0 & 21.0 & \\
\hline Yellow Time（s） & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & \\
\hline All－Red Time（s） & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & \\
\hline Lost Time Adjust（s） & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Total Lost Time（s） & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Lead／Lag & Lead & Lead & Lag & Lag & Lag & & Lead & Lead & & Lag & Lag & \\
\hline Lead－Lag Optimize？ & Yes & Yes & Yes & Yes & Yes & & Yes & Yes & & Yes & Yes & \\
\hline Vehicle Extension（s） & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & None & None & None & None & C－Max & & None & None & & None & None & \\
\hline Act Effct Green（s） & 12.7 & 15.1 & 28.6 & 22.9 & 25.3 & & 7.0 & 20.5 & 90.0 & 7.5 & 21.0 & 43.9 \\
\hline Actuated g／C Ratio & 0.14 & 0.17 & 0.32 & 0.25 & 0.28 & & 0.08 & 0.23 & 1.00 & 0.08 & 0.23 & 0.49 \\
\hline \(\mathrm{v} / \mathrm{c}\) Ratio & 0.10 & 0.41 & 0.27 & 0.88 & 0.25 & & 0.70 & 0.61 & 0.02 & 0.21 & 0.73 & 0.53 \\
\hline Control Delay & 34.6 & 35.5 & 4.2 & 42.6 & 23.1 & & 56.0 & 38.1 & 0.0 & 30.9 & 29.0 & 4.3 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 34.6 & 35.5 & 4.2 & 42.6 & 23.1 & & 56.0 & 38.1 & 0.0 & 30.9 & 29.0 & 4.3 \\
\hline LOS & C & D & A & D & C & & E & D & A & C & C & A \\
\hline Approach Delay & & 23.3 & & & 37.8 & & & 42.3 & & & 11.9 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\cdots\) & \(\uparrow\) & \(\stackrel{*}{*}\) & W & \(\downarrow\) & ل & \(\stackrel{4}{ }\) & \(\nearrow\) & จ & ! & \(\downarrow\) & 4 \\
\hline Lane Group & NBL & NBT & NBR & SBL & SBT & SBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Approach LOS & & C & & & D & & & D & & & B & \\
\hline Queue Length 50th (ft) & 12 & 63 & 0 & 217 & 46 & & 54 & 130 & 0 & 14 & 100 & 30 \\
\hline Queue Length 95th (ft) & 32 & 92 & 28 & \#212 & 74 & & \#92 & 198 & 0 & m22 & m196 & 75 \\
\hline Internal Link Dist (ft) & & 559 & & & 643 & & & 452 & & & 307 & \\
\hline Turn Bay Length (ft) & 80 & & 180 & 525 & & & 200 & & 200 & 160 & & \\
\hline Base Capacity (vph) & 250 & 617 & 617 & 850 & 966 & & 264 & 430 & 1568 & 146 & 430 & 1471 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 0 & 27 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.10 & 0.39 & 0.27 & 0.88 & 0.25 & & 0.70 & 0.60 & 0.02 & 0.21 & 0.73 & 0.54 \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline \multicolumn{13}{|l|}{\multirow[t]{2}{*}{Area Type: \(\quad\) Other
Cycle Length: \(90 \quad\)}} \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{Actuated Cycle Length: 90} \\
\hline \multicolumn{13}{|l|}{Offset: \(38(42 \%)\), Referenced to phase 2:SBT, Start of Yellow} \\
\hline \multicolumn{13}{|l|}{Natural Cycle: 80} \\
\hline \multicolumn{13}{|l|}{Control Type: Actuated-Coordinated} \\
\hline \multicolumn{13}{|l|}{Maximum v/c Ratio: 0.88} \\
\hline \multicolumn{5}{|l|}{Intersection Signal Delay: 26.8} & \multicolumn{8}{|l|}{Intersection LOS: C} \\
\hline \multicolumn{13}{|l|}{Intersection Capacity Utilization 64.5\% ICU Level of Service C} \\
\hline \multicolumn{13}{|l|}{Analysis Period (min) 15} \\
\hline \multicolumn{13}{|l|}{\multirow[t]{2}{*}{\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.}} \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{m Volume for 95 th percentile queue is metered by upstream signal.} \\
\hline
\end{tabular}

Splits and Phases: 11: Folsom Rd/Tsienneto Rd \& Crystal Av/NH 28

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(n\) & 5 & - & T & 4 & \(\pm\) & & & & & & \\
\hline Lane Group & NWL & NWR & NET & NER & SWL & SWT & 01 & \(\emptyset 2\) & \(\emptyset 3\) & \(\emptyset 4\) & \(\emptyset 5\) & \(\varnothing 6\) \\
\hline Lane Configurations & \({ }^{7}\) & \% & 44 & 「 & \({ }^{*}\) & 44 & & & & & & \\
\hline Traffic Volume (vph) & 300 & 70 & 580 & 370 & 60 & 810 & & & & & & \\
\hline Future Volume (vph) & 300 & 70 & 580 & 370 & 60 & 810 & & & & & & \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & & & & & & \\
\hline Storage Length (ft) & 90 & 0 & & 0 & 175 & & & & & & & \\
\hline Storage Lanes & 1 & 1 & & 1 & 1 & & & & & & & \\
\hline Taper Length (ft) & 25 & & & & 25 & & & & & & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 0.95 & 1.00 & 1.00 & 0.95 & & & & & & \\
\hline Frt & & 0.850 & & 0.850 & & & & & & & & \\
\hline Flt Protected & 0.950 & & & & 0.950 & & & & & & & \\
\hline Satd. Flow (prot) & 1770 & 1583 & 3505 & 1568 & 1770 & 3539 & & & & & & \\
\hline Flt Permitted & 0.950 & & & & 0.230 & & & & & & & \\
\hline Satd. Flow (perm) & 1770 & 1583 & 3505 & 1568 & 428 & 3539 & & & & & & \\
\hline Right Turn on Red & & Yes & & Yes & & & & & & & & \\
\hline Satd. Flow (RTOR) & & 21 & & 430 & & & & & & & & \\
\hline Link Speed (mph) & 30 & & 30 & & & 30 & & & & & & \\
\hline Link Distance (ft) & 408 & & 387 & & & 258 & & & & & & \\
\hline Travel Time (s) & 9.3 & & 8.8 & & & 5.9 & & & & & & \\
\hline Peak Hour Factor & 0.83 & 0.83 & 0.86 & 0.86 & 0.81 & 0.81 & & & & & & \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 3\% & 3\% & 2\% & 2\% & & & & & & \\
\hline Adj. Flow (vph) & 361 & 84 & 674 & 430 & 74 & 1000 & & & & & & \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 361 & 84 & 674 & 430 & 74 & 1000 & & & & & & \\
\hline Turn Type & Prot & pm+ov & NA & Free & pm+pt & NA & & & & & & \\
\hline Protected Phases & 1256 & 7 & 8 & & 7 & 34 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline Permitted Phases & & 1256 & & Free & 34 & & & & & & & \\
\hline Detector Phase & 1256 & 7 & 8 & & 7 & 34 & & & & & & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & & 7.0 & 5.0 & & 7.0 & & 8.0 & 5.0 & 7.0 & 5.0 & 7.0 & 5.0 \\
\hline Minimum Split (s) & & 13.0 & 20.0 & & 13.0 & & 14.0 & 20.0 & 13.0 & 20.0 & 13.0 & 20.0 \\
\hline Total Split (s) & & 13.0 & 27.0 & & 13.0 & & 19.0 & 31.0 & 13.0 & 27.0 & 28.0 & 22.0 \\
\hline Total Split (\%) & & 14.4\% & 30.0\% & & 14.4\% & & 21\% & 34\% & 14\% & 30\% & \(31 \%\) & 24\% \\
\hline Maximum Green (s) & & 7.0 & 21.0 & & 7.0 & & 13.0 & 25.0 & 7.0 & 21.0 & 22.0 & 16.0 \\
\hline Yellow Time (s) & & 4.0 & 4.0 & & 4.0 & & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 \\
\hline All-Red Time (s) & & 2.0 & 2.0 & & 2.0 & & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 \\
\hline Lost Time Adjust (s) & & 0.0 & 0.0 & & 0.0 & & & & & & & \\
\hline Total Lost Time (s) & & 6.0 & 6.0 & & 6.0 & & & & & & & \\
\hline Lead/Lag & & Lag & Lead & & Lag & & Lead & Lag & Lead & Lag & Lag & Lead \\
\hline Lead-Lag Optimize? & & Yes & Yes & & Yes & & Yes & Yes & Yes & Yes & Yes & Yes \\
\hline Vehicle Extension (s) & & 3.0 & 3.0 & & 3.0 & & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
\hline Recall Mode & & None & None & & None & & None & C-Max & None & None & None & None \\
\hline Act Effct Green (s) & 41.6 & 55.1 & 20.5 & 90.0 & 34.0 & 34.0 & & & & & & \\
\hline Actuated g/C Ratio & 0.46 & 0.61 & 0.23 & 1.00 & 0.38 & 0.38 & & & & & & \\
\hline \(\mathrm{v} / \mathrm{c}\) Ratio & 0.44 & 0.09 & 0.85 & 0.27 & 0.27 & 0.75 & & & & & & \\
\hline Control Delay & 17.0 & 5.2 & 27.4 & 0.4 & 25.8 & 28.6 & & & & & & \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & & & & & \\
\hline Total Delay & 17.0 & 5.2 & 27.4 & 0.4 & 25.8 & 28.6 & & & & & & \\
\hline LOS & B & A & C & A & C & C & & & & & & \\
\hline Approach Delay & 14.8 & & 16.9 & & & 28.4 & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\cdots\) & 1 & 7 & T & 5 & 4 & & & & & & \\
\hline Lane Group & NWL & NWR & NET & NER & SWL & SWT & 01 & \(\emptyset 2\) & \(\boxed{\square}\) & \(\varnothing 4\) & \(\varnothing 5\) & \(\varnothing 6\) \\
\hline Approach LOS & B & & B & & & C & & & & & & \\
\hline Queue Length 50th (ft) & 126 & 12 & 173 & 0 & 27 & 254 & & & & & & \\
\hline Queue Length 95th (ft) & 175 & 26 & m227 & mo & 50 & 282 & & & & & & \\
\hline Internal Link Dist (ft) & 328 & & 307 & & & 178 & & & & & & \\
\hline Turn Bay Length ( ft ) & 90 & & & & 175 & & & & & & & \\
\hline Base Capacity (vph) & 812 & 977 & 817 & 1568 & 274 & 1336 & & & & & & \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & \\
\hline Reduced v/c Ratio & 0.44 & 0.09 & 0.82 & 0.27 & 0.27 & 0.75 & & & & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline \multicolumn{13}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Area Type: \\
Cycle Length: 90
\end{tabular}}} \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{Actuated Cycle Length: 90} \\
\hline \multicolumn{13}{|l|}{Offset: 38 (42\%), Referenced to phase 2:SBT, Start of Yellow} \\
\hline \multicolumn{13}{|l|}{Natural Cycle: 80} \\
\hline \multicolumn{13}{|l|}{Control Type: Actuated-Coordinated} \\
\hline \multicolumn{13}{|l|}{Maximum v/c Ratio: 0.88} \\
\hline \multicolumn{5}{|l|}{Intersection Signal Delay: 21.2} & \multicolumn{8}{|l|}{Intersection LOS: C} \\
\hline \multicolumn{5}{|l|}{Intersection Capacity Utilization 53.5\%} & \multicolumn{8}{|l|}{ICU Level of Service A} \\
\hline \multicolumn{13}{|l|}{Analysis Period (min) 15} \\
\hline \(m\) Volume for 95th percentile & queue is & meter & by upst & am & & & & & & & & \\
\hline
\end{tabular}

Splits and Phases: \(\quad\) 12: Tsienneto Rd \& Pinkerton St

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\rightarrow\) & \(\rightarrow\) & 2 & \(\ldots\) & \(\longleftarrow\) & C & * & \(\pi\) & \(\rho\) & \(\zeta\) & \(\checkmark\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & 7 & \(\uparrow{ }_{\text {¢ }}\) & & \% & 个t & & & \(\uparrow\) & F & & \(\uparrow\) & \% \\
\hline Trafic Volume (vph) & 160 & 980 & 0 & 0 & 980 & 50 & 5 & 0 & & 20 & , & 180 \\
\hline Future Volume (vph) & 160 & 980 & 0 & 0 & 980 & 50 & 5 & 0 & 5 & 20 & 0 & 180 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (tt) & 300 & & 0 & 115 & & 150 & 0 & & 0 & 0 & & 0 \\
\hline Storage Lanes & 1 & & 0 & 1 & & 0 & 0 & & 1 & 0 & & 1 \\
\hline Taper Length (t) & 50 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 0.95 & 0.95 & 1.00 & 0.95 & 0.95 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & & & & 0.993 & & & & 0.850 & & & 0.850 \\
\hline FIt Protected & 0.950 & & & & & & & 0.950 & & & 0.950 & \\
\hline Satd. Flow (prot) & 1687 & 3374 & 0 & 1863 & 3514 & 0 & 0 & 1805 & 1615 & 0 & 1787 & 1599 \\
\hline Flt Permitted & 0.950 & & & & & & & & & & & \\
\hline Satd. Flow (perm) & 1687 & 3374 & 0 & 1863 & 3514 & 0 & 0 & 1900 & 1615 & 0 & 1881 & 1599 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & & & & 7 & & & & 182 & & & 109 \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance (t) & & 463 & & & 420 & & & 218 & & & 433 & \\
\hline Travel Time (s) & & 10.5 & & & 9.5 & & & 5.0 & & & 9.8 & \\
\hline Peak Hour Factor & 0.83 & 0.83 & 0.83 & 0.92 & 0.92 & 0.92 & 0.50 & 0.50 & 0.50 & 0.90 & 0.90 & 0.90 \\
\hline Heavy Vehicles (\%) & 7\% & 7\% & 7\% & 2\% & 2\% & 2\% & 0\% & 0\% & 0\% & 1\% & 1\% & 1\% \\
\hline Adj. Flow (vph) & 193 & 1181 & 0 & 0 & 1065 & 54 & 10 & 0 & 10 & 22 & 0 & 200 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%) 20} \\
\hline Lane Group Flow (vph) & 193 & 1181 & 0 & 0 & 1119 & 0 & 0 & 10 & 10 & 0 & 22 & 200 \\
\hline Turn Type & Prot & NA & & Prot & NA & & Perm & NA & Perm & Perm & NA & pm+ov \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & & 8 & & & 4 & 5 \\
\hline Permitted Phases & & & & & 6 & & 8 & 8 & 8 & 4 & & 4 \\
\hline Detector Phase & 5 & 2 & & 1 & 6 & & 8 & 8 & 8 & 4 & 4 & 5 \\
\hline \multicolumn{13}{|l|}{} \\
\hline Minimum Initial (s) & 8.0 & 8.0 & & 5.0 & 8.0 & & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 & 8.0 \\
\hline Minimum Split (s) & 14.0 & 46.0 & & 11.0 & 43.0 & & 33.0 & 33.0 & 33.0 & 33.0 & 33.0 & 14.0 \\
\hline Total Split (s) & 14.0 & 46.0 & & 11.0 & 43.0 & & 33.0 & 33.0 & 33.0 & 33.0 & 33.0 & 14.0 \\
\hline Total Split (\%) & 15.6\% & 51.1\% & & 12.2\% & 47.8\% & & 36.7\% & 36.7\% & 36.7\% & 36.7\% & 36.7\% & 15.6\% \\
\hline Maximum Green (s) & 8.0 & 40.0 & & 5.0 & 37.0 & & 27.0 & 27.0 & 27.0 & 27.0 & 27.0 & 8.0 \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 \\
\hline All-Red Time (s) & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 \\
\hline Lost Time Adjust (s) & 0.0 & 0.0 & & 0.0 & 0.0 & & & 0.0 & 0.0 & & 0.0 & 0.0 \\
\hline Total Lost Time (s) & 6.0 & 6.0 & & 6.0 & 6.0 & & & 6.0 & 6.0 & & 6.0 & 6.0 \\
\hline Lead/Lag & Lag & Lag & & Lead & Lead & & & & & & & Lag \\
\hline Lead-Lag Optimize? & Yes & Yes & & Yes & Yes & & & & & & & Yes \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
\hline Recall Mode & None & C-Max & & None & None & & None & None & None & None & None & None \\
\hline Act Effit Green (s) & 18.9 & 81.8 & & & 53.3 & & & 6.8 & 6.8 & & 7.0 & 24.7 \\
\hline Actuated g/C Ratio & 0.21 & 0.91 & & & 0.59 & & & 0.08 & 0.08 & & 0.08 & 0.27 \\
\hline v/c Ratio & 0.55 & 0.39 & & & 0.54 & & & 0.07 & 0.03 & & 0.15 & 0.39 \\
\hline Control Delay & 41.6 & 4.0 & & & 17.0 & & & 38.6 & 0.2 & & 40.2 & 14.9 \\
\hline Queue Delay & 0.0 & 0.0 & & & 0.0 & & & 0.0 & 0.0 & & 0.0 & 0.0 \\
\hline Total Delay & 41.6 & 4.0 & & & 17.0 & & & 38.6 & 0.2 & & 40.2 & 14.9 \\
\hline LOS & D & A & & & B & & & D & A & & D & B \\
\hline Approach Delay & & 9.3 & & & 17.0 & & & 19.4 & & & 17.5 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\rightarrow\) & \(\rightarrow\) & 2 & \(\cdots\) & 4 & 1 & b & 7 & \(\rho\) & 4 & \(\downarrow\) & 4 \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Approach LOS & & A & & & B & & & B & & & B & \\
\hline Queue Length 50th (ft) & 94 & 0 & & & 244 & & & 6 & 0 & & 12 & 41 \\
\hline Queue Length 95th (ft) & \#242 & 274 & & & 283 & & & 12 & 0 & & 34 & 101 \\
\hline Internal Link Dist (ft) & & 383 & & & 340 & & & 138 & & & 353 & \\
\hline Turn Bay Length (ft) & 300 & & & & & & & & & & & \\
\hline Base Capacity (vph) & 353 & 3066 & & & 2085 & & & 570 & 611 & & 564 & 517 \\
\hline Starvation Cap Reductn & 0 & 0 & & & 0 & & & 0 & 0 & & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & & & 0 & & & 0 & 0 & & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & & & 0 & & & 0 & 0 & & 0 & 0 \\
\hline Reduced v/c Ratio & 0.55 & 0.39 & & & 0.54 & & & 0.02 & 0.02 & & 0.04 & 0.39 \\
\hline
\end{tabular}

Intersection Summary
Area Type: Other

Cycle Length: 90
Actuated Cycle Length: 90
Offset: 14 (16\%), Referenced to phase 2:EBT, Start of Yellow
Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.55
Intersection Signal Delay: 13.2
Intersection LOS: B
Intersection Capacity Utilization 60.3\% ICU Level of Service B
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 13: Applebees/Linlew Dr \& NH 28

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & & \(\checkmark\) & \(\longleftarrow\) & & 4 & 4 & 1 & & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & 7\% & 个 4 & & \% & \(\uparrow \uparrow\) & \(\overline{7}\) & \({ }^{*}\) & \(\dagger\) & & \({ }^{7}\) & \(\uparrow\) & 7 \\
\hline Traffic Volume (vph) & 140 & 990 & 20 & 5 & 940 & 340 & 10 & 5 & 5 & 110 & 5 & 180 \\
\hline Future Volume (vph) & 140 & 990 & 20 & 5 & 940 & 340 & 10 & 5 & & 110 & 5 & 180 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 200 & & 150 & 205 & & 150 & 0 & & 0 & 325 & & 150 \\
\hline Storage Lanes & 2 & & 0 & 1 & & 1 & 1 & & - & 1 & & 㖪 \\
\hline Taper Length (t) & 200 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Utili, Factor & 0.97 & 0.95 & 0.95 & 1.00 & 0.95 & 1.00 & 1.00 & 1.00 & 1.00 & 0.95 & 0.95 & 1.00 \\
\hline Fit & & 0.997 & & & & 0.850 & & 0.925 & & & & 0.850 \\
\hline Flt Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & 0.957 & \\
\hline Satd. Flow (prot) & 3303 & 3395 & 0 & 1736 & 3471 & 1553 & 1805 & 1758 & 0 & 1665 & 1677 & 1568 \\
\hline Flt Permitted & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & 0.000 & \\
\hline Satd. Flow (perm) & 3303 & 3395 & 0 & 1736 & 3471 & 1553 & 1805 & 1758 & 0 & 1665 & 0 & 1568 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & 3 & & & & 351 & & 7 & & & & 182 \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance ( ft ) & & 412 & & & 486 & & & 151 & & & 446 & \\
\hline Travel Time (s) & & 9.4 & & & 11.0 & & & 3.4 & & & 10.1 & \\
\hline Peak Hour Factor & 0.83 & 0.83 & 0.83 & 0.97 & 0.97 & 0.97 & 0.67 & 0.67 & 0.67 & 0.90 & 0.90 & 0.90 \\
\hline Heavy Vehicles (\%) & 6\% & 6\% & 6\% & 4\% & 4\% & 4\% & 0\% & 0\% & 0\% & 3\% & 3\% & 3\% \\
\hline Adj. Flow (vph) & 169 & 1193 & 24 & 5 & 969 & 351 & 15 & 7 & 7 & 122 & 6 & 200 \\
\hline Shared Lane Traffic (\%) & & & & & & & & & & 48\% & & \\
\hline Lane Group Flow (vph) & 169 & 1217 & 0 & 5 & 969 & 351 & 15 & 14 & 0 & 63 & 65 & 200 \\
\hline Turn Type & Prot & NA & & Prot & NA & pm+ov & Prot & NA & & Prot & NA & pt+ov \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & 7 & 3 & 8 & & 7 & 4 & 45 \\
\hline Permitted Phases & & & & & & 6 & & 8 & & & & \\
\hline Detector Phase & 5 & 2 & & 1 & 6 & 7 & 3 & 8 & & 7 & 4 & 45 \\
\hline \multicolumn{13}{|l|}{Switch Phase \({ }^{\text {a }}\)} \\
\hline Minimum Initial (s) & 5.0 & 8.0 & & 5.0 & 8.0 & 8.0 & 5.0 & 5.0 & & 8.0 & 8.0 & \\
\hline Minimum Split (s) & 11.0 & 14.0 & & 11.0 & 14.0 & 14.0 & 11.0 & 11.0 & & 14.0 & 14.0 & \\
\hline Total Split (s) & 15.0 & 52.0 & & 11.0 & 48.0 & 16.0 & 15.0 & 11.0 & & 16.0 & 12.0 & \\
\hline Total Split (\%) & 16.7\% & 57.8\% & & 12.2\% & 53.3\% & 17.8\% & 16.7\% & 12.2\% & & 17.8\% & 13.3\% & \\
\hline Maximum Green (s) & 9.0 & 46.0 & & 5.0 & 42.0 & 10.0 & 9.0 & 5.0 & & 10.0 & 6.0 & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & & 4.0 & 4.0 & \\
\hline All-Red Time (s) & 2.0 & 2.0 & & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & & 2.0 & 2.0 & \\
\hline Lost Time Adjust (s) & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Total Lost Time (s) & 6.0 & 6.0 & & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Lead/Lag & Lead & Lead & & Lag & Lag & Lag & Lead & Lead & & Lag & Lag & \\
\hline Lead-Lag Optimize? & Yes & Yes & & Yes & Yes & Yes & Yes & Yes & & Yes & Yes & \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & None & C-Min & & None & Min & None & None & None & & None & None & \\
\hline Act Effict Green (s) & 9.2 & 65.0 & & 5.6 & 52.0 & 65.4 & 6.3 & 5.6 & & 8.6 & 8.6 & 23.3 \\
\hline Actuated g/C Ratio & 0.10 & 0.72 & & 0.06 & 0.58 & 0.73 & 0.07 & 0.06 & & 0.10 & 0.10 & 0.26 \\
\hline v/c Ratio & 0.50 & 0.50 & & 0.05 & 0.48 & 0.29 & 0.12 & 0.12 & & 0.40 & 0.41 & 0.37 \\
\hline Control Delay & 43.5 & 8.1 & & 44.0 & 11.8 & 4.2 & 40.8 & 31.7 & & 45.8 & 46.1 & 7.7 \\
\hline Queue Delay & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 43.5 & 8.1 & & 44.0 & 11.8 & 4.2 & 40.8 & 31.7 & & 45.8 & 46.1 & 7.7 \\
\hline LOS & D & A & & D & B & A & D & C & & D & D & A \\
\hline Approach Delay & & 12.4 & & & 9.9 & & & 36.4 & & & 22.6 & \\
\hline
\end{tabular}

\(m\) Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 14: VIP Dr/Ashleigh Dr \& NH 28



\begin{tabular}{lrrrrr}
\hline Lane Group & EBL & EBT & WBT & WBR & SBL \\
SBR \\
\hline Queue Length 50th (ft) & 5 & 156 & 306 & 35 & 28 \\
Queue Length 95th (ft) & 13 & 220 & \(\# 508\) & \(\# 88\) & 66 \\
Internal Link Dist (ft) & & 383 & 500 & 624 & \\
Turn Bay Length (ft) & 200 & & & 360 & \\
Base Capacity (vph) & 193 & 2689 & 2232 & 199 & 327 \\
Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 \\
Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 \\
Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 \\
Reduced v/c Ratio & 0.31 & 0.66 & 0.86 & 0.49 & 0.35
\end{tabular}

\section*{Intersection Summary \\ Area Type: Other}

Cycle Length: 60
Actuated Cycle Length: 55.4
Natural Cycle: 65
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.84
Intersection Signal Delay: 12.6 Intersection LOS: B
Intersection Capacity Utilization 66.3\% ICU Level of Service C
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 25: NH 28 \& Rockingham Road

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & NBL & NBT & NBR & SBL & SBT & SBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & 7 & \(\uparrow\) & & \％ & \(\uparrow\) & 「 & \％ & 蚛 & & \％ & 性 & \\
\hline Traffic Volume（vph） & 30 & 50 & 20 & 80 & 40 & 200 & 40 & 310 & 70 & 70 & 570 & 50 \\
\hline Future Volume（vph） & 30 & 50 & 20 & 80 & 40 & 200 & 40 & 310 & 70 & 70 & 570 & 50 \\
\hline Ideal Flow（vphpl） & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length（ft） & 145 & & 110 & 280 & & 280 & 360 & & 0 & 120 & & 0 \\
\hline Storage Lanes & 1 & & 0 & 1 & & 1 & 1 & & 0 & 1 & & 0 \\
\hline Taper Length（ft） & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util．Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.95 & 0.95 & 1.00 & 0.95 & 0.95 \\
\hline Fit & & 0.958 & & & & 0.850 & & 0.972 & & & 0.988 & \\
\hline Flt Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（prot） & 1752 & 1767 & 0 & 1736 & 1827 & 1553 & 1770 & 3440 & 0 & 1787 & 3531 & 0 \\
\hline Fit Permitted & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（perm） & 1752 & 1767 & 0 & 1736 & 1827 & 1553 & 1770 & 3440 & 0 & 1787 & 3531 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd．Flow（RTOR） & & 21 & & & & 201 & & 36 & & & 12 & \\
\hline Link Speed（mph） & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance（ft） & & 481 & & & 484 & & & 479 & & & 371 & \\
\hline Travel Time（s） & & 10.9 & & & 11.0 & & & 10.9 & & & 8.4 & \\
\hline Peak Hour Factor & 0.82 & 0.82 & 0.82 & 0.81 & 0.81 & 0.81 & 0.68 & 0.68 & 0.68 & 0.78 & 0.78 & 0.78 \\
\hline Heavy Vehicles（\％） & 3\％ & 3\％ & 3\％ & 4\％ & 4\％ & 4\％ & 2\％ & 2\％ & 2\％ & 1\％ & 1\％ & 1\％ \\
\hline Adj．Flow（vph） & 37 & 61 & 24 & 99 & 49 & 247 & 59 & 456 & 103 & 90 & 731 & 64 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic（\％）} \\
\hline Lane Group Flow（vph） & 37 & 85 & 0 & 99 & 49 & 247 & 59 & 559 & 0 & 90 & 795 & 0 \\
\hline Turn Type & Prot & NA & & Prot & NA & pt＋ov & Prot & NA & & Prot & NA & \\
\hline Protected Phases & 1 & 6 & & 5 & 2 & 23 & 3 & 8 & & 7 & 4 & \\
\hline \multicolumn{13}{|l|}{Permitted Phases} \\
\hline Detector Phase & 1 & 6 & & 5 & 2 & 23 & 3 & 8 & & 7 & 4 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial（s） & 8.0 & 8.0 & & 8.0 & 8.0 & & 8.0 & 8.0 & & 8.0 & 8.0 & \\
\hline Minimum Split（s） & 14.0 & 20.0 & & 14.0 & 20.0 & & 14.0 & 20.0 & & 14.0 & 20.0 & \\
\hline Total Split（s） & 14.0 & 20.0 & & 14.0 & 20.0 & & 14.0 & 32.0 & & 14.0 & 32.0 & \\
\hline Total Split（\％） & 17．5\％ & 25．0\％ & & 17．5\％ & 25．0\％ & & 17．5\％ & 40．0\％ & & 17．5\％ & 40．0\％ & \\
\hline Maximum Green（ s ） & 8.0 & 14.0 & & 8.0 & 14.0 & & 8.0 & 26.0 & & 8.0 & 26.0 & \\
\hline Yellow Time（s） & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & \\
\hline All－Red Time（s） & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & \\
\hline Lost Time Adjust（s） & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Total Lost Time（s） & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Lead／Lag & Lead & Lag & \\
\hline Lead－Lag Optimize？ & Yes & Yes & \\
\hline Vehicle Extension（s） & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & None & None & & None & Max & & None & None & & None & None & \\
\hline Act Effct Green（s） & 8.2 & 13.0 & & 8.2 & 16.0 & 30.4 & 8.2 & 25.6 & & 8.2 & 21.8 & \\
\hline Actuated g／C Ratio & 0.11 & 0.18 & & 0.11 & 0.22 & 0.42 & 0.11 & 0.36 & & 0.11 & 0.30 & \\
\hline \(\mathrm{v} / \mathrm{c}\) Ratio & 0.19 & 0.25 & & 0.50 & 0.12 & 0.32 & 0.29 & 0.45 & & 0.45 & 0.74 & \\
\hline Control Delay & 35.1 & 24.7 & & 43.6 & 27.9 & 6.2 & 37.1 & 20.1 & & 40.9 & 27.3 & \\
\hline Queue Delay & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Total Delay & 35.1 & 24.7 & & 43.6 & 27.9 & 6.2 & 37.1 & 20.1 & & 40.9 & 27.3 & \\
\hline LOS & D & C & & D & C & A & D & C & & D & C & \\
\hline Approach Delay & & 27.9 & & & 18.3 & & & 21.7 & & & 28.7 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\cdots\) & \(\uparrow\) & 1 & \(\checkmark\) & \(\downarrow\) & \(\downarrow\) & 4 & 7 & \(\downarrow\) & \(\downarrow\) & 4 & 4 \\
\hline Lane Group & NBL & NBT & NBR & SBL & SBT & SBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Approach LOS & & C & & & B & & & C & & & C & \\
\hline Queue Length 50th (ft) & 17 & 27 & & 47 & 20 & 15 & 27 & 108 & & 43 & 176 & \\
\hline Queue Length 95th (ft) & 41 & 59 & & 86 & 45 & 49 & 48 & 108 & & 76 & 197 & \\
\hline Internal Link Dist (ft) & & 401 & & & 404 & & & 399 & & & 291 & \\
\hline Turn Bay Length (ft) & 145 & & & 280 & & 280 & 360 & & & 120 & & \\
\hline Base Capacity (vph) & 199 & 367 & & 197 & 406 & 770 & 201 & 1320 & & 202 & 1310 & \\
\hline Starvation Cap Reductn & 0 & 0 & & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & \\
\hline Spillback Cap Reductn & 0 & 0 & & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & \\
\hline Storage Cap Reductn & 0 & 0 & & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & \\
\hline Reduced v/c Ratio & 0.19 & 0.23 & & 0.50 & 0.12 & 0.32 & 0.29 & 0.42 & & 0.45 & 0.61 & \\
\hline
\end{tabular}

Intersection Summary
Area Type:
Other
Cycle Length: 80
Actuated Cycle Length: 72.1
Natural Cycle: 70
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.74
Intersection Signal Delay: \(24.5 \quad\) Intersection LOS: C
Intersection Capacity Utilization 51.4\%
ICU Level of Service A
Analysis Period (min) 15
Splits and Phases: 18: Tsienneto Rd \& NH 28 Byp S/NH 28 Byp N

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\Rightarrow\) & \(\rangle\) & 4 & \(\uparrow\) & \(\downarrow\) & \(\downarrow\) & & & & \\
\hline Lane Group & EBL & EBR & NBL & NBT & SBT & SBR & \(\varnothing 2\) & \(\varnothing 5\) & \(\emptyset 6\) & \(\varnothing 7\) \\
\hline Lane Configurations & \% & & 7 & \(\uparrow\) & \(\uparrow\) & 「 & & & & \\
\hline Traffic Volume (vph) & 240 & 0 & 10 & 120 & 260 & 520 & & & & \\
\hline Future Volume (vph) & 240 & 0 & 10 & 120 & 260 & 520 & & & & \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & & & & \\
\hline Storage Length (ft) & 200 & 0 & 100 & & & 90 & & & & \\
\hline Storage Lanes & 0 & 0 & 1 & & & 1 & & & & \\
\hline Taper Length (ft) & 25 & & 25 & & & & & & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & & & & \\
\hline Fit & & & & & & 0.850 & & & & \\
\hline Fit Protected & 0.950 & & 0.950 & & & & & & & \\
\hline Satd. Flow (prot) & 1787 & 0 & 1770 & 1863 & 1845 & 1568 & & & & \\
\hline Flt Permitted & 0.950 & & 0.498 & & & & & & & \\
\hline Satd. Flow (perm) & 1787 & 0 & 928 & 1863 & 1845 & 1568 & & & & \\
\hline Right Turn on Red & & Yes & & & & Yes & & & & \\
\hline Satd. Flow (RTOR) & & & & & & 584 & & & & \\
\hline Link Speed (mph) & 30 & & & 30 & 30 & & & & & \\
\hline Link Distance (ft) & 392 & & & 704 & 263 & & & & & \\
\hline Travel Time (s) & 8.9 & & & 16.0 & 6.0 & & & & & \\
\hline Peak Hour Factor & 0.90 & 0.90 & 0.87 & 0.87 & 0.89 & 0.89 & & & & \\
\hline Heavy Vehicles (\%) & 1\% & 1\% & 2\% & 2\% & 3\% & 3\% & & & & \\
\hline Adj. Flow (vph) & 267 & 0 & 11 & 138 & 292 & 584 & & & & \\
\hline \multicolumn{11}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 267 & 0 & 11 & 138 & 292 & 584 & & & & \\
\hline Turn Type & Prot & & pm+pt & NA & NA & custom & & & & \\
\hline Protected Phases & 8 & & 1 & 67 & 27 & 78 & 2 & 5 & 6 & 7 \\
\hline Permitted Phases & & & 67 & & & 2 & & & & \\
\hline Detector Phase & 8 & & 1 & 67 & 27 & 78 & & & & \\
\hline \multicolumn{11}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 5.0 & & 5.0 & & & & 5.0 & 5.0 & 5.0 & 5.0 \\
\hline Minimum Split (s) & 26.5 & & 11.0 & & & & 9.0 & 11.0 & 9.0 & 11.0 \\
\hline Total Split (s) & 27.9 & & 11.0 & & & & 34.1 & 11.0 & 34.1 & 17.0 \\
\hline Total Split (\%) & 31.0\% & & 12.2\% & & & & 38\% & 12\% & 38\% & 19\% \\
\hline Maximum Green (s) & 21.9 & & 5.0 & & & & 30.1 & 5.0 & 30.1 & 11.0 \\
\hline Yellow Time (s) & 4.0 & & 4.0 & & & & 3.0 & 4.0 & 3.0 & 4.0 \\
\hline All-Red Time (s) & 2.0 & & 2.0 & & & & 1.0 & 2.0 & 1.0 & 2.0 \\
\hline Lost Time Adjust (s) & 0.0 & & 0.0 & & & & & & & \\
\hline Total Lost Time (s) & 6.0 & & 6.0 & & & & & & & \\
\hline Lead/Lag & Lag & & Lead & & & & Lag & Lead & Lag & Lead \\
\hline Lead-Lag Optimize? & Yes & & Yes & & & & Yes & Yes & Yes & Yes \\
\hline Vehicle Extension (s) & 3.0 & & 3.0 & & & & 3.0 & 3.0 & 3.0 & 3.0 \\
\hline Recall Mode & None & & None & & & & Min & None & Min & None \\
\hline Act Effct Green (s) & 22.0 & & 32.4 & 33.7 & 33.7 & 65.1 & & & & \\
\hline Actuated g/C Ratio & 0.32 & & 0.48 & 0.50 & 0.50 & 0.96 & & & & \\
\hline v/c Ratio & 0.46 & & 0.02 & 0.15 & 0.32 & 0.38 & & & & \\
\hline Control Delay & 24.4 & & 7.7 & 9.9 & 11.7 & 0.8 & & & & \\
\hline Queue Delay & 0.0 & & 0.0 & 0.0 & 1.0 & 0.1 & & & & \\
\hline Total Delay & 24.4 & & 7.7 & 9.9 & 12.7 & 0.9 & & & & \\
\hline LOS & C & & A & A & B & A & & & & \\
\hline Approach Delay & 24.4 & & & 9.7 & 4.8 & & & & & \\
\hline
\end{tabular}


Splits and Phases: 19: NH 102 EB/NH 102 \& Tsienneto Rd


26: NH 102 \& North Shore Road
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\checkmark\) & 4 & \(\uparrow\) & \(p\) & \(\checkmark\) & \(\downarrow\) & & & & \\
\hline Lane Group & WBL & WBR & NBT & NBR & SBL & SBT & \(\varnothing 1\) & \(\varnothing 2\) & \(\varnothing 6\) & \(\varnothing 8\) \\
\hline Lane Configurations & M & & \(\uparrow\) & \% & \% & \(\uparrow\) & & & & \\
\hline Traffic Volume (vph) & 60 & 10 & 330 & 30 & 10 & 720 & & & & \\
\hline Future Volume (vph) & 60 & 10 & 330 & 30 & 10 & 720 & & & & \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & & & & \\
\hline Storage Length (ft) & 0 & 0 & & 90 & 100 & & & & & \\
\hline Storage Lanes & 1 & 0 & & 1 & 1 & & & & & \\
\hline Taper Length ( ft ) & 25 & & & & 25 & & & & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & & & & \\
\hline Fit & 0.976 & & & 0.850 & & & & & & \\
\hline Fit Protected & 0.961 & & & & 0.950 & & & & & \\
\hline Satd. Flow (prot) & 1768 & 0 & 1900 & 1615 & 1805 & 1900 & & & & \\
\hline Flt Permitted & 0.961 & & & & 0.432 & & & & & \\
\hline Satd. Flow (perm) & 1768 & 0 & 1900 & 1615 & 821 & 1900 & & & & \\
\hline Right Turn on Red & & Yes & & Yes & & & & & & \\
\hline Satd. Flow (RTOR) & 10 & & & 36 & & & & & & \\
\hline Link Speed (mph) & 30 & & 30 & & & 30 & & & & \\
\hline Link Distance (ft) & 524 & & 263 & & & 288 & & & & \\
\hline Travel Time (s) & 11.9 & & 6.0 & & & 6.5 & & & & \\
\hline Peak Hour Factor & 0.87 & 0.67 & 0.95 & 0.84 & 0.73 & 0.96 & & & & \\
\hline Heavy Vehicles (\%) & 1\% & 0\% & 0\% & 0\% & 0\% & 0\% & & & & \\
\hline Adj. Flow (vph) & 69 & 15 & 347 & 36 & 14 & 750 & & & & \\
\hline \multicolumn{11}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 84 & 0 & 347 & 36 & 14 & 750 & & & & \\
\hline Turn Type & Prot & & NA & Perm & custom & NA & & & & \\
\hline Protected Phases & 7 & & 68 & & 5 & 28 & 1 & 2 & 6 & 8 \\
\hline Permitted Phases & & & & 68 & 2 & & & & & \\
\hline Detector Phase & 7 & & 68 & 68 & 5 & 28 & & & & \\
\hline \multicolumn{11}{|l|}{Switch Phase 28} \\
\hline Minimum Initial (s) & 5.0 & & & & 5.0 & & 5.0 & 5.0 & 5.0 & 5.0 \\
\hline Minimum Split (s) & 11.0 & & & & 11.0 & & 11.0 & 9.0 & 9.0 & 26.5 \\
\hline Total Split (s) & 17.0 & & & & 11.0 & & 11.0 & 34.1 & 34.1 & 27.9 \\
\hline Total Split (\%) & 18.9\% & & & & 12.2\% & & 12\% & 38\% & 38\% & 31\% \\
\hline Maximum Green (s) & 11.0 & & & & 5.0 & & 5.0 & 30.1 & 30.1 & 21.9 \\
\hline Yellow Time (s) & 4.0 & & & & 4.0 & & 4.0 & 3.0 & 3.0 & 4.0 \\
\hline All-Red Time (s) & 2.0 & & & & 2.0 & & 2.0 & 1.0 & 1.0 & 2.0 \\
\hline Lost Time Adjust (s) & 0.0 & & & & 0.0 & & & & & \\
\hline Total Lost Time (s) & 6.0 & & & & 6.0 & & & & & \\
\hline Lead/Lag & Lead & & & & Lead & & Lead & Lag & Lag & Lag \\
\hline Lead-Lag Optimize? & Yes & & & & Yes & & Yes & Yes & Yes & Yes \\
\hline Vehicle Extension (s) & 3.0 & & & & 3.0 & & 3.0 & 3.0 & 3.0 & 3.0 \\
\hline Recall Mode & None & & & & None & & None & Min & Min & None \\
\hline Act Effct Green (s) & 10.0 & & 45.2 & 45.2 & 16.2 & 45.2 & & & & \\
\hline Actuated g/C Ratio & 0.15 & & 0.67 & 0.67 & 0.24 & 0.67 & & & & \\
\hline \(\mathrm{v} / \mathrm{c}\) Ratio & 0.31 & & 0.27 & 0.03 & 0.05 & 0.59 & & & & \\
\hline Control Delay & 29.9 & & 1.9 & 0.2 & 17.5 & 7.8 & & & & \\
\hline Queue Delay & 0.0 & & 0.1 & 0.0 & 0.0 & 0.0 & & & & \\
\hline Total Delay & 29.9 & & 2.0 & 0.2 & 17.5 & 7.8 & & & & \\
\hline LOS & C & & A & A & B & A & & & & \\
\hline Approach Delay & 29.9 & & 1.9 & & & 8.0 & & & & \\
\hline
\end{tabular}


Splits and Phases: 26: NH 102 \& North Shore Road


\section*{APPENDIX R-4: ALTERNATIVE D INTERSECTION CAPACITY ANALYSES - SYNCHRO PRINTOUTS - PM PEAK HOUR}

Lanes, Volumes, Timings
8: NH 102 \& Exit 4 SB Off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & \(\longleftarrow\) & 4 & & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & WBT & WBR & SBL & SBR \\
\hline Lane Configurations & & 44 & 44 & & \% & 7\% \\
\hline Traffic Volume (vph) & 0 & 1285 & 1405 & 0 & 125 & 1295 \\
\hline Future Volume (vph) & 0 & 1285 & 1405 & 0 & 125 & 1295 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Lane Width ( ft ) & 12 & 12 & 12 & 12 & 16 & 12 \\
\hline Lane Util. Factor & 1.00 & 0.95 & 0.95 & 1.00 & 1.00 & 0.88 \\
\hline Frt & & & & & & 0.850 \\
\hline Flt Protected & & & & & 0.950 & \\
\hline Satd. Flow (prot) & 0 & 3471 & 3406 & 0 & 1930 & 2682 \\
\hline Flt Permitted & & & & & 0.950 & \\
\hline Satd. Flow (perm) & 0 & 3471 & 3406 & 0 & 1930 & 2682 \\
\hline Right Turn on Red & & & & Yes & & No \\
\hline \multicolumn{7}{|l|}{Satd. Flow (RTOR)} \\
\hline Link Speed (mph) & & 30 & 30 & & 25 & \\
\hline Link Distance (ft) & & 712 & 388 & & 212 & \\
\hline Travel Time (s) & & 16.2 & 8.8 & & 5.8 & \\
\hline Peak Hour Factor & 0.93 & 0.93 & 0.88 & 0.88 & 0.89 & 0.89 \\
\hline Heavy Vehicles (\%) & 4\% & 4\% & 6\% & 6\% & 6\% & 6\% \\
\hline Adj. Flow (vph) & 0 & 1382 & 1597 & 0 & 140 & 1455 \\
\hline \multicolumn{7}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 1382 & 1597 & 0 & 140 & 1455 \\
\hline Enter Blocked Intersection & No & No & No & No & No & No \\
\hline Lane Alignment & Left & Left & Left & Right & Left & Right \\
\hline Median Width(ft) & & 24 & 24 & & 16 & \\
\hline Link Offset(ft) & & 0 & 0 & & 0 & \\
\hline Crosswalk Width(ft) & & 16 & 16 & & 16 & \\
\hline \multicolumn{7}{|l|}{Two way Left Turn Lane} \\
\hline Headway Factor & 1.00 & 1.00 & 1.00 & 1.00 & 0.85 & 1.00 \\
\hline Turning Speed (mph) & 15 & & & 9 & 15 & 9 \\
\hline Number of Detectors & & 3 & 3 & & 3 & 3 \\
\hline Detector Template & & Thru & Thru & & Left & \\
\hline Leading Detector (ft) & & 256 & 256 & & 256 & 256 \\
\hline Trailing Detector (ft) & & -5 & -5 & & -5 & -5 \\
\hline Detector 1 Position(ft) & & -5 & -5 & & -5 & -5 \\
\hline Detector 1 Size(ft) & & 50 & 50 & & 50 & 50 \\
\hline Detector 1 Type & & \(\mathrm{Cl}+\mathrm{EX}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & CI+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) \\
\hline \multicolumn{7}{|l|}{Detector 1 Channel} \\
\hline Detector 1 Extend (s) & & 0.0 & 0.0 & & 0.0 & 0.0 \\
\hline Detector 1 Queue (s) & & 0.0 & 0.0 & & 0.0 & 0.0 \\
\hline Detector 1 Delay (s) & & 0.0 & 0.0 & & 0.0 & 0.0 \\
\hline Detector 2 Position(ft) & & 125 & 125 & & 125 & 125 \\
\hline Detector 2 Size(ft) & & 6 & 6 & & 6 & 6 \\
\hline Detector 2 Type & & \(\mathrm{Cl}+\mathrm{Ex}\) & Cl+Ex & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) \\
\hline \multicolumn{7}{|l|}{Detector 2 Channel} \\
\hline Detector 2 Extend (s) & & 0.0 & 0.0 & & 0.0 & 0.0 \\
\hline Detector 3 Position(ft) & & 250 & 250 & & 250 & 250 \\
\hline Detector 3 Size(ft) & & 6 & 6 & & 6 & 6 \\
\hline Detector 3 Type & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & CI+Ex & \(\mathrm{Cl}+\mathrm{EX}\) \\
\hline Detector 3 Channel & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrr}
\hline & & & & & \\
\cline { 4 - 6 } & & & & & \\
& & & & \\
\hline
\end{tabular}

Intersection Signal Delay: \(61.1 \quad\) Intersection LOS: E
Intersection Capacity Utilization 96.1\%
ICU Level of Service F
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
\(m\) Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 7: NH 102 \& Exit 4 SB Off

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & NBL2 & NBL & NBR & SEL & SER & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & 77 & & 7\％ & & & \％\({ }^{1}\) & 坐脊 & & & 脊 & \％ \\
\hline Traffic Volume（vph） & 1245 & 0 & 1005 & 0 & 0 & 1050 & 360 & 0 & 0 & 500 & 235 \\
\hline Future Volume（vph） & 1245 & 0 & 1005 & 0 & 0 & 1050 & 360 & 0 & 0 & 500 & 235 \\
\hline Ideal Flow（vphpl） & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length（ft） & & 0 & 0 & 0 & 0 & 550 & & 0 & 0 & & 0 \\
\hline Storage Lanes & & 2 & 2 & 0 & 0 & 2 & & 0 & 0 & & 1 \\
\hline Taper Length（ft） & & 25 & & 25 & & 25 & & & 25 & & \\
\hline Lane Util，Factor & 0.97 & 1.00 & 0.88 & 1.00 & 1.00 & 0.97 & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 \\
\hline Fit & & & 0.850 & & & & & & & & 0.850 \\
\hline Flt Protected & 0.950 & & & & & 0.950 & & & & & \\
\hline Satd．Flow（prot） & 3242 & 0 & 2632 & 0 & 0 & 3335 & 3438 & 0 & 0 & 3505 & 1568 \\
\hline Flt Permitted & 0.950 & & & & & 0.950 & & & & & \\
\hline Satd．Flow（perm） & 3242 & 0 & 2632 & 0 & 0 & 3335 & 3438 & 0 & 0 & 3505 & 1568 \\
\hline Right Turn on Red & & & No & & & & & Yes & & & Yes \\
\hline Satd．Flow（RTOR） & & & & & & & & & & & 252 \\
\hline Link Speed（mph） & & 25 & & 30 & & & 30 & & & 30 & \\
\hline Link Distance（ft） & & 856 & & 390 & & & 760 & & & 857 & \\
\hline Travel Time（s） & & 23.3 & & 8.9 & & & 17.3 & & & 19.5 & \\
\hline Peak Hour Factor & 0.88 & 0.88 & 0.88 & 0.92 & 0.92 & 0.94 & 0.94 & 0.94 & 0.92 & 0.92 & 0.92 \\
\hline Heavy Vehicles（\％） & 8\％ & 8\％ & 8\％ & 2\％ & 2\％ & 5\％ & 5\％ & 5\％ & 3\％ & 3\％ & 3\％ \\
\hline Adj．Flow（vph） & 1415 & 0 & 1142 & 0 & 0 & 1117 & 383 & 0 & 0 & 543 & 255 \\
\hline \multicolumn{12}{|l|}{Shared Lane Traffic（\％）} \\
\hline Lane Group Flow（vph） & 1415 & 0 & 1142 & 0 & 0 & 1117 & 383 & 0 & 0 & 543 & 255 \\
\hline Enter Blocked Intersection & No \\
\hline Lane Alignment & Left & Left & Right & Left & Right & Left & Left & Right & Left & Right & Right \\
\hline Median Width（ft） & & 24 & & 0 & & & 24 & & & 24 & \\
\hline Link Offset（ft） & & 12 & & 0 & & & 0 & & & 0 & \\
\hline Crosswalk Width（ft） & & 16 & & 16 & & & 16 & & & 16 & \\
\hline \multicolumn{12}{|l|}{Two way Left Turn Lane} \\
\hline Headway Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Turning Speed（mph） & 15 & 15 & 25 & 15 & 9 & 15 & & 9 & 15 & & 25 \\
\hline Number of Detectors & 3 & & 3 & & & 3 & 3 & & & 3 & 0 \\
\hline \multicolumn{12}{|l|}{Detector Template} \\
\hline Leading Detector（ ft ） & 256 & & 256 & & & 256 & 256 & & & 256 & 0 \\
\hline Trailing Detector（ft） & －5 & & －5 & & & －5 & －5 & & & －5 & 0 \\
\hline Detector 1 Position（ft） & －5 & & －5 & & & －5 & －5 & & & －5 & －5 \\
\hline Detector 1 Size（ft） & 55 & & 55 & & & 55 & 55 & & & 55 & 50 \\
\hline Detector 1 Type & \(\mathrm{Cl}+\mathrm{EX}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) \\
\hline \multicolumn{12}{|l|}{Detector 1 Channel} \\
\hline Detector 1 Extend（s） & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & 0.0 \\
\hline Detector 1 Queue（s） & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & 0.0 \\
\hline Detector 1 Delay（s） & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & 0.0 \\
\hline Detector 2 Position（ft） & 125 & & 125 & & & 125 & 125 & & & 125 & \\
\hline Detector 2 Size（ft） & 6 & & 6 & & & 6 & 6 & & & 6 & \\
\hline Detector 2 Type & \(\mathrm{Cl}+\mathrm{Ex}\) & & Cl＋Ex & & & Cl＋Ex & Cl＋Ex & & & Cl＋Ex & \\
\hline \multicolumn{12}{|l|}{Detector 2 Channel} \\
\hline Detector 2 Extend（s） & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & \\
\hline Detector 3 Position（ft） & 250 & & 250 & & & 250 & 250 & & & 250 & \\
\hline Detector 3 Size（ft） & 6 & & 6 & & & 6 & 6 & & & 6 & \\
\hline
\end{tabular}

Lanes, Volumes, Timings
2
8: NH 102 \& Exit 4 NB Off
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & NBL2 & NBL & NBR & SEL & SER & NEL & NET & NER & SWL & SWT & SWR \\
\hline Detector 3 Type & Cl+Ex & & Cl+Ex & & & \(\mathrm{Cl}+\mathrm{Ex}\) & Cl+Ex & & & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline \multicolumn{12}{|l|}{Detector 3 Channel} \\
\hline Detector 3 Extend (s) & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & \\
\hline Turn Type & Prot & & Prot & & & Prot & NA & & & NA & Free \\
\hline Protected Phases & 8 & & 8 & & & 5 & 2 & & & 6 & \\
\hline Permitted Phases & & & & & & & & & & & Free \\
\hline Detector Phase & 8 & & 2 & & & 5 & 2 & & & 6 & \\
\hline \multicolumn{12}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 10.0 & & 10.0 & & & 5.0 & 8.0 & & & 8.0 & \\
\hline Minimum Split (s) & 16.0 & & 16.0 & & & 11.0 & 42.0 & & & 31.0 & \\
\hline Total Split (s) & 61.0 & & 61.0 & & & 48.0 & 79.0 & & & 31.0 & \\
\hline Total Split (\%) & 43.6\% & & 43.6\% & & & 34.3\% & 56.4\% & & & 22.1\% & \\
\hline Maximum Green (s) & 55.0 & & 55.0 & & & 42.0 & 73.0 & & & 25.0 & \\
\hline Yellow Time (s) & 2.0 & & 2.0 & & & 2.0 & 2.0 & & & 2.0 & \\
\hline All-Red Time (s) & 4.0 & & 4.0 & & & 4.0 & 4.0 & & & 4.0 & \\
\hline Lost Time Adjust (s) & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & 6.0 & & 6.0 & & & 6.0 & 6.0 & & & 6.0 & \\
\hline Lead/Lag & & & & & & Lead & & & & Lag & \\
\hline \multicolumn{12}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 3.0 & & 3.0 & & & 3.0 & 3.0 & & & 3.0 & \\
\hline Recall Mode & None & & None & & & None & C-Min & & & C-Min & \\
\hline Walk Time (s) & & & & & & & 7.0 & & & 7.0 & \\
\hline Flash Dont Walk (s) & & & & & & & 29.0 & & & 17.0 & \\
\hline Pedestrian Calls (\#/hr) & & & & & & & 0 & & & 0 & \\
\hline Act Effct Green (s) & 55.0 & & 55.0 & & & 42.0 & 73.0 & & & 25.0 & 140.0 \\
\hline Actuated g/C Ratio & 0.39 & & 0.39 & & & 0.30 & 0.52 & & & 0.18 & 1.00 \\
\hline v/c Ratio & 1.11 & & 1.10 & & & 1.12 & 0.21 & & & 0.87 & 0.16 \\
\hline Control Delay & 101.4 & & 101.0 & & & 83.6 & 3.9 & & & 71.2 & 0.2 \\
\hline Queue Delay & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & 0.0 \\
\hline Total Delay & 101.4 & & 101.0 & & & 83.6 & 3.9 & & & 71.2 & 0.2 \\
\hline LOS & F & & F & & & F & A & & & E & A \\
\hline Approach Delay & & 01.2 & & & & & 63.3 & & & 48.5 & \\
\hline Approach LOS & & F & & & & & E & & & D & \\
\hline Queue Length 50th (ft) & \(\sim 757\) & & ~671 & & & ~595 & 42 & & & 255 & 0 \\
\hline Queue Length 95th (ft) & \#862 & & \#790 & & & m\#674 & m44 & & & \#347 & 0 \\
\hline Internal Link Dist (ft) & & 776 & & 310 & & & 680 & & & 777 & \\
\hline Turn Bay Length (ft) & & & & & & 550 & & & & & \\
\hline Base Capacity (vph) & 1273 & & 1034 & & & 1000 & 1792 & & & 625 & 1568 \\
\hline Starvation Cap Reductn & 0 & & 0 & & & 0 & 0 & & & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & & 0 & & & 0 & 0 & & & 0 & 0 \\
\hline Storage Cap Reductn & 0 & & 0 & & & 0 & 0 & & & 0 & 0 \\
\hline Reduced v/c Ratio & 1.11 & & 1.10 & & & 1.12 & 0.21 & & & 0.87 & 0.16 \\
\hline
\end{tabular}

\section*{Intersection Summary}

Area Type: Other
Cycle Length: 140
Actuated Cycle Length: 140
Offset: \(53(38 \%)\), Referenced to phase 2:NET and 6:SWT, Start of Yellow
Natural Cycle: 150

Lanes, Volumes, Timings
2 \%: NH 102 \& Exit 4 NB Off
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.12
\begin{tabular}{ll} 
Intersection Signal Delay: 80.8 & Intersection LOS: F \\
Intersection Capacity Utilization 95.3\% & ICU Level of Service F
\end{tabular}

Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 8: NH 102 \& Exit 4 NB Off


Lanes, Volumes, Timings
3 2: Exit 5 SB On/Exit 5 SB Off \& NH 28
01/23/2018
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 3 & \(\rightarrow\) & & 7 & & 4 & 4 & \(\dagger\) & \(p\) & - & \(\downarrow\) & 4 \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & 44 & 7 & \% & 悉 & & & & & 7\% & & \% \\
\hline Traffic Volume (vph) & 0 & 650 & 460 & 165 & 580 & 0 & 0 & 0 & 0 & 185 & 0 & 390 \\
\hline Future Volume (vph) & 0 & 650 & 460 & 165 & 580 & 0 & 0 & 0 & 0 & 185 & 0 & 390 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 0 & & 350 & 0 & & 0 & 0 & & 0 & 0 & & 0 \\
\hline Storage Lanes & 0 & & 1 & 1 & & 0 & 0 & & 0 & 2 & & 1 \\
\hline Taper Length (ft) & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & 1.00 & 1.00 & 1.00 & 0.97 & 1.00 & 1.00 \\
\hline Frt & & & 0.850 & & & & & & & & & 0.850 \\
\hline Flt Protected & & & & 0.950 & & & & & & 0.950 & & \\
\hline Satd. Flow (prot) & 0 & 3471 & 1553 & 1719 & 3438 & 0 & 0 & 0 & 0 & 3367 & 0 & 1553 \\
\hline Flt Permitted & & & & 0.950 & & & & & & 0.950 & & \\
\hline Satd. Flow (perm) & 0 & 3471 & 1553 & 1719 & 3438 & 0 & 0 & 0 & 0 & 3367 & 0 & 1553 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & & 529 & & & & & & & & & 231 \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 35 & \\
\hline Link Distance (ft) & & 851 & & & 693 & & & 486 & & & 581 & \\
\hline Travel Time (s) & & 19.3 & & & 15.8 & & & 11.0 & & & 11.3 & \\
\hline Peak Hour Factor & 0.87 & 0.87 & 0.87 & 0.86 & 0.86 & 0.86 & 0.92 & 0.92 & 0.92 & 0.91 & 0.91 & 0.91 \\
\hline Heavy Vehicles (\%) & 4\% & 4\% & 4\% & 5\% & 5\% & 5\% & 2\% & 2\% & 2\% & 4\% & 4\% & 4\% \\
\hline Adj. Flow (vph) & 0 & 747 & 529 & 192 & 674 & 0 & 0 & 0 & 0 & 203 & 0 & 429 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 747 & 529 & 192 & 674 & 0 & 0 & 0 & 0 & 203 & 0 & 429 \\
\hline Enter Blocked Intersection & No \\
\hline Lane Alignment & Left & Left & Right & Left & Left & Right & Left & Left & Right & Right & Left & Right \\
\hline Median Width(ft) & & 36 & & & 36 & & & 24 & & & 24 & \\
\hline Link Offset(ft) & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Crosswalk Width(ft) & & 16 & & & 16 & & & 16 & & & 16 & \\
\hline \multicolumn{13}{|l|}{Two way Left Turn Lane} \\
\hline Headway Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Turning Speed (mph) & 15 & & 25 & 15 & & 9 & 15 & & 9 & 15 & & 25 \\
\hline Number of Detectors & & 3 & 3 & 3 & 3 & & & & & 3 & & 3 \\
\hline Detector Template & & Thru & Right & Left & Thru & & & & & Left & & Right \\
\hline Leading Detector (ft) & & 256 & 256 & 256 & 256 & & & & & 256 & & 256 \\
\hline Trailing Detector (ft) & & -5 & -5 & -5 & -5 & & & & & -5 & & -5 \\
\hline Detector 1 Position(ft) & & -5 & -5 & -5 & -5 & & & & & -5 & & -5 \\
\hline Detector 1 Size(ft) & & 50 & 50 & 50 & 50 & & & & & 50 & & 50 \\
\hline Detector 1 Type & & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & Cl+Ex & & & & & Cl+Ex & & \(\mathrm{Cl}+\mathrm{EX}\) \\
\hline \multicolumn{13}{|l|}{Detector 1 Channel} \\
\hline Detector 1 Extend (s) & & 0.0 & 0.0 & 0.0 & 0.0 & & & & & 0.0 & & 0.0 \\
\hline Detector 1 Queue (s) & & 0.0 & 0.0 & 0.0 & 0.0 & & & & & 0.0 & & 0.0 \\
\hline Detector 1 Delay (s) & & 0.0 & 0.0 & 0.0 & 0.0 & & & & & 0.0 & & 0.0 \\
\hline Detector 2 Position(ft) & & 125 & 125 & 125 & 125 & & & & & 125 & & 125 \\
\hline Detector 2 Size(ft) & & 6 & 6 & 6 & 6 & & & & & 6 & & 6 \\
\hline Detector 2 Type & & CI+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & & & & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) \\
\hline \multicolumn{13}{|l|}{Detector 2 Channel 0} \\
\hline Detector 2 Extend (s) & & 0.0 & 0.0 & 0.0 & 0.0 & & & & & 0.0 & & 0.0 \\
\hline Detector 3 Position(ft) & & 250 & 250 & 250 & 250 & & & & & 250 & & 250 \\
\hline Detector 3 Size(ft) & & 6 & 6 & 6 & 6 & & & & & 6 & & 6 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & ) & \(\checkmark\) & \(\square\) & 4 & 4 & \(\dagger\) & \(p\) & & \(\frac{1}{\square}\) & 4 \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Detector 3 Type & & CI+Ex & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & Cl+Ex & & & & & Cl+Ex & & Cl+Ex \\
\hline \multicolumn{13}{|l|}{Detector 3 Channel} \\
\hline Detector 3 Extend (s) & & 0.0 & 0.0 & 0.0 & 0.0 & & & & & 0.0 & & 0.0 \\
\hline Turn Type & & NA & Free & Prot & NA & & & & & Prot & & Prot \\
\hline Protected Phases & & 2 & & 1 & 6 & & & & & 4 & & 4 \\
\hline Permitted Phases & & & Free & & & & & & & & & \\
\hline Detector Phase & & 2 & & 1 & 6 & & & & & 4 & & 4 \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & & 9.0 & & 4.0 & 9.0 & & & & & 4.0 & & 4.0 \\
\hline Minimum Split (s) & & 21.0 & & 10.0 & 21.0 & & & & & 10.0 & & 10.0 \\
\hline Total Split (s) & & 34.0 & & 23.0 & 57.0 & & & & & 33.0 & & 33.0 \\
\hline Total Split (\%) & & 37.8\% & & 25.6\% & 63.3\% & & & & & 36.7\% & & 36.7\% \\
\hline Maximum Green (s) & & 28.0 & & 17.0 & 51.0 & & & & & 27.0 & & 27.0 \\
\hline Yellow Time (s) & & 4.0 & & 4.0 & 4.0 & & & & & 4.0 & & 4.0 \\
\hline All-Red Time (s) & & 2.0 & & 2.0 & 2.0 & & & & & 2.0 & & 2.0 \\
\hline Lost Time Adjust (s) & & 0.0 & & 0.0 & 0.0 & & & & & 0.0 & & 0.0 \\
\hline Total Lost Time (s) & & 6.0 & & 6.0 & 6.0 & & & & & 6.0 & & 6.0 \\
\hline Lead/Lag & & Lag & & Lead & & & & & & & & \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & & 5.0 & & 3.0 & 5.0 & & & & & 3.0 & & 3.0 \\
\hline Recall Mode & & C-Min & & None & C-Min & & & & & None & & None \\
\hline Walk Time (s) & & 7.0 & & & 7.0 & & & & & & & \\
\hline Flash Dont Walk (s) & & 8.0 & & & 8.0 & & & & & & & \\
\hline Pedestrian Calls (\#/hr) & & 0 & & & 0 & & & & & & & \\
\hline Act Effct Green (s) & & 37.3 & 90.0 & 14.4 & 57.6 & & & & & 20.4 & & 20.4 \\
\hline Actuated g/C Ratio & & 0.41 & 1.00 & 0.16 & 0.64 & & & & & 0.23 & & 0.23 \\
\hline v/c Ratio & & 0.52 & 0.34 & 0.70 & 0.31 & & & & & 0.27 & & 0.81 \\
\hline Control Delay & & 23.7 & 0.6 & 23.2 & 0.4 & & & & & 27.8 & & 26.5 \\
\hline Queue Delay & & 0.0 & 0.0 & 0.0 & 0.0 & & & & & 0.0 & & 0.0 \\
\hline Total Delay & & 23.7 & 0.6 & 23.2 & 0.4 & & & & & 27.8 & & 26.5 \\
\hline LOS & & C & A & C & A & & & & & C & & C \\
\hline Approach Delay & & 14.1 & & & 5.5 & & & & & & 27.0 & \\
\hline Approach LOS & & B & & & A & & & & & & C & \\
\hline Queue Length 50th (ft) & & 172 & 0 & 6 & 0 & & & & & 47 & & 105 \\
\hline Queue Length 95th (ft) & & 247 & 0 & 0 & m0 & & & & & 71 & & 205 \\
\hline Internal Link Dist (ft) & & 771 & & & 613 & & & 406 & & & 501 & \\
\hline Turn Bay Length (ft) & & & 350 & & & & & & & & & \\
\hline Base Capacity (vph) & & 1436 & 1553 & 324 & 2202 & & & & & 1010 & & 627 \\
\hline Starvation Cap Reductn & & 0 & 0 & 0 & 0 & & & & & 0 & & 0 \\
\hline Spillback Cap Reductn & & 0 & 0 & 0 & 0 & & & & & 0 & & 0 \\
\hline Storage Cap Reductn & & 0 & 0 & 0 & 0 & & & & & 0 & & 0 \\
\hline Reduced v/c Ratio & & 0.52 & 0.34 & 0.59 & 0.31 & & & & & 0.20 & & 0.68 \\
\hline
\end{tabular}

\section*{Intersection Summary}

Area Type: Other
Cycle Length: 90
Actuated Cycle Length: 90
Offset: 52 (58\%), Referenced to phase 2:EBT and 6:WBT, Start of Yellow
Natural Cycle: 60

Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.81
Intersection Signal Delay: 14.3 Intersection LOS: B
Intersection Capacity Utilization 72.6\% ICU Level of Service C
Analysis Period (min) 15
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 2: Exit 5 SB On/Exit 5 SB Off \& NH 28

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\dagger\) & & & \(\downarrow\) & \(\leftarrow\) & 4 & 4 & \(\uparrow\) & \(p\) & \(\checkmark\) & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \({ }_{1}\) & 个个 & & & ¢个 & 7 & \％ & & 7 & & & \\
\hline Traffic Volume（vph） & 445 & 390 & 0 & 0 & 385 & 235 & 360 & 0 & 380 & 0 & 0 & 0 \\
\hline Future Volume（vph） & 445 & 390 & 0 & 0 & 385 & 235 & 360 & 0 & 380 & 0 & 0 & 0 \\
\hline Ideal Flow（vphpl） & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Lane Utill．Factor & 1.00 & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & & & & & 0.850 & & & 0.850 & & & \\
\hline FIt Protected & 0.950 & & & & & & 0.950 & & & & & \\
\hline Satd．Flow（prot） & 1752 & 3505 & 0 & 0 & 3505 & 1568 & 1703 & 0 & 1524 & 0 & 0 & 0 \\
\hline Flt Permitted & 0.950 & & & & & & 0.950 & & & & & \\
\hline Satd．Flow（perm） & 1752 & 3505 & 0 & 0 & 3505 & 1568 & 1703 & 0 & 1524 & 0 & 0 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd．Flow（RTOR） & & & & & & 258 & & & 399 & & & \\
\hline Link Speed（mph） & & 30 & & & 30 & & & 35 & & & 30 & \\
\hline Link Distance（tt） & & 693 & & & 542 & & & 867 & & & 392 & \\
\hline Travel Time（s） & & 15.8 & & & 12.3 & & & 16.9 & & & 8.9 & \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.91 & 0.91 & 0.91 & 0.67 & 0.67 & 0.67 & 0.92 & 0.92 & 0.92 \\
\hline Heavy Vehicles（\％） & 3\％ & 3\％ & 3\％ & 3\％ & 3\％ & 3\％ & 6\％ & 6\％ & 6\％ & 2\％ & 2\％ & 2\％ \\
\hline Adj．Flow（vph） & 484 & 424 & 0 & 0 & 423 & 258 & 537 & 0 & 567 & 0 & 0 & 0 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic（\％）} \\
\hline Lane Group Flow（vph） & 484 & 424 & 0 & 0 & 423 & 258 & 537 & 0 & 567 & 0 & 0 & 0 \\
\hline Enter Blocked Intersection & No \\
\hline Lane Alignment & Left & Left & Right & Left & Left & Right & Right & Left & Right & Left & Left & Right \\
\hline Median Width（t） & & 36 & & & 42 & & & 12 & & & 12 & \\
\hline Link Offset（tt） & & 0 & & & 0 & & & 0 & & & 36 & \\
\hline Crosswalk Width（ft） & & 16 & & & 16 & & & 16 & & & 16 & \\
\hline \multicolumn{13}{|l|}{Two way Left Turn Lane} \\
\hline Headway Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Turning Speed（mph） & 15 & & 9 & 15 & & 25 & 15 & & 25 & 15 & & 9 \\
\hline Number of Detectors & 3 & 3 & & & 3 & 3 & 3 & & 0 & & & \\
\hline Detector Template & Left & & & & & Right & Left & & & & & \\
\hline Leading Detector（ t ） & 256 & 256 & & & 256 & 256 & 256 & & 0 & & & \\
\hline Trailing Detector（ft） & －5 & －5 & & & －5 & －5 & －5 & & 0 & & & \\
\hline Detector 1 Position（tt） & －5 & －5 & & & －5 & －5 & －5 & & －5 & & & \\
\hline Detector 1 Size（tt） & 50 & 50 & & & 50 & 50 & 50 & & 50 & & & \\
\hline Detector 1 Type & Cl＋Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & & & Cl＋Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \\
\hline \multicolumn{13}{|l|}{Detector 1 Channel} \\
\hline Detector 1 Extend（s） & 0.0 & 0.0 & & & 0.0 & 0.0 & 0.0 & & 0.0 & & & \\
\hline Detector 1 Queue（s） & 0.0 & 0.0 & & & 0.0 & 0.0 & 0.0 & & 0.0 & & & \\
\hline Detector 1 Delay（s） & 0.0 & 0.0 & & & 0.0 & 0.0 & 0.0 & & 0.0 & & & \\
\hline Detector 2 Position（t） & 125 & 125 & & & 125 & 125 & 125 & & & & & \\
\hline Detector 2 Size（t） & 6 & 6 & & & 6 & 6 & 6 & & & & & \\
\hline Detector 2 Type & CI＋Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & & & Cl＋Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & & & & \\
\hline \multicolumn{13}{|l|}{Detector 2 Channel} \\
\hline Detector 2 Extend（s） & 0.0 & 0.0 & & & 0.0 & 0.0 & 0.0 & & & & & \\
\hline Detector 3 Position（t） & 250 & 250 & & & 250 & 250 & 250 & & & & & \\
\hline Detector 3 Size（tt） & 6 & 6 & & & 6 & 6 & 6 & & & & & \\
\hline Detector 3 Type & Cl＋Ex & Cl＋Ex & & & Cl＋Ex & Cl＋Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & & & & & \\
\hline \multicolumn{13}{|l|}{Detector 3 Channel 0 O 0 O} \\
\hline Detector 3 Extend（s） & 0.0 & 0.0 & & & 0.0 & 0.0 & 0.0 & & & & & \\
\hline
\end{tabular}


\section*{Intersection Summary \\ Area Type: Other}

Cycle Length: 90
Actuated Cycle Length: 90
Offset: \(0(0 \%)\), Referenced to phase 2:EBT and 6:WBT, Start of Yellow, Master Intersection
Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.00
Intersection Signal Delay: \(31.5 \quad\) Intersection LOS: C
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: \(\quad 3\) : Exit 5 NB Off \& NH 28

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & & \(\uparrow\) & F & & \(\$\) & & * & 的 & & \% & 个 \(\uparrow\) & \\
\hline Traffic Volume (vph) & 10 & 5 & 210 & 10 & 0 & 10 & 410 & 910 & 120 & 5 & 650 & 120 \\
\hline Future Volume (vph) & 10 & 5 & 210 & 10 & 0 & 10 & 410 & 910 & 120 & 5 & 650 & 120 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 0 & & 225 & 0 & & 0 & 350 & & 0 & 100 & & 0 \\
\hline Storage Lanes & 0 & & 1 & 0 & & 0 & 1 & & 0 & 1 & & 0 \\
\hline Taper Length ( ft ) & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.95 & 0.95 & 1.00 & 0.95 & 0.95 \\
\hline Fit & & & 0.850 & & 0.932 & & & 0.983 & & & 0.977 & \\
\hline Fit Protected & & 0.967 & & & 0.976 & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (prot) & 0 & 1801 & 1583 & 0 & 1728 & 0 & 1770 & 3479 & 0 & 1770 & 3458 & 0 \\
\hline Flt Permitted & & 0.878 & & & 0.834 & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (perm) & 0 & 1635 & 1583 & 0 & 1477 & 0 & 1770 & 3479 & 0 & 1770 & 3458 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & & 228 & & 182 & & & 25 & & & 24 & \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance (ft) & & 593 & & & 447 & & & 750 & & & 330 & \\
\hline Travel Time (s) & & 13.5 & & & 10.2 & & & 17.0 & & & 7.5 & \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.25 & 0.25 & 0.25 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 0\% & 0\% & 0\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% \\
\hline Adj. Flow (vph) & 11 & 5 & 228 & 40 & 0 & 40 & 446 & 989 & 130 & 5 & 707 & 130 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 16 & 228 & 0 & 80 & 0 & 446 & 1119 & 0 & 5 & 837 & 0 \\
\hline Enter Blocked Intersection & No \\
\hline Lane Alignment & Left & Left & Right \\
\hline Median Width(ft) & & 0 & & & 0 & & & 12 & & & 12 & \\
\hline Link Offset(ft) & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Crosswalk Width(ft) & & 16 & & & 16 & & & 16 & & & 16 & \\
\hline \multicolumn{13}{|l|}{Two way Left Turn Lane} \\
\hline Headway Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Turning Speed (mph) & 15 & & 9 & 15 & & 9 & 15 & & 9 & 15 & & 9 \\
\hline Number of Detectors & 3 & 3 & 1 & 3 & 1 & & 3 & 3 & & 3 & 3 & \\
\hline Detector Template & Left & Thru & Right & Left & & & Left & Thru & & Left & Thru & \\
\hline Leading Detector (ft) & 256 & 256 & 45 & 256 & 45 & & 256 & 256 & & 256 & 256 & \\
\hline Trailing Detector (ft) & -5 & -5 & -5 & -5 & -5 & & -5 & -5 & & -5 & -5 & \\
\hline Detector 1 Position(ft) & -5 & -5 & -5 & -5 & -5 & & -5 & -5 & & -5 & -5 & \\
\hline Detector 1 Size(ft) & 50 & 50 & 50 & 50 & 50 & & 50 & 50 & & 50 & 50 & \\
\hline Detector 1 Type & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline \multicolumn{13}{|l|}{Detector 1 Channel} \\
\hline Detector 1 Extend (s) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 1 Queue (s) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 1 Delay (s) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 2 Position(ft) & 125 & 125 & & 125 & & & 125 & 125 & & 125 & 125 & \\
\hline Detector 2 Size(ft) & 6 & 6 & & 6 & & & 6 & 6 & & 6 & 6 & \\
\hline Detector 2 Type & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline \multicolumn{13}{|l|}{Detector 2 Channel} \\
\hline Detector 2 Extend (s) & 0.0 & 0.0 & & 0.0 & & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 3 Position(ft) & 250 & 250 & & 250 & & & 250 & 250 & & 250 & 250 & \\
\hline Detector 3 Size(ft) & 6 & 6 & & 6 & & & 6 & 6 & & 6 & 6 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Detector 3 Type & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline \multicolumn{13}{|l|}{Detector 3 Channel} \\
\hline Detector 3 Extend (s) & 0.0 & 0.0 & & 0.0 & & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Turn Type & Perm & NA & custom & Perm & NA & & Prot & NA & & Prot & NA & \\
\hline Protected Phases & & 8 & & & 4 & & 5 & 2 & & 1 & 6 & \\
\hline Permitted Phases & 8 & & 6 & 4 & & & & & & & & \\
\hline Detector Phase & 8 & 8 & 6 & 4 & 4 & & 5 & 2 & & 1 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 5.0 & 5.0 & 8.0 & 5.0 & 5.0 & & 5.0 & 8.0 & & 5.0 & 8.0 & \\
\hline Minimum Split (s) & 24.0 & 24.0 & 24.0 & 24.0 & 24.0 & & 24.0 & 24.0 & & 11.0 & 24.0 & \\
\hline Total Split (s) & 24.0 & 24.0 & 32.0 & 24.0 & 24.0 & & 34.0 & 55.0 & & 11.0 & 32.0 & \\
\hline Total Split (\%) & 26.7\% & 26.7\% & 35.6\% & 26.7\% & 26.7\% & & 37.8\% & 61.1\% & & 12.2\% & 35.6\% & \\
\hline Maximum Green (s) & 18.0 & 18.0 & 26.0 & 18.0 & 18.0 & & 28.0 & 49.0 & & 5.0 & 26.0 & \\
\hline Yellow Time (s) & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & \\
\hline All-Red Time (s) & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & 0.0 & & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Total Lost Time (s) & & 6.0 & 6.0 & & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Lead/Lag & & & Lag & & & & Lead & Lag & & Lead & Lag & \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & None & None & Min & None & None & & None & Min & & None & Min & \\
\hline Walk Time (s) & 7.0 & 7.0 & 7.0 & 7.0 & 7.0 & & 7.0 & 7.0 & & & 7.0 & \\
\hline Flash Dont Walk (s) & 11.0 & 11.0 & 11.0 & 11.0 & 11.0 & & 11.0 & 11.0 & & & 11.0 & \\
\hline Pedestrian Calls (\#/hr) & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & & & 0 & \\
\hline Act Effct Green (s) & & 6.7 & 25.2 & & 6.7 & & 23.6 & 55.0 & & 5.2 & 25.2 & \\
\hline Actuated g/C Ratio & & 0.09 & 0.36 & & 0.09 & & 0.33 & 0.78 & & 0.07 & 0.36 & \\
\hline v/c Ratio & & 0.10 & 0.32 & & 0.26 & & 0.75 & 0.41 & & 0.04 & 0.67 & \\
\hline Control Delay & & 34.6 & 4.5 & & 2.1 & & 31.3 & 4.9 & & 35.6 & 23.7 & \\
\hline Queue Delay & & 0.0 & 0.0 & & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Total Delay & & 34.6 & 4.5 & & 2.1 & & 31.3 & 4.9 & & 35.6 & 23.7 & \\
\hline LOS & & C & A & & A & & C & A & & D & C & \\
\hline Approach Delay & & 6.5 & & & 2.1 & & & 12.4 & & & 23.8 & \\
\hline Approach LOS & & A & & & A & & & B & & & C & \\
\hline Queue Length 50th (ft) & & 7 & 0 & & 0 & & 184 & 71 & & 2 & 174 & \\
\hline Queue Length 95th (ft) & & 26 & 46 & & 0 & & 298 & 193 & & 13 & 254 & \\
\hline Internal Link Dist (ft) & & 513 & & & 367 & & & 670 & & & 250 & \\
\hline Turn Bay Length (ft) & & & 225 & & & & 350 & & & 100 & & \\
\hline Base Capacity (vph) & & 435 & 748 & & 526 & & 732 & 2712 & & 131 & 1344 & \\
\hline Starvation Cap Reductn & & 0 & 0 & & 0 & & 0 & 0 & & 0 & 0 & \\
\hline Spillback Cap Reductn & & 0 & 0 & & 0 & & 0 & 0 & & 0 & 0 & \\
\hline Storage Cap Reductn & & 0 & 0 & & 0 & & 0 & 0 & & 0 & 0 & \\
\hline Reduced v/c Ratio & & 0.04 & 0.30 & & 0.15 & & 0.61 & 0.41 & & 0.04 & 0.62 & \\
\hline
\end{tabular}

\section*{Intersection Summary}
```

Area Type: Other

```
Cycle Length: 90
Actuated Cycle Length: 70.7
Natural Cycle: 80
Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.75
Intersection Signal Delay: \(15.1 \quad\) Intersection LOS: B
Intersection Capacity Utilization 71.1\% ICU Level of Service C
Analysis Period (min) 15

Splits and Phases: 9: NH 102 \& St. Charles Street/Londonderry Road


6 TQ: NH 102 \& Fordway/Madden Hill Road
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & & * & & & \$ & & & F & & & \(\uparrow\) & \\
\hline Traffic Volume (vph) & 20 & 30 & 5 & 260 & 0 & 40 & 0 & 790 & 130 & 15 & 420 & \\
\hline Future Volume (vph) & 20 & 30 & 5 & 260 & 0 & 40 & 0 & 790 & 130 & 15 & 420 & \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & 0.988 & & & 0.982 & & & 0.981 & & & & \\
\hline Flt Protected & & 0.982 & & & 0.959 & & & & & & 0.998 & \\
\hline Satd. Flow (prot) & 0 & 1807 & 0 & 0 & 1737 & 0 & 0 & 1726 & 0 & 0 & 1806 & \\
\hline Flt Permitted & & 0.875 & & & 0.739 & & & & & & 0.804 & \\
\hline Satd. Flow (perm) & 0 & 1610 & 0 & 0 & 1339 & 0 & 0 & 1726 & 0 & 0 & 1455 & \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & 5 & & & 36 & & & 18 & & & & \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance (t) & & 356 & & & 493 & & & 1124 & & & 603 & \\
\hline Travel Time (s) & & 8.1 & & & 11.2 & & & 25.5 & & & 13.7 & \\
\hline Peak Hour Factor & 0.60 & 0.60 & 0.60 & 0.96 & 0.96 & 0.96 & 0.89 & 0.89 & 0.89 & 0.86 & 0.86 & 0.86 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 3\% & 3\% & 3\% & 8\% & 8\% & 8\% & 5\% & 5\% & 5\% \\
\hline Adj. Flow (vph) & 33 & 50 & 8 & 271 & 0 & 42 & 0 & 888 & 146 & 17 & 488 & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & & & \\
\hline Lane Alignment & Left & Left & Right \\
\hline Median Width(t) & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Link Offset(ft) & & -22 & & & 0 & & & 0 & & & 0 & \\
\hline Crosswalk Width(t) & & 16 & & & 16 & & & 16 & & & 16 & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrrrrrr}
\hline Two way Leff Turn Lane & & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Headway Factor & 15 & 1.00 & 1.00 \\
Turning Speed (mph) & 15 & & 9 & 15 & & 9 & 15 & & 9 & 15 & & 9
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline drs & 3 & 1 & 3 & 2 & 2 & 3 & 2 \\
\hline Detector Template & Left & & Left & & & Left & \\
\hline Leading Detector (ft) & 256 & 45 & 256 & 131 & 131 & 256 & 131 \\
\hline Trailing Detector (ft) & -5 & -5 & -5 & -5 & -5 & -5 & -5 \\
\hline Detector 1 Position(tt) & -5 & -5 & -5 & -5 & -5 & -5 & -5 \\
\hline Detector 1 Size(tt) & 50 & 50 & 50 & 50 & 50 & 50 & 50 \\
\hline Detector 1 Type & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & Cl+Ex & Cl+Ex & Cl+Ex & Cl+Ex & Cl+Ex \\
\hline Detector 1 Channel & & & & & & & \\
\hline Detector 1 Extend (s) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Detector 1 Queue (s) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Detector 1 Delay (s) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Detector 2 Position(t) & 125 & & 125 & 125 & 125 & 125 & 125 \\
\hline Detector 2 Size(tt) & 6 & & 6 & 6 & 6 & 6 & 6 \\
\hline Detector 2 Type & Cl+Ex & & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & CI+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) \\
\hline Detector 2 Channel & & & & & & & \\
\hline Detector 2 Extend (s) & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Detector 3 Position(tt) & 250 & & 250 & & & 250 & \\
\hline Detector 3 Size(ft) & 6 & & 6 & & & 6 & \\
\hline Detector 3 Type & Cl+Ex & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & Cl+Ex & \\
\hline Detector 3 Channel & & & & & & & \\
\hline Detector 3 Extend (s) & 0.0 & & 0.0 & & & 0.0 & \\
\hline
\end{tabular}

Lanes, Volumes, Timings
10: NH 102 \& Fordway/Madden Hill Road
01/23/2018
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Turn Type & Perm & NA & & Perm & NA & & & NA & & Perm & NA & \\
\hline Protected Phases & & 4 & & & 4 & & & 2 & & & 2 & \\
\hline Permitted Phases & 4 & & & 4 & & & & & & 2 & & \\
\hline Detector Phase & 4 & 4 & & 4 & 4 & & & 2 & & 2 & 2 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 5.0 & 5.0 & & 5.0 & 5.0 & & & 5.0 & & 5.0 & 5.0 & \\
\hline Minimum Split (s) & 24.0 & 24.0 & & 24.0 & 24.0 & & & 24.0 & & 24.0 & 24.0 & \\
\hline Total Split (s) & 26.0 & 26.0 & & 26.0 & 26.0 & & & 64.0 & & 64.0 & 64.0 & \\
\hline Total Split (\%) & 28.9\% & 28.9\% & & 28.9\% & 28.9\% & & & 71.1\% & & 71.1\% & 71.1\% & \\
\hline Maximum Green (s) & 20.0 & 20.0 & & 20.0 & 20.0 & & & 58.0 & & 58.0 & 58.0 & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & & 4.0 & & 4.0 & 4.0 & \\
\hline All-Red Time (s) & 2.0 & 2.0 & & 2.0 & 2.0 & & & 2.0 & & 2.0 & 2.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & & 6.0 & & & 6.0 & & & 6.0 & & & 6.0 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & None & None & & None & None & & & Min & & Min & Min & \\
\hline Walk Time (s) & 7.0 & 7.0 & & 7.0 & 7.0 & & & 7.0 & & 7.0 & 7.0 & \\
\hline Flash Dont Walk (s) & 11.0 & 11.0 & & 11.0 & 11.0 & & & 11.0 & & 11.0 & 11.0 & \\
\hline Pedestrian Calls (\#/hr) & 0 & 0 & & 0 & 0 & & & 0 & & 0 & 0 & \\
\hline Act Effct Green (s) & & 20.0 & & & 20.0 & & & 55.7 & & & 55.7 & \\
\hline Actuated g/C Ratio & & 0.23 & & & 0.23 & & & 0.63 & & & 0.63 & \\
\hline v/c Ratio & & 0.25 & & & 0.94 & & & 0.94 & & & 0.55 & \\
\hline Control Delay & & 29.3 & & & 68.7 & & & 31.6 & & & 11.6 & \\
\hline Queue Delay & & 0.0 & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Delay & & 29.3 & & & 68.7 & & & 31.6 & & & 11.6 & \\
\hline LOS & & C & & & E & & & C & & & B & \\
\hline Approach Delay & & 29.3 & & & 68.7 & & & 31.6 & & & 11.6 & \\
\hline Approach LOS & & C & & & E & & & C & & & B & \\
\hline Queue Length 50th (ft) & & 40 & & & 159 & & & 456 & & & 140 & \\
\hline Queue Length 95th (ft) & & 52 & & & \#326 & & & \#786 & & & 204 & \\
\hline Internal Link Dist (ft) & & 276 & & & 413 & & & 1044 & & & 523 & \\
\hline \multicolumn{13}{|l|}{Turn Bay Length (ft)} \\
\hline Base Capacity (vph) & & 371 & & & 333 & & & 1148 & & & 963 & \\
\hline Starvation Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Spillback Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Storage Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Reduced v/c Ratio & & 0.25 & & & 0.94 & & & 0.90 & & & 0.52 & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline Area Type: & her & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{Cycle Length: 90} \\
\hline \multicolumn{13}{|l|}{Actuated Cycle Length: 87.8} \\
\hline \multicolumn{13}{|l|}{Natural Cycle: 90} \\
\hline \multicolumn{13}{|l|}{Control Type: Actuated-Uncoordinated} \\
\hline \multicolumn{13}{|l|}{Maximum v/c Ratio: 0.94} \\
\hline Intersection Signal Delay & & & & & ersection & OS: C & & & & & & \\
\hline Intersection Capacity Utili & 86.3\% & & & & Level & Service & & & & & & \\
\hline
\end{tabular}

Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 10: NH 102 \& Fordway/Madden Hill Road

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & NBL & NBT & NBR & SBL & SBT & SBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & \({ }^{7}\) & \(\dagger\) & & \({ }^{1}\) & 4 & F & \({ }^{*}\) & † & & * & \(\dagger\) & \\
\hline Traffic Volume (vph) & 70 & 320 & 30 & 110 & 370 & 40 & 100 & 450 & 40 & 50 & 340 & 80 \\
\hline Future Volume (vph) & 70 & 320 & 30 & 110 & 370 & 40 & 100 & 450 & 40 & 50 & 340 & 80 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 70 & & 0 & 245 & & 245 & 390 & & 0 & 110 & & 0 \\
\hline Storage Lanes & 1 & & 0 & 1 & & 1 & 1 & & 0 & 1 & & 0 \\
\hline Taper Length ( ft ) & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & 0.987 & & & & 0.850 & & 0.988 & & & 0.971 & \\
\hline Fit Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (prot) & 1752 & 1821 & 0 & 1752 & 1845 & 1568 & 1787 & 1859 & 0 & 1787 & 1827 & 0 \\
\hline Flt Permitted & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (perm) & 1752 & 1821 & 0 & 1752 & 1845 & 1568 & 1787 & 1859 & 0 & 1787 & 1827 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & 5 & & & & 116 & & 5 & & & 13 & \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance (ft) & & 361 & & & 411 & & & 477 & & & 530 & \\
\hline Travel Time (s) & & 8.2 & & & 9.3 & & & 10.8 & & & 12.0 & \\
\hline Peak Hour Factor & 0.91 & 0.91 & 0.91 & 0.93 & 0.93 & 0.93 & 0.95 & 0.95 & 0.95 & 0.94 & 0.94 & 0.94 \\
\hline Heavy Vehicles (\%) & 3\% & 3\% & 3\% & 3\% & 3\% & 3\% & 1\% & 1\% & 1\% & 1\% & 1\% & 1\% \\
\hline Adj. Flow (vph) & 77 & 352 & 33 & 118 & 398 & 43 & 105 & 474 & 42 & 53 & 362 & 85 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%) 302} \\
\hline Lane Group Flow (vph) & 77 & 385 & 0 & 118 & 398 & 43 & 105 & 516 & 0 & 53 & 447 & 0 \\
\hline Turn Type & Prot & NA & & Prot & NA & pm+ov & Prot & NA & & Prot & NA & \\
\hline Protected Phases & 3 & 8 & & 7 & 4 & 5 & 5 & 2 & & 1 & 6 & \\
\hline Permitted Phases & & & & & & 4 & & & & & & \\
\hline Detector Phase & 3 & 8 & & 7 & 4 & 5 & 5 & 2 & & 1 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase 2} \\
\hline Minimum Initial (s) & 4.0 & 5.0 & & 4.0 & 10.0 & 4.0 & 4.0 & 10.0 & & 4.0 & 9.0 & \\
\hline Minimum Split (s) & 17.0 & 24.0 & & 11.0 & 24.0 & 16.0 & 16.0 & 24.0 & & 11.0 & 24.0 & \\
\hline Total Split (s) & 17.0 & 24.0 & & 17.0 & 24.0 & 16.0 & 16.0 & 33.0 & & 11.0 & 28.0 & \\
\hline Total Split (\%) & 20.0\% & 28.2\% & & 20.0\% & 28.2\% & 18.8\% & 18.8\% & 38.8\% & & 12.9\% & 32.9\% & \\
\hline Maximum Green (s) & 11.0 & 18.0 & & 11.0 & 18.0 & 10.0 & 10.0 & 27.0 & & 5.0 & 22.0 & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & & 4.0 & 4.0 & \\
\hline All-Red Time (s) & 2.0 & 2.0 & & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & & 2.0 & 2.0 & \\
\hline Lost Time Adjust (s) & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Total Lost Time (s) & 6.0 & 6.0 & & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Lead/Lag & Lead & Lag & & Lead & Lag & Lead & Lead & Lag & & Lead & Lag & \\
\hline Lead-Lag Optimize? & Yes & Yes & & Yes & Yes & Yes & Yes & Yes & & Yes & Yes & \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & None & None & & None & None & None & None & Max & & None & None & \\
\hline Act Effct Green (s) & 8.7 & 18.4 & & 9.6 & 19.2 & 34.2 & 8.9 & 29.5 & & 5.1 & 23.9 & \\
\hline Actuated g/C Ratio & 0.11 & 0.23 & & 0.12 & 0.24 & 0.43 & 0.11 & 0.37 & & 0.06 & 0.30 & \\
\hline \(v / c\) Ratio & 0.40 & 0.90 & & 0.55 & 0.89 & 0.06 & 0.52 & 0.74 & & 0.46 & 0.79 & \\
\hline Control Delay & 41.1 & 57.6 & & 45.2 & 55.6 & 0.1 & 45.2 & 32.3 & & 52.3 & 40.7 & \\
\hline Queue Delay & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Total Delay & 41.1 & 57.6 & & 45.2 & 55.6 & 0.1 & 45.2 & 32.3 & & 52.3 & 40.7 & \\
\hline LOS & D & E & & D & E & A & D & C & & D & D & \\
\hline Approach Delay & & 54.8 & & & 49.2 & & & 34.4 & & & 41.9 & \\
\hline
\end{tabular}


Splits and Phases: 7: NH 102 (E Broadway) \& Birch St/Crystal Av

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & NBL & NBT & NBR & SBL & SBT & SBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & \％ & 众4 & 「 & 7\％ & 坐4 & & 7 & 4 & F & 7 & \(\uparrow\) & Tic \\
\hline Traffic Volume（vph） & 70 & 340 & 190 & 650 & 530 & 0 & 300 & 480 & 110 & 30 & 250 & 930 \\
\hline Future Volume（vph） & 70 & 340 & 190 & 650 & 530 & 0 & 300 & 480 & 110 & 30 & 250 & 930 \\
\hline Ideal Flow（vphpl） & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length（ft） & 80 & & 180 & 525 & & 190 & 190 & & 180 & 160 & & 0 \\
\hline Storage Lanes & 1 & & 1 & 2 & & 0 & 2 & & 1 & 1 & & 2 \\
\hline Taper Length（ft） & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util．Factor & 1.00 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 & 0.97 & 1.00 & 1.00 & 1.00 & 1.00 & 0.88 \\
\hline Fit & & & 0.850 & & & & & & 0.850 & & & 0.850 \\
\hline Fit Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（prot） & 1770 & 3539 & 1583 & 3433 & 3539 & 0 & 3433 & 1863 & 1583 & 1787 & 1881 & 2814 \\
\hline Flt Permitted & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（perm） & 1770 & 3539 & 1583 & 3433 & 3539 & 0 & 3433 & 1863 & 1583 & 1787 & 1881 & 2814 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd．Flow（RTOR） & & & 191 & & & & & & 300 & & & 136 \\
\hline Link Speed（mph） & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance（ ft ） & & 639 & & & 801 & & & 532 & & & 387 & \\
\hline Travel Time（s） & & 14.5 & & & 18.2 & & & 12.1 & & & 8.8 & \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.94 & 0.94 & 0.94 & 0.96 & 0.96 & 0.96 & 0.95 & 0.95 & 0.95 \\
\hline Heavy Vehicles（\％） & 2\％ & 2\％ & 2\％ & 2\％ & 2\％ & 2\％ & 2\％ & 2\％ & 2\％ & 1\％ & 1\％ & 1\％ \\
\hline Adj．Flow（vph） & 76 & 370 & 207 & 691 & 564 & 0 & 313 & 500 & 115 & 32 & 263 & 979 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic（\％）} \\
\hline Lane Group Flow（vph） & 76 & 370 & 207 & 691 & 564 & 0 & 313 & 500 & 115 & 32 & 263 & 979 \\
\hline Turn Type & Prot & NA & \(\mathrm{pm}+\mathrm{ov}\) & Prot & NA & & Prot & NA & Free & Prot & NA & pt＋ov \\
\hline Protected Phases & 1 & 6 & 7 & 5 & 2 & & 3 & 8 & & 7 & 4 & 45 \\
\hline Permitted Phases & & 6 & 6 & & 2 & & & 8 & Free & & 4 & \\
\hline Detector Phase & 1 & 6 & 7 & 5 & 2 & & 3 & 8 & & 7 & 4 & 45 \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial（s） & 8.0 & 8.0 & 8.0 & 8.0 & 8.0 & & 8.0 & 5.0 & & 8.0 & 5.0 & \\
\hline Minimum Split（s） & 14.0 & 22.0 & 14.0 & 14.0 & 22.0 & & 14.0 & 39.0 & & 14.0 & 39.0 & \\
\hline Total Split（s） & 17.0 & 22.0 & 15.0 & 36.0 & 41.0 & & 22.0 & 47.0 & & 15.0 & 40.0 & \\
\hline Total Split（\％） & 14．2\％ & 18．3\％ & 12．5\％ & 30．0\％ & 34．2\％ & & 18．3\％ & 39．2\％ & & 12．5\％ & 33．3\％ & \\
\hline Maximum Green（s） & 11.0 & 16.0 & 9.0 & 30.0 & 35.0 & & 16.0 & 41.0 & & 9.0 & 34.0 & \\
\hline Yellow Time（s） & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & \\
\hline All－Red Time（s） & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & \\
\hline Lost Time Adjust（s） & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Total Lost Time（s） & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Lead／Lag & Lead & Lag & Lead & Lead & Lag & & Lead & Lag & & Lead & Lag & \\
\hline Lead－Lag Optimize？ & Yes & Yes & Yes & Yes & Yes & & Yes & Yes & & Yes & Yes & \\
\hline Vehicle Extension（s） & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & None & C－Max & None & None & C－Max & & None & None & & None & None & \\
\hline Walk Time（s） & & 5.0 & & & 5.0 & & & 7.0 & & & 7.0 & \\
\hline Flash Dont Walk（s） & & 11.0 & & & 11.0 & & & 26.0 & & & 26.0 & \\
\hline Pedestrian Calls（\＃／hr） & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Act Effct Green（s） & 11.0 & 16.7 & 31.4 & 29.3 & 35.0 & & 16.0 & 41.3 & 120.0 & 8.7 & 34.0 & 69.3 \\
\hline Actuated g／C Ratio & 0.09 & 0.14 & 0.26 & 0.24 & 0.29 & & 0.13 & 0.34 & 1.00 & 0.07 & 0.28 & 0.58 \\
\hline v／c Ratio & 0.47 & 0.75 & 0.37 & 0.83 & 0.55 & & 0.68 & 0.78 & 0.07 & 0.25 & 0.49 & 0.58 \\
\hline Control Delay & 61.9 & 60.4 & 8.4 & 56.9 & 29.1 & & 58.1 & 45.2 & 0.1 & 81.4 & 27.1 & 9.7 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 2.0 & 0.0 & 0.0 & 1.1 & 1.4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 9 & \(\uparrow\) & 「 & \(\cdots\) & \(\downarrow\) & ل & 4 & \(\varnothing\) & - & \(\downarrow\) & \(\checkmark\) & 4 \\
\hline Lane Group & NBL & NBT & NBR & SBL & SBT & SBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Total Delay & 61.9 & 60.4 & 8.4 & 56.9 & 29.1 & & 58.1 & 47.2 & 0.1 & 81.4 & 28.2 & 11.1 \\
\hline LOS & E & E & A & E & C & & E & D & A & F & C & B \\
\hline Approach Delay & & 44.1 & & & 44.4 & & & 45.0 & & & 16.4 & \\
\hline Approach LOS & & D & & & D & & & D & & & B & \\
\hline Queue Length 50th (ft) & 57 & 147 & 9 & 236 & 143 & & 120 & 346 & 0 & 26 & 152 & 283 \\
\hline Queue Length 95th (ft) & 109 & \#214 & 70 & 339 & 190 & & 170 & 484 & 0 & m44 & 219 & 37 \\
\hline Internal Link Dist (ft) & & 559 & & & 721 & & & 452 & & & 307 & \\
\hline Turn Bay Length ( t ) & 80 & & 180 & 525 & & & 190 & & 180 & 160 & & \\
\hline Base Capacity (vph) & 162 & 492 & 558 & 858 & 1032 & & 457 & 641 & 1583 & 134 & 532 & 1698 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 109 & 491 \\
\hline Spillback Cap Reductn & 0 & 0 & 5 & 0 & 0 & & 0 & 53 & 0 & 0 & 0 & \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 0 & \\
\hline Reduced v/c Ratio & 0.47 & 0.75 & 0.37 & 0.81 & 0.55 & & 0.68 & 0.85 & 0.07 & 0.24 & 0.62 & 0.81 \\
\hline
\end{tabular}

Intersection Summary
Area Type:
Other
Cycle Length: 120
Actuated Cycle Length: 120
Offset: 17 (14\%), Referenced to phase 2:SBT and 6:NBT, Start of Yellow
Natural Cycle: 100
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.83
Intersection Signal Delay: 35.8
Intersection Capacity Utilization 79.9\%
Intersection LOS: D
ICU Level of Service D
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
\(m\) Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 11: Folsom Rd/Tsienneto Rd \& NH 28 S/NH 28

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & m & E & \(\nearrow\) & T & 6 & \(\checkmark\) & & & & & & \\
\hline Lane Group & NWL & NWR & NET & NER & SWL & SWT & \(\varnothing 1\) & \(\emptyset 2\) & \(\varnothing 3\) & \(\varnothing 4\) & \(\varnothing 5\) & \(\emptyset 6\) \\
\hline Lane Configurations & \({ }^{7}\) & 「 & 个4 & 「 & \({ }^{*}\) & 个4 & & & & & & \\
\hline Traffic Volume（vph） & 310 & 110 & 800 & 530 & 90 & 920 & & & & & & \\
\hline Future Volume（vph） & 310 & 110 & 800 & 530 & 90 & 920 & & & & & & \\
\hline Ideal Flow（vphpl） & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & & & & & & \\
\hline Storage Length（ft） & 90 & 0 & & 0 & 175 & & & & & & & \\
\hline Storage Lanes & 1 & 1 & & 1 & 1 & & & & & & & \\
\hline Taper Length（ t ） & 25 & & & & 25 & & & & & & & \\
\hline Lane Util．Factor & 1.00 & 1.00 & 0.95 & 1.00 & 1.00 & 0.95 & & & & & & \\
\hline Fit & & 0.850 & & 0.850 & & & & & & & & \\
\hline Fit Protected & 0.950 & & & & 0.950 & & & & & & & \\
\hline Satd．Flow（prot） & 1787 & 1599 & 3574 & 1599 & 1787 & 3574 & & & & & & \\
\hline Flt Permitted & 0.950 & & & & 0.157 & & & & & & & \\
\hline Satd．Flow（perm） & 1787 & 1599 & 3574 & 1599 & 295 & 3574 & & & & & & \\
\hline Right Turn on Red & & Yes & & Yes & & & & & & & & \\
\hline Satd．Flow（RTOR） & & 41 & & 416 & & & & & & & & \\
\hline Link Speed（mph） & 30 & & 30 & & & 30 & & & & & & \\
\hline Link Distance（ft） & 403 & & 387 & & & 233 & & & & & & \\
\hline Travel Time（s） & 9.2 & & 8.8 & & & 5.3 & & & & & & \\
\hline Peak Hour Factor & 0.86 & 0.86 & 0.96 & 0.96 & 0.85 & 0.85 & & & & & & \\
\hline Heavy Vehicles（\％） & 1\％ & 1\％ & 1\％ & 1\％ & 1\％ & 1\％ & & & & & & \\
\hline Adj．Flow（vph） & 360 & 128 & 833 & 552 & 106 & 1082 & & & & & & \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic（\％）} \\
\hline Lane Group Flow（vph） & 360 & 128 & 833 & 552 & 106 & 1082 & & & & & & \\
\hline Turn Type & Prot & pm＋ov & NA & Free & pm＋pt & NA & & & & & & \\
\hline Protected Phases & 1256 & 7 & 8 & & 7 & 34 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline Permitted Phases & & 1256 & & Free & 34 & & & & & & & \\
\hline Detector Phase & 1256 & 7 & 8 & & 7 & 34 & & & & & & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial（s） & & 8.0 & 5.0 & & 8.0 & & 8.0 & 8.0 & 8.0 & 5.0 & 8.0 & 8.0 \\
\hline Minimum Split（s） & & 14.0 & 39.0 & & 14.0 & & 14.0 & 22.0 & 14.0 & 39.0 & 14.0 & 22.0 \\
\hline Total Split（s） & & 15.0 & 47.0 & & 15.0 & & 17.0 & 41.0 & 22.0 & 40.0 & 36.0 & 22.0 \\
\hline Total Split（\％） & & 12．5\％ & 39．2\％ & & 12．5\％ & & 14\％ & 34\％ & 18\％ & 33\％ & 30\％ & 18\％ \\
\hline Maximum Green（s） & & 9.0 & 41.0 & & 9.0 & & 11.0 & 35.0 & 16.0 & 34.0 & 30.0 & 16.0 \\
\hline Yellow Time（s） & & 4.0 & 4.0 & & 4.0 & & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 \\
\hline All－Red Time（s） & & 2.0 & 2.0 & & 2.0 & & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 \\
\hline Lost Time Adjust（s） & & 0.0 & 0.0 & & 0.0 & & & & & & & \\
\hline Total Lost Time（s） & & 6.0 & 6.0 & & 6.0 & & & & & & & \\
\hline Lead／Lag & & Lead & Lag & & Lead & & Lead & Lag & Lead & Lag & Lead & Lag \\
\hline Lead－Lag Optimize？ & & Yes & Yes & & Yes & & Yes & Yes & Yes & Yes & Yes & Yes \\
\hline Vehicle Extension（s） & & 3.0 & 3.0 & & 3.0 & & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
\hline Recall Mode & & None & None & & None & & None & C－Max & None & None & None & C－Max \\
\hline Walk Time（s） & & & 7.0 & & & & & 5.0 & & 7.0 & & 5.0 \\
\hline Flash Dont Walk（s） & & & 26.0 & & & & & 11.0 & & 26.0 & & 11.0 \\
\hline Pedestrian Calls（\＃／hr） & & & 0 & & & & & 0 & & 0 & & 0 \\
\hline Act Effct Green（s） & 52.0 & 66.7 & 41.3 & 120.0 & 56.0 & 56.0 & & & & & & \\
\hline Actuated g／C Ratio & 0.43 & 0.56 & 0.34 & 1.00 & 0.47 & 0.47 & & & & & & \\
\hline v／c Ratio & 0.47 & 0.14 & 0.68 & 0.35 & 0.43 & 0.65 & & & & & & \\
\hline Control Delay & 26.6 & 9.0 & 41.3 & 0.4 & 23.9 & 26.8 & & & & & & \\
\hline Queue Delay & 0.0 & 0.0 & 5.8 & 0.0 & 0.0 & 0.1 & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & \% & \(\uparrow \uparrow\) & & \({ }^{\circ}\) & 㻢 & & & \(\uparrow\) & 「 & & \(\uparrow\) & \\
\hline Traffic Volume (vph) & 380 & 1475 & 5 & 20 & 1290 & 120 & 15 & 10 & 15 & 10 & 10 & 160 \\
\hline Future Volume (vph) & 380 & 1475 & 5 & 20 & 1290 & 120 & 15 & 10 & 15 & 10 & 10 & 160 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 300 & & 0 & 115 & & 0 & 0 & & 0 & 0 & & \\
\hline Storage Lanes & 1 & & 0 & 1 & & 0 & 0 & & 1 & 0 & & \\
\hline Taper Length ( ft ) & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 0.95 & 0.95 & 1.00 & 0.95 & 0.95 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Frt & & & & & 0.987 & & & & 0.850 & & & 0.850 \\
\hline Flt Protected & 0.950 & & & 0.950 & & & & 0.971 & & & 0.976 & \\
\hline Satd. Flow (prot) & 1787 & 3574 & 0 & 1787 & 3528 & 0 & 0 & 1845 & 1615 & 0 & 1836 & 1599 \\
\hline Flt Permitted & 0.950 & & & 0.950 & & & & 0.799 & & & 0.827 & \\
\hline Satd. Flow (perm) & 1787 & 3574 & 0 & 1787 & 3528 & 0 & 0 & 1518 & 1615 & 0 & 1556 & 1599 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & 1 & & & 11 & & & & 136 & & & 27 \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance (ft) & & 439 & & & 341 & & & 230 & & & 387 & \\
\hline Travel Time (s) & & 10.0 & & & 7.8 & & & 5.2 & & & 8.8 & \\
\hline Peak Hour Factor & 0.97 & 0.97 & 0.97 & 0.95 & 0.95 & 0.95 & 0.90 & 0.90 & 0.90 & 0.80 & 0.80 & 0.80 \\
\hline Heavy Vehicles (\%) & 1\% & 1\% & 1\% & 1\% & 1\% & 1\% & 0\% & 0\% & 0\% & 1\% & 1\% & 1\% \\
\hline Adj. Flow (vph) & 392 & 1521 & 5 & 21 & 1358 & 126 & 17 & 11 & 17 & 13 & 13 & 200 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%) 200} \\
\hline Lane Group Flow (vph) & 392 & 1526 & 0 & 21 & 1484 & 0 & 0 & 28 & 17 & 0 & 26 & 200 \\
\hline Turn Type & Prot & NA & & Prot & NA & & Perm & NA & Perm & Perm & NA & pm+ov \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & & 8 & & & 4 & 5 \\
\hline Permitted Phases & & & & & & & 8 & & 8 & 4 & 4 & 4 \\
\hline Detector Phase & 5 & 2 & & 1 & 6 & & 8 & 8 & 8 & 4 & 4 & 5 \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 5.0 & 8.0 & & 5.0 & 8.0 & & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 \\
\hline Minimum Split (s) & 26.0 & 63.0 & & 11.0 & 48.0 & & 21.0 & 21.0 & 21.0 & 21.0 & 21.0 & 26.0 \\
\hline Total Split (s) & 37.0 & 88.0 & & 11.0 & 62.0 & & 21.0 & 21.0 & 21.0 & 21.0 & 21.0 & 37.0 \\
\hline Total Split (\%) & 30.8\% & 73.3\% & & 9.2\% & 51.7\% & & 17.5\% & 17.5\% & 17.5\% & 17.5\% & 17.5\% & 30.8\% \\
\hline Maximum Green (s) & 31.0 & 82.0 & & 5.0 & 56.0 & & 15.0 & 15.0 & 15.0 & 15.0 & 15.0 & 31.0 \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 \\
\hline All-Red Time (s) & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 \\
\hline Lost Time Adjust (s) & 0.0 & 0.0 & & 0.0 & 0.0 & & & 0.0 & 0.0 & & 0.0 & 0.0 \\
\hline Total Lost Time (s) & 6.0 & 6.0 & & 6.0 & 6.0 & & & 6.0 & 6.0 & & 6.0 & 6.0 \\
\hline Lead/Lag & Lead & Lag & & Lead & Lag & & & & & & & Lead \\
\hline Lead-Lag Optimize? & Yes & Yes & & Yes & Yes & & & & & & & Yes \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
\hline Recall Mode & None & C-Max & & None & Max & & None & None & None & None & None & None \\
\hline Walk Time (s) & & 7.0 & & & 7.0 & & 7.0 & 7.0 & 7.0 & 7.0 & 7.0 & \\
\hline Flash Dont Walk (s) & & 11.0 & & & 11.0 & & 8.0 & 8.0 & 8.0 & 8.0 & 8.0 & \\
\hline Pedestrian Calls (\#/hr) & & 0 & & & 0 & & 0 & 0 & 0 & 0 & 0 & \\
\hline Act Effct Green (s) & 31.2 & 101.8 & & 7.0 & 68.0 & & & 7.7 & 7.7 & & 7.6 & 40.0 \\
\hline Actuated g/C Ratio & 0.26 & 0.85 & & 0.06 & 0.57 & & & 0.06 & 0.06 & & 0.06 & 0.33 \\
\hline \(\mathrm{v} / \mathrm{c}\) Ratio & 0.85 & 0.50 & & 0.20 & 0.74 & & & 0.29 & 0.07 & & 0.27 & 0.36 \\
\hline Control Delay & 50.6 & 7.1 & & 67.7 & 23.0 & & & 60.5 & 0.6 & & 59.3 & 25.7 \\
\hline Queue Delay & 0.0 & 0.0 & & 0.0 & 0.0 & & & 0.0 & 0.0 & & 0.0 & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Total Delay & 50.6 & 7.1 & & 67.7 & 23.0 & & & 60.5 & 0.6 & & 59.3 & 25.7 \\
\hline LOS & D & A & & E & C & & & E & A & & E & C \\
\hline Approach Delay & & 16.0 & & & 23.6 & & & 37.9 & & & 29.6 & \\
\hline Approach LOS & & B & & & C & & & D & & & C & \\
\hline Queue Length 50th (ft) & 325 & 159 & & 17 & 614 & & & 21 & 0 & & 20 & 92 \\
\hline Queue Length 95th (ft) & m375 & 355 & & m26 & 720 & & & 51 & 0 & & 43 & 120 \\
\hline Internal Link Dist (ft) & & 359 & & & 261 & & & 150 & & & 307 & \\
\hline Turn Bay Length (ft) & 300 & & & 115 & & & & & & & & \\
\hline Base Capacity (vph) & 492 & 3032 & & 103 & 2002 & & & 189 & 320 & & 194 & 577 \\
\hline Starvation Cap Reductn & 0 & 0 & & 0 & 0 & & & 0 & 0 & & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & & 0 & 0 & & & 0 & 0 & & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & & 0 & 0 & & & 0 & 0 & & 0 & 0 \\
\hline Reduced v/c Ratio & 0.80 & 0.50 & & 0.20 & 0.74 & & & 0.15 & 0.05 & & 0.13 & 0.35 \\
\hline
\end{tabular}

\section*{Intersection Summary}

Area Type: Other
Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0\%), Referenced to phase 2:SET, Start of Yellow
Natural Cycle: 95
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.85
Intersection Signal Delay: 20.2
Intersection LOS: C
Intersection Capacity Utilization 83.6\%
ICU Level of Service E
Analysis Period (min) 15
\(m\) Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 13: Applebee's/Linlew Dr \& NH 28

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & & \(\checkmark\) & \(\Perp\) & 4 & 4 & 4 & \(p\) & \(t\) & \(\frac{1}{7}\) & 4 \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & 7\％ & 个\％ & & \({ }^{*}\) & 个4 & 「＂ & \({ }^{*}\) & 个 & & \({ }^{*}\) & \(\uparrow\) & 「 \\
\hline Traffic Volume（vph） & 150 & 1550 & 10 & 5 & 1240 & 410 & 40 & 10 & 10 & 200 & 5 & 280 \\
\hline Future Volume（vph） & 150 & 1550 & 10 & 5 & 1240 & 410 & 40 & 10 & 10 & 200 & 5 & 280 \\
\hline Ideal Flow（vphpl） & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length（ft） & 200 & & 150 & 205 & & 150 & 0 & & 0 & 325 & & 150 \\
\hline Storage Lanes & 2 & & 0 & 1 & & 1 & 1 & & 0 & 1 & & 1 \\
\hline Taper Length（ft） & 150 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util．Factor & 0.97 & 0.95 & 0.95 & 1.00 & 0.95 & 1.00 & 1.00 & 1.00 & 1.00 & 0.95 & 0.95 & 1.00 \\
\hline Fit & & 0.999 & & & & 0.850 & & 0.925 & & & & 0.850 \\
\hline Fit Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & 0.955 & \\
\hline Satd．Flow（prot） & 3467 & 3571 & 0 & 1770 & 3539 & 1583 & 1805 & 1758 & 0 & 1715 & 1724 & 1615 \\
\hline Flt Permitted & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & 0.450 & \\
\hline Satd．Flow（perm） & 3467 & 3571 & 0 & 1770 & 3539 & 1583 & 1805 & 1758 & 0 & 1715 & 812 & 1615 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd．Flow（RTOR） & & 1 & & & & 369 & & 13 & & & & 165 \\
\hline Link Speed（mph） & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance（ft） & & 877 & & & 314 & & & 151 & & & 476 & \\
\hline Travel Time（s） & & 19.9 & & & 7.1 & & & 3.4 & & & 10.8 & \\
\hline Peak Hour Factor & 0.84 & 0.84 & 0.84 & 0.90 & 0.90 & 0.90 & 0.78 & 0.78 & 0.78 & 0.86 & 0.86 & 0.86 \\
\hline Heavy Vehicles（\％） & 1\％ & 1\％ & 1\％ & 2\％ & 2\％ & 2\％ & 0\％ & 0\％ & 0\％ & 0\％ & 0\％ & 0\％ \\
\hline Adj．Flow（vph） & 179 & 1845 & 12 & 6 & 1378 & 456 & 51 & 13 & 13 & 233 & 6 & 326 \\
\hline Shared Lane Traffic（\％） & & & & & & & & & & 49\％ & & \\
\hline Lane Group Flow（vph） & 179 & 1857 & 0 & 6 & 1378 & 456 & 51 & 26 & 0 & 119 & 120 & 326 \\
\hline Turn Type & Prot & NA & & Prot & NA & pm＋ov & Prot & NA & & Prot & NA & pt＋ov \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & 7 & 3 & 8 & & 7 & 4 & 45 \\
\hline Permitted Phases & & 2 & & & 6 & 6 & & 8 & & & & \\
\hline Detector Phase & 5 & 2 & & 1 & 6 & 7 & 3 & 8 & & 7 & 4 & 45 \\
\hline \multicolumn{13}{|l|}{Switch Phase 8} \\
\hline Minimum Initial（s） & 5.0 & 8.0 & & 5.0 & 8.0 & 8.0 & 5.0 & 5.0 & & 8.0 & 8.0 & \\
\hline Minimum Split（s） & 11.0 & 53.0 & & 11.0 & 50.0 & 22.0 & 22.0 & 22.0 & & 22.0 & 22.0 & \\
\hline Total Split（s） & 15.0 & 65.0 & & 11.0 & 61.0 & 22.0 & 22.0 & 22.0 & & 22.0 & 22.0 & \\
\hline Total Split（\％） & 12．5\％ & 54．2\％ & & 9．2\％ & 50．8\％ & 18．3\％ & 18．3\％ & 18．3\％ & & 18．3\％ & 18．3\％ & \\
\hline Maximum Green（s） & 9.0 & 59.0 & & 5.0 & 55.0 & 16.0 & 16.0 & 16.0 & & 16.0 & 16.0 & \\
\hline Yellow Time（s） & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & & 4.0 & 4.0 & \\
\hline All－Red Time（s） & 2.0 & 2.0 & & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & & 2.0 & 2.0 & \\
\hline Lost Time Adjust（s） & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Total Lost Time（s） & 6.0 & 6.0 & & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Lead／Lag & Lead & Lag & & Lead & Lag & Lead & Lead & Lag & & Lead & Lag & \\
\hline Lead－Lag Optimize？ & Yes & Yes & & Yes & Yes & Yes & Yes & Yes & & Yes & Yes & \\
\hline Vehicle Extension（s） & 3.0 & 3.0 & & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & None & C－Max & & None & None & None & None & None & & None & None & \\
\hline Walk Time（s） & & & & & & & & & & & 5.0 & \\
\hline Flash Dont Walk（s） & & & & & & & & & & & 11.0 & \\
\hline Pedestrian Calls（\＃／hr） & & & & & & & & & & & 0 & \\
\hline Act Effct Green（s） & 9.1 & 70.1 & & 5.1 & 57.2 & 85.1 & 8.8 & 12.3 & & 21.9 & 21.9 & 38.3 \\
\hline Actuated g／C Ratio & 0.08 & 0.58 & & 0.04 & 0.48 & 0.71 & 0.07 & 0.10 & & 0.18 & 0.18 & 0.32 \\
\hline v／c Ratio & 0.68 & 0.89 & & 0.08 & 0.82 & 0.37 & 0.39 & 0.14 & & 0.38 & 0.38 & 0.52 \\
\hline Control Delay & 67.6 & 29.2 & & 57.4 & 24.3 & 0.8 & 60.8 & 30.8 & & 50.6 & 50.6 & 20.1 \\
\hline Queue Delay & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & & \(\downarrow\) & 4 & 4 & 4 & \(\uparrow\) & \(p\) & & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Total Delay & 67.6 & 29.2 & & 57.4 & 24.3 & 0.8 & 60.8 & 30.8 & & 50.6 & 50.6 & 20.1 \\
\hline LOS & E & C & & E & C & A & E & C & & D & D & C \\
\hline Approach Delay & & 32.5 & & & 18.6 & & & 50.7 & & & 33.0 & \\
\hline Approach LOS & & C & & & B & & & D & & & C & \\
\hline Queue Length 50th (ft) & 71 & 622 & & 5 & 234 & 2 & 38 & 9 & & 93 & 94 & 98 \\
\hline Queue Length 95th (ft) & 102 & \#856 & & m10 & 365 & 4 & 67 & 30 & & 150 & 151 & 181 \\
\hline Internal Link Dist (tt) & & 797 & & & 234 & & & 71 & & & 396 & \\
\hline Turn Bay Length ( t ) & 200 & & & 205 & & 150 & & & & 325 & & 150 \\
\hline Base Capacity (vph) & 267 & 2087 & & 75 & 1687 & 1235 & 240 & 253 & & 320 & 314 & 622 \\
\hline Starvation Cap Reductn & 0 & 0 & & & 0 & 0 & 0 & & & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.67 & 0.89 & & 0.08 & 0.82 & 0.37 & 0.21 & 0.10 & & 0.37 & 0.38 & 0.52 \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline \multicolumn{13}{|l|}{\multirow[t]{2}{*}{Area Type:
Cycle Length: \(120 \quad\) Other}} \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{Actuated Cycle Length: 120} \\
\hline \multicolumn{13}{|l|}{Offset: \(0(0 \%\) ), Referenced to phase 2:EBT, Start of Yellow} \\
\hline \multicolumn{13}{|l|}{Natural Cycle: 120} \\
\hline \multicolumn{13}{|l|}{Control Type: Actuated-Coordinated} \\
\hline \multicolumn{13}{|l|}{Maximum v/c Ratio: 0.89} \\
\hline \multicolumn{5}{|l|}{Intersection Signal Delay: 27.2} & \multicolumn{8}{|l|}{Intersection LOS: C} \\
\hline \multicolumn{13}{|l|}{Intersection Capacity Utilization 74.7\% ICU Level of Service D} \\
\hline \multicolumn{13}{|l|}{Analysis Period (min) 15} \\
\hline \multicolumn{13}{|l|}{\multirow[t]{2}{*}{\# 95th percentile volume exceeds capacity, queue may be longer.}} \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{m Volume for 95 th percentile queue is metered by upstream signal.} \\
\hline
\end{tabular}

Splits and Phases: 14: VIP Dr/Ashleigh Dr \& NH 28




Splits and Phases: 25: NH 28 \& Rockingham Road

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & NBL & NBT & NBR & SBL & SBT & SBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & \% & F & & \% & \(\uparrow\) & \% & \({ }^{\prime}\) & 4 4 & & * & 性 & \\
\hline Traffic Volume (vph) & 30 & 70 & 30 & 50 & 40 & 210 & 90 & 840 & 70 & 20 & 360 & 40 \\
\hline Future Volume (vph) & 30 & 70 & 30 & 50 & 40 & 210 & 90 & 840 & 70 & 20 & 360 & 40 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 145 & & 110 & 280 & & 280 & 360 & & 0 & 120 & & 0 \\
\hline Storage Lanes & 1 & & 0 & 1 & & 1 & 1 & & 0 & 1 & & 0 \\
\hline Taper Length ( ft ) & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.95 & 0.95 & 1.00 & 0.95 & 0.95 \\
\hline Fit & & 0.955 & & & & 0.850 & & 0.988 & & & 0.985 & \\
\hline Flt Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (prot) & 1770 & 1779 & 0 & 1787 & 1881 & 1599 & 1805 & 3567 & 0 & 1805 & 3556 & 0 \\
\hline Fit Permitted & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (perm) & 1770 & 1779 & 0 & 1787 & 1881 & 1599 & 1805 & 3567 & 0 & 1805 & 3556 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & 23 & & & & 221 & & 11 & & & 15 & \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance (ft) & & 481 & & & 490 & & & 479 & & & 371 & \\
\hline Travel Time (s) & & 10.9 & & & 11.1 & & & 10.9 & & & 8.4 & \\
\hline Peak Hour Factor & 0.99 & 0.99 & 0.99 & 0.95 & 0.95 & 0.95 & 0.89 & 0.89 & 0.89 & 0.93 & 0.93 & 0.93 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 1\% & 1\% & 1\% & 0\% & 0\% & 0\% & 0\% & 0\% & 0\% \\
\hline Adj. Flow (vph) & 30 & 71 & 30 & 53 & 42 & 221 & 101 & 944 & 79 & 22 & 387 & 43 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 30 & 101 & 0 & 53 & 42 & 221 & 101 & 1023 & 0 & 22 & 430 & 0 \\
\hline Turn Type & Prot & NA & & Prot & NA & \(\mathrm{pt}+\mathrm{ov}\) & Prot & NA & & Prot & NA & \\
\hline Protected Phases & 1 & 6 & & 5 & 2 & 23 & 3 & 8 & & 7 & 4 & \\
\hline Permitted Phases & & 6 & & & 2 & & & & & & & \\
\hline Detector Phase & 1 & 6 & & 5 & 2 & 23 & 3 & 8 & & 7 & 4 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 8.0 & 8.0 & & 8.0 & 8.0 & & 8.0 & 8.0 & & 8.0 & 8.0 & \\
\hline Minimum Split (s) & 14.0 & 20.0 & & 14.0 & 20.0 & & 14.0 & 28.0 & & 14.0 & 14.0 & \\
\hline Total Split (s) & 14.0 & 20.0 & & 14.0 & 20.0 & & 15.0 & 32.0 & & 14.0 & 31.0 & \\
\hline Total Split (\%) & 17.5\% & 25.0\% & & 17.5\% & 25.0\% & & 18.8\% & 40.0\% & & 17.5\% & 38.8\% & \\
\hline Maximum Green (s) & 8.0 & 14.0 & & 8.0 & 14.0 & & 9.0 & 26.0 & & 8.0 & 25.0 & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & \\
\hline All-Red Time (s) & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & \\
\hline Lost Time Adjust (s) & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Total Lost Time (s) & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Lead/Lag & Lead & Lag & \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & None & None & & None & Max & & None & None & & None & None & \\
\hline Walk Time (s) & & & & & & & & 7.0 & & & & \\
\hline Flash Dont Walk (s) & & & & & & & & 15.0 & & & & \\
\hline Pedestrian Calls (\#/hr) & & & & & & & & 0 & & & & \\
\hline Act Effct Green (s) & 8.4 & 13.5 & & 8.4 & 16.4 & 31.5 & 8.9 & 26.1 & & 8.4 & 15.4 & \\
\hline Actuated g/C Ratio & 0.13 & 0.21 & & 0.13 & 0.26 & 0.49 & 0.14 & 0.41 & & 0.13 & 0.24 & \\
\hline v/c Ratio & 0.13 & 0.26 & & 0.23 & 0.09 & 0.25 & 0.40 & 0.70 & & 0.09 & 0.50 & \\
\hline Control Delay & 32.3 & 23.5 & & 33.2 & 24.9 & 3.7 & 35.3 & 22.0 & & 32.2 & 22.3 & \\
\hline Queue Delay & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline
\end{tabular}


Splits and Phases: 18: Tsienneto Rd \& NH 28 Byp NB/NH 28 Byp SB

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 7 & \(\rangle\) & 4 & \(\uparrow\) & \(\downarrow\) & \(\downarrow\) & & & & \\
\hline Lane Group & EBL & EBR & NBL & NBT & SBT & SBR & \(\emptyset 2\) & \(\emptyset 5\) & \(\emptyset 6\) & \(\emptyset 7\) \\
\hline Lane Configurations & M & & \(\dagger\) & \(\uparrow\) & \(\uparrow\) & F' & & & & \\
\hline Traffic Volume (vph) & 710 & 5 & 10 & 260 & 200 & 340 & & & & \\
\hline Future Volume (vph) & 710 & 5 & 10 & 260 & 200 & 340 & & & & \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & & & & \\
\hline Storage Length (ft) & 200 & 0 & 100 & & & 90 & & & & \\
\hline Storage Lanes & 0 & 0 & 1 & & & 1 & & & & \\
\hline Taper Length (ft) & 25 & & 25 & & & & & & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & & & & \\
\hline Fit & 0.999 & & & & & 0.850 & & & & \\
\hline Fit Protected & 0.953 & & 0.950 & & & & & & & \\
\hline Satd. Flow (prot) & 1791 & 0 & 1770 & 1863 & 1845 & 1568 & & & & \\
\hline Fit Permitted & 0.953 & & 0.516 & & & & & & & \\
\hline Satd. Flow (perm) & 1791 & 0 & 961 & 1863 & 1845 & 1568 & & & & \\
\hline Right Turn on Red & & Yes & & & & Yes & & & & \\
\hline Satd. Flow (RTOR) & 1 & & & & & 382 & & & & \\
\hline Link Speed (mph) & 30 & & & 30 & 30 & & & & & \\
\hline Link Distance (ft) & 392 & & & 704 & 263 & & & & & \\
\hline Travel Time (s) & 8.9 & & & 16.0 & 6.0 & & & & & \\
\hline Peak Hour Factor & 0.90 & 0.90 & 0.87 & 0.87 & 0.89 & 0.89 & & & & \\
\hline Heavy Vehicles (\%) & 1\% & 1\% & 2\% & 2\% & 3\% & 3\% & & & & \\
\hline Adj. Flow (vph) & 789 & 6 & 11 & 299 & 225 & 382 & & & & \\
\hline \multicolumn{11}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 795 & 0 & 11 & 299 & 225 & 382 & & & & \\
\hline Turn Type & Prot & & pm+pt & NA & NA & custom & & & & \\
\hline Protected Phases & 8 & & 1 & 67 & 27 & 78 & 2 & 5 & 6 & 7 \\
\hline Permitted Phases & & & 67 & & & 2 & & & & \\
\hline Detector Phase & 8 & & 1 & 67 & 27 & 78 & & & & \\
\hline \multicolumn{11}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 5.0 & & 5.0 & & & & 5.0 & 5.0 & 5.0 & 5.0 \\
\hline Minimum Split (s) & 26.5 & & 11.0 & & & & 9.0 & 11.0 & 9.0 & 11.0 \\
\hline Total Split (s) & 47.0 & & 11.0 & & & & 21.0 & 11.0 & 21.0 & 11.0 \\
\hline Total Split (\%) & 52.2\% & & 12.2\% & & & & 23\% & 12\% & 23\% & 12\% \\
\hline Maximum Green (s) & 41.0 & & 5.0 & & & & 17.0 & 5.0 & 17.0 & 5.0 \\
\hline Yellow Time (s) & 4.0 & & 4.0 & & & & 3.0 & 4.0 & 3.0 & 4.0 \\
\hline All-Red Time (s) & 2.0 & & 2.0 & & & & 1.0 & 2.0 & 1.0 & 2.0 \\
\hline Lost Time Adjust (s) & 0.0 & & 0.0 & & & & & & & \\
\hline Total Lost Time (s) & 6.0 & & 6.0 & & & & & & & \\
\hline Lead/Lag & Lag & & Lead & & & & Lag & Lead & Lag & Lead \\
\hline Lead-Lag Optimize? & Yes & & Yes & & & & Yes & Yes & Yes & Yes \\
\hline Vehicle Extension (s) & 3.0 & & 3.0 & & & & 3.0 & 3.0 & 3.0 & 3.0 \\
\hline Recall Mode & None & & None & & & & Min & None & Min & None \\
\hline Act Effct Green (s) & 41.2 & & 27.1 & 27.3 & 29.3 & 79.5 & & & & \\
\hline Actuated g/C Ratio & 0.50 & & 0.33 & 0.33 & 0.35 & 0.96 & & & & \\
\hline \(\mathrm{v} / \mathrm{c}\) Ratio & 0.89 & & 0.03 & 0.49 & 0.34 & 0.25 & & & & \\
\hline Control Delay & 34.8 & & 16.5 & 26.2 & 24.5 & 0.4 & & & & \\
\hline Queue Delay & 0.0 & & 0.0 & 0.0 & 1.3 & 0.0 & & & & \\
\hline Total Delay & 34.8 & & 16.5 & 26.2 & 25.8 & 0.4 & & & & \\
\hline LOS & C & & B & C & C & A & & & & \\
\hline Approach Delay & 34.8 & & & 25.9 & 9.8 & & & & & \\
\hline
\end{tabular}
01/05/2018
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & EBL & EBR & NBL & NBT & SBT & SBR & \(\emptyset 2\) & \(\varnothing 5\) & \(\varnothing 6\) & \(\varnothing 7\) \\
\hline Approach LOS & C & & & C & A & & & & & \\
\hline Queue Length 50th (ft) & 318 & & 4 & 111 & 87 & 0 & & & & \\
\hline Queue Length 95th (ft) & \#686 & & 13 & 209 & 141 & 1 & & & & \\
\hline Internal Link Dist (ft) & 312 & & & 624 & 183 & & & & & \\
\hline Turn Bay Length ( ft ) & 200 & & 100 & & & 90 & & & & \\
\hline Base Capacity (vph) & 893 & & 364 & 614 & 653 & 1523 & & & & \\
\hline Starvation Cap Reductn & 0 & & 0 & 0 & 252 & 166 & & & & \\
\hline Spillback Cap Reductn & 1 & & 0 & 0 & 0 & 0 & & & & \\
\hline Storage Cap Reductn & 0 & & 0 & 0 & 0 & 0 & & & & \\
\hline Reduced v/c Ratio & 0.89 & & 0.03 & 0.49 & 0.56 & 0.28 & & & & \\
\hline Intersection Summary & & & & & & & & & & \\
\hline
\end{tabular}

\section*{Area Type: Other}

Cycle Length: 90
Actuated Cycle Length: 82.6
Natural Cycle: 90
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.89
Intersection Signal Delay: 24.3
Intersection LOS: C
Intersection Capacity Utilization 61.7\%
ICU Level of Service B
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 19: NH 102 EB/NH 102 \& Tsienneto Rd

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & WBL & WBR & NBT & NBR & SBL & SBT & \(\varnothing 1\) & \(\emptyset 2\) & \(\emptyset 6\) & \(\emptyset 8\) \\
\hline Lane Configurations & M & & 4 & F & \% & \(\uparrow\) & & & & \\
\hline Traffic Volume (vph) & 50 & 10 & 810 & 160 & 20 & 490 & & & & \\
\hline Future Volume (vph) & 50 & 10 & 810 & 160 & 20 & 490 & & & & \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & & & & \\
\hline Storage Length (ft) & 0 & 0 & & 90 & 100 & & & & & \\
\hline Storage Lanes & 1 & 0 & & 1 & 1 & & & & & \\
\hline Taper Length ( ft ) & 25 & & & & 25 & & & & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & & & & \\
\hline Fit & 0.972 & & & 0.850 & & & & & & \\
\hline Flt Protected & 0.962 & & & & 0.950 & & & & & \\
\hline Satd. Flow (prot) & 1763 & 0 & 1900 & 1615 & 1805 & 1900 & & & & \\
\hline Flt Permitted & 0.962 & & & & 0.219 & & & & & \\
\hline Satd. Flow (perm) & 1763 & 0 & 1900 & 1615 & 416 & 1900 & & & & \\
\hline Right Turn on Red & & Yes & & Yes & & & & & & \\
\hline Satd. Flow (RTOR) & 11 & & & 123 & & & & & & \\
\hline Link Speed (mph) & 30 & & 30 & & & 30 & & & & \\
\hline Link Distance (ft) & 524 & & 263 & & & 288 & & & & \\
\hline Travel Time (s) & 11.9 & & 6.0 & & & 6.5 & & & & \\
\hline Peak Hour Factor & 0.87 & 0.67 & 0.95 & 0.84 & 0.73 & 0.96 & & & & \\
\hline Heavy Vehicles (\%) & 1\% & 0\% & 0\% & 0\% & 0\% & 0\% & & & & \\
\hline Adj. Flow (vph) & 57 & 15 & 853 & 190 & 27 & 510 & & & & \\
\hline \multicolumn{11}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 72 & 0 & 853 & 190 & 27 & 510 & & & & \\
\hline Turn Type & Prot & & NA & Perm & custom & NA & & & & \\
\hline Protected Phases & 7 & & 68 & & 5 & 28 & 1 & 2 & 6 & 8 \\
\hline Permitted Phases & & & & 68 & 2 & & & & & \\
\hline Detector Phase & 7 & & 68 & 68 & 5 & 28 & & & & \\
\hline \multicolumn{11}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 5.0 & & & & 5.0 & & 5.0 & 5.0 & 5.0 & 5.0 \\
\hline Minimum Split (s) & 11.0 & & & & 11.0 & & 11.0 & 9.0 & 9.0 & 26.5 \\
\hline Total Split (s) & 11.0 & & & & 11.0 & & 11.0 & 21.0 & 21.0 & 47.0 \\
\hline Total Split (\%) & 12.2\% & & & & 12.2\% & & 12\% & 23\% & 23\% & 52\% \\
\hline Maximum Green (s) & 5.0 & & & & 5.0 & & 5.0 & 17.0 & 17.0 & 41.0 \\
\hline Yellow Time (s) & 4.0 & & & & 4.0 & & 4.0 & 3.0 & 3.0 & 4.0 \\
\hline All-Red Time (s) & 2.0 & & & & 2.0 & & 2.0 & 1.0 & 1.0 & 2.0 \\
\hline Lost Time Adjust (s) & 0.0 & & & & 0.0 & & & & & \\
\hline Total Lost Time (s) & 6.0 & & & & 6.0 & & & & & \\
\hline Lead/Lag & Lead & & & & Lead & & Lead & Lag & Lag & Lag \\
\hline Lead-Lag Optimize? & Yes & & & & Yes & & Yes & Yes & Yes & Yes \\
\hline Vehicle Extension (s) & 3.0 & & & & 3.0 & & 3.0 & 3.0 & 3.0 & 3.0 \\
\hline Recall Mode & None & & & & None & & None & Min & Min & None \\
\hline Act Effct Green (s) & 5.0 & & 62.0 & 62.0 & 17.2 & 64.8 & & & & \\
\hline Actuated g/C Ratio & 0.06 & & 0.75 & 0.75 & 0.21 & 0.78 & & & & \\
\hline v/c Ratio & 0.62 & & 0.60 & 0.15 & 0.16 & 0.34 & & & & \\
\hline Control Delay & 58.9 & & 2.6 & 0.7 & 26.2 & 3.0 & & & & \\
\hline Queue Delay & 0.0 & & 1.3 & 0.4 & 0.0 & 0.0 & & & & \\
\hline Total Delay & 58.9 & & 3.8 & 1.1 & 26.2 & 3.0 & & & & \\
\hline LOS & E & & A & A & C & A & & & & \\
\hline Approach Delay & 58.9 & & 3.3 & & & 4.2 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\checkmark\) & 4 & \(\uparrow\) & \(p\) & \(\checkmark\) & \(\downarrow\) & & & & \\
\hline Lane Group & WBL & WBR & NBT & NBR & SBL & SBT & 01 & \(\varnothing 2\) & \(\varnothing 6\) & \(\emptyset 8\) \\
\hline Approach LOS & E & & A & & & A & & & & \\
\hline Queue Length 50th (ft) & 30 & & 17 & 0 & 11 & 44 & & & & \\
\hline Queue Length 95th (ft) & \#96 & & m77 & m2 & 25 & 65 & & & & \\
\hline Internal Link Dist (ft) & 444 & & 183 & & & 208 & & & & \\
\hline Turn Bay Length (tt) & & & & 90 & 100 & & & & & \\
\hline Base Capacity (vph) & 117 & & 1445 & 1258 & 170 & 1509 & & & & \\
\hline Starvation Cap Reductn & 0 & & 359 & 686 & 0 & 0 & & & & \\
\hline Spillback Cap Reductn & 0 & & 0 & 0 & 0 & 16 & & & & \\
\hline Storage Cap Reductn & 0 & & 0 & 0 & 0 & 0 & & & & \\
\hline Reduced v/c Ratio & 0.62 & & 0.79 & 0.33 & 0.16 & 0.34 & & & & \\
\hline \multicolumn{11}{|l|}{Intersection Summary} \\
\hline
\end{tabular}

Area Type: Other
Cycle Length: 90
Actuated Cycle Length: 82.6
Natural Cycle: 90
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.89
Intersection Signal Delay: \(6.0 \quad\) Intersection LOS: A
Intersection Capacity Utilization \(55.1 \%\) ICU Level of Service B
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
\(m\) Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 26: NH 102 \& North Shore Road


\section*{APPENDIX S-1: 2040 ALTERNATIVE F INTERSECTION CAPACITY ANALYSES - HCM 2000 PRINTOUTS - AM PEAK HOUR}

HCM Signalized Intersection Capacity Analysis
1 舟: NH 102 \& Exit 4 SB Off

c Critical Lane Group

HCM Signalized Intersection Capacity Analysis
2 \%: NH 102 \& Exit 4 NB Off
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & NBL2 & NBL & NBR & SEL & SER & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & \({ }^{17}\) & & T 7 & & & \%* & 14 & & & 个个 & F \\
\hline Traffic Volume (vph) & 455 & 0 & 365 & 0 & 0 & 1165 & 1045 & 0 & 0 & 1295 & 1155 \\
\hline Future Volume (vph) & 455 & 0 & 365 & 0 & 0 & 1165 & 1045 & 0 & 0 & 1295 & 1155 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time (s) & 6.0 & & 6.0 & & & 6.0 & 6.0 & & & 6.0 & 4.0 \\
\hline Lane Util. Factor & 0.97 & & 0.88 & & & 0.97 & 0.95 & & & 0.95 & 1.00 \\
\hline Fit & 1.00 & & 0.85 & & & 1.00 & 1.00 & & & 1.00 & 0.85 \\
\hline Flt Protected & 0.95 & & 1.00 & & & 0.95 & 1.00 & & & 1.00 & 1.00 \\
\hline Satd. Flow (prot) & 3242 & & 2632 & & & 3335 & 3438 & & & 3505 & 1568 \\
\hline Flt Permitted & 0.95 & & 1.00 & & & 0.95 & 1.00 & & & 1.00 & 1.00 \\
\hline Satd. Flow (perm) & 3242 & & 2632 & & & 3335 & 3438 & & & 3505 & 1568 \\
\hline Peak-hour factor, PHF & 0.88 & 0.88 & 0.88 & 0.92 & 0.92 & 0.94 & 0.94 & 0.94 & 0.92 & 0.92 & 0.92 \\
\hline Adj. Flow (vph) & 517 & 0 & 415 & 0 & 0 & 1239 & 1112 & 0 & 0 & 1408 & 1255 \\
\hline RTOR Reduction (vph) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Lane Group Flow (vph) & 517 & 0 & 415 & 0 & 0 & 1239 & 1112 & 0 & 0 & 1408 & 1255 \\
\hline Heavy Vehicles (\%) & 8\% & 8\% & 8\% & 2\% & 2\% & 5\% & 5\% & 5\% & 3\% & 3\% & 3\% \\
\hline Turn Type & Prot & & Prot & & & Prot & NA & & & NA & Free \\
\hline Protected Phases & 8 & & 8 & & & 5 & 2 & & & 6 & \\
\hline Permitted Phases & & & & & & & & & & & Free \\
\hline Actuated Green, G (s) & 22.0 & & 22.0 & & & 52.0 & 116.0 & & & 58.0 & 150.0 \\
\hline Effective Green, g (s) & 22.0 & & 22.0 & & & 52.0 & 116.0 & & & 58.0 & 150.0 \\
\hline Actuated g/C Ratio & 0.15 & & 0.15 & & & 0.35 & 0.77 & & & 0.39 & 1.00 \\
\hline Clearance Time (s) & 6.0 & & 6.0 & & & 6.0 & 6.0 & & & 6.0 & \\
\hline Vehicle Extension (s) & 3.0 & & 3.0 & & & 3.0 & 3.0 & & & 3.0 & \\
\hline Lane Grp Cap (vph) & 475 & & 386 & & & 1156 & 2658 & & & 1355 & 1568 \\
\hline v/s Ratio Prot & c0.16 & & 0.16 & & & c0.37 & 0.32 & & & c0.40 & \\
\hline v/s Ratio Perm & & & & & & & & & & & 0.80 \\
\hline v/c Ratio & 1.09 & & 1.08 & & & 1.07 & 0.42 & & & 1.04 & 0.80 \\
\hline Uniform Delay, d1 & 64.0 & & 64.0 & & & 49.0 & 5.7 & & & 46.0 & 0.0 \\
\hline Progression Factor & 1.00 & & 1.00 & & & 0.84 & 0.96 & & & 1.00 & 1.00 \\
\hline Incremental Delay, d2 & 67.3 & & 67.3 & & & 34.3 & 0.0 & & & 35.2 & 4.4 \\
\hline Delay (s) & 131.3 & & 131.3 & & & 75.5 & 5.5 & & & 81.2 & 4.4 \\
\hline Level of Service & F & & F & & & E & A & & & F & A \\
\hline Approach Delay (s) & & 131.3 & & 0.0 & & & 42.4 & & & 45.0 & \\
\hline Approach LOS & & F & & A & & & D & & & D & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
\hline Intersection Summary & & & \\
\hline HCM 2000 Control Delay & 57.5 & HCM 2000 Level of Service & E \\
HCM 2000 Volume to Capacity ratio & 1.06 & Sum of lost time (s) & 18.0 \\
\hline Actuated CCycle Length (s) & 150.0 & F \\
\hline Intersection Capacity Utilization & \(98.0 \%\) & ICU Level of Service & \\
\hline Analysis Period (min) & 15 & & \\
\hline C Critical Lane Group & & & \\
\hline
\end{tabular}

HCM Signalized Intersection Capacity Analysis
3 2: Exit 5 SB On/Exit 5 SB Off \& NH 28
12/28/2017

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & ¢ \(\uparrow\) & 7 & * & \(\uparrow \uparrow\) & & & & & \({ }^{71}\) & & \(\boldsymbol{r}\) \\
\hline Traffic Volume (vph) & 0 & 795 & 360 & 390 & 615 & 0 & 0 & 0 & 0 & 495 & 0 & 500 \\
\hline Future Volume (vph) & 0 & 795 & 360 & 390 & 615 & 0 & 0 & 0 & 0 & 495 & 0 & 500 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrr} 
Total Lost time (s) & 6.0 & 4.0 & 6.0 & 6.0 & 6.0 & 6.0 \\
Lane Util. Factor & 0.95 & 1.00 & 1.00 & 0.95 & 0.97 & 1.00 \\
Fit & 1.00 & 0.85 & 1.00 & 100 & 1.00 & 0.85
\end{tabular}
\begin{tabular}{lrrrrrr} 
Flt Protected & 1.00 & 1.00 & 0.95 & 1.00 & 0.95 & 1.00 \\
Satd. Flow (prot) & 3167 & 1417 & 1687 & 3374 & 3303 & 1524 \\
Flt Permitted & 1.00 & 1.00 & 0.95 & 1.00 & 0.95 & 1.00
\end{tabular}
\begin{tabular}{lrrrrrrrrrrr} 
Satd. Flow (perm) & & 3167 & 1417 & 1687 & 3374 & & & 3303 & & 1524 \\
\hline Peak-hour factor, PHF & 0.92 & 0.92 & 0.92 & 0.73 & 0.73 & 0.73 & 0.92 & 0.92 & 0.92 & 0.74 & 0.74 \\
\hline Adj. Flow (vph) & 0 & 864 & 391 & 534 & 842 & 0 & 0 & 0 & 0 & 669 & 0 \\
\hline RTOR Reduction (vph) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Lane Group Flow (vph) & 0 & 864 & 391 & 534 & 842 & 0 & 0 & 0 & 0 & 669 & 0 \\
\hline Heavy Vehicles (\%) & \(14 \%\) & \(14 \%\) & \(14 \%\) & \(7 \%\) & \(7 \%\) & \(7 \%\) & \(2 \%\) & \(2 \%\) & \(2 \%\) & \(6 \%\) & \(6 \%\) \\
\hline Turn Type & & NA & Free & Prot & NA & & & & & Prot & \\
\hline Protected Phases & 2 & & 1 & 6 & & & & & 4 & Prot \\
Permitted Phases & & & Free & & & & & & & & 4
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Actuated Green, G (s) & 35.0 & 130.0 & 38.0 & 79.0 & & 39.0 & 390 \\
\hline Effective Green, g (s) & 35.0 & 130.0 & 38.0 & 79.0 & & 39.0 & 39.0 \\
\hline Actuated g/C Ratio & 0.27 & 1.00 & 0.29 & 0.61 & & 0.30 & 0.30 \\
\hline Clearance Time (s) & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 \\
\hline Vehicle Extension (s) & 5.0 & & 3.0 & 5.0 & & 3.0 & 3.0 \\
\hline Lane Grp Cap (vph) & 852 & 1417 & 493 & 2050 & & 990 & 457 \\
\hline v/s Ratio Prot & c0.27 & & c0.32 & 0.25 & & 0.20 & c0.36 \\
\hline \(\mathrm{v} / \mathrm{s}\) Ratio Perm & & 0.28 & & & & & \\
\hline \(\mathrm{v} / \mathrm{C}\) Ratio & 1.01 & 0.28 & 1.08 & 0.41 & & 0.68 & 1.21 \\
\hline Uniform Delay, d1 & 47.5 & 0.0 & 46.0 & 13.3 & & 39.9 & 45.5 \\
\hline Progression Factor & 1.00 & 1.00 & 0.31 & 0.08 & & 1.00 & 1.00 \\
\hline Incremental Delay, d2 & 34.4 & 0.5 & 60.7 & 0.3 & & 1.8 & 112.7 \\
\hline Delay (s) & 81.9 & 0.5 & 74.8 & 1.3 & & 41.8 & 158.2 \\
\hline Level of Service & F & A & E & A & & D & \\
\hline Approach Delay (s) & 56.5 & & & 29.8 & 0.0 & & \\
\hline Approach LOS & E & & & C & A & & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
\hline Intersection Summary & & \\
\hline HCM 2000 Control Delay & 62.1 & HCM 2000 Level of Service & E \\
HCM 2000 Volume to Capacity ratio & 1.10 & Sum of lost time (s) & 18.0 \\
\hline Actuated Cycle Length (s) & 130.0 & E \\
Intersection Capacity Utilization & \(85.2 \%\) & ICU Level of Service & \\
\hline Analysis Period (min) & 15 & & \\
c Critical Lane Group & & & \\
\hline
\end{tabular}

HCM Signalized Intersection Capacity Analysis
4 ：Exit 5 NB Off \＆NH 28
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \％ & 个个 & & & \(\uparrow \uparrow\) & 「 & 7 & & 7 & & & \\
\hline Traffic Volume（vph） & 605 & 685 & 0 & 0 & 625 & 790 & 380 & 0 & 160 & 0 & 0 & 0 \\
\hline Future Volume（vph） & 605 & 685 & 0 & 0 & 625 & 790 & 380 & 0 & 160 & 0 & 0 & 0 \\
\hline Ideal Flow（vphpl） & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time（s） & 6.0 & 6.0 & & & 6.0 & 4.0 & 6.0 & & 6.0 & & & \\
\hline Lane Util．Factor & 1.00 & 0.95 & & & 0.95 & 1.00 & 1.00 & & 1.00 & & & \\
\hline Fit & 1.00 & 1.00 & & & 1.00 & 0.85 & 1.00 & & 0.85 & & & \\
\hline Flt Protected & 0.95 & 1.00 & & & 1.00 & 1.00 & 0.95 & & 1.00 & & & \\
\hline Satd．Flow（prot） & 1641 & 3282 & & & 3438 & 1538 & 1656 & & 1482 & & & \\
\hline Flt Permitted & 0.95 & 1.00 & & & 1.00 & 1.00 & 0.95 & & 1.00 & & & \\
\hline Satd．Flow（perm） & 1641 & 3282 & & & 3438 & 1538 & 1656 & & 1482 & & & \\
\hline Peak－hour factor，PHF & 0.87 & 0.87 & 0.87 & 0.90 & 0.90 & 0.90 & 0.78 & 0.78 & 0.78 & 0.92 & 0.92 & 0.92 \\
\hline Adj．Flow（vph） & 695 & 787 & 0 & 0 & 694 & 878 & 487 & 0 & 205 & 0 & 0 & \\
\hline RTOR Reduction（vph） & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 128 & 0 & 0 & \\
\hline Lane Group Flow（vph） & 695 & 787 & 0 & 0 & 694 & 878 & 487 & 0 & 77 & 0 & 0 & \\
\hline Heavy Vehicles（\％） & 10\％ & 10\％ & 10\％ & 5\％ & 5\％ & 5\％ & 9\％ & 9\％ & 9\％ & 2\％ & 2\％ & 2\％ \\
\hline Turn Type & Prot & NA & & & NA & Free & Prot & & Prot & & & \\
\hline Protected Phases & 5 & 2 & & & 6 & & 8 & & 8 & & & \\
\hline Permitted Phases & & 2 & & & 6 & Free & & & & & & \\
\hline Actuated Green，G（s） & 51.0 & 83.0 & & & 26.0 & 130.0 & 35.0 & & 35.0 & & & \\
\hline Effective Green， g （s） & 51.0 & 83.0 & & & 26.0 & 130.0 & 35.0 & & 35.0 & & & \\
\hline Actuated g／C Ratio & 0.39 & 0.64 & & & 0.20 & 1.00 & 0.27 & & 0.27 & & & \\
\hline Clearance Time（s） & 6.0 & 6.0 & & & 6.0 & & 6.0 & & 6.0 & & & \\
\hline Vehicle Extension（s） & 5.0 & 5.0 & & & 5.0 & & 3.0 & & 3.0 & & & \\
\hline Lane Grp Cap（vph） & 643 & 2095 & & & 687 & 1538 & 445 & & 399 & & & \\
\hline \(\mathrm{v} / \mathrm{s}\) Ratio Prot & c0．42 & 0.24 & & & c0．20 & & c0．29 & & 0.05 & & & \\
\hline v／s Ratio Perm & & & & & & 0.57 & & & & & & \\
\hline v／c Ratio & 1.08 & 0.38 & & & 1.01 & 0.57 & 1.09 & & 0.19 & & & \\
\hline Uniform Delay，d1 & 39.5 & 11.2 & & & 52.0 & 0.0 & 47.5 & & 36.6 & & & \\
\hline Progression Factor & 0.22 & 0.00 & & & 1.00 & 1.00 & 1.00 & & 1.00 & & & \\
\hline Incremental Delay，d2 & 44.0 & 0.3 & & & 36.9 & 1.5 & 70.7 & & 0.2 & & & \\
\hline Delay（s） & 52.6 & 0.3 & & & 88.9 & 1.5 & 118.2 & & 36.9 & & & \\
\hline Level of Service & D & A & & & F & A & F & & D & & & \\
\hline Approach Delay（s） & & 24.9 & & & 40.1 & & & 94.1 & & & 0.0 & \\
\hline Approach LOS & & C & & & D & & & F & & & A & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
\hline Intersection Summary & & & \\
\hline HCM 2000 Control Delay & 44.0 & HCM 2000 Level of Service & D \\
HCM 2000 Volume to Capacity ratio & 1.07 & Sum of lost time（s） & 18.0 \\
\hline Actuated Cycle Length（s） & 130.0 & Sut \\
Intersection Capacity Utilization & \(85.2 \%\) & ICU Level of Service & E \\
\hline Analysis Period（min） & 15 & & \\
C Critical Lane Group & & & \\
\hline
\end{tabular}

HCM Signalized Intersection Capacity Analysis
5
9: NH 102 \& St. Charles Street/Londonderry Road
01/04/2018
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & & 4 & 7 & & * & & \({ }^{1}\) & 个浐 & & \({ }^{7}\) & 4t & \\
\hline Traffic Volume (vph) & 10 & - & 120 & 0 & , & 0 & 160 & 780 & 5 & 10 & 1550 & 40 \\
\hline Future Volume (vph) & 10 & 0 & 120 & 0 & 1 & 0 & 160 & 780 & 5 & 10 & 1550 & 40 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time (s) & & 6.0 & 6.0 & & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Lane Util. Factor & & 1.00 & 1.00 & & 1.00 & & 1.00 & 0.95 & & 1.00 & 0.95 & \\
\hline Fit & & 1.00 & 0.85 & & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & \\
\hline Flt Protected & & 0.95 & 1.00 & & 1.00 & & 0.95 & 1.00 & & 0.95 & 1.00 & \\
\hline Satd. Flow (prot) & & 1770 & 1583 & & 1900 & & 1770 & 3536 & & 1770 & 3526 & \\
\hline Flt Permitted & & 1.00 & 1.00 & & 1.00 & & 0.95 & 1.00 & & 0.95 & 1.00 & \\
\hline Satd. Flow (perm) & & 1863 & 1583 & & 1900 & & 1770 & 3536 & & 1770 & 3526 & \\
\hline Peak-hour factor, PHF & 0.92 & 0.92 & 0.92 & 0.25 & 0.25 & 0.25 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 \\
\hline Adj. Flow (vph) & 11 & 0 & 130 & 0 & 4 & 0 & 174 & 848 & 5 & 11 & 1685 & 43 \\
\hline RTOR Reduction (vph) & 0 & 0 & 48 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\hline Lane Group Flow (vph) & 0 & 11 & 82 & 0 & 4 & 0 & 174 & 853 & 0 & 11 & 1727 & 0 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 0\% & 0\% & 0\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% \\
\hline Turn Type & Perm & NA & custom & & NA & & Prot & NA & & Prot & NA & \\
\hline Protected Phases & & 8 & & & 4 & & 5 & 2 & & 1 & 6 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Permitted Phases & 8 & 6 & 4 & & & & \\
\hline Actuated Green, G (s) & 1.3 & 54.2 & 1.3 & 12.6 & 66.0 & 0.8 & 54.2 \\
\hline Effective Green, g (s) & 1.3 & 54.2 & 1.3 & 12.6 & 66.0 & 0.8 & 54.2 \\
\hline Actuated g/C Ratio & 0.02 & 0.63 & 0.02 & 0.15 & 0.77 & 0.01 & 0.63 \\
\hline Clearance Time (s) & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
\hline Lane Grp Cap (vph) & 28 & 996 & 28 & 259 & 2710 & 16 & 2219 \\
\hline v/s Ratio Prot & & & 0.00 & c0.10 & 0.24 & 0.01 & c0.49 \\
\hline v/s Ratio Perm & c0.01 & 0.05 & & & & & \\
\hline \(\mathrm{v} / \mathrm{c}\) Ratio & 0.39 & 0.08 & 0.14 & 0.67 & 0.31 & 0.69 & 0.78 \\
\hline Uniform Delay, d1 & 42.0 & 6.2 & 41.9 & 34.8 & 3.1 & 42.5 & 11.6 \\
\hline Progression Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Incremental Delay, d2 & 8.9 & 0.0 & 2.3 & 6.7 & 0.1 & 80.1 & 1.8 \\
\hline Delay (s) & 50.9 & 6.3 & 44.2 & 41.5 & 3.2 & 122.6 & 13.4 \\
\hline Level of Service & D & A & D & D & A & F & B \\
\hline Approach Delay (s) & 9.7 & & 44.2 & & 9.7 & & 14.1 \\
\hline Approach LOS & A & & D & & A & & B \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
\hline Intersection Summary & & \\
\hline HCM 2000 Control Delay & 12.3 & HCM 2000 Level of Service & B \\
HCM 2000 Volume to Capacity ratio & 0.75 & & 18.0 \\
\hline Actuated Cycle Length (s) & 86.1 & Sum of lost time (s) & D \\
Intersection Capacity Utilization & \(77.9 \%\) & ICU Level of Service & \\
\hline Analysis Period (min) & 15 & & \\
c Critical Lane Group & & & \\
\hline
\end{tabular}

HCM Signalized Intersection Capacity Analysis
6 10: NH 102 \& Fordway/Madden Hill Road
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\cdots\) & \(\checkmark\) & 2 & \(m\) & \(k\) & 5 & \(\cdots\) & 7 & T & 4 & 2 & - \\
\hline Movement & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & & \(\uparrow\) & & \% & & 「 & & 4 & F & & \(\uparrow\) & \\
\hline Traffic Volume (vph) & 5 & 10 & 5 & 360 & 0 & 30 & 0 & 540 & 180 & 5 & 810 & 0 \\
\hline Future Volume (vph) & 5 & 10 & 5 & 360 & 0 & 30 & 0 & 540 & 180 & 5 & 810 & 0 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time (s) & & 6.0 & & 6.0 & & 4.5 & & 6.0 & 6.0 & & 6.0 & \\
\hline Lane Util. Factor & & 1.00 & & 1.00 & & 1.00 & & 1.00 & 1.00 & & 1.00 & \\
\hline Fit & & 0.97 & & 1.00 & & 0.85 & & 1.00 & 0.85 & & 1.00 & \\
\hline Flt Protected & & 0.99 & & 0.95 & & 1.00 & & 1.00 & 1.00 & & 1.00 & \\
\hline Satd. Flow (prot) & & 1780 & & 1752 & & 1568 & & 1759 & 1495 & & 1809 & \\
\hline Flt Permitted & & 0.99 & & 0.74 & & 1.00 & & 1.00 & 1.00 & & 1.00 & \\
\hline Satd. Flow (perm) & & 1780 & & 1357 & & 1568 & & 1759 & 1495 & & 1803 & \\
\hline Peak-hour factor, PHF & 0.60 & 0.60 & 0.60 & 0.96 & 0.96 & 0.96 & 0.89 & 0.89 & 0.89 & 0.86 & 0.86 & 0.86 \\
\hline Adj. Flow (vph) & 8 & 17 & 8 & 375 & 0 & 31 & 0 & 607 & 202 & 6 & 942 & 0 \\
\hline RTOR Reduction (vph) & 0 & 6 & 0 & 0 & 0 & 21 & 0 & 0 & 67 & 0 & 0 & 0 \\
\hline Lane Group Flow (vph) & 0 & 27 & 0 & 375 & 0 & 10 & 0 & 607 & 135 & 0 & 948 & 0 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 3\% & 3\% & 3\% & 8\% & 8\% & 8\% & 5\% & 5\% & 5\% \\
\hline Turn Type & Perm & NA & & D.Pm & & Perm & & NA & Perm & Perm & NA & \\
\hline Protected Phases & & 4 & & & & & & 2 & & & 2 & \\
\hline Permitted Phases & 4 & & & 4 & & 8 & & & 2 & 2 & & \\
\hline Actuated Green, G (s) & & 25.6 & & 25.6 & & 27.1 & & 50.6 & 50.6 & & 50.6 & \\
\hline Effective Green, g (s) & & 25.6 & & 25.6 & & 27.1 & & 50.6 & 50.6 & & 50.6 & \\
\hline Actuated g/C Ratio & & 0.29 & & 0.29 & & 0.31 & & 0.57 & 0.57 & & 0.57 & \\
\hline Clearance Time (s) & & 6.0 & & 6.0 & & 4.5 & & 6.0 & 6.0 & & 6.0 & \\
\hline Vehicle Extension (s) & & 3.0 & & 3.0 & & 3.0 & & 3.0 & 3.0 & & 3.0 & \\
\hline Lane Grp Cap (vph) & & 516 & & 393 & & 481 & & 1009 & 857 & & 1034 & \\
\hline v/s Ratio Prot & & & & & & & & 0.35 & & & & \\
\hline v/s Ratio Perm & & 0.02 & & c0.28 & & 0.01 & & & 0.09 & & c0.53 & \\
\hline v/c Ratio & & 0.05 & & 0.95 & & 0.02 & & 0.60 & 0.16 & & 0.92 & \\
\hline Uniform Delay, d1 & & 22.6 & & 30.7 & & 21.3 & & 12.2 & 8.8 & & 16.9 & \\
\hline Progression Factor & & 1.00 & & 1.00 & & 1.00 & & 1.00 & 1.00 & & 1.00 & \\
\hline Incremental Delay, d2 & & 0.0 & & 33.5 & & 0.0 & & 1.0 & 0.1 & & 12.4 & \\
\hline Delay (s) & & 22.6 & & 64.2 & & 21.3 & & 13.3 & 8.9 & & 29.3 & \\
\hline Level of Service & & C & & E & & C & & B & A & & C & \\
\hline Approach Delay (s) & & 22.6 & & & 60.9 & & & 12.2 & & & 29.3 & \\
\hline Approach LOS & & C & & & E & & & B & & & C & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
\hline Intersection Summary & & \\
\hline HCM 2000 Control Delay & 28.7 & HCM 2000 Level of Service & C \\
HCM 2000 Volume to Capacity ratio & 0.93 & & 12.0 \\
\hline Actuated Cycle Length (s) & 88.2 & Sum of lost time (s) & E \\
Intersection Capacity Utilization & \(83.9 \%\) & ICU Level of Service & \\
\hline Analysis Period (min) & 15 & & \\
c Critical Lane Group & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\Rightarrow\) & \(\rightarrow\) & \(\rangle\) & \(\checkmark\) & \(\leftarrow\) & 4 & 4 & \(\uparrow\) & P & \(\checkmark\) & \(\downarrow\) & \(\checkmark\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \% & \(\uparrow\) & 7 & 9 & \(\uparrow\) & & 7* & F & & \% & \(\uparrow\) & \\
\hline Traffic Volume (vph) & 130 & 270 & 130 & 30 & 500 & 200 & 200 & 100 & 40 & 100 & 100 & 12 \\
\hline Future Volume (vph) & 130 & 270 & 130 & 30 & 500 & 200 & 200 & 100 & 40 & 100 & 100 & 120 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time (s) & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & 6.0 \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 0.95 & & 0.97 & 1.00 & & 1.00 & 1.00 & 1.00 \\
\hline Fit & 1.00 & 1.00 & 0.85 & 1.00 & 0.96 & & 1.00 & 0.96 & & 1.00 & 1.00 & 0.85 \\
\hline Flt Protected & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & & 0.95 & 1.00 & & 0.95 & 1.00 & 1.00 \\
\hline Satd. Flow (prot) & 1656 & 1743 & 1333 & 1703 & 3260 & & 3335 & 1732 & & 1703 & 1792 & 1524 \\
\hline Fit Permitted & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & & 0.95 & 1.00 & & 0.95 & 1.00 & 1.00 \\
\hline Satd. Flow (perm) & 1656 & 1743 & 1333 & 1703 & 3260 & & 3335 & 1732 & & 1703 & 1792 & 1524 \\
\hline Peak-hour factor, PHF & 0.96 & 0.96 & 0.96 & 0.94 & 0.94 & 0.94 & 0.85 & 0.85 & 0.85 & 0.91 & 0.91 & 0.91 \\
\hline Adj. Flow (vph) & 135 & 281 & 135 & 32 & 532 & 213 & 235 & 118 & 47 & 110 & 110 & 132 \\
\hline RTOR Reduction (vph) & , & , & 62 & 0 & 49 & , & 0 & 16 & , & 0 & 0 & 132 \\
\hline Lane Group Flow (vph) & 135 & 281 & 73 & 32 & 696 & 0 & 235 & 149 & 0 & 110 & 110 & 34 \\
\hline Heavy Vehicles (\%) & 9\% & 9\% & 9\% & 6\% & 6\% & 6\% & 5\% & 5\% & 5\% & 6\% & 6\% & \(6 \%\) \\
\hline Parking (\#/hr) & & & 0 & & & & & & & & & \\
\hline Turn Type & Prot & NA & pm+ov & Prot & NA & & Prot & NA & & Prot & NA & pm+ov \\
\hline Protected Phases & 5 & 2 & 3 & 1 & 6 & & 3 & 8 & & 7 & 4 & \\
\hline Permitted Phases & & & 2 & & & & & & & & & \\
\hline Actuated Green, G (s) & 8.1 & 32.3 & 43.1 & 2.1 & 26.3 & & 10.8 & 13.9 & & 7.1 & 10.2 & 18.3 \\
\hline Effective Green, \(\mathrm{g}(\mathrm{s})\) & 8.1 & 32.3 & 43.1 & 2.1 & 26.3 & & 10.8 & 13.9 & & 7.1 & 10.2 & 18.3 \\
\hline Actuated g/C Ratio & 0.10 & 0.41 & 0.54 & 0.03 & 0.33 & & 0.14 & 0.18 & & 0.09 & 0.13 & 0.23 \\
\hline Clearance Time (s) & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & 6.0 \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & 3.0 \\
\hline Lane Grp Cap (vph) & 168 & 709 & 824 & 45 & 1079 & & 453 & 303 & & 152 & 230 & 466 \\
\hline v/s Ratio Prot & c0.08 & c0. 16 & 0.01 & 0.02 & c0.21 & & c0.07 & c0.09 & & 0.06 & 0.06 & 0.01 \\
\hline v/s Ratio Perm & & & 0.04 & & & & & & & & & 0.01 \\
\hline v/c Ratio & 0.80 & 0.40 & 0.09 & 0.71 & 0.64 & & 0.52 & 0.49 & & 0.72 & 0.48 & 0.07 \\
\hline Uniform Delay, d1 & 34.9 & 16.7 & 8.7 & 38.3 & 22.6 & & 31.9 & 29.6 & & 35.2 & 32.1 & 23.9 \\
\hline Progression Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & & 1.00 & 1.00 & & 1.00 & 1.00 & 1.00 \\
\hline Incremental Delay, d2 & 23.5 & 0.4 & 0.0 & 41.4 & 1.3 & & 1.0 & 1.2 & & 15.6 & 1.6 & 0.1 \\
\hline Delay (s) & 58.4 & 17.0 & 8.8 & 79.7 & 23.9 & & 32.9 & 30.8 & & 50.8 & 33.7 & 24.0 \\
\hline Level of Service & E & B & A & E & C & & C & c & & D & c & \\
\hline Approach Delay (s) & & 25.1 & & & 26.2 & & & 32.0 & & & 35.4 & \\
\hline Approach LOS & & C & & & C & & & c & & & D & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
\hline Intersection Summary & & & \\
\hline HCM 2000 Control Delay & 28.6 & HCM 2000 Level of Service & C \\
HCM 2000 Volume to Capacity ratio & 0.63 & & 24.0 \\
Actuated Cycle Length (s) & 79.4 & Sum of lost time (s) & B \\
Intersection Capacity Utilization & \(61.3 \%\) & ICU Level of Service & \\
Analysis Period (min) & 15 & &
\end{tabular}
c Critical Lane Group
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(y\) & , & 4 & \(\uparrow\) & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & 7 & 7 & & \(\uparrow\) & \(\uparrow\) & F \\
\hline Traffic Volume (vph) & 350 & 20 & 5 & 40 & 140 & 440 \\
\hline Future Volume (vph) & 350 & 20 & 5 & 40 & 140 & 440 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 0 & 120 & 0 & & & 220 \\
\hline Storage Lanes & 1 & 1 & 0 & & & 1 \\
\hline Taper Length (ft) & 25 & & 25 & & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & 0.850 & & & & 0.850 \\
\hline Flt Protected & 0.950 & & & 0.995 & & \\
\hline Satd. Flow (prot) & 1719 & 1538 & 0 & 1818 & 1863 & 1583 \\
\hline Flt Permitted & 0.950 & & & 0.995 & & \\
\hline Satd. Flow (perm) & 1719 & 1538 & 0 & 1818 & 1863 & 1583 \\
\hline Link Speed (mph) & 30 & & & 30 & 30 & \\
\hline Link Distance (ft) & 322 & & & 309 & 292 & \\
\hline Travel Time (s) & 7.3 & & & 7.0 & 6.6 & \\
\hline Peak Hour Factor & 0.89 & 0.89 & 0.91 & 0.91 & 0.93 & 0.93 \\
\hline Heavy Vehicles (\%) & 5\% & 5\% & 4\% & 4\% & 2\% & 2\% \\
\hline Adj. Flow (vph) & 393 & 22 & 5 & 44 & 151 & 473 \\
\hline Shared Lane Traffic (\%) & & & & & & \\
\hline Lane Group Flow (vph) & 393 & 22 & 0 & 49 & 151 & 473 \\
\hline Sign Control & Stop & & & Stop & Stop & \\
\hline \multicolumn{7}{|l|}{Intersection Summary} \\
\hline \multicolumn{7}{|l|}{Area Type: Other} \\
\hline \multicolumn{7}{|l|}{Control Type: Unsignalized} \\
\hline \multicolumn{7}{|l|}{Intersection Capacity Utilization 37.2\% ICU Level of Service A} \\
\hline \multicolumn{7}{|l|}{Analysis Period (min) 15} \\
\hline
\end{tabular}

8: N.High St/N. High St \& Ash St Ext
\begin{tabular}{lrl}
\hline Intersection \\
Intersection Delay, s/veh & 20.7 \\
Intersection LOS & C
\end{tabular}
\begin{tabular}{lrrrrrr}
\hline Movement & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & & \(\mathbf{T}\) & & \(\uparrow\) & \(\uparrow\) & \(\mathbf{~}\) \\
Traffic Vol, veh/h & 350 & 20 & 5 & 40 & 140 & 440 \\
Future Vol, veh/h & 350 & 20 & 5 & 40 & 140 & 440 \\
Peak Hour Factor & 0.89 & 0.89 & 0.91 & 0.91 & 0.93 & 0.93 \\
Heavy Vehicles, \% & 5 & 5 & 4 & 4 & 2 & 2 \\
Mvmt Flow & 393 & 22 & 5 & 44 & 151 & 473 \\
Number of Lanes & 1 & 1 & 0 & 1 & 1 & 1
\end{tabular}
\begin{tabular}{lrrr}
\hline Approach & EB & NB & SB \\
\hline Opposing Approach & & SB & NB \\
Opposing Lanes & 0 & 2 & 1 \\
Conflicting Approach Left & SB & EB & \\
Conflicting Lanes Left & 2 & 2 & 0 \\
Conflicting Approach Right & NB & & EB \\
Conflicting Lanes Right & 1 & 0 & 2 \\
HCM Control Delay & 26.1 & 10.5 & 17.9 \\
HCM LOS & D & B & C
\end{tabular}
\begin{tabular}{lrrrrr}
\hline Lane & NBLn1 & EBLn1 & EBLn2 & SBLn1 & SBLn2 \\
\hline Vol Left, \% & \(11 \%\) & \(100 \%\) & \(0 \%\) & \(0 \%\) & \(0 \%\) \\
Vol Thru, \% & \(89 \%\) & \(0 \%\) & \(0 \%\) & \(100 \%\) & \(0 \%\) \\
Vol Right, \% & \(0 \%\) & \(0 \%\) & \(100 \%\) & \(0 \%\) & \(100 \%\) \\
Sign Control & Stop & Stop & Stop & Stop & Stop \\
Traffic Vol by Lane & 45 & 350 & 20 & 140 & 440 \\
LT Vol & 5 & 350 & 0 & 0 & 0 \\
Through Vol & 40 & 0 & 0 & 140 & 0 \\
RT Vol & 0 & 0 & 20 & 0 & 440 \\
Lane Flow Rate & 49 & 393 & 22 & 151 & 473 \\
Geometry Grp & 4 & 7 & 7 & 7 & 7 \\
Degree of Util (X) & 0.093 & 0.747 & 0.035 & 0.255 & 0.707 \\
Departure Headway (Hd) & 6.734 & 6.836 & 5.624 & 6.087 & 5.378 \\
Convergence, Y/N & Yes & Yes & Yes & Yes & Yes \\
Cap & 530 & 531 & 636 & 589 & 672 \\
Service Time & 4.799 & 4.571 & 3.359 & 3.835 & 3.126 \\
HCM Lane VIC Ratio & 0.092 & 0.74 & 0.035 & 0.256 & 0.704 \\
HCM Control Delay & 10.5 & 27.1 & 8.6 & 10.9 & 20.1 \\
HCM Lane LOS & B & D & A & B & C \\
HCM 95th-tile Q & 0.3 & 6.4 & 0.1 & 1 & 5.8
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\Rightarrow\) & 7 & 4 & \(\uparrow\) & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & \% & & & \(\uparrow\) & \(\dagger\) & \\
\hline Traffic Volume (vph) & 10 & 0 & 0 & 390 & 580 & 10 \\
\hline Future Volume (vph) & 10 & 0 & 0 & 390 & 580 & 10 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & & & & 0.998 & \\
\hline Fit Protected & 0.950 & & & & & \\
\hline Satd. Flow (prot) & 1008 & 0 & 0 & 1827 & 1789 & 0 \\
\hline Flt Permitted & 0.950 & & & & & \\
\hline Satd. Flow (perm) & 1008 & 0 & 0 & 1827 & 1789 & 0 \\
\hline Link Speed (mph) & 30 & & & 30 & 30 & \\
\hline Link Distance (ft) & 160 & & & 224 & 319 & \\
\hline Travel Time (s) & 3.6 & & & 5.1 & 7.3 & \\
\hline Peak Hour Factor & 0.44 & 0.44 & 0.95 & 0.95 & 0.96 & 0.96 \\
\hline Heavy Vehicles (\%) & 79\% & 79\% & 4\% & 4\% & 6\% & 6\% \\
\hline Adj. Flow (vph) & 23 & 0 & 0 & 411 & 604 & 10 \\
\hline \multicolumn{7}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 23 & 0 & 0 & 411 & 614 & 0 \\
\hline Sign Control & Stop & & & Free & Free & \\
\hline
\end{tabular}

Intersection Summary
Area Type: Other
Control Type: Unsignalized
Intersection Capacity Utilization 41.1\%
ICU Level of Service A
Analysis Period (min) 15
\begin{tabular}{lrrrrrr}
\hline & & & & & & \\
\hline Intersection & & & & & \\
\hline Int Delay, s/veh & 0.6 & & & & & \\
\hline Movement & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & 10 & & & A & F & \\
Traffic Vol, veh/h & 10 & 0 & 0 & 390 & 580 & 10 \\
Future Vol, veh/h & 10 & 0 & 0 & 390 & 580 & 10 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & - & - & - & - \\
Veh in Median Storage, \# & 0 & - & - & 0 & 0 & - \\
Grade, \% & 0 & - & - & 0 & 0 & - \\
Peak Hour Factor & 44 & 44 & 95 & 95 & 96 & 96 \\
Heavy Vehicles, \% & 79 & 79 & 4 & 4 & 6 & 6 \\
Mvmt Flow & 23 & 0 & 0 & 411 & 604 & 10
\end{tabular}
\begin{tabular}{lrrrrll}
\hline Major/Minor & Minor2 & \multicolumn{1}{r}{ Major1 } & \multicolumn{1}{r}{ Major2 } \\
\hline Conflicting Flow All & 1020 & 609 & 614 & 0 & - & 0 \\
\(\quad\) Stage 1 & 609 & - & - & - & - & - \\
\(\quad\) Stage 2 & 411 & - & - & - & - & - \\
Critical Hddy & 7.19 & 6.99 & 4.14 & - & - & - \\
Critical Hdwy Stg 1 & 6.19 & - & - & - & - & - \\
Critical Hdwy Stg 2 & 6.19 & - & - & - & - & - \\
Follow-up Hdwy & 4.211 & 4.011 & 2.236 & - & - & - \\
Pot Cap-1 Maneuver & 191 & 379 & 956 & - & - & - \\
\(\quad\) Stage 1 & 419 & - & - & - & - & - \\
\(\quad\) Stage 2 & 531 & - & - & - & - & - \\
Platoon blocked, \% & & & & - & - & - \\
Mov Cap-1 Maneuver & 191 & 379 & 956 & - & - & - \\
Mov Cap-2 Maneuver & 191 & - & - & - & - & - \\
\(\quad\) Stage 1 & 419 & - & - & - & - & - \\
Stage 2 & 531 & - & - & - & - & -
\end{tabular}
\begin{tabular}{lrrr} 
Approach & EB & NB & SB \\
\hline HCM Control Delay, s & 26.4 & 0 & 0 \\
HCM LOS & D & &
\end{tabular}
\begin{tabular}{lrrrrl}
\hline Minor Lane/Major Mvmt & NBL & NBT EBLn1 & SBT & SBR \\
\hline Capacity (veh/h) & 956 & - & 191 & - & - \\
HCM Lane V/C Ratio & - & -0.119 & - & - \\
HCM Control Delay (s) & 0 & -26.4 & - & - \\
HCM Lane LOS & A & - & D & - & - \\
HCM 95th \%tile Q(veh) & 0 & - & 0.4 & - & -
\end{tabular}

10: Franklin St/Franklin St Ext \& N High St/Folsom Rd Lanes, Volumes, Timings



\begin{tabular}{lccrr}
\hline Approach & EB & WB & SE & NW \\
\hline HCM Control Delay, S & 0.9 & 0.5 & 11.8 & 31.7 \\
HCM LOS & & \(B\) & D
\end{tabular}
\begin{tabular}{lrrrrrrr}
\hline Minor Lane/Major Mvmt & NWLn1 & EBL & EBT & EBR & WBL & WBT & WBR SELn1 \\
\hline Capacity (veh/h) & 208 & 1003 & - & -1139 & - & -662 \\
HCM Lane V/C Ratio & 0.359 & 0.045 & - & -0.027 & - & -0.198 \\
HCM Control Delay (s) & 31.7 & 8.8 & 0 & - & 8.2 & 0 & -11.8 \\
HCM Lane LSS & D & A & A & - & A & A & - \\
HCM 95th \%tile Q(veh) & 1.5 & 0.1 & - & - & 0.1 & - & - \\
H & & 0.7
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\uparrow\) & 1 & \(\checkmark\) & \(\downarrow\) & \(\downarrow\) & \(\stackrel{4}{ }\) & \(\nearrow\) & ¢ & \(\frac{1}{7}\) & \(\checkmark\) & \(\vartheta\) \\
\hline Movement & NBL & NBT & NBR & SBL & SBT & SBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & 7 & \(\uparrow \uparrow\) & \% & 7* & 个个 & & \({ }^{7}\) & \(\uparrow\) & F & \({ }^{1}\) & \(\uparrow\) & 7 \\
\hline Traffic Volume (vph) & 20 & 120 & 180 & 240 & 100 & 0 & 90 & 260 & 20 & 145 & 430 & 345 \\
\hline Future Volume (vph) & 20 & 120 & 180 & 240 & 100 & 0 & 90 & 260 & 20 & 145 & 430 & 345 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time (s) & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & & 6.0 & 6.0 & 4.0 & 6.0 & 6.0 & 6.0 \\
\hline Lane Util. Factor & 1.00 & 0.95 & 1.00 & 0.97 & 0.95 & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & 1.00 & 1.00 & 0.85 & 1.00 & 1.00 & & 1.00 & 1.00 & 0.85 & 1.00 & 1.00 & 0.85 \\
\hline Flt Protected & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & 1.00 \\
\hline Satd. Flow (prot) & 1736 & 3471 & 1553 & 3335 & 3438 & & 1752 & 1845 & 1568 & 1752 & 1845 & 1568 \\
\hline FIt Permitted & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & 1.00 \\
\hline Satd. Flow (perm) & 1736 & 3471 & 1553 & 3335 & 3438 & & 1752 & 1845 & 1568 & 1752 & 1845 & 1568 \\
\hline Peak-hour factor, PHF & 0.84 & 0.84 & 0.84 & 0.79 & 0.79 & 0.79 & 0.86 & 0.86 & 0.86 & 0.99 & 0.99 & 0.99 \\
\hline Adj. Flow (vph) & 24 & 143 & 214 & 304 & 127 & , & 105 & 302 & 23 & 146 & 434 & 348 \\
\hline RTOR Reduction (vph) & 0 & , & 166 & 0 & , & 0 & 0 & 0 & , & O & , & 176 \\
\hline Lane Group Flow (vph) & 24 & 143 & 48 & 304 & 127 & 0 & 105 & 302 & 23 & 146 & 434 & 172 \\
\hline Heavy Vehicles (\%) & 4\% & 4\% & 4\% & 5\% & 5\% & 5\% & 3\% & 3\% & 3\% & 3\% & 3\% & 3\% \\
\hline Turn Type & Prot & NA & Perm & Prot & NA & & Prot & NA & Free & Prot & NA & pt+ov \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & 7 & 4 & & 3 & & 81 \\
\hline Permitted Phases & & 2 & 2 & & 6 & & & 4 & Free & & 8 & \\
\hline Actuated Green, G (s) & 11.9 & 20.2 & 20.2 & 11.5 & 19.8 & & 7.2 & 22.9 & 90.0 & 11.4 & 27.1 & 44.6 \\
\hline Effective Green, g (s) & 11.9 & 20.2 & 20.2 & 11.5 & 19.8 & & 7.2 & 22.9 & 90.0 & 11.4 & 27.1 & 44.6 \\
\hline Actuated g/C Ratio & 0.13 & 0.22 & 0.22 & 0.13 & 0.22 & & 0.08 & 0.25 & 1.00 & 0.13 & 0.30 & 0.50 \\
\hline Clearance Time (s) & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Lane Grp Cap (vph) & 229 & 779 & 348 & 426 & 756 & & 140 & 469 & 1568 & 221 & 555 & 777 \\
\hline \(\mathrm{v} / \mathrm{s}\) Ratio Prot & 0.01 & c0.04 & & c0.09 & 0.04 & & 0.06 & 0.16 & & c0.08 & c0.24 & 0.11 \\
\hline \(\mathrm{v} / \mathrm{s}\) Ratio Perm & & & 0.03 & & & & & & c0.01 & & & \\
\hline v/c Ratio & 0.10 & 0.18 & 0.14 & 0.71 & 0.17 & & 0.75 & 0.64 & 0.01 & 0.66 & 0.78 & 0.22 \\
\hline Uniform Delay, d1 & 34.4 & 28.2 & 27.9 & 37.7 & 28.4 & & 40.5 & 29.9 & 0.0 & 37.5 & 28.7 & 12.9 \\
\hline Progression Factor & 1.00 & 1.00 & 1.00 & 1.04 & 0.86 & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Incremental Delay, d2 & 0.9 & 0.5 & 0.8 & 5.5 & 0.5 & & 20.0 & 3.0 & 0.0 & 7.2 & 7.1 & 0.1 \\
\hline Delay (s) & 35.3 & 28.7 & 28.8 & 44.5 & 24.8 & & 60.5 & 32.9 & 0.0 & 44.7 & 35.8 & 13.0 \\
\hline Level of Service & D & C & C & D & C & & E & C & A & D & D & B \\
\hline Approach Delay (s) & & 29.2 & & & 38.7 & & & 37.9 & & & 28.7 & \\
\hline Approach LOS & & C & & & D & & & D & & & C & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
\hline Intersection Summary & & & \\
\hline HCM 2000 Control Delay & 32.6 & HCM 2000 Level of Service & C \\
HCM 2000 Volume to Capacity ratio & 0.61 & & \\
Actuated Cycle Length (s) & 90.0 & Sum of lost time (s) & 24.0 \\
Intersection Capacity Utilization & \(56.1 \%\) & ICU Level of Service & B \\
Analysis Period (min) & 15 & & \\
C Critical Lane Group & & &
\end{tabular}

12: Tsienneto Rd \& Pinkerton St
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\cdots\) & 厄 & \(\lambda\) & \(x\) & 4 & \(\star\) \\
\hline Lane Group & NWL & NWR & NET & NER & SWL & SWT \\
\hline Lane Configurations & \({ }^{1}\) & 7 & \(\uparrow\) & 7 & & 4个 \\
\hline Traffic Volume (vph) & 80 & 60 & 460 & 220 & 70 & 840 \\
\hline Future Volume (vph) & 80 & 60 & 460 & 220 & 70 & 840 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 180 & 0 & & 0 & 180 & \\
\hline Storage Lanes & 1 & 1 & & 1 & 0 & \\
\hline Taper Length ( t ) & 25 & & & & 25 & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 0.95 & 0.95 \\
\hline Fit & & 0.850 & & 0.850 & & \\
\hline Flt Protected & 0.950 & & & & & 0.996 \\
\hline Satd. Flow (prot) & 1770 & 1583 & 1845 & 1568 & 0 & 3525 \\
\hline Flt Permitted & 0.950 & & & & & 0.996 \\
\hline Satd. Flow (perm) & 1770 & 1583 & 1845 & 1568 & 0 & 3525 \\
\hline Link Speed (mph) & 30 & & 30 & & & 30 \\
\hline Link Distance ( t ) & 408 & & 387 & & & 233 \\
\hline Travel Time (s) & 9.3 & & 8.8 & & & 5.3 \\
\hline Peak Hour Factor & 0.83 & 0.83 & 0.86 & 0.86 & 0.81 & 0.81 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 3\% & 3\% & 2\% & 2\% \\
\hline \multicolumn{7}{|l|}{\multirow[b]{2}{*}{Shared Lane Traffic (\%) \(\%\) (\%}} \\
\hline & & & & & & \\
\hline Lane Group Flow (vph) & 96 & 72 & 535 & 256 & 0 & 1123 \\
\hline Sign Control & Stop & & Free & & & Free \\
\hline \multicolumn{7}{|l|}{Intersection Summary} \\
\hline \multicolumn{7}{|l|}{Area Type: Other} \\
\hline \multicolumn{7}{|l|}{Control Type: Unsignalized} \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{Intersection Capacity Utilization 63.9\%
Analysis Period (min) 15 \(\quad\) ICU Level of Service B}} \\
\hline & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Intersection} \\
\hline \multicolumn{7}{|l|}{Int Delay, s/veh 4.2} \\
\hline Movement & NWL & NWR & NET & NER & SWL & SWT \\
\hline Lane Configurations & 7 & 「 & \(\uparrow\) & 7 & & \(\uparrow \uparrow\) \\
\hline Traffic Vol, veh/h & 80 & 60 & 460 & 220 & 70 & 840 \\
\hline Future Vol, veh/h & 80 & 60 & 460 & 220 & 70 & 840 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Stop & Stop & Free & Free & Free & Free \\
\hline RT Channelized & - & None & - & Yield & - & None \\
\hline Storage Length & 180 & 0 & - & 0 & - & . \\
\hline Veh in Median Storage, \# & \# 0 & - & 0 & - & - & 0 \\
\hline Grade, \% & 0 & - & 0 & - & - & 0 \\
\hline Peak Hour Factor & 83 & 83 & 86 & 86 & 81 & 81 \\
\hline Heavy Vehicles, \% & 2 & 2 & 3 & 3 & 2 & 2 \\
\hline Mvmt Flow & 96 & 72 & 535 & 256 & 86 & 1037 \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrr}
\hline Major/Minor & Minor1 & \multicolumn{3}{r}{ Major1 } & \multicolumn{1}{r}{ Major2 } \\
\hline Conflicting Flow All & 1226 & 535 & 0 & 0 & 535 & 0 \\
\(\quad\) Stage 1 & 535 & - & - & - & - & - \\
\(\quad\) Stage 2 & 691 & - & - & - & - & - \\
Critical Hdwy & 6.63 & 6.23 & - & -4.13 & - \\
Critical Hdwy Stg 1 & 5.43 & - & - & - & - & - \\
Critical Hdwy Stg 2 & 5.83 & - & - & - & - & - \\
Follow-up Hdwy & 3.519 & 3.319 & - & -2.219 & - \\
Pot Cap-1 Maneuver & 184 & 544 & - & -1031 & - \\
\(\quad\) Stage 1 & 586 & - & - & - & - & - \\
\(\quad\) Stage 2 & 460 & - & - & - & - & - \\
Platoon blocked, \% & & & - & - & & - \\
Mov Cap-1 Maneuver & 148 & 544 & - & - & 1031 & - \\
Mov Cap-2 Maneuver & 148 & - & - & - & - & - \\
Stage 1 & 471 & - & - & - & - & - \\
Stage 2 & 460 & - & - & - & - & -
\end{tabular}
\begin{tabular}{lrrr}
\hline Approach & NW & NE & SW \\
\hline HCM Control Delay, s & 43.2 & 0 & 1.3 \\
HCM LOS & E & &
\end{tabular}
\begin{tabular}{lrrrrrl}
\hline Minor Lane/Major Mvmt & NET & NERNWLn1NWLn2 & SWL & SWT \\
\hline Capacity (veh/h) & - & - & 148 & 544 & 1031 & - \\
HCM Lane V/C Ratio & - & -0.651 & 0.133 & 0.084 & - \\
HCM Control Delay (s) & - & - & 66.1 & 12.6 & 8.8 & 0.7 \\
HCM Lane LOS & - & - & F & B & A & A \\
HCM 95th \%tile Q(veh) & - & - & 3.6 & 0.5 & 0.3 & -
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & 7\% & 个\% & & 7 & 42 & & 7 & 今 & & \% & \(\uparrow\) & SBR \\
\hline Traffic Volume (vph) & 70 & 470 & 5 & 5 & 450 & 160 & 10 & 5 & 5 & 180 & 5 & 100 \\
\hline Future Volume (vph) & 70 & 470 & 5 & 5 & 450 & 160 & 10 & 5 & 5 & 180 & 5 & 100 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time (s) & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & 6.0 \\
\hline Lane Util. Factor & 0.97 & 0.95 & & 1.00 & 0.95 & & 1.00 & 1.00 & & 0.95 & 0.95 & 1.00 \\
\hline Fit & 1.00 & 1.00 & & 1.00 & 0.96 & & 1.00 & 0.93 & & 1.00 & 1.00 & 0.85 \\
\hline Flt Protected & 0.95 & 1.00 & & 0.95 & 1.00 & & 0.95 & 1.00 & & 0.95 & 0.96 & 1.00 \\
\hline Satd. Flow (prot) & 3303 & 3400 & & 1736 & 3335 & & 1805 & 1758 & & 1665 & 1674 & 1568 \\
\hline Flt Permitted & 0.95 & 1.00 & & 0.95 & 1.00 & & 0.95 & 1.00 & & 0.95 & 0.96 & 1.00 \\
\hline Satd. Flow (perm) & 3303 & 3400 & & 1736 & 3335 & & 1805 & 1758 & & 1665 & 1674 & 1568 \\
\hline Peak-hour factor, PHF & 0.83 & 0.83 & 0.83 & 0.97 & 0.97 & 0.97 & 0.67 & 0.67 & 0.67 & 0.90 & 0.90 & 0.90 \\
\hline Adj. Flow (vph) & 84 & 566 & 6 & 5 & 464 & 165 & 15 & 7 & 7 & 200 & 6 & 111 \\
\hline RTOR Reduction (vph) & 0 & 1 & 0 & 0 & 41 & 0 & 0 & 7 & 0 & 0 & 0 & 80 \\
\hline Lane Group Flow (vph) & 84 & 571 & 0 & 5 & 588 & 0 & 15 & 7 & 0 & 102 & 104 & 31 \\
\hline Heavy Vehicles (\%) & 6\% & 6\% & 6\% & 4\% & 4\% & 4\% & 0\% & 0\% & 0\% & 3\% & 3\% & 3\% \\
\hline Turn Type & Prot & NA & & Prot & NA & & Split & NA & & Split & NA & \(\mathrm{pt}+\mathrm{ov}\) \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & 3 & 3 & & 4 & 4 & 45 \\
\hline Permitted Phases & & & & & & & & 3 & & & & \\
\hline Actuated Green, G (s) & 7.7 & 49.1 & & 1.3 & 42.7 & & 4.1 & 4.1 & & 11.5 & 11.5 & 25.2 \\
\hline Effective Green, g (s) & 7.7 & 49.1 & & 1.3 & 42.7 & & 4.1 & 4.1 & & 11.5 & 11.5 & 25.2 \\
\hline Actuated g/C Ratio & 0.09 & 0.55 & & 0.01 & 0.47 & & 0.05 & 0.05 & & 0.13 & 0.13 & 0.28 \\
\hline Clearance Time (s) & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Lane Grp Cap (vph) & 282 & 1854 & & 25 & 1582 & & 82 & 80 & & 212 & 213 & 439 \\
\hline \(\mathrm{v} / \mathrm{s}\) Ratio Prot & c0.03 & c0.17 & & 0.00 & c0.18 & & c0.01 & 0.00 & & 0.06 & c0.06 & 0.02 \\
\hline \multicolumn{13}{|l|}{v/s Ratio Perm 0 0.06 0.00} \\
\hline \(\mathrm{v} / \mathrm{c}\) Ratio & 0.30 & 0.31 & & 0.20 & 0.37 & & 0.18 & 0.09 & & 0.48 & 0.49 & 0.07 \\
\hline Uniform Delay, d1 & 38.6 & 11.2 & & 43.8 & 15.1 & & 41.3 & 41.2 & & 36.5 & 36.5 & 23.8 \\
\hline Progression Factor & 1.00 & 1.00 & & 1.58 & 0.57 & & 1.00 & 1.00 & & 1.00 & 1.00 & 1.00 \\
\hline Incremental Delay, d2 & 0.6 & 0.1 & & 3.9 & 0.7 & & 1.1 & 0.5 & & 1.7 & 1.8 & 0.1 \\
\hline Delay (s) & 39.2 & 11.3 & & 73.0 & 9.3 & & 42.4 & 41.7 & & 38.2 & 38.3 & 23.9 \\
\hline Level of Service & D & B & & E & A & & D & D & & D & D & C \\
\hline Approach Delay (s) & & 14.8 & & & 9.8 & & & 42.1 & & & 33.2 & \\
\hline Approach LOS & & B & & & A & & & D & & & C & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Intersection} \\
\hline Int Delay, s/veh & 1.5 & & & & & \\
\hline Movement & EBL & EBT & WBT & WBR & SBL & SBR \\
\hline Lane Configurations & * & \(\uparrow\) & F & & Y & \\
\hline Traffic Vol, veh/h & 10 & 590 & 470 & 20 & 40 & 20 \\
\hline Future Vol, veh/h & 10 & 590 & 470 & 20 & 40 & 20 \\
\hline \multicolumn{2}{|l|}{Conflicting Peds, \#hr} & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Free & Free & Free & Free & Stop & Stop \\
\hline RT Channelized & & None & . & None & & None \\
\hline Storage Length & 140 & - & - & . & 0 & . \\
\hline \multicolumn{2}{|l|}{Veh in Median Storage, \#} & 0 & 0 & - & 0 & - \\
\hline Grade, \% & - & 0 & 0 & - & 0 & - \\
\hline Peak Hour Factor & 84 & 84 & 89 & 89 & 83 & 83 \\
\hline Heavy Vehicles, \% & 7 & 7 & 4 & 4 & 6 & , \\
\hline Mvmt Flow & 12 & 702 & 528 & 22 & 48 & 24 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Major/Minor & Major1 & & Major2 & & Minor2 & \\
\hline Conflicting Flow All & 550 & 0 & - & 0 & 1265 & 539 \\
\hline Stage 1 & - & - & - & - & 539 & - \\
\hline Stage 2 & - & - & - & - & 726 & - \\
\hline Critical Hdwy & 4.17 & - & - & - & 6.46 & 6.26 \\
\hline Critical Hdwy Stg 1 & - & - & - & - & 5.46 & . \\
\hline Critical Hdwy Stg 2 & . & - & - & - & 5.46 & . \\
\hline Follow-up Hdwy & 2.263 & - & - & - & 3.554 & 3.354 \\
\hline Pot Cap-1 Maneuver & 995 & . & - & - & 183 & 535 \\
\hline Stage 1 & - & - & - & - & 577 & - \\
\hline Stage 2 & - & - & - & - & 472 & - \\
\hline Platoon blocked, \% & & . & - & - & & \\
\hline Mov Cap-1 Maneuver & 995 & - & - & - & 181 & 535 \\
\hline Mov Cap-2 Maneuver & - & - & - & - & 181 & - \\
\hline Stage 1 & - & - & - & - & 570 & - \\
\hline Stage 2 & - & . & - & - & 472 & - \\
\hline Approach & EB & & WB & & SB & \\
\hline HCM Control Delay, s & 0.1 & & 0 & & 27.4 & \\
\hline HCM LOS & & & & & D & \\
\hline \multicolumn{2}{|l|}{Minor Lane/Major Mvmt} & EBL & EBT & WBT & WBR S & BLn1 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Capacity (veh/h) HCM Lane VIC Ratio}} & 995 & - & - & - & 232 \\
\hline & & 0.012 & - & - & - & 0.312 \\
\hline \multicolumn{2}{|l|}{HCM Lane VIC Ratio HCM Control Delay (s)} & 8.7 & - & - & - & 27.4 \\
\hline \multicolumn{2}{|l|}{HCM Control Delay (s) HCM Lane LOS} & A & - & - & - & D \\
\hline \multicolumn{2}{|l|}{HCM 95th \%tile Q(veh)} & 0 & - & - & - & 1.3 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \(\xlongequal{ }\) & \(\nearrow\) & \(\rightarrow\) & 7 & ¢ & \(\downarrow\) & \(\star\) & 4 \\
\hline Lane Group & NEL & NET & NER & NER2 & SWL2 & SWL & SWT & SWR \\
\hline Lane Configurations & & ¢ & & & & & ¢ & \\
\hline Traffic Volume (vph) & 70 & 130 & 120 & 140 & 5 & 40 & 220 & 10 \\
\hline Future Volume (vph) & 70 & 130 & 120 & 140 & 5 & 40 & 220 & 10 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (t) & 0 & & 150 & & & 150 & & 0 \\
\hline Storage Lanes & 0 & & 0 & & & 0 & & 0 \\
\hline Taper Length ( t ) & 25 & & & & & 25 & & \\
\hline Lane Utill. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & 0.924 & & & & & 0.995 & \\
\hline Flt Protected & & 0.992 & & & & & 0.992 & \\
\hline Satd. Flow (prot) & 0 & 1613 & 0 & 0 & 0 & 0 & 1753 & 0 \\
\hline FIt Permitted & & 0.992 & & & & & 0.992 & \\
\hline Satd. Flow (perm) & 0 & 1613 & 0 & 0 & 0 & 0 & 1753 & 0 \\
\hline Link Speed (mph) & & 30 & & & & & 30 & \\
\hline Link Distance (tt) & & 400 & & & & & 530 & \\
\hline Travel Time (s) & & 9.1 & & & & & 12.0 & \\
\hline Peak Hour Factor & 0.60 & 0.60 & 0.60 & 0.60 & 0.83 & 0.83 & 0.83 & 0.83 \\
\hline Heavy Vehicles (\%) & 8\% & 8\% & 8\% & 8\% & 7\% & 7\% & 7\% & 7\% \\
\hline Adj. Flow (vph) & 117 & 217 & 200 & 233 & , & 48 & 265 & 12 \\
\hline Shared Lane Traffic (\%) & & & & & & & & \\
\hline Lane Group Flow (vph) & 0 & 767 & 0 & 0 & 0 & 0 & 331 & 0 \\
\hline Sign Control & & Yield & & & & & Yield & \\
\hline \multicolumn{9}{|l|}{Intersection Summary} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{Intersection} \\
\hline \multicolumn{11}{|l|}{Intersection Delay, s/veh28.2} \\
\hline Intersection LOS & & & & & & & & & & \\
\hline Approach & & WB & & NB & & SB & & NE & & SW \\
\hline Entry Lanes & & 1 & & 1 & & 1 & & 1 & & 1 \\
\hline Conflicting Circle Lan & & 1 & & 1 & & 1 & & 1 & & 1 \\
\hline Adj Approach Flow, ve & & 638 & & 263 & & 326 & & 767 & & 331 \\
\hline Demand Flow Rate, ver & eh/h & 657 & & 270 & & 350 & & 828 & & 354 \\
\hline Vehicles Circulating, & eh/h & 638 & & 730 & & 845 & & 364 & & 976 \\
\hline Vehicles Exiting, veh/h & & 362 & & 462 & & 485 & & 831 & & 319 \\
\hline Ped Vol Crossing Leg & \#/h & 0 & & 0 & & 0 & & 0 & & 0 \\
\hline Ped Cap Adj & & 1.000 & & 1.000 & & 1.000 & & 1.000 & & 1.000 \\
\hline Approach Delay, s/veh & & 40.1 & & 11.6 & & 19.1 & & 28.7 & & 26.4 \\
\hline Approach LOS & & E & & B & & C & & D & & D \\
\hline Lane & Lef & & Left & & Left & & Left & & Left & \\
\hline Designated Moves & LR & & LTR & & LTR & & LTR & & LTR & \\
\hline Assumed Moves & LR & & LTR & & LTR & & LTR & & LTR & \\
\hline \multicolumn{11}{|l|}{RT Channelized} \\
\hline Lane Util & 1.000 & & 1.000 & & 1.000 & & 1.000 & & 1.000 & \\
\hline Follow-Up Headway, & 2.609 & & 2.609 & & 2.609 & & 2.609 & & 2.609 & \\
\hline Critical Headway, s & 4.976 & & 4.976 & & 4.976 & & 4.976 & & 4.976 & \\
\hline Entry Flow, veh/h & 657 & & 270 & & 350 & & 828 & & 354 & \\
\hline Cap Entry Lane, veh/h & 720 & & 655 & & 583 & & 952 & & 510 & \\
\hline Entry HV Adj Factor & 0.971 & & 0.974 & & 0.933 & & 0.926 & & 0.935 & \\
\hline Flow Entry, veh/h & 638 & & 263 & & 326 & & 767 & & 331 & \\
\hline Cap Entry, veh/h & 699 & & 638 & & 544 & & 881 & & 477 & \\
\hline VIC Ratio & 0.913 & & 0.412 & & 0.600 & & 0.870 & & 0.694 & \\
\hline Control Delay, s/veh & 40.1 & & 11.6 & & 19.1 & & 28.7 & & 26.4 & \\
\hline LOS & E & & B & & C & & D & & D & \\
\hline 95th \%tile Queue, veh & 12 & & 2 & & 4 & & 11 & & 5 & \\
\hline
\end{tabular}

17: Pinkerton St/Nesmith Rd \& NH 28 Bypass
Lanes, Volumes, Timings
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\Rightarrow\) & \(\rightarrow\) & 7 & \(\checkmark\) & \(\leftarrow\) & 1 & 4 & \(\uparrow\) & \(P\) & \(\checkmark\) & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \(\uparrow\) & 7 & & 4 & & & ¢ & & & 4 & \\
\hline Traffic Volume (vph) & 10 & 10 & 145 & 5 & 40 & 50 & 200 & 170 & 10 & 10 & 110 & 20 \\
\hline Future Volume (vph) & 10 & 10 & 145 & 5 & 40 & 50 & 200 & 170 & 10 & 10 & 110 & 20 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (tt) & - & & 50 & 0 & & 0 & 0 & & 0 & 0 & & 0 \\
\hline Storage Lanes & 0 & & 1 & 0 & & 0 & 0 & & 0 & 0 & & 0 \\
\hline Taper Length (tt) & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & & 0.850 & & 0.929 & & & 0.997 & & & 0.981 & \\
\hline Flt Protected & & 0.976 & & & 0.997 & & & 0.974 & & & 0.996 & \\
\hline Satd. Flow (prot) & 0 & 1717 & 1495 & 0 & 1676 & 0 & 0 & 1791 & 0 & 0 & 1785 & 0 \\
\hline Flt Permitted & & 0.976 & & & 0.997 & & & 0.974 & & & 0.996 & \\
\hline Satd. Flow (perm) & 0 & 1717 & 1495 & 0 & 1676 & 0 & 0 & 1791 & 0 & 0 & 1785 & 0 \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance (tt) & & 144 & & & 453 & & & 475 & & & 436 & \\
\hline Travel Time (s) & & 3.3 & & & 10.3 & & & 10.8 & & & 9.9 & \\
\hline Peak Hour Factor & 0.82 & 0.82 & 0.82 & 0.70 & 0.70 & 0.70 & 0.75 & 0.75 & 0.75 & 0.71 & 0.71 & 0.71 \\
\hline Heavy Vehicles (\%) & 8\% & 8\% & 8\% & 5\% & 5\% & 5\% & 3\% & 3\% & 3\% & 4\% & 4\% & 4\% \\
\hline Adj. Flow (vph) & 12 & 12 & 177 & 7 & 57 & 71 & 267 & 227 & 13 & 14 & 155 & 28 \\
\hline Shared Lane Traffic (\%) & & & & & & & & & & & & \\
\hline Lane Group Flow (vph) & 0 & 24 & 177 & 0 & 135 & 0 & 0 & 507 & 0 & 0 & 197 & 0 \\
\hline Sign Control & & Stop & & & Stop & & & Free & & & Free & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline Area Type: & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{Control Type: Unsignalized} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Intersection Capacity Utilization 47.8\%
Analysis Period (min) 15}} & & & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{ICU Level of Service A}} & & & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Intersection} \\
\hline Int Delay, s/veh & 8.2 & & & & & & & & & & & \\
\hline Movement EBL & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \(\uparrow\) & 「 & & * & & & ¢ & & & \(\dagger\) & \\
\hline Traffic Vol, veh/h & 10 & 10 & 145 & 5 & 40 & 50 & 200 & 170 & 10 & 10 & 110 & 20 \\
\hline Future Vol, veh/h & 10 & 10 & 145 & 5 & 40 & 50 & 200 & 170 & 10 & 10 & 110 & 20 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control S & Stop & Stop & Stop & Stop & Stop & Stop & Free & Free & Free & Free & Free & Free \\
\hline RT Channelized & - & . & None & - & - & None & - & - & None & - & - & None \\
\hline Storage Length & - & - & 50 & - & - & - & - & - & . & - & - & - \\
\hline Veh in Median Storage, \# & \# & 0 & , & - & 0 & - & - & 0 & - & - & 0 & - \\
\hline Grade, \% & - & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - \\
\hline Peak Hour Factor & 82 & 82 & 82 & 70 & 70 & 70 & 75 & 75 & 75 & 71 & 71 & 71 \\
\hline Heavy Vehicles, \% & 8 & 8 & 8 & 5 & 5 & 5 & 3 & 3 & 3 & 4 & 4 & 4 \\
\hline Mvmt Flow & 12 & 12 & 177 & 7 & 57 & 71 & 267 & 227 & 13 & 14 & 155 & 28 \\
\hline
\end{tabular}

\begin{tabular}{lrrrl}
\hline Approach & EB & WB & NB & SB \\
\hline HCM Control Delay, s & 13.2 & 26.2 & 4.3 & 0.6 \\
HCM LOS & B & D & &
\end{tabular}
\begin{tabular}{lrrrrrrrr}
\hline Minor Lane/Major Mvmt & NBL & NBT & NBR EBLn1 EBLn2WBLn1 & SBL & SBT & SBR \\
\hline Capacity (veh/h) & 1386 & - & - & 147 & 860 & 303 & 1315 & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\rightarrow\) & \(\uparrow\) &  & \(\cdots\) & \(\downarrow\) & , & \(\xlongequal{9}\) & \(\star\) & ¢ & \(\checkmark\) & \(\star\) & \(\uparrow\) \\
\hline Movement & NBL & NBT & NBR & SBL & SBT & SBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & \% & \(\stackrel{1}{ }\) & & \% & \(\uparrow\) & 7 & \% & F & & \% & \(\dagger\) & \\
\hline Traffic Volume (vph) & 30 & 50 & 20 & 20 & 50 & 160 & 80 & 240 & 80 & 80 & 520 & 50 \\
\hline Future Volume (vph) & 30 & 50 & 20 & 20 & 50 & 160 & 80 & 240 & 80 & 80 & 520 & 50 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time (s) & 6.0 & 6.0 & & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Lane Util. Factor & 1.00 & 1.00 & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & & 1.00 & 1.00 & \\
\hline Frt & 1.00 & 0.96 & & 1.00 & 1.00 & 0.85 & 1.00 & 0.96 & & 1.00 & 0.99 & \\
\hline Flt Protected & 0.95 & 1.00 & & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & & 0.95 & 1.00 & \\
\hline Satd. Flow (prot) & 1752 & 1767 & & 1736 & 1827 & 1553 & 1770 & 1793 & & 1787 & 1856 & \\
\hline Flt Permitted & 0.95 & 1.00 & & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & & 0.95 & 1.00 & \\
\hline Satd. Flow (perm) & 1752 & 1767 & & 1736 & 1827 & 1553 & 1770 & 1793 & & 1787 & 1856 & \\
\hline Peak-hour factor, PHF & 0.82 & 0.82 & 0.82 & 0.81 & 0.81 & 0.81 & 0.68 & 0.68 & 0.68 & 0.78 & 0.78 & 0.78 \\
\hline Adj. Flow (vph) & 37 & 61 & 24 & 25 & 62 & 198 & 118 & 353 & 118 & 103 & 667 & 64 \\
\hline RTOR Reduction (vph) & 0 & 17 & & 0 & 0 & 139 & 0 & 14 & 0 & 0 & 4 & 0 \\
\hline Lane Group Flow (vph) & 37 & 68 & 0 & 25 & 62 & 59 & 118 & 457 & 0 & 103 & 727 & 0 \\
\hline Heavy Vehicles (\%) & 3\% & 3\% & 3\% & 4\% & 4\% & 4\% & 2\% & 2\% & 2\% & 1\% & 1\% & 1\% \\
\hline Turn Type & Prot & NA & & Prot & NA & pt+ov & Prot & NA & & Prot & NA & \\
\hline Protected Phases & 1 & 6 & & 5 & 2 & 23 & 3 & 8 & & 7 & 4 & \\
\hline \multicolumn{13}{|l|}{Permitted Phases} \\
\hline Actuated Green, G (s) & 4.4 & 10.7 & & 3.0 & 9.3 & 23.4 & 8.1 & 35.0 & & 6.2 & 33.1 & \\
\hline Effective Green, \(\mathrm{g}(\mathrm{s})\) & 4.4 & 10.7 & & 3.0 & 9.3 & 23.4 & 8.1 & 35.0 & & 6.2 & 33.1 & \\
\hline Actuated g/C Ratio & 0.06 & 0.14 & & 0.04 & 0.12 & 0.30 & 0.10 & 0.44 & & 0.08 & 0.42 & \\
\hline Clearance Time (s) & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Lane Grp Cap (vph) & 97 & 239 & & 66 & 215 & 460 & 181 & 795 & & 140 & 778 & \\
\hline \(\mathrm{v} / \mathrm{s}\) Ratio Prot & co. 02 & c0.04 & & 0.01 & 0.03 & 0.04 & c0.07 & 0.25 & & 0.06 & c0.39 & \\
\hline v/s Ratio Perm & & & & & & & & & & & & \\
\hline v/c Ratio & 0.38 & 0.28 & & 0.38 & 0.29 & 0.13 & 0.65 & 0.57 & & 0.74 & 0.93 & \\
\hline Uniform Delay, d1 & 35.9 & 30.7 & & 37.0 & 31.8 & 20.3 & 34.0 & 16.4 & & 35.5 & 21.9 & \\
\hline Progression Factor & 1.00 & 1.00 & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & & 1.00 & 1.00 & \\
\hline Incremental Delay, d2 & 2.5 & 0.7 & & 3.6 & 3.4 & 0.1 & 8.1 & 1.0 & & 18.1 & 18.1 & \\
\hline Delay (s) & 38.4 & 31.3 & & 40.7 & 35.1 & 20.4 & 42.2 & 17.4 & & 53.6 & 40.0 & \\
\hline Level of Service & D & C & & D & D & C & D & B & & D & D & \\
\hline Approach Delay (s) & & 33.5 & & & 25.4 & & & 22.4 & & & 41.7 & \\
\hline Approach LOS & & C & & & C & & & C & & & D & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline \multicolumn{3}{|l|}{HCM 2000 Control Delay} & 32.4 & & HCM 2000 & Level of S & Service & & C & & & \\
\hline \multicolumn{3}{|l|}{HCM 2000 Volume to Capacity ratio} & 0.74 & & & & & & & & & \\
\hline \multicolumn{3}{|l|}{Actuated Cycle Length (s)} & 78.9 & & Sum of lost & time (s) & & & 24.0 & & & \\
\hline \multicolumn{3}{|l|}{Intersection Capacity Utilization} & 62.0\% & & CU Level & f Service & & & B & & & \\
\hline \multicolumn{3}{|l|}{Analysis Period (min)} & 15 & & & & & & & & & \\
\hline \multicolumn{3}{|l|}{c Critical Lane Group} & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrr}
\hline & & & & \(\uparrow\) & \(\downarrow\) & \\
& & EBL & EBR & NBL & NBT & SBT \\
& SBR \\
\hline Lane Group & 170 & 0 & 10 & 140 & 250 & 470 \\
Lane Configurations & 170 & 0 & 10 & 140 & 250 & 470 \\
Traffic Volume (vph) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
Future Volume (vph) & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
Ideal Flow (vphpl) & & & & & 0.912 & \\
Lane Util. Factor & 0.950 & & & 0.997 & & \\
Fit & 1770 & 0 & 0 & 1707 & 1699 & 0 \\
Flt Protected & 0.950 & & & 0.997 & & \\
Satd. Flow (prot) & 1770 & 0 & 0 & 1707 & 1699 & 0 \\
Flt Permitted & 30 & & & 30 & 30 & \\
Satd. Flow (perm) & 348 & & & 739 & 425 & \\
Link Speed (mph) & 7.9 & & & 16.8 & 9.7 & \\
Link Distance (ft) & 0.94 & 0.94 & 0.91 & 0.91 & 0.82 & 0.82 \\
Travel Time (s) & \(2 \%\) & \(2 \%\) & \(11 \%\) & \(11 \%\) & \(2 \%\) & \(2 \%\) \\
Peak Hour Factor & 181 & 0 & 11 & 154 & 305 & 573 \\
Heavy Vehicles (\%) & & & & & & \\
Adj. Flow (vph) & 181 & 0 & 0 & 165 & 878 & 0 \\
Shared Lane Traffic (\%) & & & & Free & Free &
\end{tabular}

Intersection Summary
Area Type:
Other
Control Type: Unsignalized
Intersection Capacity Utilization \(58.1 \%\)
ICU Level of Service B
Analysis Period (min) 15
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Intersection} \\
\hline Int Delay, s/veh & 3.7 & & & & & \\
\hline Movement & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline \multirow[t]{2}{*}{Lane Configurations
Traffic Vol, veh/h} & Y & & & A & \(\dagger\) & \\
\hline & 170 & 0 & 10 & 140 & 250 & 470 \\
\hline Future Vol, veh/h & 170 & 0 & 10 & 140 & 250 & 470 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \multirow[t]{2}{*}{Sign Control RT Channelized} & Stop & Stop & Free & Free & Free & Free \\
\hline & - & None & - & None & . & None \\
\hline Storage Length & 0 & . & - & - & \(\cdot\) & . \\
\hline Veh in Median Storage, \# & \# 0 & - & - & 0 & 0 & - \\
\hline Grade, \% & 0 & - & - & 0 & 0 & - \\
\hline Peak Hour Factor & 94 & 94 & 91 & 91 & 82 & 82 \\
\hline Heavy Vehicles, \% & 2 & 2 & 11 & 11 & 2 & 2 \\
\hline Mumt Flow & 181 & 0 & 11 & 154 & 305 & 573 \\
\hline
\end{tabular}


APPENDIX S-2: 2040 ALTERNATIVE F INTERSECTION CAPACITY ANALYSES - HCM 2000 PRINTOUTS - PM PEAK HOUR

HCM Signalized Intersection Capacity Analysis
1 \(\xrightarrow{\text { 2. } \mathrm{NH} 102 \text { \& Exit } 4 \text { SB Off }}\)


Permitted Phases
\begin{tabular}{lrrrr} 
Actuated Green, G (s) & 48.0 & 48.0 & 60.0 & 60.0 \\
\hline Effective Green, g (s) & 48.0 & 48.0 & 60.0 & 60.0 \\
\hline Actuated g/C Ratio & 0.40 & 0.40 & 0.50 & 0.50 \\
\hline Clearance Time (s) & 6.0 & 6.0 & 6.0 & 6.0 \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & 3.0 & 3.0 \\
\hline Lane Gro Cap (vph) & 1388 & 1362 & 965 & 1341 \\
\hline v/s Ratio Prot & 0.41 & c 0.44 & c 0.59 & 0.48 \\
\hline v/s Ratio Perm & & & \\
\hline v/c Ratio & 1.02 & 1.11 & 1.17 & 0.95 \\
\hline Uniform Delay, d1 & 36.0 & 36.0 & 30.0 & 28.6 \\
\hline Progression Factor & 0.59 & 0.05 & 1.00 & 1.00 \\
\hline Incremental Delay, d2 & 21.8 & 50.4 & 87.7 & 14.4 \\
\hline Delay (s) & 43.0 & 52.2 & 117.7 & 43.0 \\
\hline Level of Service & D & D & F & D \\
\hline Approach Delay (s) & 43.0 & 52.2 & 78.1 & \\
\hline Approach LOS & D & D & E & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
\hline Intersection Summary & & \\
\hline LCM 2000 Control Delay & 61.5 & HCM 2000 Level of Service & E \\
HCM 2000 Volume to Capacity ratio & 1.14 & & 12.0 \\
\hline Actuated Cycle Length (s) & 120.0 & Sum of lost time (s) & G \\
Intersection Capacity Utilization & \(104.4 \%\) & ICU Level of Service & \\
Analysis Period (min) & 15 & & \\
c Critical Lane Group & & & \\
\hline
\end{tabular}

HCM Signalized Intersection Capacity Analysis
2
'8: NH 102 \& Exit 4 NB Off

\section*{\(\longrightarrow\)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & NBL2 & NBL & NBR & SEL & SER & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & 717 & & 「7 & & & \% & 鮒 & & & 44 & T \\
\hline Traffic Volume (vph) & 1250 & 0 & 1105 & 0 & 0 & 985 & 1330 & 0 & 0 & 570 & 795 \\
\hline Future Volume (vph) & 1250 & 0 & 1105 & 0 & 0 & 985 & 1330 & 0 & 0 & 570 & 795 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time (s) & 6.0 & & 6.0 & & & 6.0 & 6.0 & & & 6.0 & 4.0 \\
\hline Lane Util. Factor & 0.97 & & 0.88 & & & 0.97 & 0.95 & & & 0.95 & 1.00 \\
\hline Frt & 1.00 & & 0.85 & & & 1.00 & 1.00 & & & 1.00 & 0.85 \\
\hline Flt Protected & 0.95 & & 1.00 & & & 0.95 & 1.00 & & & 1.00 & 1.00 \\
\hline Satd. Flow (prot) & 3242 & & 2632 & & & 3335 & 3438 & & & 3505 & 1568 \\
\hline Fit Permitted & 0.95 & & 1.00 & & & 0.95 & 1.00 & & & 1.00 & 1.00 \\
\hline Satd. Flow (perm) & 3242 & & 2632 & & & 3335 & 3438 & & & 3505 & 1568 \\
\hline Peak-hour factor, PHF & 0.88 & 0.88 & 0.88 & 0.92 & 0.92 & 0.94 & 0.94 & 0.94 & 0.92 & 0.92 & 0.92 \\
\hline Adj. Flow (vph) & 1420 & 0 & 1256 & 0 & 0 & 1048 & 1415 & 0 & 0 & 620 & 864 \\
\hline RTOR Reduction (vph) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Lane Group Flow (vph) & 1420 & 0 & 1256 & 0 & 0 & 1048 & 1415 & 0 & 0 & 620 & 864 \\
\hline Heavy Vehicles (\%) & 8\% & 8\% & 8\% & 2\% & 2\% & 5\% & 5\% & 5\% & 3\% & 3\% & 3\% \\
\hline Turn Type & Prot & & Prot & & & Prot & NA & & & NA & Free \\
\hline Protected Phases & 8 & & 8 & & & 5 & 2 & & & 6 & \\
\hline Permitted Phases & & & & & & & & & & & Free \\
\hline Actuated Green, G (s) & 44.0 & & 44.0 & & & 32.0 & 64.0 & & & 26.0 & 120.0 \\
\hline Effective Green, g (s) & 44.0 & & 44.0 & & & 32.0 & 64.0 & & & 26.0 & 120.0 \\
\hline Actuated g/C Ratio & 0.37 & & 0.37 & & & 0.27 & 0.53 & & & 0.22 & 1.00 \\
\hline Clearance Time (s) & 6.0 & & 6.0 & & & 6.0 & 6.0 & & & 6.0 & \\
\hline Vehicle Extension (s) & 3.0 & & 3.0 & & & 3.0 & 3.0 & & & 3.0 & \\
\hline Lane Grp Cap (vph) & 1188 & & 965 & & & 889 & 1833 & & & 759 & 1568 \\
\hline v/s Ratio Prot & 0.44 & & c0.48 & & & c0.31 & c0.41 & & & 0.18 & \\
\hline v/s Ratio Perm & & & & & & & & & & & 0.55 \\
\hline v/c Ratio & 1.20 & & 1.30 & & & 1.18 & 0.77 & & & 0.82 & 0.55 \\
\hline Uniform Delay, d1 & 38.0 & & 38.0 & & & 44.0 & 22.2 & & & 44.7 & 0.0 \\
\hline Progression Factor & 1.00 & & 1.00 & & & 0.87 & 0.91 & & & 1.00 & 1.00 \\
\hline Incremental Delay, d2 & 96.3 & & 143.3 & & & 81.7 & 0.3 & & & 9.5 & 1.4 \\
\hline Delay (s) & 134.3 & & 181.3 & & & 120.1 & 20.5 & & & 54.2 & 1.4 \\
\hline Level of Service & F & & F & & & F & C & & & D & A \\
\hline Approach Delay (s) & & 156.4 & & 0.0 & & & 62.9 & & & 23.5 & \\
\hline Approach LOS & & F & & A & & & E & & & C & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
\hline Intersection Summary & & & \\
\hline HCM 2000 Control Delay & 91.8 & HCM 2000 Level of Service & F \\
\hline HCM 2000 Volume to Capacity ratio & 1.15 & & \\
\hline Actuated Cycle Length (s) & 120.0 & Sum of lost time (s) & 18.0 \\
\hline Intersection Capacity Utilization & \(95.5 \%\) & ICU Level of Service & F \\
\hline Analysis Period (min) & 15 & & \\
\hline C Critical Lane Group & & & \\
\hline
\end{tabular}

HCM Signalized Intersection Capacity Analysis
3 : Exit 5 SB On/Exit 5 SB Off \& NH 28
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & & 1 & \(\longleftarrow\) & 4 & 4 & \(\uparrow\) & \(p\) & * & \(\downarrow\) & \(\downarrow\) \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & 44 & \% & \% & 中4 & & & & & \({ }^{1+1}\) & & F \\
\hline Traffic Volume (vph) & 0 & 925 & 385 & 240 & 525 & 0 & 0 & 0 & 0 & 740 & 0 & 480 \\
\hline Future Volume (vph) & 0 & 925 & 385 & 240 & 525 & 0 & 0 & 0 & 0 & 740 & 0 & 480 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time (s) & & 6.0 & 4.0 & 6.0 & 6.0 & & & & & 6.0 & & 6.0 \\
\hline Lane Util. Factor & & 0.95 & 1.00 & 1.00 & 0.95 & & & & & 0.97 & & 1.00 \\
\hline Frt & & 1.00 & 0.85 & 1.00 & 1.00 & & & & & 1.00 & & 0.85 \\
\hline Flt Protected & & 1.00 & 1.00 & 0.95 & 1.00 & & & & & 0.95 & & 1.00 \\
\hline Satd. Flow (prot) & & 3471 & 1553 & 1719 & 3438 & & & & & 3367 & & 1553 \\
\hline Flt Permitted & & 1.00 & 1.00 & 0.95 & 1.00 & & & & & 0.95 & & 1.00 \\
\hline Satd. Flow (perm) & & 3471 & 1553 & 1719 & 3438 & & & & & 3367 & & 1553 \\
\hline Peak-hour factor, PHF & 0.87 & 0.87 & 0.87 & 0.86 & 0.86 & 0.86 & 0.92 & 0.92 & 0.92 & 0.91 & 0.91 & 0.91 \\
\hline Adj. Flow (vph) & 0 & 1063 & 443 & 279 & 610 & 0 & 0 & 0 & 0 & 813 & 0 & 527 \\
\hline RTOR Reduction (vph) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 218 \\
\hline Lane Group Flow (vph) & 0 & 1063 & 443 & 279 & 610 & 0 & 0 & 0 & 0 & 813 & 0 & 309 \\
\hline Heavy Vehicles (\%) & 4\% & 4\% & 4\% & 5\% & 5\% & 5\% & 2\% & 2\% & 2\% & 4\% & 4\% & 4\% \\
\hline Turn Type & & NA & Free & Prot & NA & & & & & Prot & & Prot \\
\hline Protected Phases & & 2 & & 1 & 6 & & & & & 4 & & 4 \\
\hline Permitted Phases & & & Free & & & & & & & & & \\
\hline Actuated Green, G (s) & & 36.6 & 100.0 & 18.4 & 61.0 & & & & & 27.0 & & 27.0 \\
\hline Effective Green, g (s) & & 36.6 & 100.0 & 18.4 & 61.0 & & & & & 27.0 & & 27.0 \\
\hline Actuated g/C Ratio & & 0.37 & 1.00 & 0.18 & 0.61 & & & & & 0.27 & & 0.27 \\
\hline Clearance Time (s) & & 6.0 & & 6.0 & 6.0 & & & & & 6.0 & & 6.0 \\
\hline Vehicle Extension (s) & & 5.0 & & 3.0 & 5.0 & & & & & 3.0 & & 3.0 \\
\hline Lane Grp Cap (vph) & & 1270 & 1553 & 316 & 2097 & & & & & 909 & & 419 \\
\hline v/s Ratio Prot & & c0.31 & & c0.16 & 0.18 & & & & & c0. 24 & & 0.20 \\
\hline v/s Ratio Perm & & & 0.29 & & & & & & & & & \\
\hline v/c Ratio & & 0.84 & 0.29 & 0.88 & 0.29 & & & & & 0.89 & & 0.74 \\
\hline Uniform Delay, d1 & & 29.0 & 0.0 & 39.8 & 9.2 & & & & & 35.1 & & 33.3 \\
\hline Progression Factor & & 1.00 & 1.00 & 0.20 & 0.00 & & & & & 1.00 & & 1.00 \\
\hline Incremental Delay, d2 & & 6.7 & 0.5 & 16.3 & 0.2 & & & & & 11.2 & & 6.7 \\
\hline Delay (s) & & 35.6 & 0.5 & 24.2 & 0.2 & & & & & 46.3 & & 40.0 \\
\hline Level of Service & & D & A & C & A & & & & & D & & D \\
\hline Approach Delay (s) & & 25.3 & & & 7.7 & & & 0.0 & & & 43.8 & \\
\hline Approach LOS & & C & & & A & & & A & & & D & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
\hline Intersection Summary & & \\
\hline HCM 2000 Control Delay & 27.8 & HCM 2000 Level of Service & C \\
\hline HCM 2000 Volume to Capacity ratio & 0.87 & & 18.0 \\
\hline Actuated Cycle Length (s) & 100.0 & Sum of lost time (s) & D \\
Intersection Capacity Utilization & \(76.8 \%\) & ICU Level of Service & \\
\hline Analysis Period (min) & 15 & & \\
C Critical Lane Group & & &
\end{tabular}

HCM Signalized Intersection Capacity Analysis
4 8: Exit 5 NB Off \& NH 28

\begin{tabular}{lrrrrrrrrrrrr}
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \(\$\) & \(\uparrow \uparrow\) & & & \(\boldsymbol{\uparrow}\) & \(\mathbf{7}\) & \(\boldsymbol{\$}\) & & \(\mathbf{7}\) & & 0 & 0 \\
Traffic Volume (vph) & 580 & 1085 & 0 & 0 & 470 & 560 & 295 & 0 & 360 & 0 & 0 & 0 \\
Future Volume (vph) & 580 & 1085 & 0 & 0 & 470 & 560 & 295 & 0 & 360 & 0 & 0 & 0 \\
Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900
\end{tabular}
\begin{tabular}{lrrrrrrrrrrrr} 
\\
Total Lost time (s) & 6.0 & 6.0 & & & 6.0 & 4.0 & 6.0 & & 6.0 & & 1900 & \\
\hline Lane Util. Factor & 1.00 & 0.95 & & & 0.95 & 1.00 & 1.00 & & 1.00 & & & \\
Fit & 1.00 & 1.00 & & & 1.00 & 0.85 & 1.00 & & 0.85 & & & \\
Ft Protected & 0.95 & 1.00 & & & 1.00 & 1.00 & 0.95 & & 1.00 & & \\
Satd. Flow (prot) & 1552 & 350 & & & 3505 & 1568 & 1703 & & 1524 & & \\
FIt Permitted & 0.95 & 1.00 & & & 1.00 & 1.00 & 0.95 & & 1.00 & & \\
Satd. Flow (perm) & 1752 & 3505 & & & 3505 & 1568 & 1703 & & 1524 & & \\
\hline Peak-hour factor, PHF & 0.92 & 0.92 & 0.92 & 0.91 & 0.91 & 0.91 & 0.67 & 0.67 & 0.67 & 0.92 & 0.92 & 0.92 \\
Adj. Flow (vph) & 630 & 1179 & 0 & 0 & 516 & 615 & 440 & 0 & 537 & 0 & 0 & 0 \\
RTOR Reduction (vph) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 71 & 0 & 0 \\
\hline Lane Group Flow (vph) & 630 & 1179 & 0 & 0 & 516 & 615 & 440 & 0 & 460 & 0 & 0 & 0 \\
Heary Vehicles (\%) & \(3 \%\) & \(3 \%\) & \(3 \%\) & \(3 \%\) & \(3 \%\) & \(3 \%\) & \(6 \%\) & \(6 \%\) & \(6 \%\) & \(2 \%\) & \(2 \%\) & \(2 \%\) \\
\hline Turn Type & Prot & NA & & & NA & Free & Prot & & Prot & & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Protected Phases & 5 & 2 & 6 & & 8 & & 8 & \\
\hline Permitted Phases & & 2 & 6 & Free & & & & \\
\hline Actuated Green, G (s) & 35.0 & 60.0 & 19.0 & 100.0 & 28.0 & & 28.0 & \\
\hline Effective Green, g (s) & 35.0 & 60.0 & 19.0 & 100.0 & 28.0 & & 28.0 & \\
\hline Actuated g/C Ratio & 0.35 & 0.60 & 0.19 & 1.00 & 0.28 & & 0.28 & \\
\hline Clearance Time (s) & 6.0 & 6.0 & 6.0 & & 6.0 & & 6.0 & \\
\hline Vehicle Extension (s) & 5.0 & 5.0 & 5.0 & & 3.0 & & 3.0 & \\
\hline Lane Grp Cap (vph) & 613 & 2103 & 665 & 1568 & 476 & & 426 & \\
\hline \(\mathrm{v} / \mathrm{s}\) Ratio Prot & c0.36 & 0.34 & c0.15 & & 0.26 & & c0.31 & \\
\hline v/s Ratio Perm & & & & 0.39 & & & & \\
\hline v/c Ratio & 1.03 & 0.56 & 0.78 & 0.39 & 0.92 & & 1.09 & \\
\hline Uniform Delay, d1 & 32.5 & 12.1 & 38.5 & 0.0 & 35.0 & & 36.0 & \\
\hline Progression Factor & 0.20 & 0.22 & 1.00 & 1.00 & 1.00 & & 1.00 & \\
\hline Incremental Delay, d2 & 33.7 & 0.5 & 8.6 & 0.7 & 23.7 & & 71.7 & \\
\hline Delay (s) & 40.2 & 3.2 & 47.1 & 0.7 & 58.7 & & 107.7 & \\
\hline Level of Service & D & A & D & A & E & & F & \\
\hline Approach Delay (s) & & 16.1 & 21.9 & & & 85.7 & & 0.0 \\
\hline Approach LOS & & B & C & & & F & & A \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
\hline Intersection Summary & & \\
\hline HCM 2000 Control Delay & 35.1 & HCM 2000 Level of Service & D \\
HCM 2000 Volume to Capacity ratio & 0.99 & Sum of lost time (s) & 18.0 \\
\hline Actuated Cycle Length (s) & 100.0 & (s) & D \\
\hline Intersection Capacity Utilization & \(76.8 \%\) & ICU Level of Service & \\
\hline Analysis Period (min) & 15 & & \\
\hline C Critical Lane Group & & & \\
\hline
\end{tabular}

HCM Signalized Intersection Capacity Analysis
5 9：NH 102 \＆St．Charles Street／Londonderry Road
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & & \(\uparrow\) & 「 & & 4 & & 7 & 㻢 & & ＊ & 个 \({ }_{\text {F }}\) & \\
\hline Traffic Volume（vph） & 10 & 5 & 160 & 10 & 0 & 10 & 650 & 1440 & 120 & 10 & 1020 & 50 \\
\hline Future Volume（vph） & 10 & 5 & 160 & 10 & 0 & 10 & 650 & 1440 & 120 & 10 & 1020 & 50 \\
\hline Ideal Flow（vphpl） & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time（s） & & 6.0 & 6.0 & & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Lane Util．Factor & & 1.00 & 1.00 & & 1.00 & & 1.00 & 0.95 & & 1.00 & 0.95 & \\
\hline Fit & & 1.00 & 0.85 & & 0.93 & & 1.00 & 0.99 & & 1.00 & 0.99 & \\
\hline Flt Protected & & 0.97 & 1.00 & & 0.98 & & 0.95 & 1.00 & & 0.95 & 1.00 & \\
\hline Satd．Flow（prot） & & 1801 & 1583 & & 1729 & & 1770 & 3498 & & 1770 & 3515 & \\
\hline Flt Permitted & & 0.74 & 1.00 & & 0.83 & & 0.95 & 1.00 & & 0.95 & 1.00 & \\
\hline Satd．Flow（perm） & & 1378 & 1583 & & 1477 & & 1770 & 3498 & & 1770 & 3515 & \\
\hline Peak－hour factor，PHF & 0.92 & 0.92 & 0.92 & 0.25 & 0.25 & 0.25 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 \\
\hline Adj．Flow（vph） & 11 & 5 & 174 & 40 & 0 & 40 & 707 & 1565 & 130 & 11 & 1109 & 54 \\
\hline RTOR Reduction（vph） & 0 & 0 & 106 & 0 & 76 & 0 & 0 & 3 & 0 & 0 & 2 & 0 \\
\hline Lane Group Flow（vph） & 0 & 16 & 68 & 0 & 4 & 0 & 707 & 1692 & 0 & 11 & 1161 & 0 \\
\hline Heavy Vehicles（\％） & 2\％ & 2\％ & 2\％ & 0\％ & 0\％ & 0\％ & 2\％ & 2\％ & 2\％ & 2\％ & 2\％ & 2\％ \\
\hline Turn Type & Perm & NA & custom & Perm & NA & & Prot & NA & & Prot & NA & \\
\hline Protected Phases & & 8 & & & 4 & & 5 & 2 & & 1 & 6 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Permitted Phases & 8 & 6 & 4 & & & & \\
\hline Actuated Green，G（s） & 5.7 & 48.0 & 5.7 & 51.1 & 98.1 & 1.0 & 48.0 \\
\hline Effective Green，g（s） & 5.7 & 48.0 & 5.7 & 51.1 & 98.1 & 1.0 & 48.0 \\
\hline Actuated g／C Ratio & 0.05 & 0.39 & 0.05 & 0.42 & 0.80 & 0.01 & 0.39 \\
\hline Clearance Time（s） & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 \\
\hline Vehicle Extension（s） & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
\hline Lane Grp Cap（vph） & 63 & 618 & 68 & 736 & 2794 & 14 & 1373 \\
\hline v／s Ratio Prot & & & & c0．40 & 0.48 & 0.01 & c0．33 \\
\hline v／s Ratio Perm & c0．01 & 0.04 & 0.00 & & & & \\
\hline v／c Ratio & 0.25 & 0.11 & 0.05 & 0.96 & 0.61 & 0.79 & 0.85 \\
\hline Uniform Delay，d1 & 56.5 & 23.8 & 56.0 & 34.9 & 4.8 & 60.8 & 34.0 \\
\hline Progression Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Incremental Delay，d2 & 2.1 & 0.1 & 0.3 & 23.8 & 0.4 & 130.6 & 5.0 \\
\hline Delay（s） & 58.6 & 23.9 & 56.3 & 58.7 & 5.2 & 191.4 & 39.0 \\
\hline Level of Service & E & C & E & E & A & F & D \\
\hline Approach Delay（s） & 26.8 & & 56.3 & & 20.9 & & 40.4 \\
\hline Approach LOS & C & & E & & C & & D \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
\hline Intersection Summary & & \\
\hline HCM 2000 Control Delay & 27.9 & HCM 2000 Level of Service & C \\
\hline HCM 2000 Volume to Capacity ratio & 0.87 & & 18.0 \\
Actuated Cycle Length（s） & 122.8 & Sum of lost time（s） & F \\
Intersection Capacity Utilization & \(92.4 \%\) & ICU Level of Service & \\
\hline Analysis Period（min） & 15 & & \\
C Critical Lane Group & & & \\
\hline
\end{tabular}

HCM Signalized Intersection Capacity Analysis
6 IV: NH 102 \& Fordway/Madden Hill Road
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\cdots\) & - & \(\pm\) & \(\cdots\) & \(k\) & ( & \(\xi\) & 7 & Ta & 5 & 2 & k. \\
\hline Movement & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & & 4 & & \({ }^{*}\) & & F & & 4 & F' & & \(\uparrow\) & \\
\hline Traffic Volume (vph) & 10 & 30 & 5 & 260 & 0 & 50 & 0 & 1020 & 220 & 15 & 555 & 0 \\
\hline Future Volume (vph) & 10 & 30 & 5 & 260 & 0 & 50 & 0 & 1020 & 220 & 15 & 555 & 0 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time (s) & & 6.0 & & 6.0 & & 4.5 & & 6.0 & 6.0 & & 6.0 & \\
\hline Lane Util. Factor & & 1.00 & & 1.00 & & 1.00 & & 1.00 & 1.00 & & 1.00 & \\
\hline Fit & & 0.99 & & 1.00 & & 0.85 & & 1.00 & 0.85 & & 1.00 & \\
\hline Fit Protected & & 0.99 & & 0.95 & & 1.00 & & 1.00 & 1.00 & & 1.00 & \\
\hline Satd. Flow (prot) & & 1815 & & 1752 & & 1568 & & 1759 & 1495 & & 1807 & \\
\hline Flt Permitted & & 0.99 & & 0.80 & & 1.00 & & 1.00 & 1.00 & & 0.72 & \\
\hline Satd. Flow (perm) & & 1815 & & 1469 & & 1568 & & 1759 & 1495 & & 1295 & \\
\hline Peak-hour factor, PHF & 0.60 & 0.60 & 0.60 & 0.96 & 0.96 & 0.96 & 0.89 & 0.89 & 0.89 & 0.86 & 0.86 & 0.86 \\
\hline Adj. Flow (vph) & 17 & 50 & 8 & 271 & 0 & 52 & 0 & 1146 & 247 & 17 & 645 & 0 \\
\hline RTOR Reduction (vph) & 0 & 5 & 0 & 0 & 0 & 38 & 0 & 0 & 43 & 0 & 0 & 0 \\
\hline Lane Group Flow (vph) & 0 & 70 & 0 & 271 & 0 & 14 & 0 & 1146 & 204 & 0 & 662 & 0 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 3\% & 3\% & 3\% & 8\% & 8\% & 8\% & 5\% & 5\% & 5\% \\
\hline Turn Type & Perm & NA & & D.Pm & & Perm & & NA & Perm & Perm & NA & \\
\hline Protected Phases & & 4 & & & & & & 2 & & & 2 & \\
\hline Permitted Phases & 4 & & & 4 & & 8 & & & 2 & 2 & & \\
\hline Actuated Green, G (s) & & 17.9 & & 17.9 & & 19,4 & & 60.1 & 60.1 & & 60.1 & \\
\hline Effective Green, g (s) & & 17.9 & & 17.9 & & 19.4 & & 60.1 & 60.1 & & 60.1 & \\
\hline Actuatedg/C Ratio & & 0.20 & & 0.20 & & 0.22 & & 0.67 & 0.67 & & 0.67 & \\
\hline Clearance Time (s) & & 6.0 & & 6.0 & & 4.5 & & 6.0 & 6.0 & & 6.0 & \\
\hline Vehicle Extension (s) & & 3.0 & & 3.0 & & 3.0 & & 3.0 & 3.0 & & 3.0 & \\
\hline Lane Grp Cap (vph) & & 360 & & 292 & & 337 & & 1174 & 998 & & 864 & \\
\hline \(\mathrm{v} / \mathrm{s}\) Ratio Prot & & & & & & & & c0.65 & & & & \\
\hline v/s Ratio Perm & & 0.04 & & c0.18 & & 0.01 & & & 0.14 & & 0.51 & \\
\hline \(\mathrm{v} / \mathrm{c}\) Ratio & & 0.19 & & 0.93 & & 0.04 & & 0.98 & 0.20 & & 0.77 & \\
\hline Uniform Delay, d1 & & 30.0 & & 35.4 & & 27.9 & & 14.3 & 5.8 & & 10.2 & \\
\hline Progression Factor & & 1.00 & & 1.00 & & 1.00 & & 1.00 & 1.00 & & 1.00 & \\
\hline Incremental Delay, d2 & & 0.3 & & 33.9 & & 0.0 & & 20.5 & 0.1 & & 4.1 & \\
\hline Delay (s) & & 30.3 & & 69.3 & & 28.0 & & 34.8 & 5.9 & & 14.3 & \\
\hline Level of Service & & C & & E & & C & & C & A & & B & \\
\hline Approach Delay (s) & & 30.3 & & & 62.7 & & & 29.7 & & & 14.3 & \\
\hline Approach LOS & & C & & & E & & & C & & & B & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
\hline Intersection Summary & & & \\
\hline HCM 2000 Control Delay & 29.9 & HCM 2000 Level of Service & C \\
\hline HCM 2000 Volume to Capacity ratio & 0.96 & & 12.0 \\
Actuated Cycle Length (s) & 90.0 & Sum of lost time (s) & E \\
\hline Intersection Capacity Utilization & \(86.1 \%\) & ICU Level of Service & \\
\hline Analysis Period (min) & 15 & & \\
\hline C Critical Lane Group & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\rangle\) & 7 & 4 & \(\uparrow\) & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & 7 & 7 & & А & \(\uparrow\) & 7 \\
\hline Traffic Volume (vph) & 810 & 10 & 5 & 100 & 125 & 470 \\
\hline Future Volume (vph) & 810 & 10 & 5 & 100 & 125 & 470 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 0 & 120 & 0 & & & 220 \\
\hline Storage Lanes & 1 & 1 & 0 & & & 1 \\
\hline Taper Length (ft) & 25 & & 25 & & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & 0.850 & & & & 0.850 \\
\hline Flt Protected & 0.950 & & & 0.998 & & \\
\hline Satd. Flow (prot) & 1787 & 1599 & 0 & 1859 & 1881 & 1599 \\
\hline Flt Permitted & 0.950 & & & 0.998 & & \\
\hline Satd. Flow (perm) & 1787 & 1599 & 0 & 1859 & 1881 & 1599 \\
\hline Link Speed (mph) & 30 & & & 30 & 30 & \\
\hline Link Distance (ft) & 322 & & & 309 & 354 & \\
\hline Travel Time (s) & 7.3 & & & 7.0 & 8.0 & \\
\hline Peak Hour Factor & 0.90 & 0.90 & 0.87 & 0.87 & 0.87 & 0.87 \\
\hline Heavy Vehicles (\%) & 1\% & 1\% & 2\% & 2\% & 1\% & 1\% \\
\hline Adj. Flow (vph) & 900 & 11 & 6 & 115 & 144 & 540 \\
\hline Shared Lane Traffic (\%) & & & & & & \\
\hline Lane Group Flow (vph) & 900 & 11 & 0 & 121 & 144 & 540 \\
\hline Sign Control & Stop & & & Stop & Stop & \\
\hline \multicolumn{7}{|l|}{Intersection Summary} \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{Area Type: Other}} \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{Control Type: Unsignalized
Intersection Capacity Utilization \(63.6 \%\)
ICU Level of Service B}} \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{Analysis Period (min) 15} \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline Intersection & \\
\hline Intersection Delay, s/veh & 225.6 \\
Intersection LOS & F
\end{tabular}
\begin{tabular}{lrrrrrr}
\hline Movement & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & & \(\mathbf{r}\) & & \(\uparrow\) & \(\uparrow\) & \(\mathbf{~}\) \\
Traffic Vol, veh/h & 810 & 10 & 5 & 100 & 125 & 470 \\
Future Vol, veh/h & 810 & 10 & 5 & 100 & 125 & 470 \\
Peak Hour Factor & 0.90 & 0.90 & 0.87 & 0.87 & 0.87 & 0.87 \\
Heavy Vehicles, \% & 1 & 1 & 2 & 2 & 1 & 1 \\
Mvmt Flow & 900 & 11 & 6 & 115 & 144 & 540 \\
Number of Lanes & 1 & 1 & 0 & 1 & 1 & 1
\end{tabular}
\begin{tabular}{lrrr} 
Approach & EB & NB & SB \\
\hline Opposing Approach & & SB & NB \\
Opposing Lanes & 0 & 2 & 1 \\
Conflicting Approach Left & SB & EB & \\
Conflicting Lanes Left & 2 & 2 & 0 \\
Conflicting Approach Right & NB & & EB \\
Conflicting Lanes Right & 1 & 0 & 2 \\
HCM Control Delay & 392 & 15.5 & 40.9 \\
HCM LOS & F & C & E
\end{tabular}
\begin{tabular}{lrrrrr}
\hline Lane & NBLn1 & EBLn1 & EBLn2 & SBLn1 & SBLn2 \\
\hline Vol Left, \% & \(5 \%\) & \(100 \%\) & \(0 \%\) & \(0 \%\) & \(0 \%\) \\
Vol Thru, \% & \(95 \%\) & \(0 \%\) & \(0 \%\) & \(100 \%\) & \(0 \%\) \\
Vol Right, \% & \(0 \%\) & \(0 \%\) & \(100 \%\) & \(0 \%\) & \(100 \%\) \\
Sign Control & Stop & Stop & Stop & Stop & Stop \\
Traffic Vol by Lane & 105 & 810 & 10 & 125 & 470 \\
LT Vol & 5 & 810 & 0 & 0 & 0 \\
Through Vol & 100 & 0 & 0 & 125 & 0 \\
RT Vol & 0 & 0 & 10 & 0 & 470 \\
Lane Flow Rate & 121 & 900 & 11 & 144 & 540 \\
Geometry Grp & 4 & 7 & 7 & 7 & 7 \\
Degree of Util (X) & 0.244 & 1.825 & 0.019 & 0.266 & 0.896 \\
Departure Headway (Hd) & 9.45 & 7.298 & 6.08 & 8.544 & 7.82 \\
Convergence, Y/N & Yes & Yes & Yes & Yes & Yes \\
Cap & 383 & 504 & 592 & 424 & 470 \\
Service Time & 7.45 & 4.998 & 3.78 & 6.244 & 5.52 \\
HCM Lane VIC Ratio & 0.316 & 1.786 & 0.019 & 0.34 & 1.149 \\
HCM Control Delay & 15.5 & 396.7 & 8.9 & 14.3 & 48 \\
HCM Lane LOS & C & F & A & B & E \\
HCM 95th-tile Q & 0.9 & 56.8 & 0.1 & 1.1 & 9.8
\end{tabular}

\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 0.6 & & & & & \\
\hline Movement & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & 10 & & & \(\uparrow\) & F & \\
Traffic Vol, veh/h & 10 & 0 & 0 & 910 & 595 & 10 \\
Future Vol, veh/h & 10 & 0 & 0 & 910 & 595 & 10 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & - & - & - & - \\
Veh in Median Storage, \# & 0 & - & - & 0 & 0 & - \\
Grade, \% & 0 & - & - & 0 & 0 & - \\
Peak Hour Factor & 50 & 50 & 93 & 93 & 86 & 86 \\
Heavy Vehicles, \% & 6 & 6 & 1 & 1 & 1 & 1 \\
Mvmt Flow & 20 & 0 & 0 & 978 & 692 & 12
\end{tabular}
Major/Minor Minor2 Major1 Major2
\begin{tabular}{lrrrrll}
\hline Conflicting Flow All & 1676 & 698 & 704 & 0 & - & 0 \\
\(\quad\) Stage 1 & 698 & - & - & - & - & - \\
\(\quad\) Stage 2 & 978 & - & - & - & - & - \\
Critical Hdwy & 6.46 & 6.26 & 4.11 & - & - & - \\
Critical Hdwy Stg 1 & 5.46 & - & - & - & - & - \\
Critical Hdwy Stg 2 & 5.46 & - & - & - & - & - \\
Follow-up Hdwy & 3.554 & 3.354 & 2.209 & - & - & - \\
Pot Cap-1 Maneuver & 102 & 434 & 898 & - & - & - \\
\(\quad\) Stage 1 & 486 & - & - & - & - & - \\
\(\quad\) Stage 2 & 358 & - & - & - & - & -
\end{tabular}

Platoon blocked, \%
\begin{tabular}{lrrrrrl} 
Mov Cap-1 Maneuver & 102 & 434 & 898 & - & - & - \\
Mov Cap-2 Maneuver & 102 & - & - & - & - & - \\
\(\quad\) Stage 1 & 486 & - & - & - & - & - \\
Stage 2 & 358 & - & - & - & - & -
\end{tabular}
\begin{tabular}{lrrr}
\hline Approach & EB & NB & SB \\
\hline HCM Control Delay, s & 48.7 & 0 & 0 \\
HCM LOS & E & &
\end{tabular}
\begin{tabular}{lrrrc}
\hline Minor Lane/Major Mvmt & NBL & NBT EBLn1 & SBT & SBR \\
\hline Capacity (veh/h) & 898 & -102 & - & - \\
HCM Lane V/C Ratio & - & -0.196 & - & - \\
HCM Control Delay (s) & 0 & -48.7 & - & - \\
HCM Lane LOS & A & - & E & - \\
HCM 95th \%tile Q(veh) & 0 & - & - \\
H.7 & - & -
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 3 & \(\rightarrow\) & 7 & 5 & \(\leftarrow\) & k & \(\longrightarrow\) & k & 4 & 4 & k & \(\stackrel{+}{ }\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & SEL & SET & SER & NWL & NWT & NWR \\
\hline Lane Configurations & & ¢ & & & ¢ & & & \$ & & & ¢ & \\
\hline Traffic Volume (vph) & 50 & 860 & 10 & 40 & 460 & 20 & 40 & 10 & 140 & 5 & 40 & 10 \\
\hline Future Volume (vph) & 50 & 860 & 10 & 40 & 460 & 20 & 40 & 10 & 140 & 5 & 40 & 10 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 100 & & 150 & 100 & & 150 & 0 & & 0 & 150 & & 150 \\
\hline Storage Lanes & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 \\
\hline Taper Length (ft) & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & 0.998 & & & 0.995 & & & 0.901 & & & 0.976 & \\
\hline Fit Protected & & 0.997 & & & 0.996 & & & 0.990 & & & 0.996 & \\
\hline Satd. Flow (prot) & 0 & 1872 & 0 & 0 & 1846 & 0 & 0 & 1695 & 0 & 0 & 1847 & 0 \\
\hline Flt Permitted & & 0.997 & & & 0.996 & & & 0.990 & & & 0.996 & \\
\hline Satd. Flow (perm) & 0 & 1872 & 0 & 0 & 1846 & 0 & 0 & 1695 & 0 & 0 & 1847 & 0 \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance (ft) & & 327 & & & 240 & & & 246 & & & 251 & \\
\hline Travel Time (s) & & 7.4 & & & 5.5 & & & 5.6 & & & 5.7 & \\
\hline Peak Hour Factor & 0.94 & 0.94 & 0.94 & 0.88 & 0.88 & 0.88 & 0.67 & 0.67 & 0.67 & 0.82 & 0.82 & 0.82 \\
\hline Heavy Vehicles (\%) & 1\% & 1\% & 1\% & 2\% & 2\% & 2\% & 0\% & 0\% & 0\% & 0\% & 0\% & 0\% \\
\hline Adj. Flow (vph) & 53 & 915 & 11 & 45 & 523 & 23 & 60 & 15 & 209 & 6 & 49 & 12 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%) 6} \\
\hline Lane Group Flow (vph) & 0 & 979 & 0 & 0 & 591 & 0 & 0 & 284 & 0 & 0 & 67 & 0 \\
\hline Sign Control & & Free & & & Free & & & Stop & & & Stop & \\
\hline
\end{tabular}

Intersection Summary
```

Area Type: Other

```

Control Type: Unsignalized
Intersection Capacity Utilization 86.5\%
ICU Level of Service E
Analysis Period (min) 15
\&
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{Intersection} \\
\hline Int Delay, s/veh 104. & & & & & & & & & & & \\
\hline Movement EB & EBT & EBR & WBL & WBT & WBR & SEL & SET & SER & NWL & NWT & NWR \\
\hline Lane Configurations & ¢ & & & ¢ & & & ¢ & & & ¢ & \\
\hline Traffic Vol, veh/h 5 & 860 & 10 & 40 & 460 & 20 & 40 & 10 & 140 & 5 & 40 & 10 \\
\hline Future Vol, veh/h 5 & 860 & 10 & 40 & 460 & 20 & 40 & 10 & 140 & 5 & 40 & 10 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control Fre & Free & Free & Free & Free & Free & Stop & Stop & Stop & Stop & Stop & Stop \\
\hline RT Channelized & - & None & - & - & None & St & , & Stop & , & , & None \\
\hline Storage Length & - & - & - & - & - & - & - & , & - & - & - \\
\hline Veh in Median Storage, \# & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - \\
\hline Grade, \% & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - \\
\hline Peak Hour Factor 9 & 94 & 94 & 88 & 88 & 88 & 67 & 67 & 67 & 82 & 82 & 82 \\
\hline Heavy Vehicles, \% & 1 & 1 & 2 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Mvmt Flow 5 & 915 & 11 & 45 & 523 & 23 & 60 & 15 & 209 & 6 & 49 & 12 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Major/Minor & Major1 & \multicolumn{4}{|c|}{Major2} & \multicolumn{2}{|r|}{Minor2} & \multicolumn{3}{|r|}{Minor1} & & \\
\hline Conflicting Flow All & 546 & 0 & 0 & 926 & 0 & 0 & 1682 & 1657 & 535 & 1659 & 1663 & 921 \\
\hline Stage 1 & - & - & - & - & . & . & 625 & 625 & . & 1027 & 1027 & . \\
\hline Stage 2 & - & - & - & - & - & - & 1057 & 1032 & - & 632 & 636 & - \\
\hline Critical Hdwy & 4.11 & - & - & 4.12 & - & - & 7.1 & 6.5 & 6.2 & 7.1 & 6.5 & 6.2 \\
\hline Critical Hdwy Stg 1 & - & - & - & - & - & - & 6.1 & 5.5 & - & 6.1 & 5.5 & - \\
\hline Critical Hdwy Stg 2 & - & - & - & - & - & - & 6.1 & 5.5 & - & 6.1 & 5.5 & - \\
\hline Follow-up Hdwy & 2.209 & - & - & 2.218 & - & - & 3.5 & 4 & 3.3 & 3.5 & 4 & 3.3 \\
\hline Pot Cap-1 Maneuver & 1028 & - & - & 738 & - & - & 76 & 99 & 549 & 79 & 98 & 331 \\
\hline Stage 1 & - & - & - & - & - & - & 476 & 480 & - & 285 & 314 & - \\
\hline Stage 2 & - & - & - & - & - & - & 275 & 313 & - & 472 & 475 & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Platoon blocked, \% & & - & - & & - & - & & & & & & \\
\hline Mov Cap-1 Maneuver & 1028 & - & - & 738 & - & - & ~33 & 81 & 549 & 36 & 80 & 331 \\
\hline Mov Cap-2 Maneuver & . & - & - & . & - & - & ~33 & 81 & - & 36 & 80 & . \\
\hline Stage 1 & - & - & - & - & - & - & 426 & 438 & - & 255 & 281 & . \\
\hline Stage 2 & - & - & - & - & - & - & 196 & 280 & - & 258 & 433 & - \\
\hline
\end{tabular}
\begin{tabular}{lrrrr} 
Approach & EB & WB & SE & NW \\
\hline HCM Control Delay, s & 0.5 & 0.8 & \(\$ 669.6\) & 141.5 \\
HCM LOS & & & F & F
\end{tabular}
\begin{tabular}{lrrrrrrrr}
\hline Minor Lane/Major Mvmt & NWLn1 & EBL & EBT & EBR & WBL & WBT & WBR SELn1 \\
\hline Capacity (veh/h) & 82 & 1028 & - & - & 738 & - & -123 & \\
HCM Lane V/C Ratio & 0.818 & 0.052 & - & -0.062 & - & -2.306 & \\
HCM Control Delay (s) & 141.5 & 8.7 & 0 & - & 10.2 & 0 & \(\$ 669.6\) & \\
HCM Lane LOS & F & A & A & - & B & A & - & F \\
HCM 95th \%tile Q(veh) & 4.2 & 0.2 & - & - & 0.2 & - & - & 24.4 \\
\hline Notes & & & & & & \\
\hline\(\sim\) Volume exceeds capacity & \(\$\) Delay exceeds 300s & + Computation Not Defined & : All major volume in platoon
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & NBL & NBT & NBR & SBL & SBT & SBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & \% & 个 \(\uparrow\) & 7 & ** & \(\uparrow \uparrow\) & & \% & \(\uparrow\) & F' & 7 & \(\uparrow\) & F \\
\hline Traffic Volume (vph) & 60 & 180 & 240 & 390 & 280 & 0 & 150 & 470 & 100 & 190 & 370 & 370 \\
\hline Future Volume (vph) & 60 & 180 & 240 & 390 & 280 & 0 & 150 & 470 & 100 & 190 & 370 & 370 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time (s) & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 \\
\hline Lane Util. Factor & 1.00 & 0.95 & 1.00 & 0.97 & 0.95 & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Frt & 1.00 & 1.00 & 0.85 & 1.00 & 1.00 & & 1.00 & 1.00 & 0.85 & 1.00 & 1.00 & 0.85 \\
\hline Flt Protected & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & 1.00 \\
\hline Satd. Flow (prot) & 1770 & 3539 & 1583 & 3433 & 3539 & & 1770 & 1863 & 1583 & 1787 & 1881 & 1599 \\
\hline Flt Permitted & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & 1.00 \\
\hline Satd. Flow (perm) & 1770 & 3539 & 1583 & 3433 & 3539 & & 1770 & 1863 & 1583 & 1787 & 1881 & 1599 \\
\hline Peak-hour factor, PHF & 0.92 & 0.92 & 0.92 & 0.94 & 0.94 & 0.94 & 0.96 & 0.96 & 0.96 & 0.95 & 0.95 & 0.95 \\
\hline Adj. Flow (vph) & 65 & 196 & 261 & 415 & 298 & 0 & 156 & 490 & 104 & 200 & 389 & 389 \\
\hline RTOR Reduction (vph) & 0 & 0 & 212 & 0 & 0 & 0 & 0 & 0 & 72 & 0 & 0 & 129 \\
\hline Lane Group Flow (vph) & 65 & 196 & 49 & 415 & 298 & 0 & 156 & 490 & 32 & 200 & 389 & 260 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 1\% & 1\% & 1\% \\
\hline Turn Type & Prot & NA & Perm & Prot & NA & & Prot & NA & Perm & Prot & NA & \(p \mathrm{~m}+\mathrm{ov}\) \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & 7 & 4 & & 3 & 8 & \\
\hline Permitted Phases & & & 2 & & & & & & 4 & & & 8 \\
\hline Actuated Green, G (s) & 6.7 & 20.7 & 20.7 & 16.4 & 30.4 & & 14.2 & 33.8 & 33.8 & 15.1 & 34.7 & 51.1 \\
\hline Effective Green, g (s) & 6.7 & 20.7 & 20.7 & 16.4 & 30.4 & & 14.2 & 33.8 & 33.8 & 15.1 & 34.7 & 51.1 \\
\hline Actuated g/C Ratio & 0.06 & 0.19 & 0.19 & 0.15 & 0.28 & & 0.13 & 0.31 & 0.31 & 0.14 & 0.32 & 0.46 \\
\hline Clearance Time (s) & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
\hline Lane Grp Cap (vph) & 107 & 665 & 297 & 511 & 978 & & 228 & 572 & 486 & 245 & 593 & 830 \\
\hline v/s Ratio Prot & 0.04 & 0.06 & & c0. 12 & c0.08 & & 0.09 & c0. 26 & & c0.11 & 0.21 & 0.05 \\
\hline v/s Ratio Perm & & & 0.03 & & & & & & 0.02 & & & 0.12 \\
\hline v/c Ratio & 0.61 & 0.29 & 0.17 & 0.81 & 0.30 & & 0.68 & 0.86 & 0.07 & 0.82 & 0.66 & 0.31 \\
\hline Uniform Delay, d1 & 50.4 & 38.4 & 37.4 & 45.3 & 31.4 & & 45.8 & 35.8 & 26.9 & 46.1 & 32.5 & 18.5 \\
\hline Progression Factor & 1.00 & 1.00 & 1.00 & 1.23 & 0.97 & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Incremental Delay, d2 & 9.4 & 1.1 & 1.2 & 9.2 & 0.2 & & 8.2 & 12.0 & 0.1 & 18.6 & 2.6 & 0.2 \\
\hline Delay (s) & 59.8 & 39.5 & 38.6 & 65.2 & 30.7 & & 54.0 & 47.9 & 27.0 & 64.7 & 35.1 & 18.7 \\
\hline Level of Service & E & D & D & E & C & & D & D & C & E & D & B \\
\hline Approach Delay (s) & & 41.6 & & & 50.8 & & & 46.2 & & & 34.6 & \\
\hline Approach LOS & & D & & & D & & & D & & & C & \\
\hline
\end{tabular}

Intersection Summary
\begin{tabular}{lr}
\hline HCM 2000 Control Delay & 42. \\
HCM 2000 Volume to Capacity ratio & 0.72 \\
Actuated Cycle Length (s) & 110.0 \\
Intersection Capacity Utilization & 73.1 \\
Analysis Period (min) & \\
c Critical Lane Group &
\end{tabular}


Analysis Period (min) 15

12: Tsienneto Rd \& Pinkerton St
\begin{tabular}{lrrrrrr} 
Intersection \\
\hline Int Delay, s/veh & 57.2 & & & & & \\
\hline
\end{tabular}

\begin{tabular}{lrrrrrrl}
\hline Minor Lane/Major Mvmt & NET & NERNWLn1NWLn2 & SWL & SWT & & \\
\hline Capacity (veh/h) & - & - & 17 & 154 & 391 & - & \\
HCM Lane VC Ratio & - & -4.104 & 0.604 & 0.271 & - & \\
HCM Control Delay (s) & - & \(\$ 1852.6\) & 58.8 & 17.6 & 4.6 & \\
HCM Lane LOS & - & - & F & F & C & A & \\
HCM 95th \%tile Q(veh) & - & - & 9.4 & 3.2 & 1.1 & - & \\
\hline Notes & & & & & & \\
\hline\(\sim\) Volume exceeds capacity & \(\$\) : Delay exceeds 300s & + Computation Not Defined & *: All major volume in platoon
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & \% & 4t & & \({ }^{1}\) & 个A & & & \(\uparrow\) & \(\overline{7}\) & & \(\uparrow\) & 7 \\
\hline Traffic Volume (vph) & 130 & 895 & 5 & 10 & 620 & 60 & 15 & 10 & 15 & 20 & 10 & 110 \\
\hline Future Volume (vph) & 130 & 895 & 5 & 10 & 620 & 60 & 15 & 10 & 15 & 20 & 10 & 110 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time (s) & 6.0 & 6.0 & & 6.0 & 6.0 & & & 6.0 & 6.0 & & 6.0 & 6.0 \\
\hline Lane Util. Factor & 1.00 & 0.95 & & 1.00 & 0.95 & & & 1.00 & 1.00 & & 1.00 & 1.00 \\
\hline Fit & 1.00 & 1.00 & & 1.00 & 0.99 & & & 1.00 & 0.85 & & 1.00 & 0.85 \\
\hline Flt Protected & 0.95 & 1.00 & & 0.95 & 1.00 & & & 0.97 & 1.00 & & 0.97 & 1.00 \\
\hline Satd. Flow (prot) & 1787 & 3571 & & 1787 & 3527 & & & 1844 & 1615 & & 1821 & 1599 \\
\hline Flt Permitted & 0.95 & 1.00 & & 0.95 & 1.00 & & & 0.79 & 1.00 & & 0.78 & 1.00 \\
\hline Satd. Flow (perm) & 1787 & 3571 & & 1787 & 3527 & & & 1505 & 1615 & & 1476 & 1599 \\
\hline Peak-hour factor, PHF & 0.97 & 0.97 & 0.97 & 0.95 & 0.95 & 0.95 & 0.90 & 0.90 & 0.90 & 0.80 & 0.80 & 0.80 \\
\hline Adj. Flow (vph) & 134 & 923 & 5 & 11 & 653 & 63 & 17 & 11 & 17 & 25 & 12 & 138 \\
\hline RTOR Reduction (vph) & 0 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 16 & 0 & 0 & 128 \\
\hline Lane Group Flow (vph) & 134 & 928 & 0 & 11 & 712 & 0 & 0 & 28 & 1 & 0 & 38 & 10 \\
\hline Heavy Vehicles (\%) & 1\% & 1\% & 1\% & 1\% & 1\% & 1\% & 0\% & 0\% & 0\% & 1\% & 1\% & 1\% \\
\hline Turn Type & Prot & NA & & Prot & NA & & Perm & NA & Perm & Perm & NA & Perm \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & & 8 & & & 4 & \\
\hline Permitted Phases & & & & & & & 8 & & 8 & 4 & 4 & 4 \\
\hline Actuated Green, G (s) & 13.5 & 82.3 & & 1.5 & 70.3 & & & 8.2 & 8.2 & & 8.2 & 8.2 \\
\hline Effective Green, g (s) & 13.5 & 82.3 & & 1.5 & 70.3 & & & 8.2 & 8.2 & & 8.2 & 8.2 \\
\hline Actuated g/C Ratio & 0.12 & 0.75 & & 0.01 & 0.64 & & & 0.07 & 0.07 & & 0.07 & 0.07 \\
\hline Clearance Time (s) & 6.0 & 6.0 & & 6.0 & 6.0 & & & 6.0 & 6.0 & & 6.0 & 6.0 \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & & 3.0 & 3.0 & & 3.0 & 3.0 \\
\hline Lane Grp Cap (vph) & 219 & 2671 & & 24 & 2254 & & & 112 & 120 & & 110 & 119 \\
\hline v/s Ratio Prot & c0.07 & c0.26 & & 0.01 & 0.20 & & & & & & & \\
\hline v/s Ratio Perm & & & & & & & & 0.02 & 0.00 & & c0.03 & 0.01 \\
\hline \(\mathrm{v} / \mathrm{c}\) Ratio & 0.61 & 0.35 & & 0.46 & 0.32 & & & 0.25 & 0.01 & & 0.35 & 0.09 \\
\hline Uniform Delay, d1 & 45.8 & 4.7 & & 53.8 & 9.0 & & & 48.0 & 47.1 & & 48.4 & 47.4 \\
\hline Progression Factor & 1.27 & 0.68 & & 0.87 & 1.41 & & & 1.00 & 1.00 & & 1.00 & 1.00 \\
\hline Incremental Delay, d2 & 4.5 & 0.3 & & 12.3 & 0.3 & & & 1.2 & 0.0 & & 1.9 & 0.3 \\
\hline Delay (s) & 62.5 & 3.5 & & 59.0 & 13.0 & & & 49.2 & 47.2 & & 50.2 & 47.7 \\
\hline Level of Service & E & A & & E & B & & & D & D & & D & D \\
\hline Approach Delay (s) & & 11.0 & & & 13.7 & & & 48.4 & & & 48.3 & \\
\hline Approach LOS & & B & & & B & & & D & & & D & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \({ }^{7 \%}\) & 个t & & 7 & 4t & & \% & \(\stackrel{ }{ }\) & & 7 & \(\uparrow\) & \\
\hline Traffic Volume (vph) & 80 & 770 & 5 & 5 & 580 & 190 & 40 & 10 & 10 & 350 & 10 & 140 \\
\hline Future Volume (vph) & 80 & 770 & 5 & 5 & 580 & 190 & 40 & 10 & 10 & 350 & 10 & 140 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Total Lost time (s) & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & 6.0 \\
\hline Lane Util. Factor & 0.97 & 0.95 & & 1.00 & 0.95 & & 1.00 & 1.00 & & 0.95 & 0.95 & 1.00 \\
\hline Fit & 1.00 & 1.00 & & 1.00 & 0.96 & & 1.00 & 0.93 & & 1.00 & 1.00 & 0.85 \\
\hline Flt Protected & 0.95 & 1.00 & & 0.95 & 1.00 & & 0.95 & 1.00 & & 0.95 & 0.95 & 1.00 \\
\hline Satd. Flow (prot) & 3467 & 3571 & & 1770 & 3408 & & 1805 & 1758 & & 1715 & 1724 & 1615 \\
\hline Flt Permitted & 0.95 & 1.00 & & 0.95 & 1.00 & & 0.95 & 1.00 & & 0.95 & 0.95 & 1.00 \\
\hline Satd. Flow (perm) & 3467 & 3571 & & 1770 & 3408 & & 1805 & 1758 & & 1715 & 1724 & 1615 \\
\hline Peak-hour factor, PHF & 0.84 & 0.84 & 0.84 & 0.90 & 0.90 & 0.90 & 0.78 & 0.78 & 0.78 & 0.86 & 0.86 & 0.86 \\
\hline Adj. Flow (vph) & 95 & 917 & 6 & 6 & 644 & 211 & 51 & 13 & 13 & 407 & 12 & 163 \\
\hline RTOR Reduction (vph) & 0 & 0 & 0 & 0 & 23 & 0 & 0 & 12 & 0 & 0 & 0 & 113 \\
\hline Lane Group Flow (vph) & 95 & 923 & 0 & 6 & 832 & 0 & 51 & 14 & 0 & 208 & 211 & 50 \\
\hline Heavy Vehicles (\%) & 1\% & 1\% & 1\% & 2\% & 2\% & 2\% & 0\% & 0\% & 0\% & 0\% & 0\% & 0\% \\
\hline Turn Type & Prot & NA & & Prot & NA & & Split & NA & & Split & NA & pt+ov \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & 3 & 3 & & 4 & 4 & 45 \\
\hline Permitted Phases & & 2 & & & 6 & & & & & & & \\
\hline Actuated Green, G (s) & 8.4 & 57.6 & & 1.4 & 50.6 & & 7.4 & 7.4 & & 19.6 & 19.6 & 34.0 \\
\hline Effective Green, g (s) & 8.4 & 57.6 & & 1.4 & 50.6 & & 7.4 & 7.4 & & 19.6 & 19.6 & 34.0 \\
\hline Actuated g/C Ratio & 0.08 & 0.52 & & 0.01 & 0.46 & & 0.07 & 0.07 & & 0.18 & 0.18 & 0.31 \\
\hline Clearance Time (s) & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Lane Grp Cap (vph) & 264 & 1869 & & 22 & 1567 & & 121 & 118 & & 305 & 307 & 499 \\
\hline v/s Ratio Prot & c0.03 & c0.26 & & 0.00 & c0. 24 & & c0.03 & 0.01 & & 0.12 & c0.12 & 0.03 \\
\hline \multicolumn{13}{|l|}{v/s Ratio Perm} \\
\hline v/c Ratio & 0.36 & 0.49 & & 0.27 & 0.53 & & 0.42 & 0.12 & & 0.68 & 0.69 & 0.10 \\
\hline Uniform Delay, d1 & 48.2 & 16.8 & & 53.8 & 21.2 & & 49.2 & 48.2 & & 42.3 & 42.3 & 27.1 \\
\hline Progression Factor & 1.00 & 1.00 & & 1.19 & 0.89 & & 1.00 & 1.00 & & 1.00 & 1.00 & 1.00 \\
\hline Incremental Delay, d2 & 0.8 & 0.9 & & 6.4 & 0.3 & & 2.4 & 0.4 & & 6.2 & 6.3 & 0.1 \\
\hline Delay (s) & 49.1 & 17.8 & & 70.3 & 19.1 & & 51.6 & 48.7 & & 48.4 & 48.6 & 27.2 \\
\hline Level of Service & D & B & & E & B & & D & D & & D & D & C \\
\hline Approach Delay (s) & & 20.7 & & & 19.5 & & & 50.6 & & & 42.5 & \\
\hline Approach LOS & & C & & & B & & & D & & & D & \\
\hline
\end{tabular}
\begin{tabular}{lrlrl}
\hline Intersection Summary & & \\
\hline HCM 2000 Control Delay & 26.2 & HCM 2000 Level of Service & C \\
HCM 2000 Volume to Capacity ratio & 0.55 & & 24.0 \\
Actuated Cycle Length (s) & 110.0 & Sum of lost time (s) & B \\
Intersection Capacity Utilization & \(57.9 \%\) & ICU Level of Service & \\
Analysis Period (min) & 15 & & \\
C Critical Lane Group & & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\Rightarrow\) & \(\rightarrow\) & \(\leftarrow\) & 4 & \(\checkmark\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & WBT & WBR & SBL & SBR \\
\hline Lane Configurations & \(\dagger\) & \(\uparrow\) & F & & \% & \\
\hline Traffic Volume (vph) & 30 & 900 & 550 & 60 & 30 & 20 \\
\hline Future Volume (vph) & 30 & 900 & 550 & 60 & 30 & 20 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 140 & & & 0 & 0 & 0 \\
\hline Storage Lanes & 1 & & & 0 & 1 & 0 \\
\hline Taper Length (ft) & 25 & & & & 25 & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & & 0.987 & & 0.946 & \\
\hline Flt Protected & 0.950 & & & & 0.971 & \\
\hline Satd. Flow (prot) & 1770 & 1863 & 1839 & 0 & 1694 & 0 \\
\hline Flt Permitted & 0.950 & & & & 0.971 & \\
\hline Satd. Flow (perm) & 1770 & 1863 & 1839 & 0 & 1694 & 0 \\
\hline Link Speed (mph) & & 30 & 30 & & 30 & \\
\hline Link Distance (ft) & & 535 & 210 & & 522 & \\
\hline Travel Time (s) & & 12.2 & 4.8 & & 11.9 & \\
\hline Peak Hour Factor & 0.91 & 0.91 & 0.90 & 0.90 & 0.75 & 0.75 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 2\% & 3\% & 3\% \\
\hline Adj. Flow (vph) & 33 & 989 & 611 & 67 & 40 & 27 \\
\hline \multicolumn{7}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 33 & 989 & 678 & 0 & 67 & 0 \\
\hline Sign Control & & Free & Free & & Stop & \\
\hline
\end{tabular}
```

Intersection Summary
Area Type: Other
Control Type: Unsignalized
Intersection Capacity Utilization 57.4% ICU Level of Service B
Analysis Period (min) 15

```
\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 2.1 & & & & & \\
\hline Movement & EBL & EBT & WBT & WBR & SBL & SBR \\
\hline Lane Configurations & T & \(\uparrow\) & F & & M & \\
Traffic Vol, veh/h & 30 & 900 & 550 & 60 & 30 & 20 \\
Future Vol, veh/h & 30 & 900 & 550 & 60 & 30 & 20 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
Sign Control & Free & Free & Free & Free & Stop & Stop \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 140 & - & - & - & 0 & - \\
Veh in Median Storage, \# & - & 0 & 0 & - & 0 & - \\
Grade, \% & - & 0 & 0 & - & 0 & - \\
Peak Hour Factor & 91 & 91 & 90 & 90 & 75 & 75 \\
Heavy Vehicles, \% & 2 & 2 & 2 & 2 & 3 & 3 \\
Mvmt Flow & 33 & 989 & 611 & 67 & 40 & 27
\end{tabular}
\begin{tabular}{lrllllr}
\hline Major/Minor & Major1 & \multicolumn{1}{c}{ Major2 } & \multicolumn{2}{c}{ Minor2 } & \\
\hline Conflicting Flow All & 678 & 0 & - & 0 & 1700 & 645 \\
\(\quad\) Stage 1 & - & - & - & - & 645 & - \\
\(\quad\) Stage 2 & - & - & - & -1055 & - \\
Critical Hdwy & 4.12 & - & - & -6.43 & 6.23 \\
Critical ddwy Stg 1 & - & - & - & -5.43 & - \\
Critical Hdwy Stg 2 & - & - & - & -5.43 & - \\
Follow-up Hdwy & 2.218 & - & - & -3.527 & 3.327 \\
Pot Cap-1 Maneuver & 914 & - & - & - & 101 & 470 \\
\(\quad\) Stage 1 & - & - & - & - & 520 & - \\
\(\quad\) Stage 2 & - & - & - & - & 333 & - \\
Platoon blocked, \% & & - & - & - & & \\
Mov Cap-1 Maneuver & 914 & - & - & - & 97 & 470 \\
Mov Cap-2 Maneuver & - & - & - & - & 97 & - \\
Stage 1 & - & - & - & - & 501 & - \\
Stage 2 & - & - & - & - & 333 & -
\end{tabular}
\begin{tabular}{lrrr} 
Approach & EB & WB & SB \\
\hline HCM Control Delay,s & 0.3 & 0 & 51 \\
HCM LOS & & & F
\end{tabular}
\begin{tabular}{lrrrr}
\hline Minor Lane/Major Mvmt & EBL & EBT & WBT WBR SBLn1 \\
\hline Capacity (veh/h) & 914 & - & - & - \\
\hline HCM Lane V/C Ratio & 0.036 & - & - & -0.469 \\
HCM Control Delay (s) & 9.1 & - & - & - \\
HCM Lane LOS & A & - & - & - \\
HCM 95th \%tile Q(veh) & 0.1 & - & - & - \\
(v) & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\checkmark\) & * & \(\pm\) & \(\longleftarrow\) & \(\cdots\) & \(\uparrow\) & 「 & P & 4 & \(\checkmark\) & \(\downarrow\) & \} \\
\hline Lane Group & WBL2 & WBL & WBR & WBR2 & NBL & NBT & NBR & NBR2 & SBL2 & SBL & SBT & SBR \\
\hline Lane Configurations & & \% & & & & 4 & & & & & 4 & \\
\hline Traffic Volume (vph) & 10 & 410 & 280 & 30 & 40 & 140 & 120 & 5 & 10 & 280 & 150 & 25 \\
\hline Future Volume (vph) & 10 & 410 & 280 & 30 & 40 & 140 & 120 & 5 & 10 & 280 & 150 & 25 \\
\hline |deal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Lane Utill. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & 0.943 & & & & 0.945 & & & & & 0.993 & \\
\hline Flt Protected & & 0.972 & & & & 0.993 & & & & & 0.970 & \\
\hline Satd. Flow (prot) & 0 & 1724 & 0 & 0 & 0 & 1748 & 0 & 0 & 0 & 0 & 1812 & 0 \\
\hline FIt Permitted & & 0.972 & & & & 0.993 & & & & & 0.970 & \\
\hline Satd. Flow (perm) & 0 & 1724 & 0 & 0 & 0 & 1748 & 0 & 0 & 0 & 0 & 1812 & 0 \\
\hline Link Speed (mph) & & 30 & & & & 30 & & & & & 30 & \\
\hline Link Distance (t) & & 449 & & & & 456 & & & & & 370 & \\
\hline Travel Time (s) & & 10.2 & & & & 10.4 & & & & & 8.4 & \\
\hline Peak Hour Factor & 0.91 & 0.91 & 0.91 & 0.91 & 0.87 & 0.87 & 0.87 & 0.87 & 0.92 & 0.92 & 0.92 & 0.92 \\
\hline Heavy Vehicles (\%) & 1\% & 1\% & 1\% & 1\% & 2\% & 2\% & 2\% & 2\% & 1\% & 1\% & 1\% & 1\% \\
\hline Adj. Flow (vph) & 11 & 451 & 308 & 33 & 46 & 161 & 138 & 6 & 11 & 304 & 163 & 27 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 803 & 0 & 0 & 0 & 351 & 0 & 0 & 0 & 0 & 505 & 0 \\
\hline Sign Control & & Yield & & & & Yield & & & & & Yield & \\
\hline
\end{tabular}

Intersection Summary
\begin{tabular}{ll} 
Area Type: Other & \\
Control Type: Roundabout \\
Intersection Capacity Utilization 146.2\% & ICU Level of Service H \\
Analysis Period (min) 15 &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \(\xlongequal{*}\) & \(\nearrow\) & 0 & \(\downarrow\) & \(\zeta\) & \(\downarrow\) & \(\checkmark\) & \(\uparrow\) \\
\hline Lane Group & NEL & NET & NER & NER2 & SWL2 & SWL & SWT & SWR \\
\hline Lane Configurations & & ¢ & & & & & 4 & \\
\hline Traffic Volume (vph) & 65 & 240 & 350 & 90 & 10 & 30 & 120 & 25 \\
\hline Future Volume (vph) & 65 & 240 & 350 & 90 & 10 & 30 & 120 & 25 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & 0.920 & & & & & 0.982 & \\
\hline Flt Protected & & 0.996 & & & & & 0.989 & \\
\hline Satd. Flow (prot) & 0 & 1724 & 0 & 0 & 0 & 0 & 1809 & 0 \\
\hline Flt Permitted & & 0.996 & & & & & 0.989 & \\
\hline Satd. Flow (perm) & 0 & 1724 & 0 & 0 & 0 & 0 & 1809 & 0 \\
\hline Link Speed (mph) & & 30 & & & & & 30 & \\
\hline Link Distance ( t ) & & 390 & & & & & 523 & \\
\hline Travel Time (s) & & 8.9 & & & & & 11.9 & \\
\hline Peak Hour Factor & 0.90 & 0.90 & 0.90 & 0.90 & 0.91 & 0.91 & 0.91 & 0.91 \\
\hline Heavy Vehicles (\%) & 1\% & 1\% & 1\% & 1\% & 2\% & 2\% & 2\% & 2\% \\
\hline Adj. Flow (vph) & 72 & 267 & 389 & 100 & 11 & 33 & 132 & 27 \\
\hline \multicolumn{9}{|l|}{Shared Lane Trafic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 828 & 0 & 0 & 0 & 0 & 203 & 0 \\
\hline Sign Control & & Yield & & & & & Yield & \\
\hline
\end{tabular}

\section*{Intersection Summary}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Intersection} \\
\hline \multicolumn{6}{|l|}{Intersection Delay, s/veh69.6} \\
\hline Intersection LOS & & & & & \\
\hline Approach & WB & NB & SB & NE & SW \\
\hline Entry Lanes & 1 & 1 & 1 & 1 & 1 \\
\hline Conflicting Circle Lanes & 1 & 1 & 1 & 1 & 1 \\
\hline Adj Approach Flow, veh/h & 803 & 351 & 505 & 828 & 203 \\
\hline Demand Flow Rate, veh/h & 811 & 358 & 510 & 837 & 208 \\
\hline Vehicles Circulating, veh/h & 706 & 1065 & 694 & 539 & 1062 \\
\hline Vehicles Exiting, veh/h & 717 & 311 & 576 & 665 & 455 \\
\hline Ped Vol Crossing Leg, \#/h & 0 & 0 & 0 & 0 & 0 \\
\hline Ped Cap Adj & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
\hline Approach Delay, s/veh & 128.7 & 33.4 & 23.3 & 68.9 & 16.3 \\
\hline Approach LOS & F & D & C & F & C \\
\hline
\end{tabular}
\begin{tabular}{lrrrrr}
\hline Lane & Left & Left & Left & Left & Left \\
\hline Designated Moves & LR & LTR & LTR & LTR & LTR \\
Assumed Moves & LR & LTR & LTR & LTR & LTR \\
RT Channelized & & & & & \\
Lane Util & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
Follow-Up Headway, s 2.609 & 2.609 & 2.609 & 2.609 & 2.609 \\
Critical Headway, s & 4.976 & 4.976 & 4.976 & 4.976 & 4.976 \\
Entry Flow, veh/h & 811 & 358 & 510 & 837 & 208 \\
Cap Entry Lane, veh/h & 672 & 466 & 680 & 796 & 467 \\
Entry HV Adj Factor & 0.990 & 0.980 & 0.991 & 0.990 & 0.977 \\
Flow Entry, veh/h & 803 & 351 & 505 & 828 & 203 \\
Cap Entry, veh/h & 665 & 456 & 674 & 788 & 456 \\
V/C Ratio & 1.208 & 0.769 & 0.750 & 1.051 & 0.445 \\
Control Delay, s/veh & 128.7 & 33.4 & 23.3 & 68.9 & 16.3 \\
LOS & D & 7 & C & F & C \\
95th \%tile Queue, veh & 28 & 7 & 7 & 20 & 2
\end{tabular}



\begin{tabular}{lrrrr}
\hline Approach & EB & WB & NB & SB \\
\hline HCM Control Delay, s & 16.5 & 49.1 & 3.9 & 0.5 \\
HCM LOS & C & E & &
\end{tabular}
\begin{tabular}{lrrrrrrrrl}
\hline Minor Lane/Major Mvmt & NBL & NBT & NBR EBLn1 & EBLn2WBLn1 & SBL & SBT & SBR \\
\hline Capacity (veh/h) & 1433 & - & - & 117 & 898 & 146 & 1198 & - & - \\
HCM Lane V/C Ratio & 0.233 & - & -0.389 & 0.418 & 0.459 & 0.009 & - & - \\
HCM Control Delay (s) & 8.3 & 0 & - & 54.1 & 11.9 & 49.1 & 8 & 0 & - \\
HCM Lane LOS & A & A & - & F & B & E & A & A & - \\
HCM 95th \%tile Q(veh) & 0.9 & - & - & 1.6 & 2.1 & 2.1 & 0 & - & -
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\Rightarrow\) & 7 & 4 & \(\uparrow\) & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & M & & & * & F & \\
\hline Traffic Volume (vph) & 480 & 5 & 10 & 310 & 190 & 310 \\
\hline Future Volume (vph) & 480 & 5 & 10 & 310 & 190 & 310 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & 0.998 & & & & 0.916 & \\
\hline Flt Protected & 0.953 & & & 0.999 & & \\
\hline Satd. Flow (prot) & 1789 & 0 & 0 & 1861 & 1690 & 0 \\
\hline Flt Permitted & 0.953 & & & 0.999 & & \\
\hline Satd. Flow (perm) & 1789 & 0 & 0 & 1861 & 1690 & 0 \\
\hline Link Speed (mph) & 30 & & & 30 & 30 & \\
\hline Link Distance (ft) & 348 & & & 709 & 425 & \\
\hline Travel Time (s) & 7.9 & & & 16.1 & 9.7 & \\
\hline Peak Hour Factor & 0.90 & 0.90 & 0.87 & 0.87 & 0.89 & 0.89 \\
\hline Heavy Vehicles (\%) & 1\% & 1\% & 2\% & 2\% & 3\% & 3\% \\
\hline Adj. Flow (vph) & 533 & 6 & 11 & 356 & 213 & 348 \\
\hline \multicolumn{7}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 539 & 0 & 0 & 367 & 561 & 0 \\
\hline Sign Control & Stop & & & Free & Free & \\
\hline
\end{tabular}

Intersection Summary
Area Type: Other
Control Type: Unsignalized
Intersection Capacity Utilization 62.6\%
ICU Level of Service B
Analysis Period (min) 15
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{} & \multicolumn{5}{|c|}{Intersection} \\
\hline Int Delay, s/veh & \multicolumn{6}{|l|}{90.9} \\
\hline Movement & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & Y & & & \({ }^{\text {A }}\) & \(\dagger\) & \\
\hline Traffic Vol, veh/h & 480 & 5 & 10 & 310 & 190 & 310 \\
\hline Future Vol, veh/h & 480 & 5 & 10 & 310 & 190 & 310 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control S & Stop & Stop & Free & Free & Free & Free \\
\hline RT Channelized & . & None & - & None & - & None \\
\hline Storage Length & 0 & . & - & - & - & - \\
\hline Veh in Median Storage, \# & \# & - & - & 0 & 0 & - \\
\hline Grade, \% & 0 & - & - & 0 & 0 & - \\
\hline Peak Hour Factor & 90 & 90 & 87 & 87 & 89 & 89 \\
\hline Heavy Vehicles, \% & 1 & 1 & 2 & 2 & 3 & \\
\hline Mumt Flow & 533 & 6 & 11 & 356 & 213 & 348 \\
\hline
\end{tabular}

\begin{tabular}{lrrr} 
Approach & EB & NB & SB \\
\hline HCM Control Delay, S 247.5 & 0.3 & 0 \\
HCM LOS & F & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Minor Lane/Major Mvmt & NBL & NBT EBLn1 & SBT & SBR & & \\
\hline Capacity (veh/h) & 1010 & - 370 & . & - & & \\
\hline HCM Lane V/C Ratio & 0.011 & - 1.456 & - & - & & \\
\hline HCM Control Delay (s) & 8.6 & 0247.5 & - & - & & \\
\hline HCM Lane LOS & A & A F & - & - & & \\
\hline HCM 95th \%tile Q(veh) & 0 & - 28.3 & . & - & & \\
\hline Notes & & & & & & \\
\hline \(\sim\) Volume exceeds capacity & \multicolumn{3}{|l|}{\$: Delay exceeds 300s} & +: Con & mputation Not Defined & *: All major volume in platoon \\
\hline
\end{tabular}

APPENDIX S-3: 2040 ALTERNATIVE F INTERSECTION CAPACITY ANALYSES - SYNCHRO PRINTOUTS - AM PEAK HOUR

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Lane Group & EBL & EBT & WBT & WBR & SBL & SBR \\
\hline Lane Configurations & & 坐 \(\uparrow\) & 㘴 & & \({ }^{*}\) & F" \\
\hline Traffic Volume (vph) & 0 & 1355 & 685 & 0 & 855 & 805 \\
\hline Future Volume (vph) & 0 & 1355 & 685 & 0 & 855 & 805 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Lane Width ( t ) & 12 & 12 & 12 & 12 & 16 & 12 \\
\hline Lane Util. Factor & 1.00 & 0.95 & 0.95 & 1.00 & 1.00 & 0.88 \\
\hline Fit & & & & & & 0.850 \\
\hline Flt Protected & & & & & 0.950 & \\
\hline Satd. Flow (prot) & 0 & 3471 & 3406 & 0 & 1930 & 2682 \\
\hline Fit Permitted & & & & & 0.950 & \\
\hline Satd. Flow (perm) & 0 & 3471 & 3406 & 0 & 1930 & 2682 \\
\hline Right Turn on Red & & & & Yes & & No \\
\hline \multicolumn{7}{|l|}{Satd. Flow (RTOR)} \\
\hline Link Speed (mph) & & 30 & 30 & & 25 & \\
\hline Link Distance ( t ) & & 712 & 388 & & 212 & \\
\hline Travel Time (s) & & 16.2 & 8.8 & & 5.8 & \\
\hline Peak Hour Factor & 0.93 & 0.93 & 0.88 & 0.88 & 0.89 & 0.89 \\
\hline Heavy Vehicles (\%) & 4\% & 4\% & 6\% & 6\% & 6\% & 6\% \\
\hline Adj. Flow (vph) & 0 & 1457 & 778 & 0 & 961 & 904 \\
\hline \multicolumn{7}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 1457 & 778 & 0 & 961 & 904 \\
\hline Enter Blocked Intersection & No & No & No & No & No & No \\
\hline Lane Alignment & Left & Left & Left & Right & Left & Right \\
\hline Median Width( t ) & & 24 & 24 & & 16 & \\
\hline Link Offset(ft) & & , & 0 & & 0 & \\
\hline Crosswalk Width(t) & & 16 & 16 & & 16 & \\
\hline \multicolumn{7}{|l|}{Two way Left Turn Lane} \\
\hline Headway Factor & 1.00 & 1.00 & 1.00 & 1.00 & 0.85 & 1.00 \\
\hline Turning Speed (mph) & 15 & & & 9 & 15 & 9 \\
\hline Number of Detectors & & 3 & 3 & & 3 & 3 \\
\hline Detector Template & & Thru & Thru & & Left & \\
\hline Leading Detector (t) & & 256 & 256 & & 256 & 256 \\
\hline Trailing Detector (ft) & & -5 & -5 & & -5 & -5 \\
\hline Detector 1 Position(tt) & & -5 & -5 & & -5 & -5 \\
\hline Detector 1 Size(tt) & & 50 & 50 & & 50 & 50 \\
\hline Detector 1 Type & & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) \\
\hline \multicolumn{7}{|l|}{Detector 1 Channel} \\
\hline Detector 1 Extend (s) & & 0.0 & 0.0 & & 0.0 & 0.0 \\
\hline Detector 1 Queue (s) & & 0.0 & 0.0 & & 0.0 & 0.0 \\
\hline Detector 1 Delay (s) & & 0.0 & 0.0 & & 0.0 & 0.0 \\
\hline Detector 2 Position(t) & & 125 & 125 & & 125 & 125 \\
\hline Detector 2 Size(tt) & & 6 & 6 & & 6 & 6 \\
\hline Detector 2 Type & & Cl+Ex & Cl+Ex & & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) \\
\hline \multicolumn{7}{|l|}{Detector 2 Channel} \\
\hline Detector 2 Extend (s) & & 0.0 & 0.0 & & 0.0 & 0.0 \\
\hline Detector 3 Position(tr) & & 250 & 250 & & 250 & 250 \\
\hline Detector 3 Size(ft) & & 6 & 6 & & 6 & 6 \\
\hline Detector 3 Type & & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) \\
\hline Detector 3 Channel & & & & & & \\
\hline
\end{tabular}


Intersection Signal Delay: \(52.5 \quad\) Intersection LOS: D
Intersection Capacity Utilization 96.8\%
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 7: NH 102 \& Exit 4 SB Off

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & NBL2 & NBL & NBR & SEL & SER & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & 7\% & & T「7 & & & 7* & 中4 & & & 44 & 7 \\
\hline Traffic Volume (vph) & 455 & 0 & 365 & 0 & 0 & 1165 & 1045 & 0 & 0 & 1295 & 1155 \\
\hline Future Volume (vph) & 455 & 0 & 365 & 0 & 0 & 1165 & 1045 & 0 & 0 & 1295 & 1155 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & & 0 & 0 & 0 & 0 & 550 & & 0 & 0 & & 0 \\
\hline Storage Lanes & & 2 & 2 & 0 & 0 & 2 & & 0 & 0 & & 1 \\
\hline Taper Length (ft) & & 25 & & 25 & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 0.97 & 1.00 & 0.88 & 1.00 & 1.00 & 0.97 & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 \\
\hline Frt & & & 0.850 & & & & & & & & 0.850 \\
\hline Flt Protected & 0.950 & & & & & 0.950 & & & & & \\
\hline Satd. Flow (prot) & 3242 & 0 & 2632 & 0 & 0 & 3335 & 3438 & 0 & 0 & 3505 & 1568 \\
\hline Flt Permitted & 0.950 & & & & & 0.950 & & & & & \\
\hline Satd. Flow (perm) & 3242 & 0 & 2632 & 0 & 0 & 3335 & 3438 & 0 & 0 & 3505 & 1568 \\
\hline Right Turn on Red & & & No & & & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & & & & & & & & & & 447 \\
\hline Link Speed (mph) & & 25 & & 30 & & & 30 & & & 30 & \\
\hline Link Distance ( ft ) & & 856 & & 390 & & & 760 & & & 857 & \\
\hline Travel Time (s) & & 23.3 & & 8.9 & & & 17.3 & & & 19.5 & \\
\hline Peak Hour Factor & 0.88 & 0.88 & 0.88 & 0.92 & 0.92 & 0.94 & 0.94 & 0.94 & 0.92 & 0.92 & 0.92 \\
\hline Heavy Vehicles (\%) & 8\% & 8\% & 8\% & 2\% & 2\% & 5\% & 5\% & 5\% & 3\% & 3\% & 3\% \\
\hline Adj. Flow (vph) & 517 & 0 & 415 & 0 & 0 & 1239 & 1112 & 0 & 0 & 1408 & 1255 \\
\hline \multicolumn{12}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 517 & 0 & 415 & 0 & 0 & 1239 & 1112 & 0 & 0 & 1408 & 1255 \\
\hline Enter Blocked Intersection & No \\
\hline Lane Alignment & Left & Left & Right & Left & Right & Left & Left & Right & Left & Right & Right \\
\hline Median Width(ft) & & 24 & & 0 & & & 24 & & & 24 & \\
\hline Link Offset(ft) & & 12 & & 0 & & & 0 & & & 0 & \\
\hline Crosswalk Width(ft) & & 16 & & 16 & & & 16 & & & 16 & \\
\hline \multicolumn{12}{|l|}{Two way Left Turn Lane} \\
\hline Headway Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Turning Speed (mph) & 15 & 15 & 25 & 15 & 9 & 15 & & 9 & 15 & & 25 \\
\hline Number of Detectors & 3 & & 3 & & & 3 & 3 & & & 3 & 0 \\
\hline \multicolumn{12}{|l|}{Detector Template} \\
\hline Leading Detector (ft) & 256 & & 256 & & & 256 & 256 & & & 256 & 0 \\
\hline Trailing Detector (ft) & -5 & & -5 & & & -5 & -5 & & & -5 & 0 \\
\hline Detector 1 Position(ft) & -5 & & -5 & & & -5 & -5 & & & -5 & -5 \\
\hline Detector 1 Size(ft) & 55 & & 55 & & & 55 & 55 & & & 55 & 50 \\
\hline Detector 1 Type & Cl+Ex & & Cl+Ex & & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) \\
\hline \multicolumn{12}{|l|}{Detector 1 Channel} \\
\hline Detector 1 Extend (s) & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & 0.0 \\
\hline Detector 1 Queue (s) & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & 0.0 \\
\hline Detector 1 Delay (s) & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & 0.0 \\
\hline Detector 2 Position(ft) & 125 & & 125 & & & 125 & 125 & & & 125 & \\
\hline Detector 2 Size(ft) & 6 & & 6 & & & 6 & 6 & & & 6 & \\
\hline Detector 2 Type & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline \multicolumn{12}{|l|}{Detector 2 Channel} \\
\hline Detector 2 Extend (s) & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & \\
\hline Detector 3 Position(ft) & 250 & & 250 & & & 250 & 250 & & & 250 & \\
\hline Detector 3 Size(ft) & 6 & & 6 & & & 6 & 6 & & & 6 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & NBL2 & NBL & NBR & SEL & SER & NEL & NET & NER & SWL & SWT & SWR \\
\hline Detector 3 Type & Cl+Ex & & Cl+Ex & & & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & & & Cl+Ex & \\
\hline \multicolumn{12}{|l|}{Detector 3 Channel} \\
\hline Detector 3 Extend (s) & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & \\
\hline Turn Type & Prot & & Prot & & & Prot & NA & & & NA & Free \\
\hline Protected Phases & 8 & & 8 & & & 5 & 2 & & & 6 & \\
\hline Permitted Phases & & & & & & & & & & & Free \\
\hline Detector Phase & 8 & & 2 & & & 5 & 2 & & & 6 & \\
\hline \multicolumn{12}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 10.0 & & 10.0 & & & 5.0 & 8.0 & & & 8.0 & \\
\hline Minimum Split (s) & 16.0 & & 16.0 & & & 11.0 & 42.0 & & & 31.0 & \\
\hline Total Split (s) & 28.0 & & 28.0 & & & 58.0 & 122.0 & & & 64.0 & \\
\hline Total Split (\%) & 18.7\% & & 18.7\% & & & 38.7\% & 81.3\% & & & 42.7\% & \\
\hline Maximum Green (s) & 22.0 & & 22.0 & & & 52.0 & 116.0 & & & 58.0 & \\
\hline Yellow Time (s) & 2.0 & & 2.0 & & & 2.0 & 2.0 & & & 2.0 & \\
\hline All-Red Time (s) & 4.0 & & 4.0 & & & 4.0 & 4.0 & & & 4.0 & \\
\hline Lost Time Adjust (s) & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & 6.0 & & 6.0 & & & 6.0 & 6.0 & & & 6.0 & \\
\hline Lead/Lag & & & & & & Lead & & & & Lag & \\
\hline \multicolumn{12}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 3.0 & & 3.0 & & & 3.0 & 3.0 & & & 3.0 & \\
\hline Recall Mode & None & & None & & & None & C-Min & & & C-Min & \\
\hline Walk Time (s) & & & & & & & 7.0 & & & 7.0 & \\
\hline Flash Dont Walk (s) & & & & & & & 29.0 & & & 17.0 & \\
\hline Pedestrian Calls (\#/hr) & & & & & & & 0 & & & 0 & \\
\hline Act Effct Green (s) & 22.0 & & 22.0 & & & 52.0 & 116.0 & & & 58.0 & 150.0 \\
\hline Actuated g/C Ratio & 0.15 & & 0.15 & & & 0.35 & 0.77 & & & 0.39 & 1.00 \\
\hline v/c Ratio & 1.09 & & 1.08 & & & 1.07 & 0.42 & & & 1.04 & 0.80 \\
\hline Control Delay & 125.3 & & 125.9 & & & 73.9 & 5.6 & & & 79.7 & 4.4 \\
\hline Queue Delay & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & 0.0 \\
\hline Total Delay & 125.3 & & 125.9 & & & 73.9 & 5.6 & & & 79.7 & 4.4 \\
\hline LOS & F & & F & & & E & A & & & E & A \\
\hline Approach Delay & & 25.6 & & & & & 41.6 & & & 44.2 & \\
\hline Approach LOS & & F & & & & & D & & & D & \\
\hline Queue Length 50th (ft) & ~291 & & \(\sim 255\) & & & ~682 & 152 & & & ~780 & 0 \\
\hline Queue Length 95th (ft) & \#395 & & \#365 & & & m518 & m135 & & & \#919 & 0 \\
\hline Internal Link Dist (ft) & & 776 & & 310 & & & 680 & & & 777 & \\
\hline Turn Bay Length (ft) & & & & & & 550 & & & & & \\
\hline Base Capacity (vph) & 475 & & 386 & & & 1156 & 2658 & & & 1355 & 1568 \\
\hline Starvation Cap Reductn & 0 & & 0 & & & 0 & 0 & & & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & & 0 & & & 0 & 0 & & & 0 & 0 \\
\hline Storage Cap Reductn & 0 & & 0 & & & 0 & 0 & & & 0 & 0 \\
\hline Reduced v/c Ratio & 1.09 & & 1.08 & & & 1.07 & 0.42 & & & 1.04 & 0.80 \\
\hline
\end{tabular}

\section*{Intersection Summary}

Lanes, Volumes, Timings
2. ※: NH 102 \& Exit 4 NB Off

Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.09
Intersection Signal Delay: \(55.9 \quad\) Intersection LOS: E
Intersection Capacity Utilization 98.0\% ICU Level of Service F
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
\(m\) Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 8: NH 102 \& Exit 4 NB Off

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & & 7 & \(\longleftarrow\) & 4 & 4 & 4 & \(p\) & * & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & 44 & F & \({ }^{*}\) & 坐4 & & & & & ** & & 7 \\
\hline Traffic Volume (vph) & 0 & 795 & 360 & 390 & 615 & 0 & 0 & 0 & 0 & 495 & 0 & 500 \\
\hline Future Volume (vph) & 0 & 795 & 360 & 390 & 615 & 0 & 0 & 0 & 0 & 495 & 0 & 500 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 0 & & 350 & 0 & & 0 & 0 & & 0 & 0 & & 0 \\
\hline Storage Lanes & 0 & & 1 & 1 & & 0 & 0 & & 0 & 2 & & 1 \\
\hline Taper Length (ft) & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & 1.00 & 1.00 & 1.00 & 0.97 & 1.00 & 1.00 \\
\hline Fit & & & 0.850 & & & & & & & & & 0.850 \\
\hline Flt Protected & & & & 0.950 & & & & & & 0.950 & & \\
\hline Satd. Flow (prot) & 0 & 3167 & 1417 & 1687 & 3374 & 0 & 0 & 0 & 0 & 3303 & 0 & 1524 \\
\hline Flt Permitted & & & & 0.950 & & & & & & 0.950 & & \\
\hline Satd. Flow (perm) & 0 & 3167 & 1417 & 1687 & 3374 & 0 & 0 & 0 & 0 & 3303 & 0 & 1524 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & & 357 & & & & & & & & & 177 \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 35 & \\
\hline Link Distance (ft) & & 851 & & & 693 & & & 486 & & & 581 & \\
\hline Travel Time (s) & & 19.3 & & & 15.8 & & & 11.0 & & & 11.3 & \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.73 & 0.73 & 0.73 & 0.92 & 0.92 & 0.92 & 0.74 & 0.74 & 0.74 \\
\hline Heavy Vehicles (\%) & 14\% & 14\% & 14\% & 7\% & 7\% & 7\% & 2\% & 2\% & 2\% & 6\% & 6\% & 6\% \\
\hline Adj. Flow (vph) & 0 & 864 & 391 & 534 & 842 & 0 & 0 & 0 & 0 & 669 & 0 & 676 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%) 0} \\
\hline Lane Group Flow (vph) & 0 & 864 & 391 & 534 & 842 & 0 & 0 & 0 & 0 & 669 & 0 & 676 \\
\hline Enter Blocked Intersection & No \\
\hline Lane Alignment & Left & Right & Right & Left & Left & Right & Left & Left & Right & R NA & Left & Right \\
\hline Median Width(ft) & & 36 & & & 36 & & & 24 & & & 24 & \\
\hline Link Offset(ft) & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Crosswalk Width(ft) & & 16 & & & 16 & & & 16 & & & 16 & \\
\hline \multicolumn{13}{|l|}{Two way Left Turn Lane} \\
\hline Headway Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Turning Speed (mph) & 15 & & 25 & 15 & & 9 & 15 & & 9 & 15 & & 9 \\
\hline Number of Detectors & & 3 & 2 & 3 & 3 & & & & & 3 & & 2 \\
\hline Detector Template & & Thru & Right & Left & Thru & & & & & Left & & \\
\hline Leading Detector (ft) & & 256 & 131 & 256 & 256 & & & & & 256 & & 206 \\
\hline Trailing Detector (ft) & & -5 & -5 & -5 & -5 & & & & & -5 & & -5 \\
\hline Detector 1 Position(ft) & & -5 & -5 & -5 & -5 & & & & & -5 & & -5 \\
\hline Detector 1 Size(ft) & & 50 & 50 & 50 & 50 & & & & & 50 & & 50 \\
\hline Detector 1 Type & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & & & & Cl+Ex & & \(\mathrm{Cl}+\mathrm{Ex}\) \\
\hline \multicolumn{13}{|l|}{Detector 1 Channel} \\
\hline Detector 1 Extend (s) & & 0.0 & 0.0 & 0.0 & 0.0 & & & & & 0.0 & & 0.0 \\
\hline Detector 1 Queue (s) & & 0.0 & 0.0 & 0.0 & 0.0 & & & & & 0.0 & & 0.0 \\
\hline Detector 1 Delay (s) & & 0.0 & 0.0 & 0.0 & 0.0 & & & & & 0.0 & & 0.0 \\
\hline Detector 2 Position(ft) & & 125 & 125 & 125 & 125 & & & & & 125 & & 200 \\
\hline Detector 2 Size(ft) & & 6 & 6 & 6 & 6 & & & & & 6 & & 6 \\
\hline Detector 2 Type & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & & & & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) \\
\hline \multicolumn{13}{|l|}{Detector 2 Channel} \\
\hline Detector 2 Extend (s) & & 0.0 & 0.0 & 0.0 & 0.0 & & & & & 0.0 & & 0.0 \\
\hline Detector 3 Position(ft) & & 250 & & 250 & 250 & & & & & 250 & & \\
\hline Detector 3 Size(ft) & & 6 & & 6 & 6 & & & & & 6 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & & 7 & 4 & 4 & 4 & 4 & \(p\) & & \(\frac{1}{7}\) & 4 \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Detector 3 Type & & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & & & & \(\mathrm{Cl}+\mathrm{Ex}\) & & \\
\hline \multicolumn{13}{|l|}{Detector 3 Channel 0.0} \\
\hline Detector 3 Extend (s) & & 0.0 & & 0.0 & 0.0 & & & & & 0.0 & & \\
\hline Turn Type & & NA & Free & Prot & NA & & & & & Prot & & Prot \\
\hline Protected Phases & & 2 & & 1 & 6 & & & & & 4 & & 4 \\
\hline Permitted Phases & & & Free & & & & & & & & & \\
\hline Detector Phase & & 2 & & 1 & 6 & & & & & 4 & & 4 \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & & 9.0 & & 4.0 & 9.0 & & & & & 4.0 & & 4.0 \\
\hline Minimum Split (s) & & 21.0 & & 10.0 & 21.0 & & & & & 10.0 & & 10.0 \\
\hline Total Split (s) & & 41.0 & & 44.0 & 85.0 & & & & & 45.0 & & 45.0 \\
\hline Total Split (\%) & & 31.5\% & & 33.8\% & 65.4\% & & & & & 34.6\% & & 34.6\% \\
\hline Maximum Green (s) & & 35.0 & & 38.0 & 79.0 & & & & & 39.0 & & 39.0 \\
\hline Yellow Time (s) & & 4.0 & & 4.0 & 4.0 & & & & & 4.0 & & 4.0 \\
\hline All-Red Time (s) & & 2.0 & & 2.0 & 2.0 & & & & & 2.0 & & 2.0 \\
\hline Lost Time Adjust (s) & & 0.0 & & 0.0 & 0.0 & & & & & 0.0 & & 0.0 \\
\hline Total Lost Time (s) & & 6.0 & & 6.0 & 6.0 & & & & & 6.0 & & 6.0 \\
\hline Lead/Lag & & Lag & & Lead & & & & & & & & \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & & 5.0 & & 3.0 & 5.0 & & & & & 3.0 & & 3.0 \\
\hline Recall Mode & & C-Min & & None & C-Min & & & & & None & & None \\
\hline Walk Time (s) & & 7.0 & & & 7.0 & & & & & & & \\
\hline Flash Dont Walk (s) & & 8.0 & & & 8.0 & & & & & & & \\
\hline Pedestrian Calls (\#/hr) & & 0 & & & 0 & & & & & & & \\
\hline Act Effct Green (s) & & 35.0 & 130.0 & 38.0 & 79.0 & & & & & 39.0 & & 39.0 \\
\hline Actuated g/C Ratio & & 0.27 & 1.00 & 0.29 & 0.61 & & & & & 0.30 & & 0.30 \\
\hline \(\mathrm{v} / \mathrm{c}\) Ratio & & 1.01 & 0.28 & 1.08 & 0.41 & & & & & 0.68 & & 1.16 \\
\hline Control Delay & & 81.3 & 0.5 & 74.9 & 1.3 & & & & & 44.0 & & 121.9 \\
\hline Queue Delay & & 0.0 & 0.0 & 0.0 & 0.0 & & & & & 0.0 & & 0.0 \\
\hline Total Delay & & 81.3 & 0.5 & 74.9 & 1.3 & & & & & 44.0 & & 121.9 \\
\hline LOS & & F & A & E & A & & & & & D & & F \\
\hline Approach Delay & & 56.1 & & & 29.9 & & & & & & 83.2 & \\
\hline Approach LOS & & E & & & C & & & & & & F & \\
\hline Queue Length 50th (ft) & & ~393 & 0 & 76 & 13 & & & & & 255 & & \(\sim 566\) \\
\hline Queue Length 95th (ft) & & \#534 & 0 & m61 & m11 & & & & & 251 & & \#550 \\
\hline Internal Link Dist (ft) & & 771 & & & 613 & & & 406 & & & 501 & \\
\hline Turn Bay Length (ft) & & & 350 & & & & & & & & & \\
\hline Base Capacity (vph) & & 852 & 1417 & 493 & 2050 & & & & & 990 & & 581 \\
\hline Starvation Cap Reductn & & 0 & 0 & 0 & 0 & & & & & 0 & & 0 \\
\hline Spillback Cap Reductn & & 0 & 0 & 0 & 0 & & & & & 0 & & 0 \\
\hline Storage Cap Reductn & & 0 & 0 & 0 & 0 & & & & & 0 & & 0 \\
\hline Reduced v/c Ratio & & 1.01 & 0.28 & 1.08 & 0.41 & & & & & 0.68 & & 1.16 \\
\hline
\end{tabular}

\section*{Intersection Summary}

Area Type:
Other
Cycle Length: 130
Actuated Cycle Length: 130
Offset: 67 (52\%), Referenced to phase 2:EBT and 6:WBT, Start of Yellow
Natural Cycle: 130

Lanes, Volumes, Timings
3 2: Exit 5 SB On/Exit 5 SB Off \& NH 28
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.16
Intersection Signal Delay: \(56.2 \quad\) Intersection LOS: E
Intersection Capacity Utilization 85.2\% ICU Level of Service E
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 2: Exit 5 SB On/Exit 5 SB Off \& NH 28


Lanes, Volumes, Timings
4 \&: Exit 5 NB Off \& NH 28
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & & 7 & 4 & 4 & 4 & \(\dagger\) & \(p\) & , & \(\frac{1}{1}\) & 4 \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \({ }^{*}\) & 本4 & & & 44 & 7 & \({ }^{*}\) & & \% & & & \\
\hline Traffic Volume (vph) & 605 & 685 & 0 & 0 & 625 & 790 & 380 & 0 & 160 & 0 & 0 & 0 \\
\hline Future Volume (vph) & 605 & 685 & 0 & 0 & 625 & 790 & 380 & 0 & 160 & 0 & 0 & 0 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Lane Util. Factor & 1.00 & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Frt & & & & & & 0.850 & & & 0.850 & & & \\
\hline Fit Protected & 0.950 & & & & & & 0.950 & & & & & \\
\hline Satd. Flow (prot) & 1641 & 3282 & 0 & 0 & 3438 & 1538 & 1656 & 0 & 1482 & 0 & 0 & 0 \\
\hline Flt Permitted & 0.950 & & & & & & 0.950 & & & & & \\
\hline Satd. Flow (perm) & 1641 & 3282 & 0 & 0 & 3438 & 1538 & 1656 & 0 & 1482 & 0 & 0 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & & & & & 642 & & & 175 & & & \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 35 & & & 30 & \\
\hline Link Distance (ft) & & 693 & & & 542 & & & 867 & & & 392 & \\
\hline Travel Time (s) & & 15.8 & & & 12.3 & & & 16.9 & & & 8.9 & \\
\hline Peak Hour Factor & 0.87 & 0.87 & 0.87 & 0.90 & 0.90 & 0.90 & 0.78 & 0.78 & 0.78 & 0.92 & 0.92 & 0.92 \\
\hline Heavy Vehicles (\%) & 10\% & 10\% & 10\% & 5\% & 5\% & 5\% & 9\% & 9\% & 9\% & 2\% & 2\% & 2\% \\
\hline Adj. Flow (vph) & 695 & 787 & 0 & 0 & 694 & 878 & 487 & 0 & 205 & 0 & 0 & 0 \\
\hline \multicolumn{13}{|l|}{Shared Lane Trafic (\%)} \\
\hline Lane Group Flow (vph) & 695 & 787 & 0 & 0 & 694 & 878 & 487 & 0 & 205 & 0 & 0 & 0 \\
\hline Enter Blocked Intersection & No \\
\hline Lane Alignment & Left & Left & Right & Left & Right & Right & Right & Left & Right & Left & Left & Right \\
\hline Median Width(ft) & & 36 & & & 42 & & & 12 & & & 12 & \\
\hline Link Offset(ft) & & 0 & & & 0 & & & 0 & & & 36 & \\
\hline Crosswalk Width(ft) & & 16 & & & 16 & & & 16 & & & 16 & \\
\hline \multicolumn{13}{|l|}{Two way Left Turn Lane} \\
\hline Headway Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Turning Speed (mph) & 15 & & 9 & 15 & & 25 & 15 & & 9 & 15 & & 9 \\
\hline Number of Detectors & 3 & 3 & & & 3 & 2 & 3 & & 0 & & & \\
\hline Detector Template & Left & Thru & & & Thru & Right & Left & & & & & \\
\hline Leading Detector ( ft ) & 256 & 256 & & & 256 & 131 & 256 & & 0 & & & \\
\hline Trailing Detector (ft) & -5 & -5 & & & -5 & -5 & -5 & & 0 & & & \\
\hline Detector 1 Position(ft) & -5 & -5 & & & -5 & -5 & -5 & & -5 & & & \\
\hline Detector 1 Size(ft) & 50 & 50 & & & 50 & 50 & 50 & & 50 & & & \\
\hline Detector 1 Type & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \\
\hline \multicolumn{13}{|l|}{Detector 1 Channel} \\
\hline Detector 1 Extend (s) & 0.0 & 0.0 & & & 0.0 & 0.0 & 0.0 & & 0.0 & & & \\
\hline Detector 1 Queue (s) & 0.0 & 0.0 & & & 0.0 & 0.0 & 0.0 & & 0.0 & & & \\
\hline Detector 1 Delay (s) & 0.0 & 0.0 & & & 0.0 & 0.0 & 0.0 & & 0.0 & & & \\
\hline Detector 2 Position(ft) & 125 & 125 & & & 125 & 125 & 125 & & & & & \\
\hline Detector 2 Size(ft) & 6 & 6 & & & 6 & 6 & 6 & & & & & \\
\hline Detector 2 Type & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & & & & \\
\hline \multicolumn{13}{|l|}{Detector 2 Channel} \\
\hline Detector 2 Extend (s) & 0.0 & 0.0 & & & 0.0 & 0.0 & 0.0 & & & & & \\
\hline Detector 3 Position(tt) & 250 & 250 & & & 250 & & 250 & & & & & \\
\hline Detector 3 Size(ft) & 6 & 6 & & & 6 & & 6 & & & & & \\
\hline Detector 3 Type & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & & & \\
\hline \multicolumn{13}{|l|}{Detector 3 Channel} \\
\hline Detector 3 Extend (s) & 0.0 & 0.0 & & & 0.0 & & 0.0 & & & & & \\
\hline
\end{tabular}

Lanes, Volumes, Timings
4
B: Exit 5 NB Off \& NH 28
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 8: Exit 5 NB Of & H28 & & & & & & & & & & \multicolumn{2}{|l|}{01/23/2018} \\
\hline & 4 & \(\rightarrow\) & 7 & 7 & \(\square\) & 4 & 4 & \(\dagger\) & \(p\) & \(\pm\) & \(\dagger\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Turn Type & Prot & NA & & & NA & Free & Prot & & Prot & & & \\
\hline Protected Phases & 5 & 2 & & & 6 & & 8 & & 8 & & & \\
\hline Permitted Phases & & 2 & & & 6 & Free & & & & & & \\
\hline Detector Phase & 5 & 2 & & & 6 & & 8 & & 8 & & & \\
\hline Switch Phase & & & & & & & & & & & & \\
\hline Minimum Initial (s) & 4.0 & 16.0 & & & 16.0 & & 4.0 & & 4.0 & & & \\
\hline Minimum Split (s) & 10.0 & 23.0 & & & 23.0 & & 10.0 & & 10.0 & & & \\
\hline Total Split (s) & 57.0 & 89.0 & & & 32.0 & & 41.0 & & 41.0 & & & \\
\hline Total Split (\%) & 43.8\% & 68.5\% & & & 24.6\% & & 31.5\% & & 31.5\% & & & \\
\hline Maximum Green (s) & 51.0 & 83.0 & & & 26.0 & & 35.0 & & 35.0 & & & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & & 4.0 & & 4.0 & & 4.0 & & & \\
\hline All-Red Time (s) & 2.0 & 2.0 & & & 2.0 & & 2.0 & & 2.0 & & & \\
\hline Lost Time Adjust (s) & 0.0 & 0.0 & & & 0.0 & & 0.0 & & 0.0 & & & \\
\hline Total Lost Time (s) & 6.0 & 6.0 & & & 6.0 & & 6.0 & & 6.0 & & & \\
\hline Lead/Lag & Lead & & & & Lag & & & & & & & \\
\hline Lead-Lag Optimize? & & & & & & & & & & & & \\
\hline Vehicle Extension (s) & 5.0 & 5.0 & & & 5.0 & & 3.0 & & 3.0 & & & \\
\hline Recall Mode & None & C-Min & & & C-Min & & None & & None & & & \\
\hline Walk Time (s) & & 7.0 & & & 7.0 & & & & & & & \\
\hline Flash Dont Walk (s) & & 10.0 & & & 10.0 & & & & & & & \\
\hline Pedestrian Calls (\#/hr) & & 0 & & & 0 & & & & & & & \\
\hline Act Effct Green (s) & 51.0 & 83.0 & & & 26.0 & 130.0 & 35.0 & & 35.0 & & & \\
\hline Actuated g/C Ratio & 0.39 & 0.64 & & & 0.20 & 1.00 & 0.27 & & 0.27 & & & \\
\hline v/c Ratio & 1.08 & 0.38 & & & 1.01 & 0.57 & 1.09 & & 0.39 & & & \\
\hline Control Delay & 56.7 & 0.3 & & & 88.3 & 1.5 & 115.0 & & 10.5 & & & \\
\hline Queue Delay & 0.0 & 0.0 & & & 0.0 & 0.0 & 0.0 & & 0.0 & & & \\
\hline Total Delay & 56.7 & 0.3 & & & 88.3 & 1.5 & 115.0 & & 10.5 & & & \\
\hline LOS & E & A & & & F & A & F & & B & & & \\
\hline Approach Delay & & 26.8 & & & 39.8 & & & 84.0 & & & & \\
\hline Approach LOS & & C & & & D & & & F & & & & \\
\hline Queue Length 50th (ft) & \(\sim 238\) & 0 & & & \(\sim 315\) & 0 & \(\sim 462\) & & 19 & & & \\
\hline Queue Length 95th (ft) & m\#195 & m0 & & & \#447 & 0 & \#536 & & 54 & & & \\
\hline Internal Link Dist (ft) & & 613 & & & 462 & & & 787 & & & 312 & \\
\hline Turn Bay Length (ft) & & & & & & & & & & & & \\
\hline Base Capacity (vph) & 643 & 2095 & & & 687 & 1538 & 445 & & 526 & & & \\
\hline Starvation Cap Reductn & 0 & 0 & & & 0 & 0 & 0 & & 0 & & & \\
\hline Spillback Cap Reductn & 0 & 0 & & & 0 & 0 & 0 & & 0 & & & \\
\hline Storage Cap Reductn & 0 & 0 & & & 0 & 0 & 0 & & 0 & & & \\
\hline Reduced v/c Ratio & 1.08 & 0.38 & & & 1.01 & 0.57 & 1.09 & & 0.39 & & & \\
\hline Intersection Summary & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{Area Type: Other}

Cycle Length: 130
Actuated Cycle Length: 130
Offset: \(0(0 \%)\), Referenced to phase 2:EBT and 6:WBT, Start of Yellow, Master Intersection
Natural Cycle: 130
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.09
Intersection Signal Delay: \(42.8 \quad\) Intersection LOS: D

Lanes, Volumes, Timings
4 8: Exit 5 NB Off \& NH 28
Intersection Capacity Utilization \(85.2 \%\)
ICU Level of Service E
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
\(m\) Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 3: Exit 5 NB Off \& NH 28

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & & \(\uparrow\) & 7 & & 4 & & \({ }^{1}\) & 蚛 & & \({ }^{*}\) & 个t & \\
\hline Traffic Volume (vph) & 10 & 0 & 120 & 0 & 1 & 0 & 160 & 780 & 5 & 10 & 1550 & 40 \\
\hline Future Volume (vph) & 10 & 0 & 120 & 0 & 1 & 0 & 160 & 780 & 5 & 10 & 1550 & 40 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 0 & & 180 & 0 & & 0 & 360 & & 0 & 65 & & 0 \\
\hline Storage Lanes & 0 & & 1 & 0 & & 0 & 1 & & 0 & 1 & & 0 \\
\hline Taper Length ( ft ) & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.95 & 0.95 & 1.00 & 0.95 & 0.95 \\
\hline Frt & & & 0.850 & & & & & 0.999 & & & 0.996 & \\
\hline Flt Protected & & 0.950 & & & & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (prot) & 0 & 1770 & 1583 & 0 & 1900 & 0 & 1770 & 3536 & 0 & 1770 & 3525 & 0 \\
\hline Flt Permitted & & & & & & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (perm) & 0 & 1863 & 1583 & 0 & 1900 & 0 & 1770 & 3536 & 0 & 1770 & 3525 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & & 164 & & & & & 1 & & & 3 & \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance ( ft ) & & 593 & & & 447 & & & 750 & & & 186 & \\
\hline Travel Time (s) & & 13.5 & & & 10.2 & & & 17.0 & & & 4.2 & \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.25 & 0.25 & 0.25 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 0\% & 0\% & 0\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% \\
\hline Adj. Flow (vph) & 11 & 0 & 130 & 0 & 4 & 0 & 174 & 848 & 5 & 11 & 1685 & 43 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 11 & 130 & 0 & 4 & 0 & 174 & 853 & 0 & 11 & 1728 & 0 \\
\hline Enter Blocked Intersection & No \\
\hline Lane Alignment & Left & Left & Right \\
\hline Median Width(ft) & & 0 & & & 0 & & & 12 & & & 12 & \\
\hline Link Offset(ft) & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Crosswalk Width(ft) & & 16 & & & 16 & & & 16 & & & 16 & \\
\hline \multicolumn{13}{|l|}{Two way Left Turn Lane} \\
\hline Headway Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Turning Speed (mph) & 15 & & 9 & 15 & & 9 & 15 & & 9 & 15 & & 9 \\
\hline Number of Detectors & 3 & 3 & 1 & 3 & 1 & & 3 & 3 & & 3 & 3 & \\
\hline Detector Template & Left & Thru & Right & Left & & & Left & Thru & & Left & Thru & \\
\hline Leading Detector (ft) & 256 & 256 & 45 & 256 & 45 & & 256 & 256 & & 256 & 256 & \\
\hline Trailing Detector (ft) & -5 & -5 & -5 & -5 & -5 & & -5 & -5 & & -5 & -5 & \\
\hline Detector 1 Position(ft) & -5 & -5 & -5 & -5 & -5 & & -5 & -5 & & -5 & -5 & \\
\hline Detector 1 Size(ft) & 50 & 50 & 50 & 50 & 50 & & 50 & 50 & & 50 & 50 & \\
\hline Detector 1 Type & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline \multicolumn{13}{|l|}{Detector 1 Channel} \\
\hline Detector 1 Extend (s) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 1 Queue (s) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 1 Delay (s) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 2 Position(ft) & 125 & 125 & & 125 & & & 125 & 125 & & 125 & 125 & \\
\hline Detector 2 Size(ft) & 6 & 6 & & 6 & & & 6 & 6 & & 6 & 6 & \\
\hline Detector 2 Type & \(\mathrm{Cl}+\mathrm{Ex}\) & Cl+Ex & & Cl+Ex & & & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline \multicolumn{13}{|l|}{Detector 2 Channel} \\
\hline Detector 2 Extend (s) & 0.0 & 0.0 & & 0.0 & & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 3 Position(ft) & 250 & 250 & & 250 & & & 250 & 250 & & 250 & 250 & \\
\hline Detector 3 Size(ft) & 6 & 6 & & 6 & & & 6 & 6 & & 6 & 6 & \\
\hline
\end{tabular}

5 9: NH 102 \& St. Charles Street/Londonderry Road
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Detector 3 Type & \(\mathrm{Cl}+\mathrm{Ex}\) & Cl+Ex & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & Cl+Ex & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline \multicolumn{13}{|l|}{Detector 3 Channel 0} \\
\hline Detector 3 Extend (s) & 0.0 & 0.0 & & 0.0 & & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Turn Type & Perm & NA & custom & & NA & & Prot & NA & & Prot & NA & \\
\hline Protected Phases & & 8 & & & 4 & & 5 & 2 & & 1 & 6 & \\
\hline Permitted Phases & 8 & & 6 & 4 & & & & & & & & \\
\hline Detector Phase & 8 & 8 & 6 & 4 & 4 & & 5 & 2 & & 1 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 5.0 & 5.0 & 8.0 & 5.0 & 5.0 & & 5.0 & 8.0 & & 5.0 & 8.0 & \\
\hline Minimum Split (s) & 24.0 & 24.0 & 24.0 & 24.0 & 24.0 & & 24.0 & 24.0 & & 11.0 & 24.0 & \\
\hline Total Split (s) & 24.0 & 24.0 & 52.0 & 24.0 & 24.0 & & 24.0 & 65.0 & & 11.0 & 52.0 & \\
\hline Total Split (\%) & 24.0\% & 24.0\% & 52.0\% & 24.0\% & 24.0\% & & 24.0\% & 65.0\% & & 11.0\% & 52.0\% & \\
\hline Maximum Green (s) & 18.0 & 18.0 & 46.0 & 18.0 & 18.0 & & 18.0 & 59.0 & & 5.0 & 46.0 & \\
\hline Yellow Time (s) & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & \\
\hline All-Red Time (s) & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & 0.0 & & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Total Lost Time (s) & & 6.0 & 6.0 & & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Lead/Lag & & & Lag & & & & Lead & Lag & & Lead & Lag & \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & None & None & Min & None & None & & None & Min & & None & Min & \\
\hline Walk Time (s) & 7.0 & 7.0 & 7.0 & 7.0 & 7.0 & & 7.0 & 7.0 & & & 7.0 & \\
\hline Flash Dont Walk (s) & 11.0 & 11.0 & 11.0 & 11.0 & 11.0 & & 11.0 & 11.0 & & & 11.0 & \\
\hline Pedestrian Calls (\#/hr) & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & & & 0 & \\
\hline Act Effct Green (s) & & 6.4 & 49.2 & & 6.1 & & 12.6 & 71.1 & & 5.1 & 49.2 & \\
\hline Actuated g/C Ratio & & 0.08 & 0.64 & & 0.08 & & 0.17 & 0.93 & & 0.07 & 0.64 & \\
\hline v/c Ratio & & 0.07 & 0.12 & & 0.03 & & 0.59 & 0.26 & & 0.09 & 0.76 & \\
\hline Control Delay & & 35.2 & 1.3 & & 35.0 & & 38.1 & 2.1 & & 37.9 & 14.5 & \\
\hline Queue Delay & & 0.0 & 0.0 & & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Total Delay & & 35.2 & 1.3 & & 35.0 & & 38.1 & 2.1 & & 37.9 & 14.5 & \\
\hline LOS & & D & A & & C & & D & A & & D & B & \\
\hline Approach Delay & & 4.0 & & & 35.0 & & & 8.2 & & & 14.7 & \\
\hline Approach LOS & & A & & & C & & & A & & & B & \\
\hline Queue Length 50th (ft) & & 4 & 0 & & 2 & & 70 & 0 & & 5 & 224 & \\
\hline Queue Length 95th (ft) & & 22 & 16 & & 3 & & 152 & 133 & & 23 & \#655 & \\
\hline Internal Link Dist (ft) & & 513 & & & 367 & & & 670 & & & 106 & \\
\hline Turn Bay Length (ft) & & & 180 & & & & 360 & & & 65 & & \\
\hline Base Capacity (vph) & & 444 & 1078 & & 453 & & 422 & 3293 & & 117 & 2273 & \\
\hline Starvation Cap Reductn & & 0 & 0 & & 0 & & 0 & 0 & & 0 & 0 & \\
\hline Spillback Cap Reductn & & 0 & 0 & & 0 & & 0 & 0 & & 0 & 0 & \\
\hline Storage Cap Reductn & & 0 & 0 & & 0 & & 0 & 0 & & 0 & 0 & \\
\hline Reduced v/c Ratio & & 0.02 & 0.12 & & 0.01 & & 0.41 & 0.26 & & 0.09 & 0.76 & \\
\hline
\end{tabular}

Intersection Summary
Area Type: Other

Cycle Length: 100
Actuated Cycle Length: 76.3
Natural Cycle: 100
Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.76
Intersection Signal Delay: \(11.9 \quad\) Intersection LOS: B
Intersection Capacity Utilization 77.9\% ICU Level of Service D
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 9: NH 102 \& St. Charles Street/Londondery Road


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & & 4 & & \({ }^{7}\) & & 7 & & 4 & 7 & & \(\uparrow\) & \\
\hline Traffic Volume (vph) & 5 & 10 & 5 & 360 & 0 & 30 & 0 & 540 & 180 & 5 & 810 & 0 \\
\hline Future Volume (vph) & 5 & 10 & 5 & 360 & 0 & 30 & 0 & 540 & 180 & 5 & 810 & 0 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 0 & & 0 & 0 & & 100 & 0 & & 100 & 0 & & 0 \\
\hline Storage Lanes & 0 & & 0 & 1 & & 1 & 0 & & 1 & 0 & & 0 \\
\hline Taper Length (ft) & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & 0.967 & & & & 0.850 & & & 0.850 & & & \\
\hline Flt Protected & & 0.988 & & 0.950 & & & & & & & & \\
\hline Satd. Flow (prot) & 0 & 1780 & 0 & 1752 & 0 & 1568 & 0 & 1759 & 1495 & 0 & 1810 & 0 \\
\hline Flt Permitted & & 0.988 & & 0.736 & & & & & & & 0.997 & \\
\hline Satd. Flow (perm) & 0 & 1780 & 0 & 1358 & 0 & 1568 & 0 & 1759 & 1495 & 0 & 1804 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & 8 & & & & 36 & & & 158 & & & \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance (ft) & & 356 & & & 493 & & & 234 & & & 339 & \\
\hline Travel Time (s) & & 8.1 & & & 11.2 & & & 5.3 & & & 7.7 & \\
\hline Peak Hour Factor & 0.60 & 0.60 & 0.60 & 0.96 & 0.96 & 0.96 & 0.89 & 0.89 & 0.89 & 0.86 & 0.86 & 0.86 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 3\% & 3\% & 3\% & 8\% & 8\% & 8\% & 5\% & 5\% & 5\% \\
\hline Adj. Flow (vph) & 8 & 17 & 8 & 375 & 0 & 31 & 0 & 607 & 202 & 6 & 942 & 0 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 33 & 0 & 375 & 0 & 31 & 0 & 607 & 202 & 0 & 948 & 0 \\
\hline Enter Blocked Intersection & No \\
\hline Lane Alignment & Left & Left & Right \\
\hline Median Width(ft) & & 12 & & & 12 & & & 0 & & & 0 & \\
\hline Link Offset(ft) & & -22 & & & 0 & & & 0 & & & 0 & \\
\hline Crosswalk Width(ft) & & 16 & & & 16 & & & 16 & & & 16 & \\
\hline \multicolumn{13}{|l|}{Two way Left Turn Lane} \\
\hline Headway Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Turning Speed (mph) & 15 & & 9 & 15 & & 9 & 15 & & 9 & 15 & & 9 \\
\hline Number of Detectors & 3 & 1 & & 3 & & 1 & & 2 & 1 & 3 & 2 & \\
\hline Detector Template & Left & & & Left & & Right & & & Right & Left & & \\
\hline Leading Detector (ft) & 256 & 45 & & 256 & & 45 & & 131 & 45 & 256 & 131 & \\
\hline Trailing Detector (ft) & -5 & -5 & & -5 & & -5 & & -5 & -5 & -5 & -5 & \\
\hline Detector 1 Position(ft) & -5 & -5 & & -5 & & -5 & & -5 & -5 & -5 & -5 & \\
\hline Detector 1 Size(ft) & 50 & 50 & & 50 & & 50 & & 50 & 50 & 50 & 50 & \\
\hline Detector 1 Type & \(\mathrm{Cl}+\mathrm{Ex}\) & Cl+Ex & & Cl+Ex & & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{EX}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline \multicolumn{13}{|l|}{Detector 1 Channel} \\
\hline Detector 1 Extend (s) & 0.0 & 0.0 & & 0.0 & & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 & \\
\hline Detector 1 Queue (s) & 0.0 & 0.0 & & 0.0 & & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 & \\
\hline Detector 1 Delay (s) & 0.0 & 0.0 & & 0.0 & & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 & \\
\hline Detector 2 Position(ft) & 125 & & & 125 & & & & 125 & & 125 & 125 & \\
\hline Detector 2 Size(ft) & 6 & & & 6 & & & & 6 & & 6 & 6 & \\
\hline Detector 2 Type & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & & Cl+Ex & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline \multicolumn{13}{|l|}{Detector 2 Channel} \\
\hline Detector 2 Extend (s) & 0.0 & & & 0.0 & & & & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 3 Position(ft) & 250 & & & 250 & & & & & & 250 & & \\
\hline Detector 3 Size(ft) & 6 & & & 6 & & & & & & 6 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Detector 3 Type & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & & & & \(\mathrm{Cl}+\mathrm{Ex}\) & & \\
\hline Detector 3 Channel & & & & & & & & & & & & \\
\hline Detector 3 Extend (s) & 0.0 & & & 0.0 & & & & & & 0.0 & & \\
\hline Turn Type & Perm & NA & & D.Pm & & Perm & & NA & Perm & Perm & NA & \\
\hline Protected Phases & & 4 & & & & & & 2 & & & 2 & \\
\hline Permitted Phases & 4 & & & 4 & & 8 & & & 2 & 2 & & \\
\hline Detector Phase & 4 & 4 & & 4 & & 8 & & 2 & 2 & 2 & 2 & \\
\hline Switch Phase & & & & & & & & & & & & \\
\hline Minimum Initial (s) & 5.0 & 5.0 & & 5.0 & & 5.0 & & 5.0 & 5.0 & 5.0 & 5.0 & \\
\hline Minimum Split (s) & 24.0 & 24.0 & & 24.0 & & 22.5 & & 24.0 & 24.0 & 24.0 & 24.0 & \\
\hline Total Split (s) & 32.0 & 32.0 & & 32.0 & & 32.0 & & 58.0 & 58.0 & 58.0 & 58.0 & \\
\hline Total Split (\%) & 35.6\% & 35.6\% & & 35.6\% & & 35.6\% & & 64.4\% & 64.4\% & 64.4\% & 64.4\% & \\
\hline Maximum Green (s) & 26.0 & 26.0 & & 26.0 & & 27.5 & & 52.0 & 52.0 & 52.0 & 52.0 & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & & 3.5 & & 4.0 & 4.0 & 4.0 & 4.0 & \\
\hline All-Red Time (s) & 2.0 & 2.0 & & 2.0 & & 1.0 & & 2.0 & 2.0 & 2.0 & 2.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & & 0.0 & & 0.0 & & 0.0 & 0.0 & & 0.0 & \\
\hline Total Lost Time (s) & & 6.0 & & 6.0 & & 4.5 & & 6.0 & 6.0 & & 6.0 & \\
\hline Lead/Lag & & & & & & & & & & & & \\
\hline Lead-Lag Optimize? & & & & & & & & & & & & \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & & 3.0 & & 3.0 & 3.0 & 3.0 & 3.0 & \\
\hline Recall Mode & None & None & & None & & None & & Min & Min & Min & Min & \\
\hline Walk Time (s) & 7.0 & 7.0 & & 7.0 & & 7.0 & & 7.0 & 7.0 & 7.0 & 7.0 & \\
\hline Flash Dont Walk (s) & 11.0 & 11.0 & & 11.0 & & 11.0 & & 11.0 & 11.0 & 11.0 & 11.0 & \\
\hline Pedestrian Calls (\#/hr) & 0 & 0 & & 0 & & 0 & & 0 & 0 & 0 & 0 & \\
\hline Act Effct Green (s) & & 25.6 & & 25.6 & & 27.1 & & 50.6 & 50.6 & & 50.6 & \\
\hline Actuated g/C Ratio & & 0.29 & & 0.29 & & 0.31 & & 0.57 & 0.57 & & 0.57 & \\
\hline v/c Ratio & & 0.06 & & 0.95 & & 0.06 & & 0.60 & 0.22 & & 0.92 & \\
\hline Control Delay & & 19.5 & & 67.9 & & 7.2 & & 15.4 & 3.1 & & 32.4 & \\
\hline Queue Delay & & 0.0 & & 0.0 & & 0.0 & & 0.0 & 0.0 & & 0.0 & \\
\hline Total Delay & & 19.5 & & 67.9 & & 7.2 & & 15.4 & 3.1 & & 32.4 & \\
\hline LOS & & B & & E & & A & & B & A & & C & \\
\hline Approach Delay & & 19.5 & & & 63.3 & & & 12.3 & & & 32.4 & \\
\hline Approach LOS & & B & & & E & & & B & & & C & \\
\hline Queue Length 50th ( ft ) & & 10 & & 209 & & 0 & & 206 & 10 & & 444 & \\
\hline Queue Length 95th (ft) & & 20 & & \#385 & & 18 & & 303 & 38 & & \#680 & \\
\hline Internal Link Dist (ft) & & 276 & & & 413 & & & 154 & & & 259 & \\
\hline Turn Bay Length (ft) & & & & & & 100 & & & 100 & & & \\
\hline Base Capacity (vph) & & 530 & & 400 & & 514 & & 1038 & 947 & & 1065 & \\
\hline Starvation Cap Reductn & & 0 & & 0 & & 0 & & 0 & 0 & & 0 & \\
\hline Spillback Cap Reductn & & 0 & & 0 & & 0 & & 0 & 0 & & 0 & \\
\hline Storage Cap Reductn & & 0 & & 0 & & 0 & & 0 & 0 & & 0 & \\
\hline Reduced v/c Ratio & & 0.06 & & 0.94 & & 0.06 & & 0.58 & 0.21 & & 0.89 & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline \multicolumn{13}{|l|}{Area Type: Other} \\
\hline \multicolumn{13}{|l|}{Cycle Length: 90} \\
\hline \multicolumn{13}{|l|}{Actuated Cycle Length: 88.2} \\
\hline \multicolumn{13}{|l|}{Natural Cycle: 90} \\
\hline Control Type: Actuated- & ordinate & & & & & & & & & & & \\
\hline
\end{tabular}

Maximum v/c Ratio: 0.95
\begin{tabular}{ll} 
Intersection Signal Delay: 30.5 & Intersection LOS: C \\
Intersection Capacity Utilization \(83.9 \%\) &
\end{tabular}
Intersection Capacity Utilization 83.9\% ICU Level of Service E

Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 10: NH 102 \& Fordway/Madden Hill Road


Zone 3
7: Birch St/Crystal Ave \& NH 102 (E Broadway)
Lanes, Volumes, Timings
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & 7 & \(\uparrow\) & \% & * & \(\uparrow\) & & \% & F & & 7 & \(\uparrow\) & \\
\hline Trafic Volume (vph) & 130 & 270 & 130 & 30 & 500 & 200 & 200 & 100 & 40 & 100 & 100 & 120 \\
\hline Future Volume (vph) & 130 & 270 & 130 & 30 & 500 & 200 & 200 & 100 & 40 & 100 & 100 & 120 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 390 & & 0 & 110 & & 0 & 70 & & 0 & 245 & & 245 \\
\hline Storage Lanes & 1 & & 1 & 1 & & 0 & 1 & & 0 & 1 & & \\
\hline Taper Length (tt) & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 0.95 & 0.95 & 0.97 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & & 0.850 & & 0.957 & & & 0.957 & & & & 0.850 \\
\hline FIt Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (prot) & 1656 & 1743 & 1333 & 1703 & 3259 & 0 & 3335 & 1732 & 0 & 1703 & 1792 & 1524 \\
\hline FIt Permitted & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (perm) & 1656 & 1743 & 1333 & 1703 & 3259 & 0 & 3335 & 1732 & 0 & 1703 & 1792 & 152 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & & 135 & & 74 & & & 20 & & & & 128 \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance (ft) & & 505 & & & 530 & & & 361 & & & 411 & \\
\hline Travel Time (s) & & 11.5 & & & 12.0 & & & 8.2 & & & 9.3 & \\
\hline Peak Hour Factor & 0.96 & 0.96 & 0.96 & 0.94 & 0.94 & 0.94 & 0.85 & 0.85 & 0.85 & 0.91 & 0.91 & 0.91 \\
\hline Heavy Vehicles (\%) & 9\% & 9\% & 9\% & 6\% & 6\% & 6\% & 5\% & 5\% & 5\% & 6\% & 6\% & 0.0 \\
\hline Parking (\#hr) & & & 0 & & & & & & & & & \\
\hline Adj. Flow (vph) & 135 & 281 & 135 & 32 & 532 & 213 & 235 & 118 & 47 & 110 & 110 & 132 \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrrr} 
Turn Type & Prot & NA & pm \(+0 v\) & Prot & NA & Prot & NA & Prot & NA \\
Protected Phases & 5 & 2 & 3 & 1 & 6 & 3 & 8 & 7 & 4
\end{tabular}
\begin{tabular}{lrrrrrrrrrr} 
Detector Phase & 5 & 2 & 3 & 1 & 6 & 3 & 8 & 7 & 4 & 5 \\
Switch Phase & & & & & & & & 4.0 & 9.0 & 4.0 \\
Minimum Initial (s) & 4.0 & 5.0 & 4.0 & 4.0 & 10.0 & 4.0 & 10.0 & 10.0 & 25.0 & 10.0 \\
\hline Minimum Split (s) & 10.0 & 30.0 & 10.0 & 10.0 & 30.0 & 13.0 & 10.0 \\
Total Split (s) & 14.0 & 40.0 & 13.0 & 12.0 & 38.0 & 13.0 & 25.0 & 13.0 & 25.0 & 14.0 \\
Total Split (\%) & \(15.6 \%\) & \(44.4 \%\) & \(14.4 \%\) & \(13.3 \%\) & \(42.2 \%\) & \(14.4 \%\) & \(27.8 \%\) & \(14.4 \%\) & \(27.8 \%\) & \(15.6 \%\) \\
Maximum Green (s) & 8.0 & 34.0 & 7.0 & 6.0 & 32.0 & 7.0 & 19.0 & 7.0 & 19.0 & 8.0 \\
Yellow Time (s) & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 \\
All-Red Time (s) & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 \\
Lost Time Adjust (s) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Total Lost Time (s) & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 \\
Lead/Lag & Lead & Lag & Lead & Lead & Lag & Lead & Lag & Lead & Lag & Lead \\
Lead-Lag Optimize? & Yes \\
Vehicle Extension (s) & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
Recall Mode & None & Min & Min & None & Min & Min & None & Min & None & None \\
Walk Time (s) & & 7.0 & & & 7.0 & & 7.0 & & 7.0 & \\
Flash Dont Walk (s) & & 11.0 & & & 11.0 & & 11.0 & 0 & 11.0 & \\
Pedestrian Calls (\#/hr) & & 10 & & & 10 & & 0 & 10 & \\
Act Effct Green (s) & 8.1 & 32.3 & 50.6 & 6.0 & 22.4 & 10.8 & 12.5 & 7.1 & 12.3 & 23.0 \\
Actuated g/C Ratio & 0.11 & 0.43 & 0.68 & 0.08 & 0.30 & 0.15 & 0.17 & 0.10 & 0.17 & 0.31 \\
v/c Ratio & 0.75 & 0.37 & 0.14 & 0.24 & 0.72 & 0.49 & 0.54 & 0.68 & 0.37 & 0.24 \\
Control Delay & 62.3 & 18.0 & 2.5 & 40.3 & 25.2 & 38.9 & 32.8 & 58.7 & 32.7 & 5.3
\end{tabular}

7: Birch St/Crystal Ave \& NH 102 (E Broadway)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\Rightarrow\) & \(\rightarrow\) & 7 & \(\checkmark\) & \(\leftarrow\) & 4 & 4 & \(\uparrow\) & \(p\) & \(\checkmark\) & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 62.3 & 18.0 & 2.5 & 40.3 & 25.2 & & 38.9 & 32.8 & & 58.7 & 32.7 & 5.3 \\
\hline LOS & E & B & A & D & C & & D & C & & E & C & \\
\hline Approach Delay & & 25.0 & & & 25.8 & & & 36.4 & & & 30.6 & \\
\hline Approach LOS & & C & & & C & & & D & & & C & \\
\hline Queue Length 50th (tt) & 60 & 71 & 0 & 14 & 139 & & 53 & 60 & & 49 & 45 & \\
\hline Queue Length 95th (tt) & \#185 & 183 & 26 & 46 & 220 & & \#124 & 123 & & \#155 & 101 & 38 \\
\hline Internal Link Dist (ft) & & 425 & & & 450 & & & 281 & & & 331 & \\
\hline Turn Bay Length (tt) & 390 & & & 110 & & & 70 & & & 245 & & 245 \\
\hline Base Capacity (vph) & 180 & 815 & 949 & 139 & 1461 & & 484 & 463 & & 162 & 463 & 559 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & & 0 & , & & 0 & 0 & \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & & 0 & 0 & \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & & 0 & 0 & \\
\hline Reduced v/c Ratio & 0.75 & 0.34 & 0.14 & 0.23 & 0.51 & & 0.49 & 0.36 & & 0.68 & 0.24 & 0.24 \\
\hline Intersection Summary & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{Area Type: Other}

Cycle Length: 90
Actuated Cycle Length: 74.4
Natural Cycle: 80
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.75
Intersection Signal Delay: 28.5
Intersection LOS: C
Intersection Capacity Utilization 61.3\%
ICU Level of Service B
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: \(\quad 7:\) Birch St/Crystal Ave \& NH 102 (E Broadway)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & NBL & NBT & NBR & SBL & SBT & SBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & ＊ & 个 \(\uparrow\) & 「 & \％＊ & 个个 & & \％ & \(\uparrow\) & \(\overline{7}\) & \(\dagger\) & \(\uparrow\) & \％ \\
\hline Traffic Volume（vph） & 20 & 120 & 180 & 240 & 100 & 0 & 90 & 260 & 20 & 145 & 430 & 345 \\
\hline Future Volume（vph） & 20 & 120 & 180 & 240 & 100 & 0 & 90 & 260 & 20 & 145 & 430 & 345 \\
\hline Ideal Flow（vphpl） & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length（ft） & 110 & & 90 & 360 & & 0 & 190 & & 180 & 0 & & 210 \\
\hline Storage Lanes & 1 & & 1 & 2 & & 0 & 1 & & 1 & 1 & & 1 \\
\hline Taper Length（ ft ） & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util．Factor & 1.00 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & & 0.850 & & & & & & 0.850 & & & 0.850 \\
\hline Flt Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（prot） & 1736 & 3471 & 1553 & 3335 & 3438 & 0 & 1752 & 1845 & 1568 & 1752 & 1845 & 1568 \\
\hline Flt Permitted & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（perm） & 1736 & 3471 & 1553 & 3335 & 3438 & 0 & 1752 & 1845 & 1568 & 1752 & 1845 & 1568 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd．Flow（RTOR） & & & 214 & & & & & & 255 & & & 348 \\
\hline Link Speed（mph） & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance（ft） & & 639 & & & 476 & & & 532 & & & 387 & \\
\hline Travel Time（s） & & 14.5 & & & 10.8 & & & 12.1 & & & 8.8 & \\
\hline Peak Hour Factor & 0.84 & 0.84 & 0.84 & 0.79 & 0.79 & 0.79 & 0.86 & 0.86 & 0.86 & 0.99 & 0.99 & 0.99 \\
\hline Heavy Vehicles（\％） & 4\％ & 4\％ & 4\％ & 5\％ & 5\％ & 5\％ & 3\％ & 3\％ & 3\％ & 3\％ & 3\％ & 3\％ \\
\hline Adj．Flow（vph） & 24 & 143 & 214 & 304 & 127 & 0 & 105 & 302 & 23 & 146 & 434 & 348 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic（\％）} \\
\hline Lane Group Flow（vph） & 24 & 143 & 214 & 304 & 127 & 0 & 105 & 302 & 23 & 146 & 434 & 348 \\
\hline Turn Type & Prot & NA & Perm & Prot & NA & & Prot & NA & Free & Prot & NA & pt＋ov \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & 7 & 4 & & 3 & 8 & 81 \\
\hline Permitted Phases & & 2 & 2 & & 6 & & & 4 & Free & & 8 & \\
\hline Detector Phase & 5 & 2 & 2 & 1 & 6 & & 7 & 4 & & 3 & 8 & 81 \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial（s） & 8.0 & 8.0 & 8.0 & 8.0 & 8.0 & & 6.0 & 8.0 & & 7.0 & 8.0 & \\
\hline Minimum Split（s） & 14.0 & 21.0 & 21.0 & 14.0 & 21.0 & & 12.0 & 21.0 & & 13.0 & 21.0 & \\
\hline Total Split（s） & 14.0 & 23.0 & 23.0 & 18.0 & 27.0 & & 15.0 & 30.0 & & 19.0 & 34.0 & \\
\hline Total Split（\％） & 15．6\％ & 25．6\％ & 25．6\％ & 20．0\％ & 30．0\％ & & 16．7\％ & 33．3\％ & & 21．1\％ & 37．8\％ & \\
\hline Maximum Green（s） & 8.0 & 17.0 & 17.0 & 12.0 & 21.0 & & 9.0 & 24.0 & & 13.0 & 28.0 & \\
\hline Yellow Time（s） & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & \\
\hline All－Red Time（s） & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & \\
\hline Lost Time Adjust（s） & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Total Lost Time（s） & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Lead／Lag & Lead & Lag & Lag & Lead & Lag & & Lead & Lag & & Lead & Lag & \\
\hline Lead－Lag Optimize？ & Yes & Yes & Yes & Yes & Yes & & Yes & Yes & & Yes & Yes & \\
\hline Vehicle Extension（s） & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & Max & C－Max & C－Max & None & Max & & None & None & & None & None & \\
\hline Walk Time（s） & & 5.0 & 5.0 & & 5.0 & & & 5.0 & & & 5.0 & \\
\hline Flash Dont Walk（s） & & 10.0 & 10.0 & & 10.0 & & & 10.0 & & & 10.0 & \\
\hline Pedestrian Calls（\＃／hr） & & 0 & 0 & & 0 & & & 0 & & & 0 & \\
\hline Act Effct Green（s） & 11.9 & 21.3 & 21.3 & 11.5 & 21.0 & & 8.5 & 21.7 & 90.0 & 11.4 & 27.1 & 44.7 \\
\hline Actuated g／C Ratio & 0.13 & 0.24 & 0.24 & 0.13 & 0.23 & & 0.09 & 0.24 & 1.00 & 0.13 & 0.30 & 0.50 \\
\hline v／c Ratio & 0.11 & 0.17 & 0.40 & 0.71 & 0.16 & & 0.63 & 0.68 & 0.01 & 0.66 & 0.78 & 0.37 \\
\hline Control Delay & 39.1 & 30.4 & 7.3 & 48.8 & 24.1 & & 56.9 & 38.8 & 0.0 & 51.5 & 39.9 & 2.6 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

11: Folsom Rd/Tsienneto Rd \& Crystal Av/NH 28
Lanes, Volumes, Timings
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\rightarrow\) & \(\uparrow\) & \(\bar{\square}\) & \(\checkmark\) & \(\downarrow\) & 」 & \(\xlongequal{*}\) & \(\triangle\) & \% & \(\downarrow\) & \(\checkmark\) & \(\vartheta\) \\
\hline Lane Group & NBL & NBT & NBR & SBL & SBT & SBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Total Delay & 39.1 & 30.4 & 7.3 & 48.8 & 24.1 & & 56.9 & 38.8 & 0.0 & 51.5 & 39.9 & 2.6 \\
\hline LOS & D & C & A & D & C & & , & D & A & D & D & A \\
\hline Approach Delay & & 18.0 & & & 41.5 & & & 41.2 & & & 27.7 & \\
\hline Approach LOS & & B & & & D & & & D & & & C & \\
\hline Queue Length 50th (ft) & 13 & 36 & 0 & 97 & 23 & & 58 & 150 & 0 & 79 & 221 & 0 \\
\hline Queue Length 95th (ft) & 35 & 58 & 46 & 91 & 48 & & \#113 & 223 & 0 & 140 & \#345 & 41 \\
\hline Internal Link Dist (ft) & & 559 & & & 396 & & & 452 & & & 307 & \\
\hline Turn Bay Length (ft) & 110 & & 90 & 360 & & & 190 & & 180 & & & 210 \\
\hline Base Capacity (vph) & 228 & 822 & 531 & 444 & 802 & & 175 & 493 & 1568 & 253 & 574 & 939 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & & 0 & , & 0 & , & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & - & 0 & & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.11 & 0.17 & 0.40 & 0.68 & 0.16 & & 0.60 & 0.61 & 0.01 & 0.58 & 0.76 & 0.37 \\
\hline
\end{tabular}

\section*{Intersection Summary}

\section*{Area Type: Other}

Cycle Length: 90
Actuated Cycle Length: 90
Offset: \(0(0 \%)\), Referenced to phase 2:NBT, Start of Green
Natural Cycle: 70
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.78
Intersection Signal Delay: 31.4
Intersection LOS: C
Intersection Capacity Utilization 56.1\% ICU Level of Service B
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 11: Folsom Rd/Tsienneto Rd \& Crystal Av/NH 28

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & 7 & 个 \(\uparrow\) & & * & 个t & & & \(\uparrow\) & F & & \(\uparrow\) & 7 \\
\hline Traffic Volume (vph) & 40 & 580 & 0 & 0 & 470 & 20 & 5 & 0 & 5 & 20 & 0 & 130 \\
\hline Future Volume (vph) & 40 & 580 & 0 & 0 & 470 & 20 & 5 & 0 & 5 & 20 & 0 & 130 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 110 & & 0 & 115 & & 150 & 0 & & 0 & 0 & & \\
\hline Storage Lanes & 1 & & 0 & 1 & & 0 & 0 & & 1 & 0 & & \\
\hline Taper Length (ft) & 50 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 0.95 & 0.95 & 1.00 & 0.95 & 0.95 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & & & & 0.994 & & & & 0.850 & & & 0.850 \\
\hline Fit Protected & 0.950 & & & & & & & 0.950 & & & 0.950 & \\
\hline Satd. Flow (prot) & 1687 & 3374 & 0 & 1863 & 3518 & 0 & 0 & 1805 & 1615 & 0 & 1787 & 1599 \\
\hline Flt Permitted & 0.950 & & & & & & & 0.743 & & & 0.751 & \\
\hline Satd. Flow (perm) & 1687 & 3374 & 0 & 1863 & 3518 & 0 & 0 & 1412 & 1615 & 0 & 1413 & 1599 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & & & & 6 & & & & 109 & & & 144 \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance (ft) & & 277 & & & 671 & & & 218 & & & 433 & \\
\hline Travel Time (s) & & 6.3 & & & 15.3 & & & 5.0 & & & 9.8 & \\
\hline Peak Hour Factor & 0.83 & 0.83 & 0.83 & 0.92 & 0.92 & 0.92 & 0.50 & 0.50 & 0.50 & 0.90 & 0.90 & 0.90 \\
\hline Heavy Vehicles (\%) & 7\% & 7\% & 7\% & 2\% & 2\% & 2\% & 0\% & 0\% & 0\% & 1\% & 1\% & 1\% \\
\hline Adj. Flow (vph) & 48 & 699 & 0 & 0 & 511 & 22 & 10 & 0 & 10 & 22 & 0 & 144 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 48 & 699 & 0 & 0 & 533 & 0 & 0 & 10 & 10 & 0 & 22 & 144 \\
\hline Turn Type & Prot & NA & & Prot & NA & & Perm & NA & Perm & Perm & NA & Perm \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & & 8 & & & 4 & \\
\hline Permitted Phases & & & & & 6 & & 8 & 8 & 8 & 4 & & 4 \\
\hline Detector Phase & 5 & 2 & & 1 & 6 & & 8 & 8 & 8 & 4 & 4 & 4 \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 8.0 & 8.0 & & 5.0 & 8.0 & & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 \\
\hline Minimum Split (s) & 14.0 & 46.0 & & 11.0 & 43.0 & & 33.0 & 33.0 & 33.0 & 33.0 & 33.0 & 33.0 \\
\hline Total Split (s) & 14.0 & 46.0 & & 11.0 & 43.0 & & 33.0 & 33.0 & 33.0 & 33.0 & 33.0 & 33.0 \\
\hline Total Split (\%) & 15.6\% & 51.1\% & & 12.2\% & 47.8\% & & 36.7\% & 36.7\% & 36.7\% & 36.7\% & 36.7\% & 36.7\% \\
\hline Maximum Green (s) & 8.0 & 40.0 & & 5.0 & 37.0 & & 27.0 & 27.0 & 27.0 & 27.0 & 27.0 & 27.0 \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 \\
\hline All-Red Time (s) & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 \\
\hline Lost Time Adjust (s) & 0.0 & 0.0 & & 0.0 & 0.0 & & & 0.0 & 0.0 & & 0.0 & 0.0 \\
\hline Total Lost Time (s) & 6.0 & 6.0 & & 6.0 & 6.0 & & & 6.0 & 6.0 & & 6.0 & 6.0 \\
\hline Lead/Lag & Lead & Lag & & Lead & Lag & & & & & & & \\
\hline Lead-Lag Optimize? & Yes & Yes & & Yes & Yes & & & & & & & \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
\hline Recall Mode & None & C-Max & & None & None & & None & None & None & None & None & None \\
\hline Act Effct Green (s) & 8.8 & 70.5 & & & 61.4 & & & 7.5 & 7.5 & & 7.5 & 7.5 \\
\hline Actuated g/C Ratio & 0.10 & 0.78 & & & 0.68 & & & 0.08 & 0.08 & & 0.08 & 0.08 \\
\hline v/c Ratio & 0.29 & 0.26 & & & 0.22 & & & 0.09 & 0.04 & & 0.19 & 0.55 \\
\hline Control Delay & 37.7 & 5.0 & & & 8.8 & & & 38.0 & 0.4 & & 41.0 & 15.0 \\
\hline Queue Delay & 0.0 & 0.0 & & & 0.0 & & & 0.0 & 0.0 & & 0.0 & 0.0 \\
\hline Total Delay & 37.7 & 5.0 & & & 8.8 & & & 38.0 & 0.4 & & 41.0 & 15.0 \\
\hline LOS & D & A & & & A & & & D & A & & D & B \\
\hline Approach Delay & & 7.1 & & & 8.8 & & & 19.2 & & & 18.4 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\rightarrow\) & \(\rightarrow\) & 7 & \(\cdots\) & \(\leftarrow\) & \(\gtrless\) & \% & \(\pi\) & \(\rightarrow\) & \(\zeta\) & \(\checkmark\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Approach LOS & & A & & & A & & & B & & & B & \\
\hline Queue Length 50th (ft) & 27 & 28 & & & 78 & & & 5 & 0 & & 12 & 0 \\
\hline Queue Length 95th (ft) & 56 & 182 & & & 144 & & & 11 & - & & 34 & 53 \\
\hline Internal Link Dist (ft) & & 197 & & & 591 & & & 138 & & & 353 & \\
\hline Turn Bay Length (tt) & 110 & & & & & & & & & & & \\
\hline Base Capacity (vph) & 164 & 2644 & & & 2400 & & & 423 & 560 & & 423 & 580 \\
\hline Starvation Cap Reductn & 0 & 0 & & & 0 & & & 0 & 0 & & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & & & 0 & & & O & 0 & & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & & & 0 & & & - & 0 & & 0 & 0 \\
\hline Reduced v/c Ratio & 0.29 & 0.26 & & & 0.22 & & & 0.02 & 0.02 & & 0.05 & 0.25 \\
\hline
\end{tabular}

\section*{Intersection Summary}

Area Type
Other
Cycle Length: 90
Actuated Cycle Length: 90
Offset: \(63(70 \%)\), Referenced to phase 2:EBT, Start of Green
Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.55

Intersection Signal Delay: 9.2
Intersection Capacity Utilization 43.1\%
Analysis Period (min) 15

Intersection LOS: A
ICU Level of Service A

Splits and Phases: 13: Applebees/Linlew Dr \& NH 28

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|r|}{Lanes, Volumes, Timings} \\
\hline & \(\Rightarrow\) & \(\rightarrow\) & 7 & \(\checkmark\) & \(\leftarrow\) & 1 & 4 & \(\uparrow\) & \(P\) & \(\checkmark\) & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \% & \(\uparrow \uparrow\) & & 7 & \(\uparrow\) & & \% & F & & \% & 4 & 7 \\
\hline Traffic Volume (vph) & 70 & 470 & 5 & 5 & 450 & 160 & 10 & 5 & 5 & 180 & 5 & 100 \\
\hline Future Volume (vph) & 70 & 470 & 5 & 5 & 450 & 160 & 10 & 5 & 5 & 180 & 5 & 100 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 280 & & 150 & 205 & & 150 & 0 & & 0 & 325 & & 150 \\
\hline Storage Lanes & 2 & & 0 & 1 & & 0 & 1 & & 0 & 1 & & 1 \\
\hline Taper Length (t) & 200 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Utill. Factor & 0.97 & 0.95 & 0.95 & 1.00 & 0.95 & 0.95 & 1.00 & 1.00 & 1.00 & 0.95 & 0.95 & 1.00 \\
\hline Fit & & 0.998 & & & 0.961 & & & 0.925 & & & & 0.850 \\
\hline Flt Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & 0.955 & \\
\hline Satd. Flow (prot) & 3303 & 3399 & 0 & 1736 & 3336 & 0 & 1805 & 1758 & 0 & 1665 & 1674 & 1568 \\
\hline Fit Permitted & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & 0.955 & \\
\hline Satd. Flow (perm) & 3303 & 3399 & 0 & 1736 & 3336 & 0 & 1805 & 1758 & 0 & 1665 & 1674 & 1568 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & 2 & & & 78 & & & 7 & & & & 111 \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance (t) & & 412 & & & 486 & & & 151 & & & 446 & \\
\hline Travel Time (s) & & 9.4 & & & 11.0 & & & 3.4 & & & 10.1 & \\
\hline Peak Hour Factor & 0.83 & 0.83 & 0.83 & 0.97 & 0.97 & 0.97 & 0.67 & 0.67 & 0.67 & 0.90 & 0.90 & 0.90 \\
\hline Heavy Vehicles (\%) & 6\% & 6\% & 6\% & 4\% & 4\% & 4\% & 0\% & 0\% & 0\% & 3\% & 3\% & 3\% \\
\hline Adj. Flow (vph) & 84 & 566 & 6 & 5 & 464 & 165 & 15 & 7 & 7 & 200 & 6 & 111 \\
\hline Shared Lane Traffic (\%) & & & & & & & & & & 49\% & & \\
\hline Lane Group Flow (vph) & 84 & 572 & 0 & 5 & 629 & 0 & 15 & 14 & 0 & 102 & 104 & 111 \\
\hline Turn Type & Prot & NA & & Prot & NA & & Split & NA & & Split & NA & ptoov \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & 3 & 3 & & 4 & , & 45 \\
\hline Permitted Phases & & & & & & & & 3 & & & & \\
\hline Detector Phase & 5 & 2 & & 1 & 6 & & 3 & , & & 4 & 4 & 45 \\
\hline Switch Phase & & & & & & & & & & & & \\
\hline Minimum Initial (s) & 5.0 & 8.0 & & 5.0 & 8.0 & & 5.0 & 5.0 & & 8.0 & 8.0 & \\
\hline Minimum Split (s) & 14.0 & 53.0 & & 11.0 & 50.0 & & 11.0 & 11.0 & & 15.0 & 15.0 & \\
\hline Total Split (s) & 14.0 & 53.0 & & 11.0 & 50.0 & & 11.0 & 11.0 & & 15.0 & 15.0 & \\
\hline Total Split (\%) & 15.6\% & 58.9\% & & 12.2\% & 55.6\% & & 12.2\% & 12.2\% & & 16.7\% & 16.7\% & \\
\hline Maximum Green (s) & 8.0 & 47.0 & & 5.0 & 44.0 & & 5.0 & 5.0 & & 9.0 & 9.0 & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & \\
\hline All-Red Time (s) & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & \\
\hline Lost Time Adjust (s) & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Total Lost Time (s) & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Lead/Lag & Lead & Lag & & Lead & Lag & & Lead & Lead & & Lag & Lag & \\
\hline Lead-Lag Optimize? & Yes & Yes & \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & None & Min & & None & C-Min & & None & None & & None & None & \\
\hline Walk Time (s) & & 5.0 & & & 5.0 & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline Flash Dont Walk (s) & & 11.0 & & & 11.0 & & 11.0 & 11.0 & & 11.0 & 11.0 & \\
\hline Pedestrian Calls (\#/hr) & & 0 & & & 0 & & 0 & 0 & & 0 & 0 & \\
\hline Act Effict Green (s) & 7.7 & 56.3 & & 5.9 & 45.1 & & 6.3 & 6.3 & & 11.5 & 11.5 & 25.1 \\
\hline Actuated g/C Ratio & 0.09 & 0.63 & & 0.07 & 0.50 & & 0.07 & 0.07 & & 0.13 & 0.13 & 0.28 \\
\hline \(\mathrm{v} / \mathrm{C}\) Ratio & 0.30 & 0.27 & & 0.04 & 0.37 & & 0.12 & 0.11 & & 0.48 & 0.49 & 0.21 \\
\hline Control Delay & 40.9 & 10.6 & & 62.6 & 8.7 & & 40.8 & 30.0 & & 43.5 & 43.7 & 5.4 \\
\hline Queue Delay & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\Rightarrow\) & \(\rightarrow\) & \(\nabla\) & \(\checkmark\) & \(\leftarrow\) & 4 & 4 & \(\uparrow\) & \(p\) & \(\downarrow\) & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Total Delay & 40.9 & 10.6 & & 62.6 & 8.7 & & 40.8 & 30.0 & & 43.5 & 43.7 & 5.4 \\
\hline LOS & D & B & & E & A & & D & C & & D & D & A \\
\hline Approach Delay & & 14.5 & & & 9.1 & & & 35.6 & & & 30.2 & \\
\hline Approach LOS & & B & & & A & & & D & & & C & \\
\hline Queue Length 50th ( ft ) & 23 & 73 & & 3 & 34 & & 8 & 4 & & 57 & 58 & 0 \\
\hline Queue Length 95th (ft) & 41 & 149 & & m13 & 210 & & 20 & 16 & & 104 & 106 & 34 \\
\hline Internal Link Dist (ft) & & 332 & & & 406 & & & 71 & & & 366 & \\
\hline Turn Bay Length ( ft ) & 280 & & & 205 & & & & & & 325 & & 150 \\
\hline Base Capacity (vph) & 308 & 2210 & & 113 & 1858 & & 127 & 130 & & 215 & 216 & 513 \\
\hline Starvation Cap Reductn & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.27 & 0.26 & & 0.04 & 0.34 & & 0.12 & 0.11 & & 0.47 & 0.48 & 0.22 \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline \multicolumn{13}{|l|}{Area Type: Other} \\
\hline \multicolumn{13}{|l|}{Cycle Length: 90} \\
\hline \multicolumn{13}{|l|}{Actuated Cycle Length: 90} \\
\hline \multicolumn{13}{|l|}{Offset: \(0(0 \%)\), Referenced to phase 6:WBT, Start of Green} \\
\hline \multicolumn{13}{|l|}{Natural Cycle: 90} \\
\hline \multicolumn{13}{|l|}{Control Type: Actuated-Coordinated} \\
\hline \multicolumn{13}{|l|}{Maximum v/c Ratio: 0.49} \\
\hline \multicolumn{5}{|l|}{Intersection Signal Delay: 15.8} & \multicolumn{8}{|l|}{Intersection LOS: B} \\
\hline \multicolumn{5}{|l|}{Intersection Capacity Utilization 48.5\%} & \multicolumn{8}{|l|}{ICU Level of Service A} \\
\hline \multicolumn{13}{|l|}{Analysis Period (min) 15} \\
\hline \multicolumn{13}{|l|}{\(m\) Volume for 95 th percentile queue is metered by upstream signal.} \\
\hline
\end{tabular}

Splits and Phases: \(\quad 14:\) VIP Dr/Ashleigh Dr \& NH 28

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & NBL & NBT & NBR & SBL & SBT & SBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & \% & F & & \% & \(\uparrow\) & 7 & \% & F & & \% & ち & \\
\hline Traffic Volume (vph) & 30 & 50 & 20 & 20 & 50 & 160 & 80 & 240 & 80 & 80 & 520 & 50 \\
\hline Future Volume (vph) & 30 & 50 & 20 & 20 & 50 & 160 & 80 & 240 & 80 & 80 & 520 & 50 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (tt) & 200 & & 150 & 190 & & 190 & 135 & & 0 & 120 & & 0 \\
\hline Storage Lanes & 1 & & - & 1 & & 1 & 1 & & 0 & 1 & & 0 \\
\hline Taper Length ( t ) & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & 0.958 & & & & 0.850 & & 0.962 & & & 0.987 & \\
\hline Flt Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (prot) & 1752 & 1767 & 0 & 1736 & 1827 & 1553 & 1770 & 1792 & 0 & 1787 & 1857 & 0 \\
\hline FIt Permitted & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (perm) & 1752 & 1767 & 0 & 1736 & 1827 & 1553 & 1770 & 1792 & 0 & 1787 & 1857 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & 20 & & & & 198 & & 25 & & & 7 & \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance (tt) & & 481 & & & 347 & & & 479 & & & 371 & \\
\hline Travel Time (s) & & 10.9 & & & 7.9 & & & 10.9 & & & 8.4 & \\
\hline Peak Hour Factor & 0.82 & 0.82 & 0.82 & 0.81 & 0.81 & 0.81 & 0.68 & 0.68 & 0.68 & 0.78 & 0.78 & 0.78 \\
\hline Heavy Vehicles (\%) & 3\% & 3\% & 3\% & 4\% & 4\% & 4\% & 2\% & 2\% & 2\% & 1\% & 1\% & 1\% \\
\hline Adj. Flow (vph) & 37 & 61 & 24 & 25 & 62 & 198 & 118 & 353 & 118 & 103 & 667 & 64 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 37 & 85 & 0 & 25 & 62 & 198 & 118 & 471 & 0 & 103 & 731 & 0 \\
\hline Turn Type & Prot & NA & & Prot & NA & pt+ov & Prot & NA & & Prot & NA & \\
\hline Protected Phases & 1 & 6 & & 5 & 2 & 23 & 3 & 8 & & 7 & 4 & \\
\hline \multicolumn{13}{|l|}{Permitted Phases} \\
\hline Detector Phase & 1 & 6 & & 5 & 2 & 23 & 3 & 8 & & 7 & 4 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial ( s ) & 8.0 & 8.0 & & 8.0 & 8.0 & & 8.0 & 8.0 & & 8.0 & 8.0 & \\
\hline Minimum Split (s) & 14.0 & 14.0 & & 14.0 & 14.0 & & 14.0 & 14.0 & & 14.0 & 14.0 & \\
\hline Total Split (s) & 14.0 & 14.0 & & 14.0 & 14.0 & & 14.0 & 38.0 & & 14.0 & 38.0 & \\
\hline Total Split (\%) & 17.5\% & 17.5\% & & 17.5\% & 17.5\% & & 17.5\% & 47.5\% & & 17.5\% & 47.5\% & \\
\hline Maximum Green (s) & 8.0 & 8.0 & & 8.0 & 8.0 & & 8.0 & 32.0 & & 8.0 & 32.0 & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & \\
\hline All-Red Time (s) & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & \\
\hline Lost Time Adjust (s) & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Total Lost Time (s) & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Lead/Lag & Lead & Lag & \\
\hline Lead-Lag Optimize? & Yes & Yes & \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & None & None & & None & Max & & None & None & & None & None & \\
\hline Act Effct Green (s) & 8.1 & 10.7 & & 8.1 & 8.1 & 22.2 & 8.1 & 35.0 & & 8.1 & 31.8 & \\
\hline Actuated g/C Ratio & 0.11 & 0.14 & & 0.11 & 0.11 & 0.30 & 0.11 & 0.47 & & 0.11 & 0.43 & \\
\hline v/c Ratio & 0.19 & 0.31 & & 0.13 & 0.31 & 0.33 & 0.61 & 0.55 & & 0.53 & 0.91 & \\
\hline Control Delay & 35.4 & 28.5 & & 34.5 & 37.5 & 5.4 & 49.0 & 18.9 & & 44.5 & 39.6 & \\
\hline Queue Delay & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Total Delay & 35.4 & 28.5 & & 34.5 & 37.5 & 5.4 & 49.0 & 18.9 & & 44.5 & 39.6 & \\
\hline LOS & D & c & & C & D & A & D & B & & D & D & \\
\hline Approach Delay & & 30.6 & & & 15.0 & & & 25.0 & & & 40.2 & \\
\hline
\end{tabular}

18: Tsienneto Rd \& NH 28 Byp S/NH 28 Byp N Lanes, Volumes, Timings


Splits and Phases: 18: Tsienneto Rd \& NH 28 Byp S/NH 28 Byp N


APPENDIX S-4: 2040 ALTERNATIVE F INTERSECTION CAPACITY ANALYSES - SYNCHRO PRINTOUTS - PM PEAK HOUR
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & 4 & & & \multirow[t]{2}{*}{SBR} & \\
\hline Lane Group & EBL & EBT & WBT & WBR & SBL & & \\
\hline Lane Configurations & & 44 & 舟 & & \% & T\% & \\
\hline Traffic Volume (vph) & 0 & 1310 & 1330 & 0 & 1005 & 1135 & \\
\hline Future Volume (vph) & 0 & 1310 & 1330 & 0 & 1005 & 1135 & \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & \\
\hline Lane Width ( ft ) & 12 & 12 & 12 & 12 & 16 & 12 & \\
\hline Lane Util. Factor & 1.00 & 0.95 & 0.95 & 1.00 & 1.00 & 0.88 & \\
\hline Fit & & & & & & 0.850 & \\
\hline Flt Protected & & & & & 0.950 & & \\
\hline Satd. Flow (prot) & 0 & 3471 & 3406 & 0 & 1930 & 2682 & \\
\hline Flt Permitted & & & & & 0.950 & & \\
\hline Satd. Flow (perm) & 0 & 3471 & 3406 & 0 & 1930 & 2682 & \\
\hline Right Turn on Red & & & & Yes & & No & \\
\hline \multicolumn{7}{|l|}{Satd. Flow (RTOR)} & \\
\hline Link Speed (mph) & & 30 & 30 & & 25 & & \\
\hline Link Distance ( ft ) & & 712 & 388 & & 212 & & \\
\hline Travel Time (s) & & 16.2 & 8.8 & & 5.8 & & \\
\hline Peak Hour Factor & 0.93 & 0.93 & 0.88 & 0.88 & 0.89 & 0.89 & \\
\hline Heavy Vehicles (\%) & 4\% & 4\% & 6\% & 6\% & 6\% & 6\% & \\
\hline Adj. Flow (vph) & 0 & 1409 & 1511 & 0 & 1129 & 1275 & \\
\hline \multicolumn{8}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 1409 & 1511 & 0 & 1129 & 1275 & \\
\hline Enter Blocked Intersection & No & No & No & No & No & No & \\
\hline Lane Alignment & Left & Left & Left & Right & Left & Right & \\
\hline Median Width(ft) & & 24 & 24 & & 16 & & \\
\hline Link Offset(ft) & & 0 & 0 & & 0 & & \\
\hline Crosswalk Width(ft) & & 16 & 16 & & 16 & & \\
\hline \multicolumn{8}{|l|}{Two way Left Turn Lane} \\
\hline Headway Factor & 1.00 & 1.00 & 1.00 & 1.00 & 0.85 & 1.00 & \\
\hline Turning Speed (mph) & 15 & & & 9 & 15 & 9 & \\
\hline Number of Detectors & & 3 & 3 & & 3 & 3 & \\
\hline Detector Template & & Thru & Thru & & Left & & \\
\hline Leading Detector (ft) & & 256 & 256 & & 256 & 256 & \\
\hline Trailing Detector (ft) & & -5 & -5 & & -5 & -5 & \\
\hline Detector 1 Position(ft) & & -5 & -5 & & -5 & -5 & \\
\hline Detector 1 Size(ft) & & 50 & 50 & & 50 & 50 & \\
\hline Detector 1 Type & & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline \multicolumn{8}{|l|}{Detector 1 Channel} \\
\hline Detector 1 Extend (s) & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 1 Queue (s) & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 1 Delay (s) & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 2 Position(ft) & & 125 & 125 & & 125 & 125 & \\
\hline Detector 2 Size(ft) & & 6 & 6 & & 6 & 6 & \\
\hline Detector 2 Type & & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline \multicolumn{8}{|l|}{Detector 2 Channel} \\
\hline Detector 2 Extend (s) & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 3 Position(ft) & & 250 & 250 & & 250 & 250 & \\
\hline Detector 3 Size(ft) & & 6 & 6 & & 6 & 6 & \\
\hline Detector 3 Type & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline Detector 3 Channel & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & \(\longleftarrow\) & & & \multirow[t]{2}{*}{SBR} & \\
\hline Lane Group & EBL & EBT & WBT & WBR & SBL & & \\
\hline Detector 3 Extend (s) & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Turn Type & & NA & NA & & Prot & Prot & \\
\hline Protected Phases & & 2 & 6 & & 4 & 4 & \\
\hline Permitted Phases & & & & & & & \\
\hline Detector Phase & & 2 & 6 & & 4 & 4 & \\
\hline \multicolumn{7}{|l|}{Switch Phase} & \\
\hline Minimum Initial (s) & & 8.0 & 8.0 & & 5.0 & 5.0 & \\
\hline Minimum Split (s) & & 14.0 & 21.0 & & 27.0 & 27.0 & \\
\hline Total Split (s) & & 54.0 & 54.0 & & 66.0 & 66.0 & \\
\hline Total Split (\%) & & 45.0\% & 45.0\% & & 55.0\% & 55.0\% & \\
\hline Maximum Green (s) & & 48.0 & 48.0 & & 60.0 & 60.0 & \\
\hline Yellow Time (s) & & 2.0 & 2.0 & & 2.0 & 2.0 & \\
\hline All-Red Time (s) & & 4.0 & 4.0 & & 4.0 & 4.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Total Lost Time (s) & & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline \multicolumn{7}{|l|}{Lead/Lag} & \\
\hline \multicolumn{7}{|l|}{Lead-Lag Optimize?} & \\
\hline Vehicle Extension (s) & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & & C-Min & C-Min & & None & None & \\
\hline Walk Time (s) & & & 7.0 & & 7.0 & 7.0 & \\
\hline Flash Dont Walk (s) & & & 8.0 & & 14.0 & 14.0 & \\
\hline Pedestrian Calls (\#/hr) & & & 0 & & 0 & 0 & \\
\hline Act Effict Green (s) & & 48.0 & 48.0 & & 60.0 & 60.0 & \\
\hline Actuated g/C Ratio & & 0.40 & 0.40 & & 0.50 & 0.50 & \\
\hline v/c Ratio & & 1.02 & 1.11 & & 1.17 & 0.95 & \\
\hline Control Delay & & 44.5 & 58.9 & & 117.1 & 44.5 & \\
\hline Queue Delay & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Total Delay & & 44.5 & 58.9 & & 117.1 & 44.5 & \\
\hline LOS & & D & E & & F & D & \\
\hline Approach Delay & & 44.5 & 58.9 & & 78.6 & & \\
\hline Approach LOS & & D & E & & E & & \\
\hline Queue Length 50th (ft) & & \(\sim 553\) & \(\sim 704\) & & ~1042 & 518 & \\
\hline Queue Length 95th (ft) & & m\#702 & m50 & & \#1276 & \#687 & \\
\hline Internal Link Dist (ft) & & 632 & 308 & & 132 & & \\
\hline \multicolumn{7}{|l|}{Turn Bay Length ( ft )} & \\
\hline Base Capacity (vph) & & 1388 & 1362 & & 965 & 1341 & \\
\hline Starvation Cap Reductn & & 0 & 0 & & 0 & 0 & \\
\hline Spillback Cap Reductn & & 0 & 0 & & 0 & 0 & \\
\hline Storage Cap Reductn & & 0 & 0 & & 0 & 0 & \\
\hline Reduced v/c Ratio & & 1.02 & 1.11 & & 1.17 & 0.95 & \\
\hline Intersection Summary & & & & & & & \\
\hline
\end{tabular}

Area Type:
Other
Cycle Length: 120
Actuated Cycle Length: 120
Offset: \(0(0 \%)\), Referenced to phase 2:EBT and 6:WBT, Start of Yellow, Master Intersection
Natural Cycle: 120
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.17

Lanes, Volumes, Timings
1. z: NH 102 \& Exit 4 SB Off

Intersection Signal Delay: \(64.0 \quad\) Intersection LOS: E
Intersection Capacity Utilization 104.4\% ICU Level of Service G
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
\(m\) Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 7: NH 102 \& Exit 4 SB Off


Lanes, Volumes, Timings
2. \%: NH 102 \& Exit 4 NB Off
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & NBL2 & NBL & NBR & SEL & SER & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & 7\% & & T¢ & & & ** & 个4 & & & 緤 & \({ }^{7}\) \\
\hline Traffic Volume (vph) & 1250 & 0 & 1105 & 0 & 0 & 985 & 1330 & 0 & 0 & 570 & 795 \\
\hline Future Volume (vph) & 1250 & 0 & 1105 & 0 & 0 & 985 & 1330 & 0 & 0 & 570 & 795 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length ( ft ) & & 0 & 0 & 0 & 0 & 550 & & 0 & 0 & & 0 \\
\hline Storage Lanes & & 2 & 2 & 0 & 0 & 2 & & 0 & 0 & & 1 \\
\hline Taper Length ( ft ) & & 25 & & 25 & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 0.97 & 1.00 & 0.88 & 1.00 & 1.00 & 0.97 & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 \\
\hline Fit & & & 0.850 & & & & & & & & 0.850 \\
\hline Flt Protected & 0.950 & & & & & 0.950 & & & & & \\
\hline Satd. Flow (prot) & 3242 & 0 & 2632 & 0 & 0 & 3335 & 3438 & 0 & 0 & 3505 & 1568 \\
\hline Flt Permitted & 0.950 & & & & & 0.950 & & & & & \\
\hline Satd. Flow (perm) & 3242 & 0 & 2632 & 0 & 0 & 3335 & 3438 & 0 & 0 & 3505 & 1568 \\
\hline Right Turn on Red & & & No & & & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & & & & & & & & & & 750 \\
\hline Link Speed (mph) & & 25 & & 30 & & & 30 & & & 30 & \\
\hline Link Distance ( ft ) & & 856 & & 390 & & & 760 & & & 857 & \\
\hline Travel Time (s) & & 23.3 & & 8.9 & & & 17.3 & & & 19.5 & \\
\hline Peak Hour Factor & 0.88 & 0.88 & 0.88 & 0.92 & 0.92 & 0.94 & 0.94 & 0.94 & 0.92 & 0.92 & 0.92 \\
\hline Heavy Vehicles (\%) & 8\% & 8\% & 8\% & 2\% & 2\% & 5\% & 5\% & 5\% & 3\% & 3\% & 3\% \\
\hline Adj. Flow (vph) & 1420 & 0 & 1256 & 0 & 0 & 1048 & 1415 & 0 & 0 & 620 & 864 \\
\hline \multicolumn{12}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 1420 & 0 & 1256 & 0 & 0 & 1048 & 1415 & 0 & 0 & 620 & 864 \\
\hline Enter Blocked Intersection & No \\
\hline Lane Alignment & Left & Left & Right & Left & Right & Left & Left & Right & Left & Right & Right \\
\hline Median Width(ft) & & 24 & & 0 & & & 24 & & & 24 & \\
\hline Link Offset(ft) & & 12 & & 0 & & & 0 & & & 0 & \\
\hline Crosswalk Width(ft) & & 16 & & 16 & & & 16 & & & 16 & \\
\hline \multicolumn{12}{|l|}{Two way Left Turn Lane} \\
\hline Headway Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Turning Speed (mph) & 15 & 15 & 25 & 15 & 9 & 15 & & 9 & 15 & & 25 \\
\hline Number of Detectors & 3 & & 3 & & & 3 & 3 & & & 3 & 0 \\
\hline \multicolumn{12}{|l|}{Detector Template} \\
\hline Leading Detector (ft) & 256 & & 256 & & & 256 & 256 & & & 256 & 0 \\
\hline Trailing Detector (ft) & -5 & & -5 & & & -5 & -5 & & & -5 & 0 \\
\hline Detector 1 Position(ft) & -5 & & -5 & & & -5 & -5 & & & -5 & -5 \\
\hline Detector 1 Size(ft) & 55 & & 55 & & & 55 & 55 & & & 55 & 50 \\
\hline Detector 1 Type & Cl+Ex & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{EX}\) & \(\mathrm{Cl}+\mathrm{EX}\) \\
\hline \multicolumn{12}{|l|}{Detector 1 Channel} \\
\hline Detector 1 Extend (s) & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & 0.0 \\
\hline Detector 1 Queue (s) & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & 0.0 \\
\hline Detector 1 Delay (s) & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & 0.0 \\
\hline Detector 2 Position(ft) & 125 & & 125 & & & 125 & 125 & & & 125 & \\
\hline Detector 2 Size(ft) & 6 & & 6 & & & 6 & 6 & & & 6 & \\
\hline Detector 2 Type & \(\mathrm{Cl}+\mathrm{Ex}\) & & Cl+Ex & & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline \multicolumn{12}{|l|}{Detector 2 Channel} \\
\hline Detector 2 Extend (s) & 0.0 & & 0.0 & & & 0.0 & 0.0 & & & 0.0 & \\
\hline Detector 3 Position(ft) & 250 & & 250 & & & 250 & 250 & & & 250 & \\
\hline Detector 3 Size(ft) & 6 & & 6 & & & 6 & 6 & & & 6 & \\
\hline
\end{tabular}

4A Zone 2 7:30 am 08/03/2016 Alt F 2040 PM Peak

Lanes, Volumes, Timings
2. \%: NH 102 \& Exit 4 NB Off
\begin{tabular}{lrrrrrrrrr}
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline
\end{tabular}

Area Type: Other
Cycle Length: 120
Actuated Cycle Length: 120
Offset: \(44(37 \%)\), Referenced to phase 2:NET and 6:SWT, Start of Yellow
Natural Cycle: 150

\author{
Lanes, Volumes, Timings
}
2. 8. NH 102 \& Exit 4 NB Off

Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.30
Intersection Signal Delay: \(89.9 \quad\) Intersection LOS: F
Intersection Capacity Utilization 95.5\% ICU Level of Service F
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
\(m\) Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 8: NH 102 \& Exit 4 NB Off

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & 坐㐱 & 7 & \% & 44 & & & & & \%* & & P \\
\hline Traffic Volume (vph) & 0 & 925 & 385 & 240 & 525 & 0 & 0 & 0 & 0 & 740 & 0 & 480 \\
\hline Future Volume (vph) & 0 & 925 & 385 & 240 & 525 & 0 & 0 & 0 & 0 & 740 & 0 & 480 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 0 & & 350 & 0 & & 0 & 0 & & 0 & 0 & & 0 \\
\hline Storage Lanes & 0 & & 1 & 1 & & 0 & 0 & & 0 & 2 & & 1 \\
\hline Taper Length ( ft ) & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & 1.00 & 1.00 & 1.00 & 0.97 & 1.00 & 1.00 \\
\hline Fit & & & 0.850 & & & & & & & & & 0.850 \\
\hline Flt Protected & & & & 0.950 & & & & & & 0.950 & & \\
\hline Satd. Flow (prot) & 0 & 3471 & 1553 & 1719 & 3438 & 0 & 0 & 0 & 0 & 3367 & 0 & 1553 \\
\hline Flt Permitted & & & & 0.950 & & & & & & 0.950 & & \\
\hline Satd. Flow (perm) & 0 & 3471 & 1553 & 1719 & 3438 & 0 & 0 & 0 & 0 & 3367 & 0 & 1553 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & & 428 & & & & & & & & & 298 \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 35 & \\
\hline Link Distance ( ft ) & & 851 & & & 693 & & & 486 & & & 581 & \\
\hline Travel Time (s) & & 19.3 & & & 15.8 & & & 11.0 & & & 11.3 & \\
\hline Peak Hour Factor & 0.87 & 0.87 & 0.87 & 0.86 & 0.86 & 0.86 & 0.92 & 0.92 & 0.92 & 0.91 & 0.91 & 0.91 \\
\hline Heavy Vehicles (\%) & 4\% & 4\% & 4\% & 5\% & 5\% & 5\% & 2\% & 2\% & 2\% & 4\% & 4\% & 4\% \\
\hline Adj. Flow (vph) & 0 & 1063 & 443 & 279 & 610 & 0 & 0 & 0 & 0 & 813 & 0 & 527 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 1063 & 443 & 279 & 610 & 0 & 0 & 0 & 0 & 813 & 0 & 527 \\
\hline Enter Blocked Intersection & No \\
\hline Lane Alignment & Left & Left & Right & Left & Left & Right & Left & Left & Right & Right & Left & Right \\
\hline Median Width(f) & & 36 & & & 36 & & & 24 & & & 24 & \\
\hline Link Offset(ft) & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Crosswalk Width(ft) & & 16 & & & 16 & & & 16 & & & 16 & \\
\hline \multicolumn{13}{|l|}{Two way Left Turn Lane} \\
\hline Headway Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Turning Speed (mph) & 15 & & 25 & 15 & & 9 & 15 & & 9 & 15 & & 25 \\
\hline Number of Detectors & & 3 & 3 & 3 & 3 & & & & & 3 & & 3 \\
\hline Detector Template & & Thru & Right & Left & Thru & & & & & Left & & Right \\
\hline Leading Detector (ft) & & 256 & 256 & 256 & 256 & & & & & 256 & & 256 \\
\hline Trailing Detector (ft) & & -5 & -5 & -5 & -5 & & & & & -5 & & -5 \\
\hline Detector 1 Position(ft) & & -5 & -5 & -5 & -5 & & & & & -5 & & -5 \\
\hline Detector 1 Size(ft) & & 50 & 50 & 50 & 50 & & & & & 50 & & 50 \\
\hline Detector 1 Type & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{EX}\) & & & & & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) \\
\hline \multicolumn{13}{|l|}{Detector 1 Channel} \\
\hline Detector 1 Extend (s) & & 0.0 & 0.0 & 0.0 & 0.0 & & & & & 0.0 & & 0.0 \\
\hline Detector 1 Queue (s) & & 0.0 & 0.0 & 0.0 & 0.0 & & & & & 0.0 & & 0.0 \\
\hline Detector 1 Delay (s) & & 0.0 & 0.0 & 0.0 & 0.0 & & & & & 0.0 & & 0.0 \\
\hline Detector 2 Position(ft) & & 125 & 125 & 125 & 125 & & & & & 125 & & 125 \\
\hline Detector 2 Size(ft) & & 6 & 6 & 6 & 6 & & & & & 6 & & 6 \\
\hline Detector 2 Type & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & CI+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & & & & & CI+Ex & & \(\mathrm{Cl}+\mathrm{Ex}\) \\
\hline \multicolumn{13}{|l|}{Detector 2 Channel} \\
\hline Detector 2 Extend (s) & & 0.0 & 0.0 & 0.0 & 0.0 & & & & & 0.0 & & 0.0 \\
\hline Detector 3 Position(ft) & & 250 & 250 & 250 & 250 & & & & & 250 & & 250 \\
\hline Detector 3 Size(ft) & & 6 & 6 & 6 & 6 & & & & & 6 & & 6 \\
\hline
\end{tabular}

\begin{tabular}{ll} 
Intersection Summary Other & \\
\hline Area Type: \\
Cycle Length: \(100 \quad\) Actuated Cycle Length: 100 & \\
Actor to phase 2:EBT and 6:WBT, Start of Yellow & \\
Offset: 55 (55\%), Referenced \\
Natural Cycle: 90 & \begin{tabular}{r} 
Synchro 9 Report \\
Page 5
\end{tabular} \\
\hline 4A Zone 17:30 am 12/22/2016 Alt F 2040 PM Peak &
\end{tabular}

Lanes, Volumes, Timings
3 \&: Exit 5 SB On/Exit 5 SB Off \& NH 28
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.89
Intersection Signal Delay: 27.2 Intersection LOS: C
Intersection Capacity Utilization 76.8\% ICU Level of Service D
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 2: Exit 5 SB On/Exit 5 SB Off \& NH 28

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & & 1 & 4 & 4 & 4 & \(\dagger\) & \(p\) & ＊ & \(\frac{1}{7}\) & 4 \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \({ }^{7}\) & 个中 & & & 伞 & 7 & \({ }^{7}\) & & 7 & & & \\
\hline Traffic Volume（vph） & 580 & 1085 & 0 & 0 & 470 & 560 & 295 & 0 & 360 & 0 & 0 & 0 \\
\hline Future Volume（vph） & 580 & 1085 & 0 & 0 & 470 & 560 & 295 & 0 & 360 & 0 & 0 & 0 \\
\hline Ideal Flow（vphpl） & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Lane Util．Factor & 1.00 & 0.95 & 1.00 & 1.00 & 0.95 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & & & & & 0.850 & & & 0.850 & & & \\
\hline Fit Protected & 0.950 & & & & & & 0.950 & & & & & \\
\hline Satd．Flow（prot） & 1752 & 3505 & 0 & 0 & 3505 & 1568 & 1703 & 0 & 1524 & 0 & 0 & 0 \\
\hline Fit Permitted & 0.950 & & & & & & 0.950 & & & & & \\
\hline Satd．Flow（perm） & 1752 & 3505 & 0 & 0 & 3505 & 1568 & 1703 & 0 & 1524 & 0 & 0 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd．Flow（RTOR） & & & & & & 615 & & & 98 & & & \\
\hline Link Speed（mph） & & 30 & & & 30 & & & 35 & & & 30 & \\
\hline Link Distance（ft） & & 693 & & & 542 & & & 867 & & & 392 & \\
\hline Travel Time（s） & & 15.8 & & & 12.3 & & & 16.9 & & & 8.9 & \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.91 & 0.91 & 0.91 & 0.67 & 0.67 & 0.67 & 0.92 & 0.92 & 0.92 \\
\hline Heavy Vehicles（\％） & 3\％ & 3\％ & 3\％ & 3\％ & 3\％ & 3\％ & 6\％ & 6\％ & 6\％ & 2\％ & 2\％ & 2\％ \\
\hline Adj．Flow（vph） & 630 & 1179 & 0 & 0 & 516 & 615 & 440 & 0 & 537 & 0 & 0 & 0 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic（\％） 0} \\
\hline Lane Group Flow（vph） & 630 & 1179 & 0 & 0 & 516 & 615 & 440 & 0 & 537 & 0 & 0 & 0 \\
\hline Enter Blocked Intersection & No \\
\hline Lane Alignment & Left & Left & Right & Left & Left & Right & Right & Left & Right & Left & Left & Right \\
\hline Median Width（f） & & 36 & & & 42 & & & 12 & & & 12 & \\
\hline Link Offset（ft） & & 0 & & & 0 & & & 0 & & & 36 & \\
\hline Crosswalk Width（ft） & & 16 & & & 16 & & & 16 & & & 16 & \\
\hline \multicolumn{13}{|l|}{Two way Left Turn Lane} \\
\hline Headway Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Turning Speed（mph） & 15 & & 9 & 15 & & 25. & 15 & & 25 & 15 & & 9 \\
\hline Number of Detectors & 3 & 3 & & & 3 & 3 & 3 & & 0 & & & \\
\hline Detector Template & Left & & & & & Right & Left & & & & & \\
\hline Leading Detector（ft） & 256 & 256 & & & 256 & 256 & 256 & & 0 & & & \\
\hline Trailing Detector（ft） & －5 & －5 & & & －5 & －5 & －5 & & 0 & & & \\
\hline Detector 1 Position（ft） & －5 & －5 & & & －5 & －5 & －5 & & －5 & & & \\
\hline Detector 1 Size（ft） & 50 & 50 & & & 50 & 50 & 50 & & 50 & & & \\
\hline Detector 1 Type & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & & Cl＋Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & Cl＋Ex & & & \\
\hline \multicolumn{13}{|l|}{Detector 1 Channel} \\
\hline Detector 1 Extend（s） & 0.0 & 0.0 & & & 0.0 & 0.0 & 0.0 & & 0.0 & & & \\
\hline Detector 1 Queue（s） & 0.0 & 0.0 & & & 0.0 & 0.0 & 0.0 & & 0.0 & & & \\
\hline Detector 1 Delay（s） & 0.0 & 0.0 & & & 0.0 & 0.0 & 0.0 & & 0.0 & & & \\
\hline Detector 2 Position（ft） & 125 & 125 & & & 125 & 125 & 125 & & & & & \\
\hline Detector 2 Size（ft） & 6 & 6 & & & 6 & 6 & 6 & & & & & \\
\hline Detector 2 Type & Cl＋Ex & Cl＋Ex & & & Cl＋Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{EX}\) & & & & & \\
\hline \multicolumn{13}{|l|}{Detector 2 Channel} \\
\hline Detector 2 Extend（s） & 0.0 & 0.0 & & & 0.0 & 0.0 & 0.0 & & & & & \\
\hline Detector 3 Position（ft） & 250 & 250 & & & 250 & 250 & 250 & & & & & \\
\hline Detector 3 Size（ft） & 6 & 6 & & & 6 & 6 & 6 & & & & & \\
\hline Detector 3 Type & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & & & & \\
\hline \multicolumn{13}{|l|}{Detector 3 Channel} \\
\hline Detector 3 Extend（s） & 0.0 & 0.0 & & & 0.0 & 0.0 & 0.0 & & & & & \\
\hline
\end{tabular}
4. 3: Exit 5 NB Off \& NH 28
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\Rightarrow\) & \(\rightarrow\) & & \(\checkmark\) & \(\longleftarrow\) & & 4 & \(\uparrow\) & & \(\checkmark\) & \(\frac{1}{*}\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Turn Type & Prot & NA & & & NA & Free & Prot & & Prot & & & \\
\hline Protected Phases & 5 & 2 & & & 6 & & & & 8 & & & \\
\hline Permitted Phases & & 2 & & & 6 & Free & & & & & & \\
\hline Detector Phase & 5 & 2 & & & 6 & & 8 & & 8 & & & \\
\hline Switch Phase & & & & & & & & & & & & \\
\hline Minimum Initial (s) & 4.0 & 16.0 & & & 16.0 & & 4.0 & & 4.0 & & & \\
\hline Minimum Split (s) & 10.0 & 23.0 & & & 23.0 & & 11.0 & & 11.0 & & & \\
\hline Total Split (s) & 41.0 & 66.0 & & & 25.0 & & 34.0 & & 34.0 & & & \\
\hline Total Split (\%) & 41.0\% & 66.0\% & & & 25.0\% & & 34.0\% & & 34.0\% & & & \\
\hline Maximum Green (s) & 35.0 & 60.0 & & & 19.0 & & 28.0 & & 28.0 & & & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & & 4.0 & & 4.0 & & 4.0 & & & \\
\hline All-Red Time (s) & 2.0 & 2.0 & & & 2.0 & & 2.0 & & 2.0 & & & \\
\hline Lost Time Adjust (s) & 0.0 & 0.0 & & & 0.0 & & 0.0 & & 0.0 & & & \\
\hline Total Lost Time (s) & 6.0 & 6.0 & & & 6.0 & & 6.0 & & 6.0 & & & \\
\hline Lead/Lag & Lead & & & & Lag & & & & & & & \\
\hline Lead-Lag Optimize? & & & & & & & & & & & & \\
\hline Vehicle Extension (s) & 5.0 & 5.0 & & & 5.0 & & 3.0 & & 3.0 & & & \\
\hline Recall Mode & None & C-Min & & & C-Min & & None & & None & & & \\
\hline Walk Time (s) & & 7.0 & & & 7.0 & & & & & & & \\
\hline Flash Dont Walk (s) & & 10.0 & & & 10.0 & & & & & & & \\
\hline Pedestrian Calls (\#/hr) & & 0 & & & 0 & & & & & & & \\
\hline Act Effict Green (s) & 35.0 & 60.0 & & & 19.0 & 100.0 & 28.0 & & 28.0 & & & \\
\hline Actuated g/C Ratio & 0.35 & 0.60 & & & 0.19 & 1.00 & 0.28 & & 0.28 & & & \\
\hline \(\mathrm{v} / \mathrm{C}\) Ratio & 1.03 & 0.56 & & & 0.78 & 0.39 & 0.92 & & 1.08 & & & \\
\hline Control Delay & 45.0 & 3.2 & & & 47.7 & 0.7 & 62.2 & & 93.1 & & & \\
\hline Queue Delay & 0.0 & 0.0 & & & 0.0 & 0.0 & 0.0 & & 0.0 & & & \\
\hline Total Delay & 45.0 & 3.2 & & & 47.7 & 0.7 & 62.2 & & 93.1 & & & \\
\hline LOS & D & A & & & D & A & E & & F & & & \\
\hline Approach Delay & & 17.8 & & & 22.2 & & & 79.2 & & & & \\
\hline Approach LOS & & B & & & C & & & E & & & & \\
\hline Queue Length 50th (tt) & \(\sim 446\) & 11 & & & 165 & 0 & 272 & & \(\sim 337\) & & & \\
\hline Queue Length 95th (tt) & m\#611 & m64 & & & \#225 & 0 & 266 & & \#304 & & & \\
\hline Internal Link Dist (ft) & & 613 & & & 462 & & & 787 & & & 312 & \\
\hline Turn Bay Length (tt) & & & & & & & & & & & & \\
\hline Base Capacity (vph) & 613 & 2103 & & & 665 & 1568 & 477 & & 498 & & & \\
\hline Starvation Cap Reductn & 0 & 0 & & & 0 & 0 & 0 & & 0 & & & \\
\hline Spillback Cap Reductn & 0 & & & & 0 & 0 & 0 & & 0 & & & \\
\hline Storage Cap Reductn & 0 & 0 & & & 0 & 0 & 0 & & 0 & & & \\
\hline Reduced v/c Ratio & 1.03 & 0.56 & & & 0.78 & 0.39 & 0.92 & & 1.08 & & & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline \multicolumn{13}{|l|}{\multirow[t]{2}{*}{Area Type: \(\quad\) Other
Cycle Length: 100}} \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{Actuated Cycle Length: 100} \\
\hline \multicolumn{13}{|l|}{Offset: \(0(0 \%)\), Referenced to phase 2:EBT and 6:WBT, Start of Yellow, Master Intersection} \\
\hline \multicolumn{13}{|l|}{Natural Cycle: 100} \\
\hline \multicolumn{13}{|l|}{Control Type: Actuated-Coordinated} \\
\hline \multicolumn{13}{|l|}{Maximum v/c Ratio: 1.08} \\
\hline \multicolumn{2}{|l|}{Intersection Signal Delay: 34.4} & \multicolumn{11}{|c|}{Intersection LOS: C} \\
\hline
\end{tabular}

Lanes, Volumes, Timings
4 8: Exit 5 NB Off \& NH 28
Intersection Capacity Utilization \(76.8 \% \quad\) ICU Level of Service D
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
\(m\) Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 3: Exit 5 NB Off \& NH 28

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\cdots\) & + & 2 & \(n\) & k & \% & \(\cdots\) & - & ra & 5 & \(\downarrow\) & - \\
\hline Lane Group & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & & \(\uparrow\) & 7 & & * & & \({ }^{*}\) & 中b & & \% & 禹 & \\
\hline Traffic Volume (vph) & 10 & 5 & 160 & 10 & 0 & 10 & 650 & 1440 & 120 & 10 & 1020 & 50 \\
\hline Future Volume (vph) & 10 & 5 & 160 & 10 & 0 & 10 & 650 & 1440 & 120 & 10 & 1020 & 50 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 0 & & 180 & 0 & & 0 & 360 & & 0 & 65 & & 0 \\
\hline Storage Lanes & 0 & & 1 & 0 & & 0 & 1 & & 0 & 1 & & 0 \\
\hline Taper Length ( ft ) & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.95 & 0.95 & 1.00 & 0.95 & 0.95 \\
\hline Fit & & & 0.850 & & 0.932 & & & 0.988 & & & 0.993 & \\
\hline Fit Protected & & 0.967 & & & 0.976 & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (prot) & 0 & 1801 & 1583 & 0 & 1728 & 0 & 1770 & 3497 & 0 & 1770 & 3514 & 0 \\
\hline Flt Permitted & & 0.740 & & & 0.834 & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (perm) & 0 & 1378 & 1583 & 0 & 1477 & 0 & 1770 & 3497 & 0 & 1770 & 3514 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & & 174 & & 126 & & & 15 & & & 4 & \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance (ft) & & 593 & & & 447 & & & 750 & & & 186 & \\
\hline Travel Time (s) & & 13.5 & & & 10.2 & & & 17.0 & & & 4.2 & \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.25 & 0.25 & 0.25 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 & 0.92 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 0\% & 0\% & 0\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% \\
\hline Adj. Flow (vph) & 11 & 5 & 174 & 40 & 0 & 40 & 707 & 1565 & 130 & 11 & 1109 & 54 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 16 & 174 & 0 & 80 & 0 & 707 & 1695 & 0 & 11 & 1163 & 0 \\
\hline Enter Blocked Intersection & No \\
\hline Lane Alignment & Left & Left & Right \\
\hline Median Width(ft) & & 0 & & & 0 & & & 12 & & & 12 & \\
\hline Link Offset(ft) & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Crosswalk Width(ft) & & 16 & & & 16 & & & 16 & & & 16 & \\
\hline \multicolumn{13}{|l|}{Two way Left Turn Lane} \\
\hline Headway Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Turning Speed (mph) & 15 & & 9 & 15 & & 9 & 15 & & 9 & 15 & & 9 \\
\hline Number of Detectors & 3 & 3 & 1 & 3 & 1 & & 3 & 3 & & 3 & 3 & \\
\hline Detector Template & Left & Thru & Right & Left & & & Left & Thru & & Left & Thru & \\
\hline Leading Detector (ft) & 256 & 256 & 45 & 256 & 45 & & 256 & 256 & & 256 & 256 & \\
\hline Trailing Detector (ft) & -5 & -5 & -5 & -5 & -5 & & -5 & -5 & & -5 & -5 & \\
\hline Detector 1 Position(ft) & -5 & -5 & -5 & -5 & -5 & & -5 & -5 & & -5 & -5 & \\
\hline Detector 1 Size(ft) & 50 & 50 & 50 & 50 & 50 & & 50 & 50 & & 50 & 50 & \\
\hline Detector 1 Type & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & Cl+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline \multicolumn{13}{|l|}{Detector 1 Channel} \\
\hline Detector 1 Extend (s) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 1 Queue (s) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 1 Delay (s) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 2 Position(ft) & 125 & 125 & & 125 & & & 125 & 125 & & 125 & 125 & \\
\hline Detector 2 Size(ft) & 6 & 6 & & 6 & & & 6 & 6 & & 6 & 6 & \\
\hline Detector 2 Type & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & Cl+Ex & & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline \multicolumn{13}{|l|}{Detector 2 Channel} \\
\hline Detector 2 Extend (s) & 0.0 & 0.0 & & 0.0 & & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 3 Position(ft) & 250 & 250 & & 250 & & & 250 & 250 & & 250 & 250 & \\
\hline Detector 3 Size(ft) & 6 & 6 & & 6 & & & 6 & 6 & & 6 & 6 & \\
\hline
\end{tabular}
5. \&: NH 102 \& St. Charles Street/Londonderry Road
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Detector 3 Type & Cl+Ex & Cl+Ex & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & CI+Ex & \(\mathrm{Cl}+\mathrm{Ex}\) & & Cl+Ex & Cl+Ex & \\
\hline \multicolumn{13}{|l|}{Detector 3 Channel} \\
\hline Detector 3 Extend (s) & 0.0 & 0.0 & & 0.0 & & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Turn Type & Perm & NA & custom & Perm & NA & & Prot & NA & & Prot & NA & \\
\hline Protected Phases & & 8 & & & 4 & & 5 & 2 & & 1 & 6 & \\
\hline Permitted Phases & 8 & & 6 & 4 & & & & & & & & \\
\hline Detector Phase & 8 & 8 & 6 & 4 & 4 & & 5 & 2 & & 1 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial ( s ) & 5.0 & 5.0 & 8.0 & 5.0 & 5.0 & & 5.0 & 8.0 & & 5.0 & 8.0 & \\
\hline Minimum Split (s) & 24.0 & 24.0 & 24.0 & 24.0 & 24.0 & & 24.0 & 24.0 & & 11.0 & 24.0 & \\
\hline Total Split (s) & 24.0 & 24.0 & 49.0 & 24.0 & 24.0 & & 57.0 & 95.0 & & 11.0 & 49.0 & \\
\hline Total Split (\%) & 18.5\% & 18.5\% & 37.7\% & 18.5\% & 18.5\% & & 43.8\% & 73.1\% & & 8.5\% & 37.7\% & \\
\hline Maximum Green (s) & 18.0 & 18.0 & 43.0 & 18.0 & 18.0 & & 51.0 & 89.0 & & 5.0 & 43.0 & \\
\hline Yellow Time (s) & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & \\
\hline All-Red Time (s) & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & 0.0 & & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Total Lost Time (s) & & 6.0 & 6.0 & & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Lead/Lag & & & Lag & & & & Lead & Lag & & Lead & Lag & \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & None & None & Min & None & None & & None & Min & & None & Min & \\
\hline Walk Time (s) & 7.0 & 7.0 & 7.0 & 7.0 & 7.0 & & 7.0 & 7.0 & & & 7.0 & \\
\hline Flash Dont Walk (s) & 11.0 & 11.0 & 11.0 & 11.0 & 11.0 & & 11.0 & 11.0 & & & 11.0 & \\
\hline Pedestrian Calls (\#/hr) & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & & & 0 & \\
\hline Act Effct Green (s) & & 6.9 & 43.1 & & 6.9 & & 51.1 & 99.4 & & 5.0 & 43.1 & \\
\hline Actuated g/C Ratio & & 0.06 & 0.37 & & 0.06 & & 0.44 & 0.85 & & 0.04 & 0.37 & \\
\hline \(\mathrm{v} / \mathrm{c}\) Ratio & & 0.20 & 0.25 & & 0.39 & & 0.91 & 0.57 & & 0.14 & 0.89 & \\
\hline Control Delay & & 58.9 & 4.8 & & 7.7 & & 49.3 & 4.8 & & 60.0 & 45.3 & \\
\hline Queue Delay & & 0.0 & 0.0 & & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Total Delay & & 58.9 & 4.8 & & 7.7 & & 49.3 & 4.8 & & 60.0 & 45.3 & \\
\hline LOS & & E & A & & A & & D & A & & E & D & \\
\hline Approach Delay & & 9.4 & & & 7.7 & & & 17.9 & & & 45.4 & \\
\hline Approach LOS & & A & & & A & & & B & & & D & \\
\hline Queue Length 50th (ft) & & 12 & 0 & & 0 & & 505 & 152 & & 8 & 441 & \\
\hline Queue Length 95th (ft) & & 36 & 47 & & 0 & & \#776 & 373 & & 29 & \#594 & \\
\hline Internal Link Dist ( t ) & & 513 & & & 367 & & & 670 & & & 106 & \\
\hline Turn Bay Length (ft) & & & 180 & & & & 360 & & & 65 & & \\
\hline Base Capacity (vph) & & 213 & 694 & & 335 & & 775 & 2983 & & 76 & 1300 & \\
\hline Starvation Cap Reductn & & 0 & 0 & & 0 & & 0 & 0 & & 0 & 0 & \\
\hline Spillback Cap Reductn & & 0 & 0 & & 0 & & 0 & 0 & & 0 & 0 & \\
\hline Storage Cap Reductn & & 0 & 0 & & 0 & & 0 & 0 & & 0 & 0 & \\
\hline Reduced v/c Ratio & & 0.08 & 0.25 & & 0.24 & & 0.91 & 0.57 & & 0.14 & 0.89 & \\
\hline
\end{tabular}

\section*{Intersection Summary}
Area Type: Other

Cycle Length: 130
Actuated Cycle Length: 116.6
Natural Cycle: 130
Control Type: Actuated-Uncoordinated

\author{
Lanes, Volumes, Timings
}
\(\sigma\).
9: NH 102 \& St. Charles Street/Londonderry Road
Maximum vic Ratio: 0.91
Intersection Signal Delay: 25.7
Intersection LOS: C
Intersection Capacity Utilization 92.4\% ICU Level of Service F
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 9: NH 102 \& St. Charles Street Londonderry Road

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & & ¢ & & \% & & \({ }^{\prime}\) & & 中 & \({ }^{7}\) & & \(\uparrow\) & \\
\hline Traffic Volume (vph) & 10 & 30 & 5 & 260 & 0 & 50 & 0 & 1020 & 220 & 15 & 555 & 0 \\
\hline Future Volume (vph) & 10 & 30 & 5 & 260 & 0 & 50 & 0 & 1020 & 220 & 15 & 555 & 0 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 0 & & 0 & 0 & & 100 & 0 & & 100 & 0 & & 0 \\
\hline Storage Lanes & 0 & & 0 & 1 & & 1 & 0 & & 1 & 0 & & 0 \\
\hline Taper Length (ft) & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & 0.986 & & & & 0.850 & & & 0.850 & & & \\
\hline Flt Protected & & 0.989 & & 0.950 & & & & & & & 0.999 & \\
\hline Satd. Flow (prot) & 0 & 1816 & 0 & 1752 & 0 & 1568 & 0 & 1759 & 1495 & 0 & 1808 & 0 \\
\hline Flt Permitted & & 0.989 & & 0.797 & & & & & & & 0.716 & \\
\hline Satd. Flow (perm) & 0 & 1816 & 0 & 1470 & 0 & 1568 & 0 & 1759 & 1495 & 0 & 1296 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & 6 & & & & 49 & & & 129 & & & \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance (ft) & & 356 & & & 493 & & & 234 & & & 339 & \\
\hline Travel Time (s) & & 8.1 & & & 11.2 & & & 5.3 & & & 7.7 & \\
\hline Peak Hour Factor & 0.60 & 0.60 & 0.60 & 0.96 & 0.96 & 0.96 & 0.89 & 0.89 & 0.89 & 0.86 & 0.86 & 0.86 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 3\% & 3\% & 3\% & 8\% & 8\% & 8\% & 5\% & 5\% & 5\% \\
\hline Adj. Flow (vph) & 17 & 50 & 8 & 271 & 0 & 52 & 0 & 1146 & 247 & 17 & 645 & 0 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 75 & 0 & 271 & 0 & 52 & 0 & 1146 & 247 & 0 & 662 & 0 \\
\hline Enter Blocked Intersection & No \\
\hline Lane Alignment & Left & Left & Right \\
\hline Median Width(f) & & 12 & & & 12 & & & 0 & & & 0 & \\
\hline Link Offset(ft) & & -22 & & & 0 & & & 0 & & & 0 & \\
\hline Crosswalk Width(ft) & & 16 & & & 16 & & & 16 & & & 16 & \\
\hline \multicolumn{13}{|l|}{Two way Left Turn Lane} \\
\hline Headway Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Turning Speed (mph) & 15 & & 9 & 15 & & 9 & 15 & & 9 & 15 & & 9 \\
\hline Number of Detectors & 3 & 1 & & 3 & & 1 & & 2 & 1 & 3 & 2 & \\
\hline Detector Template & Left & & & Left & & Right & & & Right & Left & & \\
\hline Leading Detector (ft) & 256 & 45 & & 256 & & 45 & & 131 & 45 & 256 & 131 & \\
\hline Trailing Detector (ft) & -5 & -5 & & -5 & & -5 & & -5 & -5 & -5 & -5 & \\
\hline Detector 1 Position(ft) & -5 & -5 & & -5 & & -5 & & -5 & -5 & -5 & -5 & \\
\hline Detector 1 Size(ft) & 50 & 50 & & 50 & & 50 & & 50 & 50 & 50 & 50 & \\
\hline Detector 1 Type & CI+Ex & Cl+Ex & & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & Cl+Ex & \\
\hline \multicolumn{13}{|l|}{Detector 1 Channel} \\
\hline Detector 1 Extend (s) & 0.0 & 0.0 & & 0.0 & & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 & \\
\hline Detector 1 Queue (s) & 0.0 & 0.0 & & 0.0 & & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 & \\
\hline Detector 1 Delay (s) & 0.0 & 0.0 & & 0.0 & & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 & \\
\hline Detector 2 Position(ft) & 125 & & & 125 & & & & 125 & & 125 & 125 & \\
\hline Detector 2 Size(ft) & 6 & & & 6 & & & & 6 & & 6 & 6 & \\
\hline Detector 2 Type & Cl+Ex & & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & & Cl+Ex & & \(\mathrm{Cl}+\mathrm{Ex}\) & \(\mathrm{Cl}+\mathrm{Ex}\) & \\
\hline \multicolumn{13}{|l|}{Detector 2 Channel 0 ele} \\
\hline Detector 2 Extend (s) & 0.0 & & & 0.0 & & & & 0.0 & & 0.0 & 0.0 & \\
\hline Detector 3 Position(ft) & 250 & & & 250 & & & & & & 250 & & \\
\hline Detector 3 Size(ft) & 6 & & & 6 & & & & & & 6 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Detector 3 Type & Cl+Ex & & & \(\mathrm{Cl}+\mathrm{Ex}\) & & & & & & \(\mathrm{Cl}+\mathrm{Ex}\) & & \\
\hline \multicolumn{13}{|l|}{Detector 3 Channel} \\
\hline Detector 3 Extend (s) & 0.0 & & & 0.0 & & & & & & 0.0 & & \\
\hline Turn Type & Perm & NA & & D.Pm & & Perm & & NA & Perm & Perm & NA & \\
\hline Protected Phases & & 4 & & & & & & 2 & & & 2 & \\
\hline Permitted Phases & 4 & & & 4 & & 8 & & & 2 & 2 & & \\
\hline Detector Phase & 4 & 4 & & 4 & & 8 & & 2 & 2 & 2 & 2 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 5.0 & 5.0 & & 5.0 & & 5.0 & & 5.0 & 5.0 & 5.0 & 5.0 & \\
\hline Minimum Split (s) & 24.0 & 24.0 & & 24.0 & & 22.5 & & 24.0 & 24.0 & 24.0 & 24.0 & \\
\hline Total Split (s) & 24.0 & 24.0 & & 24.0 & & 24.0 & & 66.0 & 66.0 & 66.0 & 66.0 & \\
\hline Total Split (\%) & 26.7\% & 26.7\% & & 26.7\% & & 26.7\% & & 73.3\% & 73.3\% & 73.3\% & 73.3\% & \\
\hline Maximum Green (s) & 18.0 & 18.0 & & 18.0 & & 19.5 & & 60.0 & 60.0 & 60.0 & 60.0 & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & & 3.5 & & 4.0 & 4.0 & 4.0 & 4.0 & \\
\hline All-Red Time (s) & 2.0 & 2.0 & & 2.0 & & 1.0 & & 2.0 & 2.0 & 2.0 & 2.0 & \\
\hline Lost Time Adjust (s) & & 0.0 & & 0.0 & & 0.0 & & 0.0 & 0.0 & & 0.0 & \\
\hline Total Lost Time (s) & & 6.0 & & 6.0 & & 4.5 & & 6.0 & 6.0 & & 6.0 & \\
\hline
\end{tabular}

Lead/Lag
Lead-Lag Optimize?
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Vehicle Extension (s) & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
\hline Recall Mode & None & None & None & None & Min & Min & Min & Min \\
\hline Walk Time (s) & 7.0 & 7.0 & 7.0 & 7.0 & 7.0 & 7.0 & 7.0 & 7.0 \\
\hline Flash Dont Walk (s) & 11.0 & 11.0 & 11.0 & 11.0 & 11.0 & 11.0 & 11.0 & 11.0 \\
\hline Pedestrian Calls (\#/hr) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Act Effct Green (s) & & 17.9 & 17.9 & 19.4 & 60.1 & 60.1 & & 60.1 \\
\hline Actuated g/C Ratio & & 0.20 & 0.20 & 0.22 & 0.67 & 0.67 & & 0.67 \\
\hline v/c Ratio & & 0.20 & 0.93 & 0.14 & 0.98 & 0.24 & & 0.76 \\
\hline Control Delay & & 29.4 & 74.6 & 10.5 & 37.2 & 3.3 & & 17.7 \\
\hline Queue Delay & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 \\
\hline Total Delay & & 29.4 & 74.6 & 10.5 & 37.2 & 3.3 & & 17.7 \\
\hline LOS & & C & E & B & D & A & & B \\
\hline Approach Delay & & 29.4 & & & 31.2 & & & 17.7 \\
\hline Approach LOS & & C & & & C & & & B \\
\hline Queue Length 50th (ft) & & 33 & 152 & 1 & 549 & 21 & & 226 \\
\hline Queue Length 95th (ft) & & 45 & \#300 & 30 & \#892 & 47 & & 349 \\
\hline Internal Link Dist (ft) & & 276 & & & 154 & & & 259 \\
\hline Turn Bay Length (ft) & & & & 100 & & 100 & & \\
\hline Base Capacity (vph) & & 368 & 294 & 378 & 1174 & 1041 & & 866 \\
\hline Starvation Cap Reductn & & 0 & 0 & 0 & 0 & 0 & & 0 \\
\hline Spillback Cap Reductn & & 0 & 0 & 0 & 0 & 0 & & 0 \\
\hline Storage Cap Reductn & & 0 & 0 & 0 & 0 & 0 & & 0 \\
\hline Reduced v/c Ratio & & 0.20 & 0.92 & 0.14 & 0.98 & 0.24 & & 0.76 \\
\hline
\end{tabular}

\section*{Intersection Summary}
```

Area Type: Other

```

Cycle Length: 90
Actuated Cycle Length: 90
Natural Cycle: 90
Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.98
Intersection Signal Delay: \(31.9 \quad\) Intersection LOS: C
Intersection Capacity Utilization \(86.1 \% \quad\) ICU Level of Service E
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 10: NH 102 \& Fordway/Madden Hill Road

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\uparrow\) & ¢ & W & \(\downarrow\) & ل & 4 & \(\not\) & \(\downarrow\) & 7 & \(\checkmark\) & 4 \\
\hline Lane Group & NBL & NBT & NBR & SBL & SBT & SBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & 714 & \(\uparrow\) & & \% & \(\uparrow\) & 7 & \% & \(\uparrow\) & \(\overline{7}\) & \% & 性 & \\
\hline Traffic Volume (vph) & 230 & 110 & 30 & 180 & 150 & 180 & 170 & 540 & 130 & 70 & 330 & 180 \\
\hline Future Volume (vph) & 230 & 110 & 30 & 180 & 150 & 180 & 170 & 540 & 130 & 70 & 330 & 180 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 70 & & 0 & 245 & & 245 & 390 & & 0 & 110 & & 0 \\
\hline Storage Lanes & 1 & & 0 & 1 & & 1 & 1 & & 1 & 1 & & 0 \\
\hline Taper Length ( ft ) & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 0.97 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.95 & 0.95 \\
\hline Frt & & 0.968 & & & & 0.850 & & & 0.850 & & 0.947 & \\
\hline Flt Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (prot) & 3400 & 1786 & 0 & 1752 & 1845 & 1568 & 1787 & 1881 & 1599 & 1787 & 3385 & 0 \\
\hline Flt Permitted & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (perm) & 3400 & 1786 & 0 & 1752 & 1845 & 1568 & 1787 & 1881 & 1599 & 1787 & 3385 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & 15 & & & & 150 & & & 137 & & 116 & \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance (ft) & & 361 & & & 411 & & & 477 & & & 530 & \\
\hline Travel Time (s) & & 8.2 & & & 9.3 & & & 10.8 & & & 12.0 & \\
\hline Peak Hour Factor & 0.91 & 0.91 & 0.91 & 0.93 & 0.93 & 0.93 & 0.95 & 0.95 & 0.95 & 0.94 & 0.94 & 0.94 \\
\hline Heavy Vehicles (\%) & 3\% & 3\% & 3\% & 3\% & 3\% & 3\% & 1\% & 1\% & 1\% & 1\% & 1\% & 1\% \\
\hline Adj. Flow (vph) & 253 & 121 & 33 & 194 & 161 & 194 & 179 & 568 & 137 & 74 & 351 & 191 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 253 & 154 & 0 & 194 & 161 & 194 & 179 & 568 & 137 & 74 & 542 & 0 \\
\hline Turn Type & Prot & NA & & Prot & NA & pm+ov & Prot & NA & pm+ov & Prot & NA & \\
\hline Protected Phases & 3 & 8 & & 7 & 4 & 5 & 5 & 2 & 3 & 1 & 6 & \\
\hline Permitted Phases & & & & & & 4 & & & 2 & & & \\
\hline Detector Phase & 3 & 8 & & 7 & 4 & 5 & 5 & 2 & 3 & 1 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 4.0 & 5.0 & & 4.0 & 10.0 & 4.0 & 4.0 & 10.0 & 4.0 & 4.0 & 9.0 & \\
\hline Minimum Split (s) & 17.0 & 24.0 & & 11.0 & 24.0 & 16.0 & 16.0 & 24.0 & 17.0 & 11.0 & 24.0 & \\
\hline Total Split (s) & 17.0 & 24.0 & & 17.0 & 24.0 & 16.0 & 16.0 & 33.0 & 17.0 & 11.0 & 28.0 & \\
\hline Total Split (\%) & 20.0\% & 28.2\% & & 20.0\% & 28.2\% & 18.8\% & 18.8\% & 38.8\% & 20.0\% & 12.9\% & 32.9\% & \\
\hline Maximum Green (s) & 11.0 & 18.0 & & 11.0 & 18.0 & 10.0 & 10.0 & 27.0 & 11.0 & 5.0 & 22.0 & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & \\
\hline All-Red Time (s) & 2.0 & 2.0 & & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & \\
\hline Lost Time Adjust (s) & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \\
\hline Total Lost Time (s) & 6.0 & 6.0 & & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & \\
\hline Lead/Lag & Lead & Lag & & Lead & Lag & Lead & Lead & Lag & Lead & Lead & Lag & \\
\hline Lead-Lag Optimize? & Yes & Yes & & Yes & \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & \\
\hline Recall Mode & None & None & & None & None & None & None & Max & None & None & None & \\
\hline Act Effct Green (s) & 10.0 & 12.0 & & 10.8 & 12.8 & 28.7 & 9.9 & 27.3 & 43.4 & 5.1 & 19.7 & \\
\hline Actuated g/C Ratio & 0.13 & 0.16 & & 0.14 & 0.17 & 0.37 & 0.13 & 0.36 & 0.57 & 0.07 & 0.26 & \\
\hline \(v / \mathrm{c}\) Ratio & 0.57 & 0.53 & & 0.79 & 0.53 & 0.28 & 0.78 & 0.85 & 0.14 & 0.63 & 0.57 & \\
\hline Control Delay & 37.9 & 34.4 & & 58.0 & 36.9 & 6.5 & 58.8 & 39.1 & 2.3 & 63.1 & 22.0 & \\
\hline Queue Delay & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \\
\hline Total Delay & 37.9 & 34.4 & & 58.0 & 36.9 & 6.5 & 58.8 & 39.1 & 2.3 & 63.1 & 22.0 & \\
\hline LOS & D & C & & E & D & A & E & D & A & E & C & \\
\hline Approach Delay & & 36.6 & & & 33.6 & & & 37.4 & & & 26.9 & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrrrrr}
\hline Lane Group & NBL & NBT & NBR & SBL & SBT & SBR & NEL & NET & NER & SWL & SWT
\end{tabular} SWR

Intersection Summary
Area Type:

\section*{Other}

Cycle Length: 85
Actuated Cycle Length: 76.7
Natural Cycle: 85
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.85
Intersection Signal Delay: 33.8
Intersection LOS: C
Intersection Capacity Utilization 87.0\% ICU Level of Service E
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 7: NH 102 (E Broadway) \& Birch St/Crystal Av

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & NBL & NBT & NBR & SBL & SBT & SBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & \% & ¢ \(\uparrow\) & \% & \(7{ }^{1 / 4}\) & ¢4 & & \% & \(\uparrow\) & \(\stackrel{1}{ }\) & \% & \(\uparrow\) & F \\
\hline Traffic Volume (vph) & 60 & 180 & 240 & 390 & 280 & 0 & 150 & 470 & 100 & 190 & 370 & 370 \\
\hline Future Volume (vph) & 60 & 180 & 240 & 390 & 280 & 0 & 150 & 470 & 100 & 190 & 370 & 370 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 110 & & 90 & 360 & & 0 & 190 & & 180 & 0 & & 210 \\
\hline Storage Lanes & 1 & & 1 & 2 & & 0 & 1 & & 1 & 1 & & \\
\hline Taper Length ( ft ) & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & & 0.850 & & & & & & 0.850 & & & 0.850 \\
\hline Fit Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (prot) & 1770 & 3539 & 1583 & 3433 & 3539 & 0 & 1770 & 1863 & 1583 & 1787 & 1881 & 1599 \\
\hline Flt Permitted & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (perm) & 1770 & 3539 & 1583 & 3433 & 3539 & 0 & 1770 & 1863 & 1583 & 1787 & 1881 & 1599 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & & 261 & & & & & & 208 & & & 240 \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance (ft) & & 639 & & & 495 & & & 532 & & & 387 & \\
\hline Travel Time (s) & & 14.5 & & & 11.3 & & & 12.1 & & & 8.8 & \\
\hline Peak Hour Factor & 0.92 & 0.92 & 0.92 & 0.94 & 0.94 & 0.94 & 0.96 & 0.96 & 0.96 & 0.95 & 0.95 & 0.95 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 1\% & 1\% & 1\% \\
\hline Adj. Flow (vph) & 65 & 196 & 261 & 415 & 298 & 0 & 156 & 490 & 104 & 200 & 389 & 389 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%) 200} \\
\hline Lane Group Flow (vph) & 65 & 196 & 261 & 415 & 298 & 0 & 156 & 490 & 104 & 200 & 389 & 389 \\
\hline Turn Type & Prot & NA & Perm & Prot & NA & & Prot & NA & Perm & Prot & NA & pm+ov \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & 7 & 4 & & 3 & 8 & 1 \\
\hline Permitted Phases & & & 2 & & & & & & 4 & & & \\
\hline Detector Phase & 5 & 2 & 2 & 1 & 6 & & 7 & 4 & 4 & 3 & 8 & 1 \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 8.0 & 8.0 & 8.0 & 8.0 & 8.0 & & 8.0 & 8.0 & 8.0 & 8.0 & 8.0 & 8.0 \\
\hline Minimum Split (s) & 14.0 & 22.0 & 22.0 & 14.0 & 22.0 & & 14.0 & 22.0 & 22.0 & 14.0 & 22.0 & 14.0 \\
\hline Total Split (s) & 14.0 & 22.0 & 22.0 & 21.0 & 29.0 & & 23.0 & 45.0 & 45.0 & 22.0 & 44.0 & 21.0 \\
\hline Total Split (\%) & 12.7\% & 20.0\% & 20.0\% & 19.1\% & 26.4\% & & 20.9\% & 40.9\% & 40.9\% & 20.0\% & 40.0\% & 19.1\% \\
\hline Maximum Green (s) & 8.0 & 16.0 & 16.0 & 15.0 & 23.0 & & 17.0 & 39.0 & 39.0 & 16.0 & 38.0 & 15.0 \\
\hline Yellow Time (s) & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 \\
\hline All-Red Time (s) & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 \\
\hline Lost Time Adjust (s) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Lost Time (s) & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 \\
\hline Lead/Lag & Lead & Lag & Lag & Lead & Lag & & Lead & Lag & Lag & Lead & Lag & Lead \\
\hline Lead-Lag Optimize? & Yes & Yes & Yes & Yes & Yes & & Yes & Yes & Yes & Yes & Yes & Yes \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
\hline Recall Mode & None & C-Max & C-Max & None & None & & None & None & None & None & None & None \\
\hline Walk Time (s) & & 5.0 & 5.0 & & 5.0 & & & 5.0 & 5.0 & & 5.0 & \\
\hline Flash Dont Walk (s) & & 11.0 & 11.0 & & 11.0 & & & 11.0 & 11.0 & & 11.0 & \\
\hline Pedestrian Calls (\#/hr) & & 0 & 0 & & 0 & & & 0 & 0 & & 0 & \\
\hline Act Effct Green (s) & 8.3 & 20.7 & 20.7 & 16.4 & 31.6 & & 14.2 & 33.8 & 33.8 & 15.1 & 34.7 & 57.1 \\
\hline Actuated g/C Ratio & 0.08 & 0.19 & 0.19 & 0.15 & 0.29 & & 0.13 & 0.31 & 0.31 & 0.14 & 0.32 & 0.52 \\
\hline v/c Ratio & 0.49 & 0.29 & 0.51 & 0.81 & 0.29 & & 0.69 & 0.86 & 0.17 & 0.82 & 0.66 & 0.41 \\
\hline Control Delay & 61.7 & 41.8 & 9.2 & 68.9 & 33.6 & & 61.0 & 50.6 & 0.6 & 71.8 & 37.8 & 6.7 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\cdots\) & \(\uparrow\) & 「 & \(\checkmark\) & \(\downarrow\) & \(\downarrow\) & \(\stackrel{4}{ }\) & \(\star\) & \(\downarrow\) & \(\checkmark\) & \(\star\) & 4 \\
\hline Lane Group & NBL & NBT & NBR & SBL & SBT & SBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Total Delay & 61.7 & 41.8 & 9.2 & 68.9 & 33.6 & & 61.0 & 50.6 & 0.6 & 71.8 & 37.8 & 6.7 \\
\hline LOS & E & D & A & E & C & & E & D & A & E & D & A \\
\hline Approach Delay & & 28.0 & & & 54.2 & & & 45.8 & & & 32.4 & \\
\hline Approach LOS & & C & & & D & & & D & & & C & \\
\hline Queue Length 50th (ft) & 44 & 66 & 0 & 148 & 85 & & 106 & 319 & 0 & 138 & 232 & 49 \\
\hline Queue Length 95th (ft) & 91 & 103 & 75 & \#245 & 104 & & 173 & 428 & 0 & \#250 & 328 & 114 \\
\hline Internal Link Dist (ft) & & 559 & & & 415 & & & 452 & & & 307 & \\
\hline Turn Bay Length (tt) & 110 & & 90 & 360 & & & 190 & & 180 & & & 210 \\
\hline Base Capacity (vph) & 133 & 667 & 510 & 511 & 1015 & & 273 & 660 & 695 & 259 & 649 & 945 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & , & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & & 0 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.49 & 0.29 & 0.51 & 0.81 & 0.29 & & 0.57 & 0.74 & 0.15 & 0.77 & 0.60 & 0.41 \\
\hline
\end{tabular}

\section*{Intersection Summary \\ Area Type: Other}

Cycle Length: 110
Actuated Cycle Length: 110
Offset: \(0(0 \%)\), Referenced to phase 2:NBT, Start of Green
Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.86
Intersection Signal Delay: 40.3
Intersection LOS: D
Intersection Capacity Utilization \(73.1 \% \quad\) ICU Level of Service \(D\)
Analysis Period (min) 15
\# 95 th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 11: Folsom Rd/Tsienneto Rd \& NH 28 S/NH 28

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & \% & 餄 & & * & 4 4 & & & 4 & 7 & & \(\uparrow\) & \\
\hline Traffic Volume (vph) & 130 & 895 & 5 & 10 & 620 & 60 & 15 & 10 & 15 & 20 & 10 & 110 \\
\hline Future Volume (vph) & 130 & 895 & 5 & 10 & 620 & 60 & 15 & 10 & 15 & 20 & 10 & 110 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 100 & & 0 & 115 & & 0 & 0 & & 0 & 0 & & 0 \\
\hline Storage Lanes & 1 & & 0 & 1 & & 0 & 0 & & 1 & 0 & & \\
\hline Taper Length ( ft ) & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 0.95 & 0.95 & 1.00 & 0.95 & 0.95 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & 0.999 & & & 0.987 & & & & 0.850 & & & 0.850 \\
\hline Flt Protected & 0.950 & & & 0.950 & & & & 0.971 & & & 0.968 & \\
\hline Satd. Flow (prot) & 1787 & 3571 & 0 & 1787 & 3528 & 0 & 0 & 1845 & 1615 & 0 & 1821 & 1599 \\
\hline Flt Permitted & 0.950 & & & 0.950 & & & & 0.792 & & & 0.785 & \\
\hline Satd. Flow (perm) & 1787 & 3571 & 0 & 1787 & 3528 & 0 & 0 & 1505 & 1615 & 0 & 1477 & 1599 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & 1 & & & 12 & & & & 149 & & & 149 \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance (ft) & & 277 & & & 652 & & & 230 & & & 387 & \\
\hline Travel Time (s) & & 6.3 & & & 14.8 & & & 5.2 & & & 8.8 & \\
\hline Peak Hour Factor & 0.97 & 0.97 & 0.97 & 0.95 & 0.95 & 0.95 & 0.90 & 0.90 & 0.90 & 0.80 & 0.80 & 0.80 \\
\hline Heavy Vehicles (\%) & 1\% & 1\% & 1\% & 1\% & 1\% & 1\% & 0\% & 0\% & 0\% & 1\% & 1\% & 1\% \\
\hline Adj. Flow (vph) & 134 & 923 & 5 & 11 & 653 & 63 & 17 & 11 & 17 & 25 & 13 & 138 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 134 & 928 & 0 & 11 & 716 & 0 & 0 & 28 & 17 & 0 & 38 & 138 \\
\hline Turn Type & Prot & NA & & Prot & NA & & Perm & NA & Perm & Perm & NA & Perm \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & & 8 & & & 4 & \\
\hline Permitted Phases & & & & & & & 8 & & 8 & 4 & 4 & 4 \\
\hline Detector Phase & 5 & 2 & & 1 & 6 & & 8 & 8 & 8 & 4 & 4 & 4 \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 5.0 & 8.0 & & 5.0 & 8.0 & & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 \\
\hline Minimum Split (s) & 26.0 & 63.0 & & 11.0 & 48.0 & & 21.0 & 21.0 & 21.0 & 21.0 & 21.0 & 21.0 \\
\hline Total Split (s) & 30.0 & 74.0 & & 11.0 & 55.0 & & 25.0 & 25.0 & 25.0 & 25.0 & 25.0 & 25.0 \\
\hline Total Split (\%) & 27.3\% & 67.3\% & & 10.0\% & 50.0\% & & 22.7\% & 22.7\% & 22.7\% & 22.7\% & 22.7\% & 22.7\% \\
\hline Maximum Green (s) & 24.0 & 68.0 & & 5.0 & 49.0 & & 19.0 & 19.0 & 19.0 & 19.0 & 19.0 & 19.0 \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 \\
\hline All-Red Time (s) & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 \\
\hline Lost Time Adjust (s) & 0.0 & 0.0 & & 0.0 & 0.0 & & & 0.0 & 0.0 & & 0.0 & 0.0 \\
\hline Total Lost Time (s) & 6.0 & 6.0 & & 6.0 & 6.0 & & & 6.0 & 6.0 & & 6.0 & 6.0 \\
\hline Lead/Lag & Lead & Lag & & Lead & Lag & & & & & & & \\
\hline Lead-Lag Optimize? & Yes & Yes & & Yes & Yes & & & & & & & \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
\hline Recall Mode & None & C-Max & & None & C-Max & & None & None & None & None & None & None \\
\hline Walk Time (s) & & 7.0 & & & 7.0 & & 7.0 & 7.0 & 7.0 & 7.0 & 7.0 & 7.0 \\
\hline Flash Dont Walk (s) & & 11.0 & & & 11.0 & & 8.0 & 8.0 & 8.0 & 8.0 & 8.0 & 8.0 \\
\hline Pedestrian Calls (\#/hr) & & 0 & & & 0 & & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Act Effct Green (s) & 13.5 & 87.1 & & 6.3 & 70.3 & & & 8.2 & 8.2 & & 8.2 & 8.2 \\
\hline Actuated g/C Ratio & 0.12 & 0.79 & & 0.06 & 0.64 & & & 0.07 & 0.07 & & 0.07 & 0.07 \\
\hline v/c Ratio & 0.61 & 0.33 & & 0.11 & 0.32 & & & 0.25 & 0.07 & & 0.35 & 0.54 \\
\hline Control Delay & 67.9 & 3.0 & & 44.4 & 14.0 & & & 52.5 & 0.5 & & 56.2 & 14.6 \\
\hline Queue Delay & 0.0 & 0.0 & & 0.0 & 0.0 & & & 0.0 & 0.0 & & 0.0 & 0.0 \\
\hline
\end{tabular}

13: Applebee's/Linlew Dr \& NH 28
Lanes, Volumes, Timings
\begin{tabular}{lrrrrrrrrrrr} 
Lane Group & SEL & SET & SER & NWL & NWT & NWR & NEL & NET & NER & SWL & SWT
\end{tabular} SWR

Intersection Summary
Area Type: Other
Cycle Length: 110
Actuated Cycle Length: 110
Offset: \(0(0 \%)\), Referenced to phase 2:SET and 6:NWT, Start of Green
Natural Cycle: 95
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.61
Intersection Signal Delay: 13.9 Intersection LOS: B
Intersection Capacity Utilization 52.4\% ICU Level of Service A
Analysis Period (min) 15
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 13: Applebee's/Linlew Dr \& NH 28

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & 9 & 4\% & & \% & 42 & & 7 & F & & \% & 4 & \\
\hline Traffic Volume (vph) & 80 & 770 & 5 & 5 & 580 & 190 & 40 & 10 & 10 & 350 & 10 & 140 \\
\hline Future Volume (vph) & 80 & 770 & 5 & 5 & 580 & 190 & 40 & 10 & 10 & 350 & 10 & 140 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 280 & & 150 & 205 & & 150 & 0 & & 0 & 325 & & 150 \\
\hline Storage Lanes & 2 & & 0 & 1 & & 0 & 1 & & 0 & 1 & & \\
\hline Taper Length (tt) & 150 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 0.97 & 0.95 & 0.95 & 1.00 & 0.95 & 0.95 & 1.00 & 1.00 & 1.00 & 0.95 & 0.95 & 1.00 \\
\hline Fit & & 0.999 & & & 0.963 & & & 0.925 & & & & 0.850 \\
\hline FIt Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & 0.955 & \\
\hline Satd. Flow (prot) & 3467 & 3571 & 0 & 1770 & 3408 & 0 & 1805 & 1758 & 0 & 1715 & 1724 & 1615 \\
\hline FIt Permitted & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & 0.955 & \\
\hline Satd. Flow (perm) & 3467 & 3571 & 0 & 1770 & 3408 & 0 & 1805 & 1758 & 0 & 1715 & 1724 & 1615 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Satd. Flow (RTOR) & & 1 & & & 43 & & & 13 & & & & 163 \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance ( ft ) & & 877 & & & 314 & & & 151 & & & 476 & \\
\hline Travel Time (s) & & 19.9 & & & 7.1 & & & 3.4 & & & 10.8 & \\
\hline Peak Hour Factor & 0.84 & 0.84 & 0.84 & 0.90 & 0.90 & 0.90 & 0.78 & 0.78 & 0.78 & 0.86 & 0.86 & 0.86 \\
\hline Heavy Vehicles (\%) & 1\% & 1\% & 1\% & 2\% & 2\% & 2\% & 0\% & 0\% & 0\% & 0\% & 0\% & 0\% \\
\hline Adj. Flow (vph) & 95 & 917 & 6 & 6 & 644 & 211 & 51 & 13 & 13 & 407 & 12 & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrrrrrrr} 
\\
Shared Lane Traffic (\%) & & & & & & & & & \(49 \%\) & \\
Lane Group Flow (vph) & 95 & 923 & 0 & 6 & 855 & 0 & 51 & 26 & 0 & 208 & 211 & 163 \\
Turn Type & Prot & NA & & Prot & NA & & Split & NA & & Split & NA & pt + ov \\
Protected Phases & 5 & 2 & & 1 & 6 & & 3 & 3 & & 4 & 4 & 45 \\
Permitted Phases & & 2 & & & 6 & & & & & & \\
Detector Phase & 5 & 2 & & 1 & 6 & & 3 & 3 & & 4 & 4 & 45
\end{tabular}

Switch Phase
\begin{tabular}{lrrrrrrrrr} 
Minimum Initial (s) & 5.0 & 8.0 & 5.0 & 8.0 & 5.0 & 5.0 & 8.0 & 8.0 \\
Minimum Split (s) & 11.0 & 22.0 & 11.0 & 22.0 & 22.0 & 22.0 & 22.0 & 22.0 \\
\hline Total Split (s) & 14.0 & 45.0 & 11.0 & 42.0 & 22.0 & 22.0 & 32.0 & 32.0 \\
Total Split (\%) & \(12.7 \%\) & \(40.9 \%\) & \(10.0 \%\) & \(38.2 \%\) & \(20.0 \%\) & \(20.0 \%\) & \(29.1 \%\) & \(29.1 \%\) \\
Maximum Green (s) & 8.0 & 39.0 & 5.0 & 36.0 & 16.0 & 16.0 & 26.0 & 26.0 \\
Yellow Time (s) & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 \\
All-Red Time (s) & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 \\
Lost Time Adjust (s) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Total Lost Time (s) & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 \\
Lead/Lag & Lead & Lag & Lead & Lag & Lead & Lead & Lag & Lag \\
Lead-Lag Optimize? & Yes \\
Vehicle Extension (s) & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
Recall Mode & None & C-Max & None & None & None & None & None & None \\
Walk Time (s) & & 5.0 & & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 & \\
Flash Dont Walk (s) & & 11.0 & & 11.0 & 11.0 & 11.0 & 11.0 & 11.0 & 0 \\
Pedestrian Calls (\#/hr) & & 0 & & 0 & 0 & 0 & 0 & 0 & \\
Act Effct Green (s) & 8.4 & 63.6 & 6.0 & 51.8 & 8.5 & 8.5 & 19.6 & 19.6 & 34.0 \\
Actuated g/C Ratio & 0.08 & 0.58 & 0.05 & 0.47 & 0.08 & 0.08 & 0.18 & 0.18 & 0.31 \\
v/c Ratio & 0.36 & 0.45 & 0.06 & 0.53 & 0.37 & 0.18 & 0.68 & 0.69 & 0.27 \\
Control Delay & 51.6 & 17.3 & 59.6 & 21.0 & 54.8 & 32.2 & 52.7 & 53.0 & 4.6 \\
Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \% & \(\rightarrow\) & \(\rangle\) & \(\checkmark\) & \(\leftarrow\) & 4 & 4 & \(\uparrow\) & 1 & \(\checkmark\) & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Total Delay & 51.6 & 17.3 & & 59.6 & 21.0 & & 54.8 & 32.2 & & 52.7 & 53.0 & 4.6 \\
\hline LOS & D & B & & E & C & & D & C & & D & D & A \\
\hline Approach Delay & & 20.5 & & & 21.2 & & & 47.2 & & & 39.4 & \\
\hline Approach LOS & & C & & & c & & & D & & & D & \\
\hline Queue Length 50th (ft) & 33 & 182 & & 4 & 147 & & 35 & 9 & & 146 & 148 & 0 \\
\hline Queue Length 95th (tt) & 55 & 332 & & m15 & 255 & & 62 & 30 & & 200 & 202 & 35 \\
\hline Internal Link Dist (ft) & & 797 & & & 234 & & & 71 & & & 396 & \\
\hline Turn Bay Length (ft) & 280 & & & 205 & & & & & & 325 & & 150 \\
\hline Base Capacity (vph) & 279 & 2064 & & 96 & 1626 & & 262 & 266 & & 410 & 412 & 610 \\
\hline Starvation Cap Reductn & 0 & 0 & & & 0 & & 0 & 0 & & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.34 & 0.45 & & 0.06 & 0.53 & & 0.19 & 0.10 & & 0.51 & 0.51 & 0.27 \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline \multicolumn{13}{|l|}{Area Type: Other} \\
\hline \multicolumn{13}{|l|}{Cycle Length: 110} \\
\hline \multicolumn{13}{|l|}{Actuated Cycle Length: 110} \\
\hline \multicolumn{13}{|l|}{Offset: 0 (0\%), Referenced to phase 2:EBT, Start of Green} \\
\hline \multicolumn{13}{|l|}{Natural Cycle: 80} \\
\hline \multicolumn{13}{|l|}{Control Type: Actuated-Coordinated} \\
\hline \multicolumn{13}{|l|}{Maximum v/c Ratio: 0.69} \\
\hline \multicolumn{5}{|l|}{Intersection Signal Delay: 25.9} & \multicolumn{8}{|l|}{Intersection LOS: C} \\
\hline \multicolumn{5}{|l|}{Intersection Capacity Utilization 57.9\%} & \multicolumn{8}{|l|}{ICU Level of Service B} \\
\hline \multicolumn{13}{|l|}{Analysis Period (min) 15} \\
\hline m Volume for 95th perc & queue is & metered & by upstr & am sig & & & & & & & & \\
\hline
\end{tabular}

Splits and Phases: 14: VIP Dr/Ashleigh Dr \& NH 28


18: Tsienneto Rd \& NH 28 Byp NB/NH 28 Byp SB
Lanes, Volumes, Timings
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & NBL & NBT & NBR & SBL & SBT & SBR & NEL & NET & NER & SWL & SWT & SWR \\
\hline Lane Configurations & \% & F & & * & \(\uparrow\) & 「 & \({ }^{7}\) & F & & 7 & ち & \\
\hline Traffic Volume (vph) & 30 & 80 & 40 & 40 & 50 & 130 & 190 & 680 & 70 & 20 & 340 & 40 \\
\hline Future Volume (vph) & 30 & 80 & 40 & 40 & 50 & 130 & 190 & 680 & 70 & 20 & 340 & 40 \\
\hline Ideal Flow (vphpl) & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 & 1900 \\
\hline Storage Length (ft) & 200 & & 0 & 190 & & 190 & 135 & & 0 & 120 & & 0 \\
\hline Storage Lanes & 1 & & 0 & 1 & & 1 & 1 & & 0 & 1 & & 0 \\
\hline Taper Length (ft) & 25 & & & 25 & & & 25 & & & 25 & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & 0.950 & & & & 0.850 & & 0.986 & & & 0.984 & \\
\hline Flt Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (prot) & 1770 & 1770 & 0 & 1787 & 1881 & 1599 & 1805 & 1873 & 0 & 1805 & 1870 & 0 \\
\hline Flt Permitted & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd. Flow (perm) & 1770 & 1770 & 0 & 1787 & 1881 & 1599 & 1805 & 1873 & 0 & 1805 & 1870 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & 25 & & & & 137 & & 8 & & & 8 & \\
\hline Link Speed (mph) & & 30 & & & 30 & & & 30 & & & 30 & \\
\hline Link Distance (ft) & & 481 & & & 347 & & & 479 & & & 371 & \\
\hline Travel Time (s) & & 10.9 & & & 7.9 & & & 10.9 & & & 8.4 & \\
\hline Peak Hour Factor & 0.99 & 0.99 & 0.99 & 0.95 & 0.95 & 0.95 & 0.89 & 0.89 & 0.89 & 0.93 & 0.93 & 0.93 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 1\% & 1\% & 1\% & 0\% & 0\% & 0\% & 0\% & 0\% & 0\% \\
\hline Adj. Flow (vph) & 30 & 81 & 40 & 42 & 53 & 137 & 213 & 764 & 79 & 22 & 366 & 43 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 30 & 121 & 0 & 42 & 53 & 137 & 213 & 843 & 0 & 22 & 409 & 0 \\
\hline Turn Type & Prot & NA & & Prot & NA & pt+ov & Prot & NA & & Prot & NA & \\
\hline Protected Phases & 1 & 6 & & 5 & 2 & 23 & 3 & 8 & & 7 & 4 & \\
\hline Permitted Phases & & 6 & & & 2 & & & & & & & \\
\hline Detector Phase & 1 & 6 & & 5 & 2 & 23 & 3 & 8 & & 7 & 4 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 8.0 & 8.0 & & 8.0 & 8.0 & & 8.0 & 8.0 & & 8.0 & 8.0 & \\
\hline Minimum Split (s) & 14.0 & 14.0 & & 14.0 & 14.0 & & 14.0 & 28.0 & & 14.0 & 14.0 & \\
\hline Total Split (s) & 14.0 & 14.0 & & 14.0 & 14.0 & & 19.0 & 38.0 & & 14.0 & 33.0 & \\
\hline Total Split (\%) & 17.5\% & 17.5\% & & 17.5\% & 17.5\% & & 23.8\% & 47.5\% & & 17.5\% & 41.3\% & \\
\hline Maximum Green (s) & 8.0 & 8.0 & & 8.0 & 8.0 & & 13.0 & 32.0 & & 8.0 & 27.0 & \\
\hline Yellow Time (s) & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & & 4.0 & 4.0 & \\
\hline All-Red Time (s) & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & & 2.0 & 2.0 & \\
\hline Lost Time Adjust (s) & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline Total Lost Time (s) & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & & 6.0 & 6.0 & \\
\hline Lead/Lag & Lead & Lag & \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & None & None & & None & Max & & None & None & & None & None & \\
\hline Walk Time (s) & & & & & & & & 7.0 & & & & \\
\hline Flash Dont Walk (s) & & & & & & & & 15.0 & & & & \\
\hline Pedestrian Calls (\#/hr) & & & & & & & & 0 & & & & \\
\hline Act Effct Green (s) & 8.3 & 8.3 & & 8.3 & 10.9 & 28.8 & 11.6 & 34.7 & & 8.3 & 21.5 & \\
\hline Actuated g/C Ratio & 0.12 & 0.12 & & 0.12 & 0.16 & 0.43 & 0.17 & 0.51 & & 0.12 & 0.32 & \\
\hline v/c Ratio & 0.14 & 0.50 & & 0.19 & 0.17 & 0.18 & 0.68 & 0.87 & & 0.10 & 0.68 & \\
\hline Control Delay & 33.7 & 35.1 & & 34.2 & 31.2 & 4.6 & 42.0 & 31.7 & & 33.4 & 27.5 & \\
\hline Queue Delay & 0.0 & 0.0 & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & & 0.0 & 0.0 & \\
\hline
\end{tabular}


Splits and Phases: 18: Tsienneto Rd \& NH 28 Byp NB/NH 28 Byp SB


\section*{Appendix B: Land Use Scenarios Technical Report}

\title{
Land Use Scenarios Technical Report
}

\section*{I-93 Exit 4A Supplemental Draft Environmental Impact Statement}

Prepared for:
Town of Derry
Town of Londonderry
New Hampshire Department of Transportation
Prepared by:
Louis Berger
Version: \#5
March 2017

NHDOT Project Number: 13065
Federal Project Number: IM-0931(201)
CLD/Towns Project Number 05-0244

This page intentionally left blank.

\section*{TABLE OF CONTENTS}
1.0 INTRODUCTION ..... 1
1.1 Regulatory Framework ..... 2
1.1.1 FHWA Interim Guidance on Travel and Land Use Forecasting ..... 2
1.2 Relationship to Other Technical Reports ..... 3
2.0 METHODOLOGY ..... 4
2.1.1 Study Area ..... 4
2.1.2 Analysis Timeframe ..... 4
2.2 Data Reviewed ..... 6
2.3 Land Use Interviews. ..... 6
2.4 Uncertainty/Limitations ..... 7
3.0 POPULATION, HOUSEHOLD, AND EMPLOYMENT PROJECTIONS ..... 8
3.1 Past Population, Household, and Employment Trends ..... 8
3.2 New Hampshire Office of Energy and Planning ..... 10
3.3 Southern New Hampshire Planning Commission ..... 10
3.3.1 Population and Household Projections. ..... 11
3.3.2 Employment Projections ..... 11
4.0 INTERVIEW SUMMARIES ..... 16
4.1 Derry ..... 16
4.2 Londonderry ..... 16
4.3 Auburn, Chester, and Sandown ..... 18
4.3.1 Auburn ..... 18
4.3.2 Chester ..... 18
4.3.3 Sandown ..... 19
5.0 DEVELOPMENT UNDER THE 2040 NO BUILD AND BUILD CONDITIONS ..... 20
5.1 2040 No Build Condition ..... 20
5.1.1 Population, Household, and Employment Growth ..... 20
5.1.2 Known Development Proposals ..... 23
5.1.3 Summary of 2040 No Build Condition ..... 30
5.22040 Build Condition ..... 32
5.2.1 Alternative A ..... 32
5.2.2 Alternative B ..... 40
5.2.3 Alternative C ..... 40
5.2.4 Alternative D ..... 40
5.2.5 Alternative F ..... 40
6.0 ALLOCATION OF GROWTH TO TRAFFIC ANALYSIS ZONES ..... 41
7.0 REFERENCES ..... 49

\section*{LIST OF FIGURES}
Figure 1. Study area ..... 5
Figure 2. Woodmont Commons ..... 24
Figure 3. Large-scale developments in Londonderry ..... 28
Figure 4. Location of potential redeveloped and rezoned properties in the Town of Derry ..... 39
Figure 5 (Sheet 1 of 2). TAZs with No Build and Build allocations ..... 45
Figure 5 (Sheet 2 of 2). TAZs with No Build and Build allocations ..... 46
LIST OF TABLES
Table 1. Population and households 1990-2010 ..... 9
Table 2. Past employment (number of jobs) by municipality ..... 9
Table 3. OEP 2016 population projection by municipality for 2015-2040 ..... 13
Table 4. Revised Chester population projection for 2015-2040 ..... 13
Table 5. SNHPC and RPC household projections ..... 14
Table 6. SNHPC and RPC employment projections (number of jobs) ..... 15
Table 7. 2040 No Build population, households, and employment ..... 22
Table 8. Woodmont Commons Phase I: summary of uses ..... 25
Table 9. Summary of known large-scale development proposals in Londonderry (2040 No Build) ..... 27
Table 10. 2040 No Build employment as a result of known developments in Londonderry. ..... 30
Table 11. Total 2040 No Build population for study area. ..... 31
Table 12. Total 2040 No Build households for study area ..... 31
Table 13. Total 2040 No Build employment for study area ..... 32
Table 14. Summary of indirect land use effects of Alternative A ..... 32
Table 15. Existing Derry Industrial District IV development type and estimated employees ..... 34
Table 16. Employment density of select industrial businesses in Derry ..... 34
Table 17. 2040 Build condition incremental employment growth as a result of known developments in Londonderry ..... 36
Table 18. Chester and Sandown 2040 Build condition population growth. ..... 37
Table 19. Total 2040 Build condition population for study area ..... 38
Table 20. Total 2040 Build condition households for study area ..... 38
Table 21. Total 2040 Build condition employment for study area ..... 38
Table 22. 2040 No Build condition growth from known developments by TAZ ..... 41

Table 23. 2040 No Build condition by TAZ ........................................................................... 42
Table 24. 2040 Build condition incremental growth associated with Alternative A by TAZ 43
Table 25. 2040 Build condition by TAZ ................................................................................ 47

\section*{LIST OF APPENDICES}

\section*{Appendix A: Land Use Planner Interview Summaries and Supplemental Information}

Appendix B: SNHPC Data and Methodology Memoranda
Appendix C: Memorandum: Review of Employment Projections
Appendix D TAZ Allocation: No Build and Build Conditions

\section*{ABBREVIATIONS AND ACRONYMS}
\begin{tabular}{ll} 
CEQ & Council on Environmental Quality \\
CFR & Code of Federal Regulations \\
EIS & environmental impact statement \\
2007 DEIS & 2007 Draft Environmental Impact Statement \\
FHWA & Federal Highway Administration \\
gsf & gross square feet \\
NEPA & National Environmental Policy Act \\
NHDOT & New Hampshire Department of Transportation \\
NHES & New Hampshire Office of Energy and Planning \\
OEP & planned unit development \\
Project & Rockingham Planning Commission \\
PUD & Supplemental Draft Environmental Impact Statement \\
RPC & Southern New Hampshire Planning Commission \\
SDEIS & traffic analysis zone \\
SNHPC & TAZ
\end{tabular}

\subsection*{1.0 INTRODUCTION}

The Towns of Derry and Londonderry and the New Hampshire Department of Transportation (NHDOT), in cooperation with the Federal Highway Administration (FHWA), are preparing a Supplemental Draft Environmental Impact Statement (SDEIS) for the I-93 Exit 4A Project (Project). The Proposed Project consists of a new diamond interchange on I-93 in the Town of Londonderry, approximately 1 mile north of Exit 4 . The new diamond interchange would provide access to the east side of I-93. A 1-mile connector roadway would be built on new alignment from the interchange to Folsom Road, near the intersection of North High Street and Madden Road, in the Town of Derry. Folsom Road, and subsequently Tsienneto Road, would be upgraded, and the intersections would be improved. In total, the Proposed Project corridor from I-93 to the intersection of Tsienneto Road and NH Route 102/Chester Road would be 3.2 miles. The purpose of the Project is to reduce congestion and improve safety along NH 102, from I-93 east through downtown Derry and to promote economic vitality in the Derry/Londonderry area.

As part of the SDEIS, the Southern New Hampshire Planning Commission's (SNHPC's) regional travel demand model will be used to assess how the Project and alternatives may affect travel patterns in the 2040 design year. The travel demand model requires information on locallevel population and employment patterns to forecast the number of trip origin and end points in the future. In addition to estimating the number of trips, type of trips, and destination of trips, the travel demand model includes a representation of the roadway network (including highway capacity and speed). The travel demand model assigns trips to specific routes, which forms the basis for the total traffic volumes forecasted for each roadway. Separate model runs are required to represent the 2040 roadway network without the Project (e.g., the 2040 No Build) and with the Project completed (2040 Build). The travel demand model output of volumes for each roadway link in the network on a 24 -hour basis will be further processed as part of a detailed traffic impact analysis for the peak hours. The traffic impact analysis will be documented in the SDEIS traffic and transportation technical report and will in turn inform several other SDEIS technical analyses, including air quality and noise.
The purpose of this report is to document the basis for the local level population and employment inputs used in the travel demand modeling for the 2040 No Build and Build conditions. Given that the purpose of the Project includes encouraging economic development in Londonderry and Derry, a critical objective for the SDEIS is to estimate the quantity and location of potential future development potentially caused by the Project and to account for that growth in the travel demand modeling. As a result of including potential induced growth impacts in the travel demand model for the 2040 Build condition, the SDEIS will ensure consistency between the traffic analysis and the other land use-related portions of the SDEIS, including indirect and cumulative impacts. The overall land use forecasting process used is consistent with the recommendations of FHWA's Interim Guidance on the Application of Travel and Land Use Forecasting in NEPA (FHWA, 2010). Specifically, the forecasting effort included reviewing the suitability of existing forecasts; collaborating with land use/socioeconomic forecast experts, local planners, and the development community; and documenting the basis for assumptions.

\subsection*{1.1 Regulatory Framework}

The Council on Environmental Quality (CEQ) regulates implementation the National Environmental Policy Act (NEPA) and defines three types of effects: direct, indirect, and cumulative.
"Direct impacts are caused by the action and occur at the same time and place (40 Code of Federal Regulations [CFR] 1508.8)." Examples of direct impacts include displacements resulting from the acquisition of right-of-way or the fill placed in wetlands in order to construct a roadway improvement. The uncertainty associated with assessing direct impacts is very low relative to indirect and cumulative impacts.
"Indirect effects are caused by the action and are later in time or farther removed in distance, but are still reasonably foreseeable. Indirect effects may include growth-inducing effects and other effects related to induced changes in the pattern of land use, population density, or growth rate, and related effects on air and water and other natural systems, including ecosystems (40 CFR 1508.8)."

The National Cooperative Highway Research Program Report 403: Estimating the Indirect Effects of Proposed Transportation Projects identifies three types of indirect effects:
- Encroachment-Alteration Effects - alteration of the behavior and functioning of the affected environment caused by project encroachment (physical, chemical, or biological) on the environment.
- Induced Growth Effects - changes in the intensity of the use to which land is put that are caused by the action/project. These changes would not occur if the action/project does not occur. For transportation projects, induced growth is attributed to changes in accessibility caused by the project.
- Induced Growth Related Effects - alteration of the behavior and functioning of the affected environment attributable to induced growth.
"Cumulative impact is the impact on the environment, which results from the incremental impact of the action when added to other past, present, and reasonably foreseeable future actions, regardless of what agency or person undertakes such other actions. Cumulative impacts can result from individually minor but collectively significant actions taking place over a period of time (40 CFR 1508.7)." According to FHWA's Interim Guidance: Questions and Answers Regarding the Consideration of Indirect and Cumulative Impacts in the NEPA Process, cumulative impacts include the total of all impacts to a particular resource that have occurred, are occurring, and will likely occur as a result of any action or influence, including the direct and reasonably foreseeable indirect impacts of a proposed project (FHWA, 2003).

\subsection*{1.1.1 FHWA Interim Guidance on Travel and Land Use Forecasting}

In 2010, FHWA issued Interim Guidance on the Application of Travel and Land Use Forecasting in NEPA. Among other items, the guidance identifies considerations for improving how project-level forecasting is applied in the context of the process for meeting the requirements of NEPA and related project development. The interim guidance outlines the following key procedural and process considerations for land use and travel forecasting for NEPA:

Access project conditions and scope the forecasting needs of the study: It is crucial to scope and forecasting effort to meet the project analysis, decision-maker and stakeholder needs in the study area. For this reason, it is useful to begin the forecasting process by understanding the requirements of the study and anticipating the decision-maker and stakeholder interests with respect to forecasting.
Review the suitability of modeling methods, tools, and underlying data: It is important that the study team review the suitability of available modeling methods and the underlying data, including consideration of the currency and quality of the model data and methods, and that they analyze the data and methods' ability to adequately examine alternatives.
Conduct scoping and collaborate on methodologies: Scoping is a collaborative process involving the lead agencies, resource and regulatory agencies, and the public and is typically how a NEPA study begins. It is critical for the study team to document the broad agreements reached during scoping on the assumptions to be used for the land use and travel forecasting.
Objective application of forecasting in alternatives analysis: The requirement for the alternatives analysis to be an objective evaluation makes it essential for the study team to apply forecasting data and methods objectively without any bias towards a particular alternative. Important considerations include understanding uncertainty in assumptions and forecasts and how induced demand and land development effects are taken into account.
Project management considerations: NEPA studies are often complex undertakings and may be accompanied by various special considerations that warrant extra attention, such as the potential for re-do analysis loops and ensuring documentation consistency.

Forecasting for noise and air emissions analyses: Land use and travel demand forecasting models are used to provide inputs to noise and air quality assessments. It is important that assumptions that are made in general forecasting applications as part of the NEPA study are consistent with those used in the noise and air quality analyses.
Documentation and archiving: It is important for NEPA documentation to include enough technical detail to explain complex information in an understandable manner, and to describe how analytical methods were chosen, what assumptions were made, and who made those choices. (FHWA, 2010)

\subsection*{1.2 Relationship to Other Technical Reports}

Within the overall regulatory framework discussed in section 1.1, the focus of this report is the portion of indirect effects related to land use change/induced growth, as well as cumulative impacts on population and employment levels. The potential indirect environmental_impacts of the land use changes discussed in this report (such as additional habitat loss or additional stormwater runoff for example) will be documented separately in the SDEIS Indirect Effects Technical Report. The SDEIS and Indirect Effects Technical Report will also address encroachment-alteration type effects, such as habitat fragmentation. Similarly, cumulative
impacts on specific environmental resources will be thoroughly documented through a separate Cumulative Impacts Technical Report and in the SDEIS. However, the subsequent further indirect and cumulative impact analyses will utilize the population and employment levels and growth patterns identified in this report as a key input.
The travel demand modeling and traffic impact analyses will utilize the socioeconomic data results of this study as an input, but the details of these analyses will be documented separately in the Traffic and Transportation Technical Report.

\subsection*{2.0 METHODOLOGY}

The methodology used to develop the 2040 No Build and Build conditions land use forecasts included obtaining existing population and employment forecasts and interviewing local land use planners, socioeconomic data experts, and representatives of the development community.

\subsection*{2.1.1 Study Area}

The study area for the Build and No Build conditions is the "economic study area" described in the 2007 Draft EIS (DEIS), as shown in Figure 1. This study area encompasses 143 square miles within the two Towns of Derry and Londonderry, as well as Auburn, Chester, and Sandown. The five-town study area was determined by considering the likely geographic extent of potential direct, indirect, and cumulative effects related to land use and development-Derry and Londonderry would be directly affected, and Auburn, Chester, and Sandown may experience indirect effects due to improved access and travel time to I-93. The limits of the economic study area were agreed upon in consultation with state and federal agency staff at a meeting held on August 25, 2005. Given that there are no major changes in the basic alignment of the alternatives under consideration since the 2007 DEIS, the previously agreed on study area remains reasonable for this SDEIS.

\subsection*{2.1.2 Analysis Timeframe}

The temporal scope of analysis for the land use scenarios is based on past development trends and a future-planning horizon for which information on reasonably foreseeable future development is available. The Towns of Derry and Londonderry experienced rapid growth beginning in the 1960s and 1980s, respectively, based on available and affordable housing and favorable schools. Londonderry adopted a growth management ordinance (a subset of its zoning ordinance) in 1988 and readopted it in 1998. The ordinance was allowed to expire in 2015. Derry adopted a growth management ordinance (also a subset of its zoning ordinance) in 1999, which is still active. As a result, the past time horizon for consideration of development trends is 1990, the point at which the rapid growth began to be controlled (see section 3.1 - Past Population and Employment Trends). The future time horizon is 2040, which is the design year for the Project as well as a time horizon that encompasses the long-range comprehensive plans and long-range transportation plans for the study area. The 2040 future analysis year is also the analysis year that will be used for the transportation and air quality/noise impact analyses for the Project. The baseline or existing conditions model year for the transportation analyses for the Project is 2015, consequently 2015 land use and socioeconomic data is also reviewed in this report.


Figure 1. Study area

\subsection*{2.2 Data Reviewed}

Existing population and employment forecasts, comprehensive plans, and available development data were reviewed, including the following:
- U.S. Census Bureau 1990, 2000, and 2010 Decennial Census data (U.S. Census Bureau, 1990, 2000, and 2010)
- New Hampshire Employment Security (NHES) Economic and Labor Market Information Bureau employment data from 2004 and 2014 (NHES, 2015)
- New Hampshire Office of Energy and Planning (OEP) County and Municipal Populations Projections 2010-2040 (OEP, 2016a, 2016b)
- SNHPC's Moving Southern New Hampshire Forward: 2015-2035 Regional Comprehensive Plan (SNHPC, 2014) and letter to the Director of Derry Planning Department regarding population and dwelling unit projections (SNHPC, 2012a)
- SNHPC Population and Household Projections 2010-2050 (SNHPC, 2012b), and updated 2015-2040 Household Projections based on OEP Population Projections (SNHPC, 2016a)
- SNHPC Employment Projections for 2010-2050 based on New Hampshire Employment Security and NHDOT data (SNHPC, 2012c), SNHPC Updated Employment Estimates for 2015 (SNHPC, 2016b), and SNHPC Updated Employment Projections for 2020-2040 (SNHPC, 2016c)
- Rockingham Planning Commission (RPC) 2015 Regional Master Plan (RPC, 2015)
- Woodmont Commons Planned Unit Development (PUD) Application Materials (Pillsbury Realty Development, 2013)
- Master Plans of Derry and Londonderry (Town of Derry, 2010; Town of Londonderry, 2013)
- Master Plans of Chester, Auburn, and Sandown (Chester Planning Board, 2015; SNHPC, 2007; Sandown Master Plan Steering Committee et al., 2013)
- SNHPC Regional Comprehensive Plan (SNHPC, 2010)
- Regional Economic Development Center of Southern New Hampshire 2016 Comprehensive Economic Development Strategy (REDC, 2016)
- Environmental constraints on development, and local land use controls

\subsection*{2.3 Land Use Interviews}

The purpose of these structured interviews and outreach was to inform and support the analysis of reasonably foreseeable future growth, identify predicted future growth areas under the No Build and Build conditions, and estimate the indirect land use effects of the Project and alternatives.

In conjunction with the information gathered through the interviews, the data detailed in section 2.2 were reviewed to develop the forecasts associated with the 2040 No Build and Build conditions.

Interviews were conducted with the following planners and town staff on July 25-26, 2016:
- Town of Derry
- George Sioras, Planning Director
- Elizabeth Robidoux, Planning Assistant
- Mike Fowler, Public Works Director
- Town of Londonderry
- Colleen Mailloux, Town Planner
- John Vogl, GIS Manager/Comprehensive Planner
- SNHPC
- Julie Chen, Senior Transportation Planner
- Jack Munn, Chief Planner
- Adam Hlasny, Transportation Planner
- OEP
- Ken Gallager, Principal Planner

In addition, because the Woodmont Commons Project is planned adjacent to Exit 4A, Ari Pollack, the developer's representative, was interviewed. Finally, to gather information from municipalities identified in the economic/secondary impacts study area in the 2007 DEIS (i.e., Auburn, Chester, and Sandown), the following people were contacted via telephone.
- Bill Herman, Town Administrator, Auburn
- Andrew Hadik, Planning Coordinator, Chester; Dick Trask, Vice Chair, Chester Board of Selectmen
- Mark Traeger, Planning Board Member, Sandown

Materials, including maps and interview summaries, used to gather information via in-person and telephone interviews are included in Appendix A.

\subsection*{2.4 Uncertainty/Limitations}

As with any attempt to forecast future growth or development, there are limitations to the accuracy and certainty of the results of the land use forecasts. This uncertainty is impossible to quantify given that land use change occurs as result of numerous individual private land use decisions and other factors such as global and local economic conditions, housing trends and costs, availability of public water and sewer service, fuel prices and long-term technological changes. The 2040 No Build and Build conditions were developed through consideration of the latest available population and employment projections from state and regional agencies as well as input from planners and others knowledgeable of local conditions and trends. The forecasting process was consistent with the best practices recommended in FHWA's interim guidance on travel and land use forecasting. As a result, the land use forecasts provide a reasonable basis for comparing alternatives in the SDEIS and assessing potential indirect and cumulative impacts as required by CEQ's NEPA regulations. The land use forecasts also provide a logical construct and ensure that the SDEIS evaluation of transportation and land use impacts is consistent.

The No Build and Build land use forecasts developed as a result of this analysis should be considered as possible outcomes, and the addition and/or shift in type of development anticipated with the proposed Project should be considered as trends rather than absolute predictions that a certain number of residential units or gross square feet of commercial or industrial development will occur in any specific location. Ultimately, the development that occurs within the study area under the No Build and Build conditions will be based upon what the Towns will permit and what the market can support.

\subsection*{3.0 POPULATION, HOUSEHOLD, AND EMPLOYMENT PROJECTIONS}

The purpose of this section is to provide an overview of the existing population, household, and employment estimates and projections available for the study area.

\subsection*{3.1 Past Population, Household, and Employment Trends}

In mid to late 1990s, the towns in the study area implemented growth management strategies to control the substantial population growth and residential development. As Table 1 shows, between 1990 and 2000, the towns experienced average annual population increases between 1.37 percent (Auburn) and 3.49 percent (Chester), with an average annual increase of 1.64 percent across the study area. Between 2000 and 2010, the rate of population growth slowed in the study area for various reasons, including growth management ordinances and the economic downturn in 2007-2008. Chester and Sandown still experienced substantial population growth, increasing by an average annual rate of 2.32 percent and 1.53 percent, respectively. Auburn and Londonderry experienced a much lower rate of population growth, with annual average increases of 0.53 percent and 0.38 percent. During the same 2000 to 2010 timeframe, Derry's population decreased by an annual average rate of 0.27 percent.
Household data for 1990, 2000, and 2010 reveal that Chester and Sandown had the highest average annual household growth rates between 1990 and 2000 as well as between 2000 and 2010. Between 1990 and 2000, the average annual growth rates in Chester and Sandown were 3.48 percent and 2.65 percent, respectively. Between 2000 and 2010, the average annual growth rates in Chester and Sandown were 2.37 percent and 2.03 percent, respectively. The smallest household growth occurred in Derry with an average annual household growth rate of 1.36 percent between 1990 and 2000 and 0.17 percent between 2000 and 2010. Table 1 presents available household data.

Employment information in the form of number of jobs in each jurisdiction was not available for 1990 or 2000. SNHPC's 2010 employment data were calculated from NHES employer database and are presented in Table 2 along with NHES data provided in the community profiles of each jurisdiction (SNHPC, 2012c; NHES, 2015). Sandown is included in the RPC area, and its employment in 2010 as recorded in the RPC 2015 Master Plan is 399 (RPC, 2015). Overall, the data shows very limited growth in employment in the study area since 2004, with some jurisdictions showing declines. The largest growth in jobs occurred in Auburn (550 jobs added between 2004 and 2014).

Table 1. Population and households 1990-2010
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Municipality} & \multicolumn{2}{|r|}{1990} & \multicolumn{2}{|r|}{2000} & \multicolumn{2}{|c|}{2010} & \multicolumn{2}{|l|}{Average Annual Population Growth Rate} & \multicolumn{2}{|l|}{Average Annual Household Growth Rate} \\
\hline & Population & Households & Population & Households & Population & Households & \[
\begin{aligned}
& 1990- \\
& 2000
\end{aligned}
\] & \[
\begin{aligned}
& 2000- \\
& 2010
\end{aligned}
\] & \[
\begin{aligned}
& 1990- \\
& 2000
\end{aligned}
\] & \[
\begin{aligned}
& 2000- \\
& 2010
\end{aligned}
\] \\
\hline Derry & 29,603 & 10,767 & 34,021 & 12,327 & 33,109 & 12,537 & 1.40\% & -0.27\% & 1.36\% & 0.17\% \\
\hline Londonderry & 19,781 & 6,386 & 23,236 & 7,623 & 24,129 & 8,438 & 1.62\% & 0.38\% & 1.79\% & 1.02\% \\
\hline Auburn & 4,085 & 1,302 & 4,682 & 1,580 & 4,953 & 1,765 & 1.37\% & 0.56\% & 1.95\% & 1.11\% \\
\hline Chester & 2,691 & 862 & 3,792 & 1,214 & 4,768 & 1,534 & 3.49\% & 2.32\% & 3.48\% & 2.37\% \\
\hline Sandown & 4,060 & 1,304 & 5,143 & 1,694 & 5,986 & 2,072 & 2.39\% & 1.53\% & 2.65\% & 2.03\% \\
\hline Study Area Total & 60,220 & 20,621 & 70,874 & 24,438 & 72,945 & 26,346 & 1.64\% & 0.29\% & 1.71\% & 0.75\% \\
\hline
\end{tabular}

Source: U.S. Census Bureau (1990, 2000, 2010); NHGIS, 1990
Note: 1990 household data not readily available for the towns in the study area.
Table 2. Past employment (number of jobs) by municipality
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Municipality } & \begin{tabular}{c}
\(\mathbf{2 0 0 4}\) \\
(NHES)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{2 0 1 0}\) \\
(SNHPC/RPC)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{2 0 1 4}\) \\
(NHES)
\end{tabular} \\
\hline Derry & 8,150 & 7,825 & 8,003 \\
\hline Londonderry & 13,240 & 13,624 & 13,094 \\
\hline Auburn & 1,186 & 1,651 & 1,736 \\
\hline Chester & 437 & 528 & 347 \\
\hline Sandown \({ }^{\text {a }}\) & 244 & 399 & 268 \\
\hline Study Area Total & 22,257 & \(22,551^{\text {a }}\) & 23,448 \\
\hline
\end{tabular}

Source: SNHPC (2012c), NHES (2015), RPC (2015)
a 2010 Sandown employment data are from the RPC 2015 Master Plan.

\subsection*{3.2 New Hampshire Office of Energy and Planning}

OEP provides population projections for the state, counties, and municipalities. The latest projections were generated in 2016 (Table 3) (OEP, 2016a). OEP data show a slight decline in population in Derry between 2015 and 2025 and that Chester, Sandown, and Auburn are projected to be the fastest growing communities in terms of annual average growth rates ( 0.65 percent, 0.59 percent, and 0.52 percent, respectively). These 2016 projections reflect OEP's 2015 population estimates and the change in migration of populations within the state. According to the interview with OEP, the previous 2013 vital statistics/trends have not changed, but migration to southern New Hampshire is greater than anticipated at the time of the previous 2013 OEP projections, while migration to the northern and western portions of the state is less than anticipated.
The 2016 projections are based on the same methods used to generate the population projections outlined in the 2013 report (OEP, 2013) (i.e., cohort projections, Internal Revenue Service data, and migration rates). OEP worked with the regional planning commissions and conducted a meeting with them on June 20, 2016, to reach consensus on the migration rates to be used in the population projections. The group agreed to use 2000-2005 migration rates, reflecting a moderate growth outlook that is more positive than the outlook from the late 2000s, but not as robust as that of the 1990s. For Rockingham County, the 2000-2005 migration rate was \(2.9 \%\), compared to a \(0 \%\) migration rate between 1990-1995 and a \(6.3 \%\) migration rate between 19952000.

To allocate county-level population projections to towns, OEP reviewed each town's share of the total population and how that share has changed between 2000, 2010, and 2015. OEP assumed that the current trend in each town would continue: faster growing towns would experience more rapid growth than the county average, and slower growing towns would experience less growth.

The population decline between 2035 and 2040 is based on the aging population of the state. For example, Derry experienced a population loss of approximately 1,000 people between the 2000 and 2010 census; however, the population losses in the younger cohorts were greater.
Although OEP does not typically consider individual projects in its projections, the widening of I-93 was included based on the direct connection between the population and employment centers of Boston and Manchester. Appendix C of the SEIS for the I-93 widening project provides more detailed information regarding the OEP's inclusion of the build alternative for the I-93 widening project (8-lanes from Boston to Manchester) in its population projections.
Projects such as the I-93 Exit 4A Project that are not expected to have a large regional effect are not considered in OEP's projection process. As a result, during the interview, OEP agreed that its projections best represent a "No Build" condition for the Project because the OEP projections do not include growth that would potentially be caused by the I-93 Exit 4A Project. Large-scale planned developments, such as Woodmont Commons, are similarly not included in the OEP population projections.

\subsection*{3.3 Southern New Hampshire Planning Commission}

SNHPC develops whole-town and zonal (traffic analysis zone [TAZ]) population, household, and employment projections for the towns within its region for purposes of coordinated regional and local planning. Because SNHPC is also the official Metropolitan Planning Organization of
the region, its future projections are also used in the travel demand modeling for the regional long-range transportation plan.

\subsection*{3.3.1 Population and Household Projections}

SNHPC prepared population projections covering 2010 through 2050 in 2012. Therefore, the more recent OEP population projections were used by SNHPC at the municipal level for this report (2016a). Based on additional input from the Town of Chester (Appendix A), the population projections were updated for SNHPC's use. The revised numbers were based on the number of building permits issued since 2014 and the anticipated development proposals to subdivide large tracts of land. Table 4 presents the revised population projections for the Town of Chester. Additional details on the assumptions used in the revised projections for Chester are provided in Appendix A. SNHPC estimated the number of households at the town level based on the OEP population projections and the revised Town of Chester population projections (Tables 3 and 4). SNHPC's 2016 whole-town household projections for municipalities in the Project's study area are included in Table 5 (SNHPC, 2016a). To distribute population changes to TAZ, SNHPC dwelling unit projections adjusted based on 2015 dwelling unit estimates were used. Appendix B contains the 2015-2040 TAZ-level estimates for population and households and the memoranda outlining the technical methodology used by SNHPC to develop the model inputs.
Because Sandown is located in the RPC area and not the SNHPC area, information on Sandown households was derived from the RPC 2015 Master Plan (RPC, 2015). The number of Sandown households in 2010 is estimated to be 2,072. Future household projections for Sandown were only available for 2040 and were based on a scenario planning exercise by RPC to explore ways the region might grow. The Exit 4A Project was not considered by RPC in the scenario analysis. The "strong, dispersed growth" scenario is used in this report for Sandown's 2040 household projections because the report uses this scenario for employment projections (see section 3.3.3). The "strong, dispersed growth" scenario projects 2,914 households in Sandown in 2040. For comparison, the "slow growth" scenario projects 2,448 households and the "strong, concentrated growth" projects 2,325 households. Because household numbers between 2010 and 2040 were not available, Table 4 assumes straight-line growth between 2010 and 2040.

\subsection*{3.3.2 Employment Projections}

SNHPC also makes TAZ-level projections for employment based on quarterly employment averages from NHES that it compares to building permit data to estimate the number of jobs per square foot of non-residential development. The method used by SNHPC to generate updated TAZ-level projections is detailed in memoranda provided in Appendix B.
Table 6 includes updated 2015 projections based on state data that were adjusted to reflect the fact that SNHPC's 2010 employment information calculated directly from the employer database is slightly higher than the state data. Table 6 then uses the 5 -year percent increases from SNHPC's 2012 employment projections to recalculate projections for 2020 through 2040 using the updated 2015 projections. Appendix B includes a memorandum outlining the methodology used to project employment. The notable decline in Chester employment in 2015 is due to the closing of Chester College in 2012, while the rebound in employment in 2020 is projected based on the proposed opening of a Chinese School at the old Chester College (Jaschik, 2012; Williams, 2015). This dip in Chester employment values creates an elevated average annual
growth rate for the town for years 2015-2040 (2.21 percent); for comparison, the average annual growth rate from 2010-2040 was 0.62 percent.

Appendix C includes a sensitivity analysis of the 2040 SNHPC employment projections. The evaluation included the review of historical data from Woods \& Poole, a firm specializing in county-level economic projections. Employment data from Woods \& Poole measure the number of full- and part-time jobs by location of work (rather than location of residence) (U.S. Census Bureau, 2016a). In addition, population growth from the U.S. Census Bureau for 2003-2014, the time range for which town-level data were available, was reviewed (U.S. Census Bureau, 2016b; 2016c). Based on the evaluation, SNHPC's projection for average annual employment growth of 1.04 percent \(^{1}\) for the study area for 2015 through 2040 is similar to the Woods \& Poole's projection for employment growth in Rockingham County ( 1.07 percent). In addition, regression models were developed from the 2003-2014 Census data to investigate the relationships between growth rates in employment in the study area, population in the study area, employment in Rockingham County, and employment in New Hampshire. Two models were found to have the most predictive power: one relating study area employment to county-level employment, and a second relating it to county-level employment and study area population. Both regression models suggest study area employment growth rates that are comparable to the rate of growth implied by the SNHPC projection.
The employment sensitivity analysis shows that the SNHPC employment projection is consistent with the OEP population projection based on the historic relationship between population and employment in the region. Since the OEP population projection is considered to represent the future condition with the widening of I-93 to four-lanes in each direction (see section 3.2), the SNHPC employment projections is also considered to include the potential land use impacts of the I-93 widening. As noted previously, neither the OEP nor the SNHPC projections considered the Exit 4A project. Therefore, it is appropriate to use the OEP and SNHPC projections as the basis for the No Build condition for this project (since the widening of I-93 would occur with or without the completion of Exit 4A).
Like household data, information on Sandown employment was derived from the RPC 2015 Master Plan (RPC, 2015). Similar to household data, future employment projections for Sandown were only available for 2040 and were based on various possible future scenarios. The "strong, dispersed growth" scenario is used in this report because it is based directly on the NHES employment projections, which is similar to the methodology used for the employment projections developed by SNHPC. The "strong, dispersed growth" scenario projects 536 jobs in Sandown in 2040. For comparison, the "slow growth" scenario projects 390 jobs, and the "strong, concentrated growth" projects 446 jobs. Because employment numbers between 2010 and 2040 were not available, Table 6 assumes straight-line growth between 2010 and 2040.

\footnotetext{
\({ }^{1}\) The average annual growth rate for the study area is 1.04 percent regardless of whether Sandown is included.
}

Table 3. OEP 2016 population projection by municipality for 2015-2040
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Municipality & 2015 \({ }^{\text {a }}\) & 2020 & 2025 & 2030 & 2035 & 2040 & Average Annual Growth Rate 2015-2040 \\
\hline Derry & 32,948 & 32,459 & 32,018 & 32,733 & 33,144 & 33,222 & 0.03\% \\
\hline Londonderry & 24,891 & 25,434 & 26,057 & 26,639 & 26,973 & 27,036 & 0.33\% \\
\hline Auburn & 5,315 & 5,560 & 5,828 & 5,959 & 6,033 & 6,048 & 0.52\% \\
\hline Chester & 4,887 & 5,199 & 5,536 & 5,660 & 5,731 & 5,744 & 0.65\% \\
\hline Sandown & 6,255 & 6,604 & 6,984 & 7,140 & 7,229 & 7,246 & 0.59\% \\
\hline Study Area Total & 74,296 & 75,256 & 76,423 & 78,131 & 79,110 & 79,296 & 0.26\% \\
\hline Rockingham County & 300,569 & 307,013 & 314,418 & 321,441 & 325,474 & 326,238 & 0.33\% \\
\hline
\end{tabular}

Source: OEP (2016a)
a 2015 data are an estimate.

Table 4. Revised Chester population projection for 2015-2040
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline & & & & & \begin{tabular}{c} 
Average Annual \\
Growth Rate \\
Municipality
\end{tabular} & \(\mathbf{2 0 1 5}\) & \\
\(\mathbf{2 0 1 5 - 2 0 4 0}\)
\end{tabular}

Source: Town of Chester (Appendix A)
a 2015 data are the estimate provided by OEP.

Table 5. SNHPC and RPC household projections
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Municipality & 2010 \({ }^{\text {a }}\) & 2015 \({ }^{\text {b }}\) & 2020 & 2025 & 2030 & 2035 & 2040 & Average Annual Growth Rate 2015-2040 \\
\hline Derry & 12,537 & 12,656 & 12,436 & 12,236 & 12,496 & 12,645 & 12,673 & 0.01\% \\
\hline Londonderry & 8,438 & 8,628 & 8,812 & 9,022 & 9,219 & 9,332 & 9,353 & 0.32\% \\
\hline Auburn & 1,765 & 1,923 & 2,012 & 2,108 & 2,156 & 2,182 & 2,188 & 0.52\% \\
\hline Chester & 1,534 & 1,621 & 1,811 & 2,001 & 2,026 & 2,051 & 2,077 & 0.99\% \\
\hline Sandown \({ }^{\text {c }}\) & 2,072 & 2,193 & 2,321 & 2,457 & 2,601 & 2,753 & 2,914 & 1.14\% \\
\hline Study Area Total & 26,346 & 27,021 & 27,392 & 27,825 & 28,497 & 28,963 & 29,205 & 0.31\% \\
\hline
\end{tabular}

Source: SNHPC (2016a; 2017), RPC (2015)
a 2010 households were provided by SNHPC and based on U.S. Census information.
b 2015 data are an estimate.
c Data are from the RPC 2015 Regional Master Plan, with 2040 projections based on the "strong, dispersed growth" scenario. Household data were not available for 2015-2035; therefore, this table includes straight-line growth between 2010 and 2040.

\section*{Table 6. SNHPC and RPC employment projections (number of jobs)}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & \begin{tabular}{c} 
Average Annual \\
Growth Rate \\
2015-2040
\end{tabular} \\
\hline Municipality & \(\mathbf{2 0 1 0}\) & \(\mathbf{2 0 1 5}\) & \(\mathbf{2 0 2 0}\) & \(\mathbf{2 0 2 5}\) & \(\mathbf{2 0 3 0}\) & \(\mathbf{2 0 3 5}\) & \(\mathbf{2 0 4 0}\) & \(0.84 \%\) \\
\hline Derry & 7,825 & 8,384 & 8,373 & 8,785 & 9,254 & 9,760 & 10,322 & \(1.05 \%\) \\
\hline Londonderry & 13,624 & 13,517 & 14,008 & 14,961 & 16,000 & 16,751 & 17,550 & \(1.62 \%\) \\
\hline Auburn & 1,651 & 1,846 & 1,960 & 2,135 & 2,331 & 2,534 & 2,760 & \(2.21 \%\) \\
\hline Chester \(^{\text {a }}\) & 528 & 368 & 418 & 459 & 506 & 565 & 635 & \(0.99 \%\) \\
\hline Sandown \({ }^{\text {b }}\) & 399 & 419 & 440 & 463 & 486 & 510 & 536 & \(1.04 \%\) \\
\hline \begin{tabular}{l} 
Study Area \\
Total
\end{tabular} & 24,027 & 24,534 & 25,199 & 26,803 & 28,576 & 30,121 & 31,802 & \\
\hline
\end{tabular}

Source: SNHPC (2012c, 2016b, 2016c), RPC (2015)
Notes: 2010 values were developed in 2012. 2015 projections were updated in 2016. 2020 through 2040 projections were then adjusted to reflect the 20125 -year projection increases based on the updated 2015 projections.
a The notable decline in Chester employment in 2015 is due to the closing of Chester College in 2012, while the rebound in employment in 2020 is projected based on the proposed opening of a Chinese School at the old Chester College (Jaschik, 2012; Williams, 2015). For reference, average annual growth rate in Chester between 2010 and 2040 is \(0.65 \%\) compared to the elevated \(2.24 \%\) shown in the table.
b Data from the RPC 2015 Regional Master Plan, with 2040 projections based on the "strong, dispersed growth" scenario. Employment data were not available for 2015-2035; therefore, this table includes straight-line growth between 2010 and 2040.

\subsection*{4.0 INTERVIEW SUMMARIES}

Interviews with local land use planners assisted with the development of the No Build and Build land use forecasts by identifying development trends in their respective towns and providing spatial and temporal information on planned and proposed developments. The following summaries of development trends are based on these interviews. More detailed summaries of these interviews are provided in Appendix A. The draft interview summaries were provided to all participants for review and comment, and the final interview summaries were approved by the participants.

\subsection*{4.1 Derry}

Since 1990, the rapid growth that Derry experienced from the 1960s through the 1980s has slowed. Derry's growth management ordinance was instituted in the mid-1990s along with changes in zoning to control density of residential development. In addition, the segmented ownership in the central business district and lack of large parcels of available land for development make substantial future growth impracticable. Currently, Derry is experiencing a trend of population decline related to an aging population and an outward migration of young adults as they seek employment and educational opportunities elsewhere.
The area immediately to the east of I-93, along Folsom Road north of North High Street, has been rezoned to encourage higher quality industrial and commercial development near the proposed Project. Additionally, residential areas south of Folsom Road and North High Street might be re-zoned to Industrial/Commercial zoning. The Derry planning staff indicated that the Project could have an effect on the timing and intensity of development/redevelopment in this small industrial-zoned area. Effects on commercial/industrial development in other areas of the town are not anticipated. The commercial zoning district along the southern end of Rockingham Road (Route 28) was revised in 2013, and some commercial development has occurred in that area. In addition, water and sewer services are being expanded along Rockingham Road to continue to encourage commercial development along that corridor.
Although no large parcels are suitable for large-scale developments, a 13-unit market-rate apartment building is planned near the central business district. An area along South Main Street/Rockingham Road is zoned for commercial development, and the town is extending water and sewer service to allow the area to develop at a higher density.
The limits of water and sewer service, the lack of large parcels, and the topography in the eastern portion of Derry serve to limit development. Lot size requirements and conserved land are also factors constraining any major single-family home developments in Derry. Because of the large number of development constraints, Derry planning staff suggested that the Project would be unlikely to induce additional residential development in Derry. However, the Project would encourage areas recently rezoned as industrial and commercial to develop by providing direct access to I-93.

\subsection*{4.2 Londonderry}

Since 2000, the rapid growth experienced in the 1980s and 1990s has slowed, and the current development trends are based on access to undeveloped or underdeveloped land and the presence or absence of municipal services (water/sewer), which affects the density of development. For
example, the industrial development on Pettengill Road is driven by undeveloped land with access to Raymond Wieczorek Drive (Manchester Airport Access Road). The Project would not affect this industrial development in northwest Londonderry. While a few parcels are available in west Londonderry, the proposed Project would not likely affect their future development because the Project would provide access only to the east of I-93.
On the east side of I-93, the Project would affect the timing and type of growth in Londonderry - the interchange and connector road would provide access and opportunity for commercial, institutional, and higher density residential development.
Woodmont Commons is a planned mixed-use urban village in the Town of Londonderry. The developer, Pillsbury Realty Development, LLC, owns approximately 630 acres bordering the east and west sides of I-93. Based on the PUD Master Plan (Pillsbury Realty Development, 2013), Woodmont Commons is divided into several phases, and development will occur over a 20-year period. The Town of Londonderry issued a conditional approval for the Phase I design plans in November 2016.
The Woodmont Commons development density with and without the Project is presented in the PUD Master Plan (Pillsbury Realty Development, 2013), and town planning staff indicated that the "without Exit 4A" scenario presented in the approved 2013 PUD Master Plan was based on design review meetings that included town staff, project engineers/planners, and the town's review consultant. Thus, the "with" and "without" Exit 4A scenarios (i.e., with Project and without Project scenarios) presented in the PUD Master Plan should not be construed as projections of growth, but rather should provide an upper cap on the maximum amount of development that could occur. This explains why less commercial development is allowed on the west side of I-93 without the Project than with it, even though the Project would provide no westerly access.
Without the Project, the Woodmont Commons development on the east side of I-93 would likely be a residential development model (up to 330 units as allowed by the PUD). The Londonderry planning staff agreed that the 400,000 gross square feet (gsf) of office development potentially allowed according to the PUD east of I-93 without the Project would likely not occur given the amount of traffic mitigation that would be required. Instead, a more realistic development scenario without the Project would be the aforementioned residential development with a small number of commercial businesses serving the needs of the 330 residential units (such as a convenience store or pharmacy).

With the Project, the current programming for the east side, which is also preferred by the Town of Londonderry, is for commercial land use accessed via Exit 4A. The developer expects a mixed-use build-out on the east side of I-93 to the level indicated by the caps in 2013 PUD Master Plan by 2040. In other words, the PUD caps represent a reasonable "Build" Scenario for the Project. No development would be expected to start until after the completion of the Project (currently expected by 2022). No potential development east of I-93 has been pre-sold or preleased (see Woodmont Commons Land Use Interview Summary, Appendix A).

With regard to development associated with Build Alternatives A, B, C, D, and F (from the 2007 DEIS), planners stated that growth in Londonderry under Alternatives C and D would be more in line with a No Build Alternative (or without the Project) because these alternatives would not provide access to the parcels that Woodmont Commons plans to develop for commercial and/or
institutional use. Given the easterly only access of the Project, development of the interchange would likely have little effect on the job growth or attraction of industries west of I-93.

\subsection*{4.3 Auburn, Chester, and Sandown}

\subsection*{4.3.1 Auburn}

Auburn is largely a bedroom community of about 16,000 acres with limited businesses. About a quarter of its area ( 4,200 acres) is the watershed for Massabesic Lake, which is the water supply for the City of Manchester. This limits the area available for development.
The primary drivers of growth are location and, more recently, the change in high school from Manchester to Pinkerton Academy. Auburn is located near Exits 1 and 2 of NH Route 101, which provides convenient access to I-93. Auburn's development has been different from most of the surrounding communities because it did not experience a decrease in development associated with the 2007-2008 recession. Auburn has issued approximately 35 new home building permits per year, and that did not change after 2007-2008. The Town Administrator stated that these new home permits are typically for custom homes on larger lots, and this trend of type and rate of residential development is expected to continue.

The Town Administrator indicated that the proposed Project is not likely to affect development and population growth in Auburn. Travel time may improve if some of the traffic on I-93 is pulled off the interstate by the Project, but this effect would likely be minor. Auburn residents would not be likely to use Exit 4A to travel from I-93 to Auburn because NH Route 101 already provides convenient access to the northern portion of the town, and the southern portion is closer to the existing Exit 5 than to Exit 4A.

\subsection*{4.3.2 Chester}

Chester is a rural community east of Derry. Access to I-93 is primarily through the Town of Derry. Chester is currently experiencing significant growth pressure in the form of a recent resurgence (spring 2016) of single-family residential development. Development activity has recently restarted on many of the subdivisions that have been dormant or partially complete since the 2007-2008 recession. Chester currently has approved or pending permits to develop about 300 lots, which are anticipated to be developed in the next 5 to 7 years (2022-2024) (Appendix A). In addition, the Town has two 30-lot and three 5-lot subdivisions that will be approved in the near future. One of the 30 -lot subdivisions is a Phase I - there will likely be an additional 90 lots in that 550-acre subdivision. The Chester Master Plan 2015 also recognizes this trend for residential growth in Chester. The plan notes that SNHPC projects that approximately 96 dwelling units would be constructed every 5 years through 2050 based on the town's historic growth rate and past building permit trends (Chester Planning Board, 2015). This long-term projection equates to an average of about 19 new home permits per year.
The primary drivers for additional residential development in Chester are good schools and the desire for rural living. Because the resurgence of residential/subdivision development is recent, it will likely be a year or two before Chester experiences a significant increase in elementary school enrollment. It is too early to determine whether a commensurate increase in school-age population or a shift in demographics of the population would occur; however, an increase is expected because most of the new homebuyers in Chester have one or more children.

Given Chester's access to I-93 through Derry, the planning coordinator indicated it was likely that the Project would induce additional residential development in Chester because of improved access to I-93.

Although the Project would enable additional growth in Chester, the town has a growth management provision in its zoning ordinance that would go into effect if pressure on school, fire, and police services outstrips the town's ability to keep pace with development. An open space subdivision provision is in place to encourage subdivisions to be creatively designed in a way that reduces sprawl and protects natural resources and rural character.

\subsection*{4.3.3 Sandown}

Sandown is a rural community east of Derry, and highway access to the town is either by I-93 (via Route 102 through Derry) or by I-495 (via 121A through Plaistow). The primary driver for growth in Sandown is affordable housing-the bulk of housing in Sandown would be considered starter homes with regard to price and size. In addition, the Planning Board member interviewed indicated that transportation access to I-495 and an increase in telecommuting have contributed to population growth due to an increase in people seeking affordable housing. Sandown experienced a major influx of people during the 1990s until the recession in 2007-2008; however, Sandown is experiencing a resurgence of development similar to Chester. A 50-unit apartment building was recently approved, and two developments initially planned for residents ages 55 and older are now being developed for individuals of any age.

Although Sandown has had growth management ordinances in the past, these ordinances are no longer in place because of lawsuits by developers. Sandown is now focused on buying and conserving land to reduce the available developable land in the town. Sandown purchased 200 acres for conserved open space that had been approved for 154 dwellings for residents ages 55 and older, resulting in a reduction of housing potential in Sandown. The Planning Board is considering applying for another community technical assistance program grant to acquire and conserve more land. Most of the larger tracts have been developed, and Sandown has only a few 100 -acre tracts left that could be developed as larger subdivisions.
Sandown has numerous wetlands and rivers, and in addition to purchasing land for conservation purposes, the town has a vernal pool protection provision in its zoning ordinance that includes a 25 -foot buffer around vernal pools and a building setback requirement of 50 feet. In addition, the Planning Board has passed variable road width and stormwater regulations to reduce impervious surface and promote low impact development. The conservation measures are designed to improve the quality of natural resources and allow the town to reduce the amount of development and associated increase in school enrollment.

The Planning Board member stated during the interview that the widening of I-93 is having a substantial effect on growth in Sandown by reducing travel times on I-93, which makes Sandown more attractive for young homebuyers. The Planning Board member believes the proposed Project has the potential to induce additional residential development in Sandown by providing better access and reduced travel time to I-93.

\subsection*{5.0 DEVELOPMENT UNDER THE 2040 NO BUILD AND BUILD CONDITIONS}

The 2040 No Build condition is the reasonably foreseeable future development anticipated without construction of the proposed Project. The 2040 Build condition is the reasonably foreseeable future development anticipated if the proposed Project is built and includes both the growth that is attributable to the improved transportation access created by the Project, as well as growth that is independent of the Project. The difference between the No Build and Build conditions is the indirect land use-or incremental-impact of the Project.

Both the 2040 No Build and 2040 Build conditions were developed after analyzing a variety of data sources and based on interviews with planners in local jurisdictions to ensure a collaborative process for land use and travel forecasting assumptions. Forecasting assumptions were also developed for the alternatives, as discussed in section 5.2 of this document. The overall process was guided by FHWA's Interim Guidance on the Application of Travel and Land Use Forecasting in NEPA (FHWA, 2010).

\subsection*{5.12040 No Build Condition}

The 2040 No Build condition includes population, household, and employment information. As discussed, in sections 3.2 and 3.3, OEP and revised Chester population projections and the resulting SNHPC household projections account for the growth associated with the I-93 widening project. As noted in the memorandum in Appendix C, the employment growth rates projected by SNHPC are consistent with the historic relationship between population and employment growth in the region. In other words, because the SNHPC employment projections are consistent with the OEP population projections that include the I-93 widening effects, the SNHPC employment projections are also considered representative of the future condition with the widening of I-93 (even though specific projects were not considered in making the employment projections as documented in the correspondence with SNHPC). Each component is developed from the 2015 estimates or projections documented in sections 3.2 and 3.3; background growth, calculated as the difference in 2015 estimates and 2040 projections; and growth from known development projects. Each component (population, households, and employment) is discussed in more detail in the following sections.

\subsection*{5.1.1 Population, Household, and Employment Growth}

Average annual population growth is projected to be 0.29 percent throughout the study area between 2015 and 2040, with annual population growth as high as 0.99 percent in Chester and as low as 0.03 percent in Derry. Annual household growth is projected to be 0.31 percent throughout the study area, with the highest annual household growth in Chester and Sandown at 0.99 and 1.14 percent, respectively. The lowest household average annual growth is projected to be in Derry at 0.32 percent, similar to the lower population growth in this town.

Based on updated SNHPC 2015 employment estimates and SNHPC 2016 projection 5-year growth trends through 2040, employment is projected to grow at an average of 1.04 percent average annual growth in the study area. Although 2015-2040 average annual employment growth for Chester is the highest of the jurisdictions at 2.21 percent, this value is elevated because of decreased 2015 employment values (see Section 3.3.3 for an explanation of the decreased 2015 Chester employment values). Analyzing the average annual employment growth
in Chester between 2010 and 2040 reveals a 0.62 percent annual employment growth rate as noted in section 3.3.2. Therefore, Auburn has the highest consistent average annual employment growth at 1.63 percent. Table 7 provides an overview of the 2040 No Build population, household, and employment components.

Table 7. 2040 No Build population, households, and employment
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Municipality & \begin{tabular}{l}
Existing Population (2015 \\
Projection)
\end{tabular} & Background Population Growth (2015-2040) & \begin{tabular}{l} 
Average \\
Annual \\
Population \\
Growth \\
Rate \\
\((2015-\) \\
\(2040)\) \\
\hline
\end{tabular} & \begin{tabular}{l}
Existing Households (2015 \\
Projection)
\end{tabular} & Background Household Growth (2015-2040) & \begin{tabular}{l} 
Average \\
Annual \\
Household \\
Growth \\
Rate \\
\((2015-\) \\
\(2040)\) \\
\hline
\end{tabular} & \begin{tabular}{l}
Existing Employment (2015 \\
Projection)
\end{tabular} & Background Employment Growth (2015-2040) & Average Annual Employment Growth Rate (2015-2040) \\
\hline Derry & 32,948 & 274 & 0.03\% & 12,656 & 17 & 0.01\% & 8,384 & 1,938 & 0.84\% \\
\hline Londonderry & 24,891 & 2,145 & 0.33\% & 8,628 & 725 & 0.32\% & 13,517 & 4,033 & 1.05\% \\
\hline Auburn & 5,315 & 733 & 0.52\% & 1,923 & 264 & 0.52\% & 1,846 & 914 & 1.62\% \\
\hline Chester & 4,887 & 1,366 & 0.99\% & 1,621 & 456 & 0.99\% & 368 & 267 & 2.21\% \\
\hline Sandown & 6,255 & 991 & 0.59\% & 2,193 & 721 & 1.14\% & 419 & 117 & 0.99\% \\
\hline Total Study Area & 74,296 & 5,509 & 0.29\% & 27,021 & 2,183 & 0.31\% & 24,534 & 7,268 & 1.04\% \\
\hline
\end{tabular}

\footnotetext{
Source: OEP (2016a); SNHPC (2016a, 2016b, 2016c; 2017), RPC (2015)
Note: See notes for Tables 3, 4, and 5 for information about projections.
}

\subsection*{5.1.2 Known Development Proposals}

Reasonably foreseeable future development under the No Build condition includes known development proposals identified from land use planner interviews.
There are no large-scale planned developments in Derry-the extent of water and sewer service, the lack of large undeveloped parcels, and the topography in the eastern portion of Derry limit development. Lot size requirements and conserved land also constrain major single-family home developments in Derry. There is a 13-unit market-rate apartment building planned near the central business district. In addition, an area along South Main Street/Rockingham Road is zoned for commercial development, and the town is extending water and sewer service to allow the area to develop at a higher density. Both the 13-unit building and the infrastructure extension were judged to be accounted for in the background growth rate (e.g., the OEP population and SNHPC employment projections).
Londonderry has several known planned or proposed developments. The Woodmont Commons PUD is planned on the east and west sides of I-93 (see Figure 2 for the limits of the PUD). The Market Basket redevelopment area, shown in Figure 2, is owned by DeMoulas Super Markets, Inc. and is part of the Woodmont Commons Subarea WC-1GL, on the west side of I-93. The redevelopment area was approved by the Town of Londonderry in October 2015. The new Market Basket was constructed on the other side of the plaza from the original grocery store. The redevelopment approved in 2015 involved the demolition of about 74,000 gsf of commercial space and the addition of about \(42,000 \mathrm{gsf}\) of commercial development (Town of Londonderry, 2015). Construction is complete; as of May 2016, the \(42,000 \mathrm{gsf}\) were occupied by a state liquor store, a card store, TJ Maxx, and Marshall's Home Goods. In addition, there are four commercial pads available for development within the redevelopment area along John R. Michels Way, the roadway running through the Woodmont Commons development area connecting Garden Lane and Pillsbury Road. DeMoulas is currently looking for potential tenants and has received interest from multiple parties. The development of these parcels would occur with or without the Exit 4A Project. At this time, the types of tenants and buildings that would be constructed are unknown (see Appendix A, Woodmont Commons: Market Basket Redevelopment). Although the four pad sites have not been approved for development, it is possible that they could provide an additional 20,000 to 30,000 gsf of commercial development (see Appendix A: Londonderry Market Basket Redevelopment). As such, \(30,000 \mathrm{gsf}\) of potential additional commercial development has been included in the 2040 No Build condition.
In November 2016, the Town of Londonderry planning staff conditionally approved the Phase I plans for the initial Woodmont Commons development west of I-93, and Phase I is anticipated to be built by 2020. Phase I would include mixed use residential and commercial space, with approximately 60 percent retail space and 40 percent office space; five restaurants, including one restaurant/brewery; a hotel; a concert venue; and individual elderly living. Figure 2 shows the approximate location of Phase 1 of Woodmont Commons, and Table 8 shows a summary of uses planned for Phase I. Build Alternatives A though F are shown in Figure 2 for geographic reference.


Figure 2. Woodmont Commons

Table 8. Woodmont Commons Phase I: summary of uses
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Use} & Quantity & Total \\
\hline \multirow[b]{2}{*}{Residential} & Any age & 260 units & \multirow[b]{2}{*}{510 units} \\
\hline & Independent elderly living & 250 units & \\
\hline \multirow{5}{*}{Commercial} & Retail & 163,611 gsf & \multirow{5}{*}{312,574 gsf} \\
\hline & Office & 107,800 gsf & \\
\hline & Restaurant & 568 seats or 15,593 gsf & \\
\hline & Production (brewery) & \(11,400 \mathrm{gsf}\) & \\
\hline & Assembly & 350 seats or 14,170 gsf & \\
\hline \multicolumn{2}{|l|}{Hotel} & 135 rooms & 135 rooms \\
\hline
\end{tabular}

Source: Pillsbury Realty Development, LLC (2016)
Based on discussions with the Town of Londonderry and the developer, the remainder of the Woodmont Commons PUD area (east and west of I-93) is anticipated to be built out by 2040.
The Woodmont Commons PUD Master Plan includes maximum development caps that would be permitted by Town of Londonderry for the PUD (east and west of I-93) with the Exit 4A Project and without the Exit 4A Project. The maximum growth caps outlined in the Woodmont Commons PUD Master Plan were used in the development of the No Build and Build conditions to provide a conservative estimate of indirect impacts (i.e., using the upper bound allowable growth results in predicting greater environmental impacts). The actual development that occurs within the Woodmont Commons PUD by 2040 may be less than this maximum depending on economic conditions and regulatory approvals (see section 2.4 for a discussion of the uncertainty associated with future growth impacts).
The Woodmont Commons PUD allows more growth on the east side of I-93 with Exit 4A than without Exit 4A, and this difference in growth forms the basis for the estimated indirect land use effects of Exit 4A on the east side of I-93 (see section 5.2.1, Table 14). The greater growth allowed with Exit 4A in Woodmont East is consistent with the direct interstate access to the east that would be provided by Alternatives A and B, increasing accessibility to undeveloped land along the interstate.
The Woodmont Commons PUD also allows more growth on the west side of I-93 with Exit 4A compared to the No Build condition. From a transportation access perspective, this increase in growth on the west side was not immediately intuitive given that Alternatives A and B would provide a direct connection to the east only. However, the project team identified several ways in which the Exit 4A Project could support increased development on the west side of I-93:
- Exit 4A would provide indirect interstate access to Woodmont West via internal roadways within Woodmont East, which would link to Pillsbury Road/Ash St. Pillsbury Road/Ash St. is an east-west roadway that crosses over I-93 and through the Woodmont West PUD area.
- Exit 4A has the potential to reduce demand on Exit 4 by diverting a portion of drivers currently using Exit 4 to the new Exit 4A. As a result, the Town of Londonderry would allow more development on the west side of I-93 because the potential constraint posed by Exit 4 operations would be lessened. Additional
information on traffic impacts will be available when the traffic technical report is completed.
- The large-scale economic development anticipated on the east side of I-93 with Exit 4A could have synergistic economic impacts on the west side of I-93. For example, additional office space would result in a large population in the area during the day and increase the demand for retail/restaurants.

The PUD "No Exit 4A" growth caps for Woodmont Commons were the primary basis for the No Build condition because the PUD itself provides a regulatory framework that would prohibit higher levels of growth without the appropriate transportation network support Exit 4A would provide. The developer would still attempt to maximize their return on investment by developing both the east and west sides of I-93 within the limits imposed by the PUD. The No Build condition forecast used for this project differs from the PUD "No Exit 4A" development caps in one important respect-it was determined through the interviews that the build-out of 400,000 gsf of commercial development on the east side of I-93 as included in the "No Exit 4A" PUD caps was not likely without Exit 4A due to the level of traffic mitigation that would be required. This level of development would require direct interstate access as would be provided with Exit 4A. Therefore, a predominately residential development is anticipated on the east side of I-93 without Exit 4A (330 households as allowed by the PUD). A small amount of supporting commercial was also included ( \(20 \mathrm{sf} /\) household).

In addition to Woodmont Commons, substantial industrial development is projected along the new Pettengill Road in Londonderry, which opened in December 2015. The relocated and new road extends from its former terminus at Industrial Drive to the new Raymond Wieczorek Drive (Applied Economic Research, 2012). The new road provides easier access to the ManchesterBoston Regional Airport and the F. E. Everett Turnpike/South Manchester from Londonderry and opened up nearly 1,000 acres of prime, non-residential land for business users. Based on SNHPC projections, the Pettengill Road Industrial Area would support a total of 1,750 industrial jobs in TAZ 64 and TAZ 274 in Londonderry from 2010 through 2050 (SNHPC, 2016b; 2016c). Assuming linear job growth for that 40-year period, five-eighths of that job growth would coincide with the analysis years of this report (2015-2040). \({ }^{2}\) Therefore, this report assumes approximately 1,094 jobs would be added across this industrial area by 2040. These jobs would include at least a portion of the jobs associated with the proposed F.W. Webb distribution center, which is planned to include a 785,000 -square-foot facility along Webb Drive, an extension of Pettengill Road (Heritage Commission, 2016).
Figure 3 shows future known, large-scale developments in Londonderry, and Table 9 presents a summary of these developments, including Woodmont Commons and future reasonable foreseeable development along Pettengill Road. Build Alternatives A though F are shown in Figure 3 for geographic reference.

\footnotetext{
\({ }^{2}\) This report assumes that the first 5 years of Pettengill Road employment growth were incorporated into SNHPC 2015 updated employment projections. Overall Pettengill Road employment growth was added starting in 2010 because the estimate for Pettengill Road growth was designed to be added over the 2010-2050 time period.
}

Table 9. Summary of known large-scale development proposals in Londonderry (2040 No Build)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Development Name } & Type/Land Use & \begin{tabular}{c} 
Residential \\
Units
\end{tabular} & \begin{tabular}{c} 
Hotel \\
Rooms
\end{tabular} & \begin{tabular}{c} 
Commercial \\
Area \\
(gsf)
\end{tabular} & \begin{tabular}{c} 
Industrial \\
Area \\
(Jobs)
\end{tabular} \\
\hline \begin{tabular}{l} 
Market Basket \\
Redevelopment Area
\end{tabular} & Commercial & NA & NA & 30,000 & NA \\
\hline \begin{tabular}{l} 
Woodmont Commons \\
Phase I (2020) - West \\
of I-93a
\end{tabular} & \begin{tabular}{c} 
Mixed Use - \\
Commercial/ \\
Residential
\end{tabular} & 510 & 135 & 312,574 & NA \\
\hline \begin{tabular}{l} 
Woodmont Commons \\
Remainder (2040)- \\
West of I-93
\end{tabular} & \begin{tabular}{l} 
Mixed Use - \\
Commercial/ \\
Residential
\end{tabular} & 570 & 215 & 519,926 & NA \\
\hline \begin{tabular}{l} 
Woodmont Commons - \\
East of I-93
\end{tabular} & Residential & 330 & 0 & \(6,600^{\text {c }}\) & NA \\
\hline \begin{tabular}{l} 
Pettengill Road \\
Industrial Area
\end{tabular} & NA & NA & NA & 1,094 \\
\hline
\end{tabular}

Source: Pillsbury Realty Development (2013), SNHPC (2012a), Interviews with the Town of Londonderry and a Woodmont Commons representative (see Appendix A)
\({ }^{\text {a }}\) Phase I includes development shown in Table 8 (Pillsbury Realty Development, 2013). The Woodmont Commons Remainder is the remaining development that would be permitted without Exit 4A that could be built by 2040 .
b Job projections for Pettengill Road Industrial Area based on full projection of 1,750 jobs from 20102050 (SNHPC, 20116b; 2016c). This table assumes five-eighths ( 25 of 40 years or 2015-2040) of the projected jobs to match the timeframe of this report. It is assumed development along Pettengill Road would include the proposed approximately \(785,000 \mathrm{gsf}\) of development for the F.W. Webb distribution center.
c Based on the interview with the Woodmont Commons representative on August 7, 2016, it was agreed that developing the upper cap of \(400,000 \mathrm{gsf}\) of commercial on the east side of \(\mathrm{I}-93\) was unlikely without Exit 4A due to the traffic mitigation that would be required (see Appendix A). This new total assumes about 20 gsf of support commercial space per residential unit planned.


Figure 3. Large-scale developments in Londonderry

Population growth from known development projects, the last element used to calculate the 2040 No Build population, was calculated for residential units using average household size for the study area based on SNHPC population information. \({ }^{3}\) Average household size was calculated following SNHPC's methods and used the occupancy rate from the 2010 Census (U.S. Census Bureau, 2010) and the existing (2015) population and housing units. \({ }^{4}\) Based on a study area average household size of 2.73 persons and a total of 1,410 residential units under the No Build condition, the total 2040 No Build known development project population would be approximately 3,849 people. No adjustment to population was made to attempt to account for people moving to the study area for new employment opportunities, such as at Woodmont Commons. Given the dispersed nature of the local employment market, the employees in future industrial jobs, commercial development, or hotels would likely be spread throughout the region and would include people changing jobs, not simply migration.

Household growth from known development projects, also the last element used to calculate the 2040 No Build households, is based on the sum of residential units produced from the No Build known development projects in Table 9 multiplied by the occupancy rate. Because 2040 occupancy rates are unknown, the 2010 SNHPC weighted average occupancy rate of 95.4 percent was used to calculate households in 2040 (2016c). \({ }^{5}\) Based on the known development projects including 1,410 residential housing units and an occupancy rate of 95.4 percent, the total No Build condition known development project households would be approximately 1,345 . Because Woodmont Commons is the source of all of the known development project households, and Woodmont Commons is in Londonderry, all 1,345 known development project households are assigned to Londonderry in section 5.1.3.
Employment growth from known development projects is based on calculating the number of employees based on the size and type of known development project, unless the total number of jobs for a known development project was known as in the case of the Pettengill Road redevelopment. Using industry standard employee to gross square foot comparison factors by type of development, Table 10 calculates employees for each known development project given the retail assumptions noted in the "Conversion to Jobs" column (RKG Associates, 2016; MWCOG, n.d.). The remainder of the development associated with Woodmont Commons (postphase 1) creates the most employment of any project with approximately 1,864 jobs produced based on an assumed mix of one-half general retail, one-quarter restaurants, and one-quarter other services. In total, approximately 4,219 No Build condition jobs are anticipated from the known development projects.

\footnotetext{
\({ }^{3}\) Sandown is in the RPC boundary, and therefore is not included in the SNHPC data. However, none of the known development projects included residential units in Sandown, therefore it was reasonable not to include Sandown information in the population calculation.
\({ }^{4}\) Household size \(=(\) Population - special population) \(/(\) housing units*occupancy rate \()\). Special populations accounts for those living in dormitories, nursing homes, prisons, and drug treatment facilities - i.e., not standard housing units.
\({ }^{5}\) Average occupancy rate was weighted based on number of dwelling units within each jurisdiction's TAZs. Footnote \#2 regarding omission of Sandown information also applies to this calculation.
}

Table 10. 2040 No Build employment as a result of known developments in Londonderry
\begin{tabular}{|c|c|c|c|c|}
\hline Development Name & Development Size and Type (or Jobs) & Conversion to Jobs & Jobs & Total Jobs per Project Phase \\
\hline Market Basket Redevelopment Area & \(30,000 \mathrm{gsf}\) of Commercial & \begin{tabular}{l}
\(3 / 4\) of gsf at Restaurants: 175 gsf / employee \\
\(1 / 4\) of gsf at Other Services: 400 gsf / employee
\end{tabular} & \[
\begin{array}{r}
129 \\
+19
\end{array}
\] & 148 \\
\hline Woodmont Commons Phase I (2020) - West of I93 & 135 Hotel Rooms & 0.6 employees / room & 81 & \\
\hline Woodmont Commons Phase I (2020) - West of I93 & \(312,574 \mathrm{gsf}\) of Commercial & \begin{tabular}{l}
\(1 / 2\) of gsf at General Retail: 400 gsf / employee \\
\(1 / 4\) of gsf at Restaurants: 175 gsf/employee \\
\(1 / 4\) of gsf at Other Services: 400 gsf/employee
\end{tabular} & \[
\begin{gathered}
391 \\
+446 \\
+195
\end{gathered}
\] & 1,113 \\
\hline \begin{tabular}{l}
Woodmont \\
Commons \\
Remainder (2040) - \\
West of I-93
\end{tabular} & 215 Hotel Rooms & 0.6 employees / room & 129 & \\
\hline \begin{tabular}{l}
Woodmont \\
Commons \\
Remainder (2040) - \\
West of I-93
\end{tabular} & 519,926 gsf of Commercial & \begin{tabular}{l}
\(1 / 2\) of gsf at General Retail: 400 gsf / employee \\
\(1 / 4\) of gsf at Restaurants: 175 gsf/employee \\
\(1 / 4\) of gsf at Other Services: 400 gsf/employee
\end{tabular} & \[
\begin{array}{r}
650 \\
+743 \\
+325
\end{array}
\] & 1,864 \\
\hline Woodmont Commons - East of I-93 & 6,600 gsf of Commercial & General Retail: 400 gsf/employee & 17 & \\
\hline Pettengill Road Industrial Area & 1,094 industrial jobs \({ }^{\text {a }}\) & NA & 1,094 & 1,094 \\
\hline \multicolumn{3}{|c|}{Total} & 4,219 & 4,219 \\
\hline
\end{tabular}

Source: Pillsbury Realty Development (2013), SNHPC (2012a), Interviews with the Town of Londonderry and a Woodmont Commons representative (see Appendix A), RKG Associates (2016), MWCOG (n.d.)
a See Table 8, footnote "b" for how Pettengill Road Industrial Area jobs were calculated.

\subsection*{5.1.3 Summary of 2040 No Build Condition}

Based on the information presented above, the total 2040 No Build population for the study area would be approximately 83,654 as outlined in Table 11. Table 12 shows the total 2040 No Build households, and Table 13 shows the total 2040 No Build employment for the study area.

Table 11. Total 2040 No Build population for study area
\begin{tabular}{|l|c|c|c|c|}
\hline & \begin{tabular}{c} 
Existing \\
Population \\
(2015 \\
Municipality
\end{tabular} & \begin{tabular}{c} 
Background \\
Population Growth \\
from OEP/Chester \\
Projections (2015- \\
2040)
\end{tabular} & \begin{tabular}{c} 
Population Growth \\
from Known \\
Development \\
Proposals
\end{tabular} & \begin{tabular}{c} 
Total 2040 No \\
Build \\
Population
\end{tabular} \\
\hline Derry & 32,948 & 274 & 0 & 33,222 \\
\hline Londonderry & 24,891 & 2,145 & 3,849 & 30,885 \\
\hline Auburn & 5,315 & 733 & 0 & 6,048 \\
\hline Chester & 4,887 & 1,366 & 0 & 6,253 \\
\hline Sandown & 6,255 & 991 & 0 & 7,246 \\
\hline Study Area Total & 74,296 & 5,509 & 3,849 & 83,654 \\
\hline
\end{tabular}

Source: OEP (2016a), Town of Chester (Appendix A), Pillsbury Realty Development (2013), U.S. Census (2010)

Note: See notes for Table 3 for information about projections.
Table 12. Total 2040 No Build households for study area
\begin{tabular}{|l|c|c|c|c|}
\hline & \begin{tabular}{c} 
Existing \\
Households \\
(2015
\end{tabular} & \begin{tabular}{c} 
Background \\
Household Growth \\
(2015-2040)
\end{tabular} & \begin{tabular}{c} 
Household Growth \\
from Known \\
Development \\
Proposals
\end{tabular} & \begin{tabular}{c} 
Total 2040 \\
No Build \\
Households
\end{tabular} \\
\hline Derry & 12,656 & 17 & 0 & 12,673 \\
\hline Londonderry & 8,628 & 725 & 1,345 & 10,968 \\
\hline Auburn & 1,923 & 264 & 0 & 2,188 \\
\hline Chester & 1,621 & 456 & 0 & 2,077 \\
\hline Sandown & 2,193 & 721 & 0 & 2,914 \\
\hline Study Area Total & 27,021 & 2,183 & 1,345 & 30,546 \\
\hline
\end{tabular}

Sources: SNHPC (2012b, 2016a, 2016d; 2017), RPC (2015), Pillsbury Realty Development (2013) Note: See notes for Table 4 for information about projections.

Table 13. Total 2040 No Build employment for study area
\begin{tabular}{|l|c|c|c|c|}
\hline & \begin{tabular}{c} 
Existing \\
Employment \\
(2015 \\
Municipality
\end{tabular} & \begin{tabular}{c} 
Background \\
Employment Growth \\
from SNHPC/ RPC \\
Projections \\
\((2015-2040)\)
\end{tabular} & \begin{tabular}{c} 
Employment \\
Growth From \\
Known \\
Development \\
Proposals
\end{tabular} & \begin{tabular}{c} 
Total 2040 \\
No Build \\
Employment
\end{tabular} \\
\hline Derry & 8,384 & 1,938 & 0 & 10,322 \\
\hline Londonderry & 13,517 & 4,033 & 4,219 & 21,769 \\
\hline Auburn & 1,846 & 914 & 0 & 2,760 \\
\hline Chester & 368 & 267 & 0 & 635 \\
\hline Sandown & 419 & 117 & 0 & 536 \\
\hline Study Area Total & 24,534 & 7,268 & 4,219 & 36,021 \\
\hline
\end{tabular}

Sources: SNHPC (2012b, 2016b, 2016c), RPC (2015), Pillsbury Realty Development (2013), RKG Associates (2016), MWCOG (n.d.), Interviews with the Town of Londonderry and a Woodmont Commons representative (see Appendix A)
Note: See notes for Table 6 for information about projections.

\subsection*{5.22040 Build Condition}

The 2040 Build condition is developed by adding the population, households, and employment growth from development anticipated to be induced by the proposed Project to the 2040 No Build condition values. The induced development presented for the 2040 Build condition is based on Alternative A, which was identified as the preferred alternative in the 2007 DEIS. Alternatives A and B would induce the greatest amount of development relative to the other build alternatives. A comparison of Alternatives B, C, D, and F to the 2040 Build condition (Alternative A ) follows the presentation of the anticipated growth for Alternative A .

\subsection*{5.2.1 Alternative A}

This section first discusses the incremental impact of Alternative A (e.g., indirect land use effects), and then provides a summary of the total 2040 Build condition land use forecast.

\section*{Indirect Land Use Effects}

The additional reasonably foreseeable future development under Alternative A was identified through the land use planner interviews. Table 14 provides a summary of the incremental growth anticipated to be induced by Alternative A, which includes changes in the density and type of development anticipated for Woodmont Commons, as well as commercial and industrial growth in Derry induced by improved access to I-93.

Table 14. Summary of indirect land use effects of Alternative A
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Development \\
Name
\end{tabular} & \begin{tabular}{c} 
Type/Land \\
Use
\end{tabular} & \begin{tabular}{c} 
Residential \\
Units
\end{tabular} & \begin{tabular}{c} 
Hotel \\
Rooms
\end{tabular} & \begin{tabular}{c} 
Commercial \\
Area (gsf)
\end{tabular} & \begin{tabular}{c} 
Institutional \\
(gsf)
\end{tabular} & \begin{tabular}{c} 
Industrial \\
Area \\
(jobs)
\end{tabular} \\
\hline Derry & \begin{tabular}{c} 
Commercial/ \\
Industrial
\end{tabular} & NA & NA & 0 & NA & \(168^{b}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Development \\
Name
\end{tabular} & \begin{tabular}{c} 
Type/Land \\
Use
\end{tabular} & \begin{tabular}{c} 
Residential \\
Units
\end{tabular} & \begin{tabular}{c} 
Hotel \\
Rooms
\end{tabular} & \begin{tabular}{c} 
Commercial \\
Area (gsf)
\end{tabular} & \begin{tabular}{c} 
Institutional \\
(gsf)
\end{tabular} & \begin{tabular}{c} 
Industrial \\
Area \\
(jobs)
\end{tabular} \\
\hline \begin{tabular}{l} 
Woodmont \\
Commons - \\
West of I-93
\end{tabular} & \begin{tabular}{c} 
Mixed Use- \\
Commercial/ \\
Residential
\end{tabular} & 6 & 0 & 322,000 & 40,000 & NA \\
\hline \begin{tabular}{l} 
Woodmont \\
Commons - \\
East of I-93a
\end{tabular} & \begin{tabular}{c} 
Mixed Use- \\
Commercial/ \\
Residential
\end{tabular} & 3 & 200 & \(693,400^{a}\) & 420,000 & NA \\
\hline Chester & Residential & 371 & NA & NA & NA & NA \\
\hline Sandown & Residential & 9 & NA & NA & NA & NA \\
\hline \multicolumn{1}{|c|}{ Total } & \(\mathbf{3 8 9}\) & 200 & \(\mathbf{1 , 0 1 5 , 4 0 0}\) & 460,000 & 168 \\
\hline
\end{tabular}

Source: Pillsbury Realty Development (2013), Interviews with the Towns and a Woodmont Commons representative (see Appendix A).
a Based on the interview with the Woodmont Commons representative on August 7, 2016, it was agreed that developing the upper cap of 400,000 gsf of commercial uses on the East side of I-93 for Phase 1 was unlikely without Exit 4A due to the traffic mitigation that would be required (see Appendix A and footnotes to Table 8). This Build condition value total assumes the difference between the likely No Build Phase 1 commercial development (400,000 gsf -6,600 gsf) plus the remainder of the East side development that would be anticipated as a result of the access provided by Exit 4A (300,000 gsf).
b Because it is not possible to predict which type of jobs would result from Derry's industrial rezoning and redevelopment due to the flexible nature of the Industrial District IV zoning that allows retail, commercial, and industrial development, all jobs were assumed to be in the industrial category.

\section*{Town of Derry}

The Town of Derry has several parcels zoned as Industrial IV, which allows commercial and industrial uses, east of I-93 along Folsom Road, north of North High Street. Redevelopment of the parcels currently zoned as industrial would be encouraged by Alternative A, which provides access to I-93 via Folsom and Madden Roads. The parcels south of Madden and Folsom Roads and west of North High Street were rezoned as Industrial VI in 2004, and construction of the Corporate Park Industrial Park was completed in 2005. Presently, the Town of Derry is undertaking a study to determine whether to rezone several residential properties currently zoned as medium-high density residential to an industrial zoning category (Figure 4). Figure 4 shows these properties and their relationship to Alternative A.

With regard to the properties along Folsom Road north of North High Street, the Build condition includes an estimate of the possible redevelopment that could be induced by Alternative A. To determine the amount of induced development on these parcels, it was necessary to determine the amount of likely existing development or jobs and subtract that from the amount of possible future development or jobs. It was assumed that the industrially zoned properties south of Folsom and Madden Roads would not be redeveloped because the properties have been recently developed (2005). Therefore, only the properties north of Folsom and Madden Roads that are zoned as Industrial District IV were examined for redevelopment.
Of the 10 Industrial District IV properties north of Folsom and Madden Roads that could be developed to higher intensity as a result of Alternative A, only four have existing structures that appear to be places of work rather than residences. Based on Geographic Information System
(GIS) information from the Town of Derry, the footprints of the existing buildings total 43,478 square feet. Based on a windshield survey of the type of businesses, Table 15 outlines the approximate amount of square footage for each use. Using industry-standard employee to gross square foot comparison factors by type of development, Table 15 also provides an estimate of the number of existing employees at the Derry Industrial District IV parcels.

Table 15. Existing Derry Industrial District IV development type and estimated employees
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Development Type } & \begin{tabular}{c} 
Development \\
Size
\end{tabular} & Conversion to Jobs & Jobs \\
\hline Retail & \(8,328 \mathrm{gsf}\) & General Retail: 400 gsf/employee & 21 \\
\hline Office & \(18,322 \mathrm{gsf}\) & Industrial Office: \(300 \mathrm{gsf} / \mathrm{employee}\) & 61 \\
\hline Industrial/Manufacturing & \(27,191 \mathrm{gsf}\) & Industrial/Manufacturing: 800 gsf/employee & 34 \\
\hline \multicolumn{4}{|l|}{ Total } \\
\hline
\end{tabular}

Source: Town of Derry GIS, RKG Associates (2016); MWCOG (n.d.)
Note: The total amount of development (development size) is greater than the total building footprint size because several buildings appeared to have partial second floors.

Appendix G of the I-93 Widening (Salem to Manchester) Supplemental Environmental Impact Statement (SEIS) includes a memorandum providing revised local future employment estimates to account for the potential indirect land use effects of Exit 4A (NHDOT and FHWA, 2010). The analysis conducted for this memorandum is no longer relevant because the Woodmont PUD was not available at that time (among other changes over time).However, the memorandum included research on employment densities of select industrial properties in Londonderry and Derry that remains applicable and useful for this study. To estimate the potential industrial redevelopment potential of the Industrial District IV properties, the average industrial employment density from the research provided in Appendix G of the I-93 Widening SEIS is used in this report. Table 16 includes the employment densities of three industrial properties in Derry from Appendix G of the SEIS and their average employment density.

Table 16. Employment density of select industrial businesses in Derry
\begin{tabular}{|l|l|l|c|c|c|c|}
\hline & & & & & \(\begin{array}{c}\text { Employment } \\
\text { Density } \\
\text { Name }\end{array}\) & \multicolumn{1}{c|}{ Address }
\end{tabular} \(\left.\begin{array}{c}\text { Average } \\
\text { Employment } \\
\text { Density } \\
\text { (employees } \\
\text { per acre) }\end{array}\right]\)

Source: NHDOT and FHWA (2010)

The total area of Industrial District IV properties within the identified redevelopment area that are more than 1 acre (the minimum lot size required by zoning to develop a property in Industrial District IV) is 31.7 acres. \({ }^{6}\) Using the average industrial employment density in Table 16 and the amount of Industrial District IV acreage available, the estimated future employment capacity of the Industrial District IV properties is 380 jobs. Although it is not possible to know whether the market could support build out in this area by 2040, these jobs are estimated to be potentially attributable to the interstate access improvements provided to this area of Derry by Alternative A. Additionally, some of the parcels greater than 1 acre adjacent to and north of Folsom and Madden Roads would be transected by Alternative A, which may result in a lower estimated future employment capacity. Subtracting the total number of existing jobs on these industrial properties (see Table 15), the net approximate Build condition employment for these rezoned Industrial District IV properties is 264 jobs.

As previously mentioned, there is the potential for rezoning several residential properties currently zoned as medium-high density residential to an industrial zoning category (Figure 4). If these 10 residential properties were to be rezoned to Industrial Districts IV or VI, only as many as four of the properties could be redeveloped as industrial if properties were not combined because of the minimum lot area requirement in both zoning categories of 1 acre (Town of Derry, 2016). Assuming all four of these properties more than 1 acre were rezoned and redeveloped, a total of 6.8 acres, there would be about 82 jobs produced from the redevelopment based on the aforementioned acre-to-employee conversion factors.

\section*{Town of Londonderry}

The change in type and amount of development anticipated for Woodmont Commons is based on the modification of the development that would be permitted by the Town of Londonderry (e.g., the "With Exit 4A" scenario from the PUD Master Plan) (see section 4.2). It should be noted that the Woodmont Commons PUD Master Plan includes the maximum possible development that would be permitted by Town of Londonderry for the PUD (east and west of I-93) with the Exit 4A Project. As mentioned in sections 2.4 and 5.1.2, this maximum development has been used as a conservative measure to evaluate potential environmental impacts (i.e., resulting from the development of available land) and should not be construed as a prediction of economic benefit of the Proposed Project. The amount of development for Woodmont Commons was converted into 2040 Build condition population, households, and employment (jobs) using the same methodology discussed in section 5.1.2. Therefore, based on a study area average household size of 2.73 persons and a total of nine Build residential units, the total 2040 Build known development population would be approximately 25 people. Household growth was calculated by multiplying the residential units produced in Woodmont Commons by the 2010 SNHPC weighted average occupancy rate of 95.4 percent, resulting in about nine households.
Employment growth (jobs) from known development projects was calculated based on the size and type of known development project, using the industry standard employee to gross square foot comparison factors by type of development (RKG Associates, 2016; MWCOG, n.d.; U.S. Green Building Council, 2008). Given the assumptions noted in Table 17, approximately 4,335 Build condition jobs are anticipated as a result of the development induced by the Exit 4A Project. This "incremental growth" is added to the No Build condition total population,

\footnotetext{
\({ }^{6}\) Two parcels shared the same parcel number and therefore were considered as one.
}
households and employment to obtain the total Build condition socioeconomic inputs for the traffic modeling.

The industrial developments in the northwest portion of Londonderry would not be affected by the Project. Access to those parcels is provided by Pettengill Road and Raymond Wieczorek Drive (Manchester Airport Access Road).

Table 17. 2040 Build condition incremental employment growth as a result of known developments in Londonderry
\begin{tabular}{|c|c|c|c|}
\hline Development Name & Development Size and Type & Conversion to Jobs & Jobs \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Woodmont Commons \\
- West of I-93
\end{tabular}} & \(322,000 \mathrm{gsf}\) of Commercial & \begin{tabular}{l}
\(1 / 2\) of gsf at General Retail: \(400 \mathrm{gsf} /\) employee \\
\(1 / 4\) of gsf at Restaurants: 175 gsf/employee \\
\(1 / 4\) of gsf at Other Services: 400 gsf/employee
\end{tabular} & \[
\begin{gathered}
403 \\
+460 \\
+201
\end{gathered}
\] \\
\hline & 40,000 gsf of Institutional (Assisted Living) & Lodging: 1,124 gsf/employee & 37 \\
\hline \multirow{3}{*}{\begin{tabular}{l}
Woodmont Commons \\
- East of I-93
\end{tabular}} & 200 Hotel Rooms & 0.6 employees / room & 120 \\
\hline & 693,400 gsf of Commercial & \begin{tabular}{l}
\(1 / 2\) of gsf at General Retail: \(400 \mathrm{gsf} /\) employee \\
\(1 / 4\) of gsf at Restaurants: 175 gsf/employee \\
\(1 / 4\) of gsf at Other Services: 400 gsf/employee
\end{tabular} & \[
\begin{gathered}
867 \\
+991 \\
+433
\end{gathered}
\] \\
\hline & \(420,000 \mathrm{gsf}\) of Institutional (Hospital and Assisted Living) & \begin{tabular}{l}
250,000 gsf at Hospital: 429 gsf/employee \\
170,000 gsf of Lodging: 1,124 gsf/employee
\end{tabular} & \[
\begin{gathered}
667 \\
+156
\end{gathered}
\] \\
\hline \multicolumn{3}{|c|}{Total} & 4,335 \\
\hline
\end{tabular}

Source: Pillsbury Realty Development (2013), RKG Associates (2016), MWCOG (n.d.), USGBC (2008)

\section*{Chester, Sandown, and Auburn}

As discussed in the interview summaries, Chester and Sandown are likely to experience additional residential development as a result of Alternative A due to the improved access provided by Exit 4A, which would enable commuters to bypass downtown Derry. Even considering the growth management strategies discussed in section 4.0, the local planners agreed that Alternative A could contribute to Chester and Sandown reaching their 2040 projected population earlier than would otherwise occur in the No Build condition. The potential range of impacts was considered by examining two scenarios:
- Moderate growth impact scenario- Chester and Sandown reach their 2040 population level 5 years early, in 2035. Between 2035 and 2040, the population of both towns continues to grow at the same rate as OEP's projection for 2035-2040.
- High growth impact scenario- Chester and Sandown reach their 2040 population level 10 years early in 2030. Between 2030 and 2040, the population of both towns continues to grow at the same average annual rate as OEP's projection for 2030-2040.

Table 18 presents a comparison of the No Build and both the moderate growth and high-growth impact scenario populations for Chester and Sandown. To present a conservative assessment of potential impacts, the high growth impact scenario was used for impact analysis and incorporated in the travel demand model. The high growth impact scenario yields an additional 1,117 people in Chester and 21 people in Sandown under the 2040 Build condition. Using the 2040 population and household information to determine average household size for each town in 2040, the additional people yield approximately 371 and 9 additional households in 2040 for Chester and Sandown, respectively.

Auburn is not likely to experience a change in growth and development associated with Alternative A because Auburn already has more direct access to I-93 via Exit 5 and NH 101. The local official interviewed as part of this study concurred with this conclusion (see Appendix A).

Table 18. Chester and Sandown 2040 Build condition population growth
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Town} & \multirow[b]{2}{*}{Impact Scenario} & \multicolumn{4}{|c|}{Population} & \multirow[t]{2}{*}{Population Increase Over No Build in 2040} \\
\hline & & 2015 & 2030 & 2035 & 2040 & \\
\hline \multirow{3}{*}{Chester} & No Build & 4,887 & 6,101 & 6,177 & 6,253 & NA \\
\hline & Moderate Growth (Build) & 4,887 & 5,879 & 6,253 & 6,789 & 535 \\
\hline & High Growth (Build) & 4,887 & 6,253 & 6,789 & 7,370 & 1,117 \\
\hline \multirow{3}{*}{Sandown} & No Build & 6,255 & 7,140 & 7,229 & 7,246 & NA \\
\hline & Moderate Growth (Build) & 6,255 & 7,061 & 7,246 & 7,249 & 3 \\
\hline & High Growth (Build) & 6,255 & 7,246 & 7,257 & 7,267 & 21 \\
\hline
\end{tabular}

Source: OEP (2016a)

\section*{2040 Build Condition Land Use Forecast Summary}

Based on the information presented above, the 2040 Build population for the study area is estimated to be 83,654 , as outlined in Table 19, an increase of 1,163 people over the No Build condition. Tables 20 and 21 show the total households and employment (jobs), respectively, for the study area under the 2040 Build condition. The total number of 2040 Build households for the study area is estimated to be 34,190 , an increase of 389 households over the No Build condition (Table 20), and the 2040 Build employment for the study area is estimated to be 39,975 jobs, an increase of 4,681 jobs over the No Build condition (Table 21). The large increase in employment under the Build condition is primarily attributable to the additional build out of Woodmont Commons that Londonderry will permit with the completion of Exit 4A.

Table 19. Total 2040 Build condition population for study area
\begin{tabular}{|l|c|c|c|c|}
\hline & \begin{tabular}{c} 
2040 Build \\
2040 No Build \\
Population
\end{tabular} & \begin{tabular}{c} 
Devemental \\
Project Population
\end{tabular} & \begin{tabular}{c} 
Total 2040 Build \\
Population
\end{tabular} & \begin{tabular}{c} 
Percent \\
Difference \\
between No \\
Build and Build
\end{tabular} \\
\hline Derry & 33,222 & 0 & 33,222 & \(0.00 \%\) \\
\hline Londonderry & 30,885 & 25 & 30,910 & \(0.08 \%\) \\
\hline Auburn & 6,048 & 0 & 6,048 & \(0.00 \%\) \\
\hline Chester & 6,253 & 1,117 & 7,370 & \(16.40 \%\) \\
\hline Sandown & 7,246 & 21 & 7,267 & \(0.29 \%\) \\
\hline Study Area Total & 83,654 & 1,163 & 84,818 & \(1.38 \%\) \\
\hline
\end{tabular}

Table 20. Total 2040 Build condition households for study area
\(\left.\begin{array}{|l|c|c|c|c|}\hline & & \begin{array}{c}\text { 2040 Build } \\ \text { Incremental } \\ \text { 2040 No Build } \\ \text { Mouseholds }\end{array} & \begin{array}{c}\text { Development Project } \\ \text { Households }\end{array} & \begin{array}{c}\text { Total 2040 Build } \\ \text { Households }\end{array}\end{array} \begin{array}{c}\text { Percent } \\ \text { Difference } \\ \text { between No } \\ \text { Build and Build }\end{array}\right]\)

Table 21. Total 2040 Build condition employment for study area
\begin{tabular}{|l|c|c|c|c|}
\hline & \begin{tabular}{c} 
2040 \\
No Build \\
Employment
\end{tabular} & \begin{tabular}{c} 
Build Incremental \\
Development \\
Employment
\end{tabular} & \begin{tabular}{c} 
Total 2040 \\
Build \\
Employment
\end{tabular} & \begin{tabular}{c} 
Percent \\
Difference \\
between No \\
Build and Build
\end{tabular} \\
\hline Derry & 10,479 & 346 & 10,825 & \(3.25 \%\) \\
\hline Londonderry & 20,875 & 4,335 & 25,210 & \(18.81 \%\) \\
\hline Auburn & 2,764 & 0 & 2,764 & \(0.00 \%\) \\
\hline Chester & 641 & 0 & 641 & \(0.00 \%\) \\
\hline Sandown & 536 & 0 & 536 & \(0.00 \%\) \\
\hline Study Area Total & 35,294 & 4,681 & 39,975 & \(12.44 \%\) \\
\hline
\end{tabular}


Figure 4. Location of potential redeveloped and rezoned properties in the Town of Derry

\subsection*{5.2.2 Alternative B}

Compared to Alternative A, Alternative B would be expected to result in similar commercial and industrial growth in Derry. Although the exact location of the connector road would be different from that proposed for Alternative A, Alternative B would provide access to the area zoned as Industrial IV and the area being considered for rezoning. The development associated with Woodmont Commons and Chester are anticipated to be similar under Alternatives A and B. As previously mentioned, the proposed Project is not expected to affect the industrial developments in the northwest portion of Londonderry and residential development in Auburn. Finally, the anticipated increased rate of residential development in Chester and Sandown would be similar under Alternatives A and B.

\subsection*{5.2.3 Alternative C}

The commercial and industrial development anticipated in Derry under Alternative A would not be realized under Alternative C because the rezoned parcels along Folsom Road north of North High Street would not have direct access to the interchange. As Figure 3 shows, the alignment of Alternative C would constrain additional commercial/industrial development due to lack of available land adjacent to the right-of-way. As the alignment approaches I-93, a transmission line and conservation areas limit the available land for development. Where the alignment follows Route 28, the adjacent land is largely built out with commercial and industrial uses. Although it is possible that some of the commercial and industrial parcels could be redeveloped, it is unlikely to result in a substantive net gain of commercial or industrial space because of the size of the individual parcels.

Londonderry planning staff and the Woodmont Commons representative indicated that Build Alternative C would limit access to the area available for development near I-93 to an extent that, if this alternative were selected, the Woodmont Commons area on the east side of I-93 would be developed as detailed under the No Build (e.g., primarily residential, 330 households). As previously mentioned, the proposed Project is not expected to affect the industrial developments in the northwest portion of Londonderry and residential development in Auburn. Finally, the anticipated increased rate of residential development in Chester and Sandown would be similar under Alternatives A and B given that the Alternative C interchange/roadway improvements would still provide a bypass of downtown Derry (although with a less direct route than Alternative A).

\subsection*{5.2.4 Alternative D}

Development under Alternative D would be the same as that anticipated under Alternative C because the interchange would be located in the same location as Alternative C. Roadway improvements would follow Tsienneto Road to connect with NH 102 (similar to Alternative A).

\subsection*{5.2.5 Alternative \(F\)}

Alternative F would involve an upgrade of NH Route 102 between Londonderry Road and the NH Route 28 Bypass. Development under Alternative F in the area of Woodmont Commons and the industrial area of Derry would be the same as that anticipated under the No Build condition. The indirect land use impacts on Chester and Sandown are not anticipated. Although the improvements on NH 102 would reduce congestion through downtown Derry, Alternative F does
not include improvements that would enable commuters to bypass downtown Derry, thereby encouraging growth in Chester or Sandown.

\subsection*{6.0 ALLOCATION OF GROWTH TO TRAFFIC ANALYSIS ZONES}

The purpose of this section is to document how the town-level and development-specific projections for the No Build and Build conditions discussed in prior sections were allocated to geographic unit required by the SNHPC traffic model, the TAZ. The Traffic Technical Report will discuss in detail how the population, household, employment projections from this Report will be used to develop traffic data.The anticipated population, household, and job growth associated with the known No Build developments was assigned to TAZs based on the percentage of the development land area in each TAZ. The detailed formulas for assigning population and households to TAZ are provided in a memorandum in Appendix D. Table 22 shows the 2040 No Build condition growth from known developments, and Table 23 shows the total 2040 No Build condition. Employment data are not available for publication due to confidentiality issues.

Table 22. 2040 No Build condition growth from known developments by TAZ
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Municipality} & \multirow[b]{2}{*}{TAZ} & \multicolumn{3}{|l|}{2040 No Build Condition Known Development Growth} & \multirow[b]{2}{*}{Associated Growth Notes} \\
\hline & & Population & Households & Employment & \\
\hline Londonderry & 277 & 0 & 0 & 148 & Market Basket Redevelopment \\
\hline Londonderry & 277 & 1,392 & 486 & 1,113 & Woodmont Commons Phase 1 - West \\
\hline Londonderry & 99 & 813 & 284 & 965 & Woodmont Commons Remainder West \\
\hline Londonderry & 277 & 743 & 260 & 882 & Woodmont Commons Remainder West \\
\hline Londonderry & 69 & 520 & 182 & 10 & Woodmont Commons - East \\
\hline Londonderry & 375 & 381 & 133 & 7 & Woodmont Commons - East \\
\hline Londonderry & 64L & 0 & 0 & 525 & Pettengill Road Industrial Area \\
\hline Londonderry & 274 & 0 & 0 & 569 & Pettengill Road Industrial Area \\
\hline Study Area Total & NA & 3,849 & 1,345 & 4,219 & \\
\hline
\end{tabular}

Table 23. 2040 No Build condition by TAZ
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Municipality} & \multirow[t]{2}{*}{TAZ} & \multicolumn{3}{|c|}{2040 Background Growth} & \multicolumn{3}{|c|}{2040 No Build Known Developments} & \multicolumn{3}{|c|}{2040 Total No Build Condition} \\
\hline & & Population & Households & Employment & Population & Households & Employment & Population & Households & Employment \\
\hline Derry & 132 & 773 & 339 & Cl & 0 & 0 & 0 & 773 & 339 & Cl \\
\hline Derry & 133 & 85 & 29 & Cl & 0 & 0 & 0 & 85 & 29 & Cl \\
\hline Derry & 377 & 13 & 3 & Cl & 0 & 0 & 0 & 13 & 3 & Cl \\
\hline Londonderry & 64L & 0 & 0 & Cl & 0 & 0 & 525 & 0 & 0 & Cl \\
\hline Londonderry & 69 & 74 & 23 & Cl & 520 & 182 & 10 & 594 & 205 & Cl \\
\hline Londonderry & 99 & 885 & 304 & Cl & 813 & 284 & 965 & 1,698 & 588 & Cl \\
\hline Londonderry & 274 & 405 & 118 & Cl & 0 & 0 & 569 & 405 & 118 & Cl \\
\hline Londonderry & 277 & 31 & 11 & Cl & 2,135 & 746 & 2,143 & 2,166 & 757 & Cl \\
\hline Londonderry & 375 & 0 & 0 & Cl & 381 & 133 & 7 & 381 & 133 & Cl \\
\hline Auburn \({ }^{\text {a }}\) & NA \\
\hline Chester & 148 & 796 & 275 & Cl & 0 & 0 & 0 & 796 & 275 & Cl \\
\hline Chester & 149 & 632 & 225 & Cl & 0 & 0 & 0 & 632 & 225 & Cl \\
\hline Chester & 150 & 566 & 220 & Cl & 0 & 0 & 0 & 566 & 220 & Cl \\
\hline Chester & 151 & 624 & 223 & Cl & 0 & 0 & 0 & 624 & 223 & Cl \\
\hline Chester & 152 & 1,535 & 448 & Cl & 0 & 0 & 0 & 1,535 & 448 & Cl \\
\hline Chester & 153 & 526 & 180 & Cl & 0 & 0 & 0 & 526 & 180 & Cl \\
\hline Chester & 154 & 635 & 229 & Cl & 0 & 0 & 0 & 635 & 229 & Cl \\
\hline Chester & 155 & 938 & 277 & Cl & 0 & 0 & 0 & 938 & 277 & Cl \\
\hline Sandown \({ }^{\text {b }}\) & NA & NA & NA & NA & 0 & 0 & 0 & NA & NA & NA \\
\hline Total & NA & 8,519 & 2,905 & Cl & 3,849 & 1,345 & 4,219 & 12,368 & 4,250 & Cl \\
\hline
\end{tabular}

Notes: TAZs in this table are those that include population, household, and employment growth from known developments under the No Build condition or incremental growth associated with the Build condition (Alternative A). The whole-town TAZ tables for the entire study area are included in Appendix D. SNHPC background employment data by TAZ is confidential and not available for publication. \(\mathrm{Cl}=\) Confidential Information.
a Auburn is listed as NA because there are no known developments or induced growth anticipated; therefore, population, households, and employment were not allocated to TAZs.
The anticipated induced population and household growth for Sandown was not assigned to TAZs because Sandown is located in an external zone in the traffic demand model.

The 2040 Build condition incremental growth associated with Derry redevelopment, Woodmont Commons, and induced residential development was assigned to TAZs using the following approach. The anticipated job growth that could result from Derry redevelopment was assigned based on the location of the parcels currently zoned as Industrial IV within each TAZ that would have access to I-93 as a result of Alternative A. The anticipated job growth that could result from the potential Derry rezoning was assigned based on the location of the parcels currently zoned as medium high density residential within each TAZ that would have access to I-93 as a result of Alternative A. The anticipated population, household, and job growth associated with Woodmont Commons was assigned to TAZs based on the percentage of the Woodmont Commons development area in each TAZ. In Chester, the population and household growth anticipated to be induced by Alternative A was allocated to TAZs by overlaying the town and TAZ boundaries and assigning population and households based on the percentage of the town area within each TAZ. The anticipated induced population and household growth for Sandown was not assigned to TAZs because Sandown is located in an external zone in the traffic demand model. \({ }^{7}\) Table 24 presents the incremental population, household, and job growth by TAZ that would be induced by Alternative A for the 2040 Build condition. The TAZs shown in Table 24 and Figure 5 (Sheets 1 and 2) are the ones to which growth was assigned. Table 25 shows the total 2040 Build condition anticipated under Alternative A, which includes the 2040 total No Build condition and the incremental growth associated with Alternative A. Appendix D contains detailed tables showing all of the TAZs in the study area and the population, household, and job growth for the 2040 No Build condition and the Build conditions associated with each alternative (A, B, C, D, and F). \({ }^{8}\)

Table 24. 2040 Build condition incremental growth associated with Alternative A by TAZ
\begin{tabular}{|l|c|c|c|c|c|}
\hline & & \multicolumn{3}{|c|}{\(\mathbf{2 0 4 0}\) Incremental Build Condition Growth } & \multirow{2}{*}{\begin{tabular}{c} 
Associated \\
(Alternative A)
\end{tabular}} \\
\cline { 2 - 5 } \multicolumn{1}{|c|}{ Municipality } & TAZ & Population & Households & Employment & \begin{tabular}{c} 
Growth Notes
\end{tabular} \\
\hline Derry & 132 & 0 & 0 & 14 & \begin{tabular}{c} 
Derry Industrial \\
Redevelopment
\end{tabular} \\
\hline Derry & 133 & 0 & 0 & 106 & \begin{tabular}{c} 
Derry Industrial \\
Redevelopment
\end{tabular} \\
\hline Derry & 377 & 0 & 0 & 226 & \begin{tabular}{c} 
Derry Industrial \\
Redevelopment
\end{tabular} \\
\hline Londonderry & 99 & 9 & 3 & 575 & \begin{tabular}{c} 
Woodmont \\
Commons West
\end{tabular} \\
\hline Londonderry & 277 & 8 & 3 & 526 & \begin{tabular}{c} 
Woodmont \\
Commons West
\end{tabular} \\
\hline Londonderry & 69 & 5 & 2 & 6 & \begin{tabular}{c} 
Woodmont \\
Commons East
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
\({ }^{7}\) Incorporation of Sandown indirect land use impacts in the SNHPC model is not necessary given the minor growth impact estimated.
\({ }^{8}\) TAZs for Sandown are not included because of its location outside the SNHPC travel demand model region.
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Municipality} & \multirow[b]{2}{*}{TAZ} & \multicolumn{3}{|l|}{2040 Incremental Build Condition Growth (Alternative A)} & \multirow[b]{2}{*}{Associated Growth Notes} \\
\hline & & Population & Households & Employment & \\
\hline Londonderry & 375 & 3 & 1 & 1,368 & Woodmont Commons East \\
\hline Auburn & NA & 0 & 0 & 0 & No projects or induced growth \\
\hline Chester & 148 & 121 & 40 & 0 & Induced growth due to access \\
\hline Chester & 149 & 126 & 42 & 0 & Induced growth due to access \\
\hline Chester & 150 & 204 & 68 & 0 & Induced growth due to access \\
\hline Chester & 151 & 144 & 48 & 0 & Induced growth due to access \\
\hline Chester & 152 & 241 & 80 & 0 & Induced growth due to access \\
\hline Chester & 153 & 103 & 34 & 0 & Induced growth due to access \\
\hline Chester & 154 & 93 & 31 & 0 & Induced growth due to access \\
\hline Chester & 155 & 85 & 28 & 0 & Induced growth due to access \\
\hline Sandown \({ }^{\text {a }}\) & NA & 21 & 9 & 0 & Not allocated due to location outside of traffic model \\
\hline Study Area Total & NA & 1,163 & 389 & 4,681 & NA \\
\hline
\end{tabular}
a The anticipated induced population and household growth for Sandown was not assigned to TAZs because Sandown is located in an external zone in the traffic demand model.


Figure 5 (Sheet 1 of 2). TAZs with No Build and Build allocations


Figure 5 (Sheet 2 of 2). TAZs with No Build and Build allocations

\section*{Table 25. 2040 Build condition by TAZ}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Municipality} & \multirow{2}{*}{TAZ} & \multicolumn{3}{|c|}{2040 Total No Build Condition} & \multicolumn{3}{|l|}{2040 Incremental Build Condition Growth (Alternative A)} & \multicolumn{3}{|c|}{2040 Total Build Condition} \\
\hline & & Population & Households & Employment & Population & Households & Employment & Population & Households & Employment \\
\hline Derry & 132 & 773 & 339 & Cl & 0 & 0 & 14 & 773 & 339 & Cl \\
\hline Derry & 133 & 85 & 29 & Cl & 0 & 0 & 106 & 85 & 29 & Cl \\
\hline Derry & 377 & 13 & 3 & Cl & 0 & 0 & 226 & 13 & 3 & Cl \\
\hline Londonderry & 64L & 0 & 0 & Cl & 0 & 0 & 0 & 0 & 0 & Cl \\
\hline Londonderry & 69 & 594 & 205 & Cl & 5 & 2 & 1,866 & 599 & 207 & Cl \\
\hline Londonderry & 99 & 1,698 & 588 & Cl & 9 & 3 & 575 & 1,707 & 591 & Cl \\
\hline Londonderry & 274 & 405 & 118 & Cl & 0 & 0 & 0 & 405 & 118 & Cl \\
\hline Londonderry & 277 & 2,166 & 757 & Cl & 8 & 3 & 526 & 2,174 & 760 & Cl \\
\hline Londonderry & 375 & 381 & 133 & Cl & 3 & 1 & 1,368 & 384 & 134 & Cl \\
\hline Auburn \({ }^{\text {a }}\) & NA & NA & NA & NA & 0 & 0 & 0 & NA & NA & NA \\
\hline Chester & 148 & 796 & 275 & Cl & 121 & 40 & 0 & 917 & 315 & Cl \\
\hline Chester & 149 & 632 & 225 & Cl & 126 & 42 & 0 & 758 & 267 & Cl \\
\hline Chester & 150 & 566 & 220 & Cl & 204 & 68 & 0 & 770 & 288 & Cl \\
\hline Chester & 151 & 624 & 223 & Cl & 144 & 48 & 0 & 768 & 271 & Cl \\
\hline Chester & 152 & 1,535 & 448 & Cl & 241 & 80 & 0 & 1,776 & 528 & Cl \\
\hline Chester & 153 & 526 & 180 & Cl & 103 & 34 & 0 & 629 & 214 & Cl \\
\hline Chester & 154 & 635 & 229 & Cl & 93 & 31 & 0 & 728 & 260 & Cl \\
\hline Chester & 155 & 938 & 277 & Cl & 85 & 28 & 0 & 1,023 & 305 & Cl \\
\hline Sandown \({ }^{\text {b }}\) & NA \\
\hline Total & NA & 12,368 & 4,250 & Cl & 1,142 & 380 & 4,681 & 13,510 & 4,630 & Cl \\
\hline
\end{tabular}

Notes: TAZs in this table are those that include population, household, and employment growth from known developments under the No Build condition or incremental growth associated with the Build condition (Alternative A). The whole-town TAZ tables for the entire study area are included in Appendix D. SNHPC background employment data by TAZ is confidential and not available for publication. \(\mathrm{CI}=\) Confidential Information
Auburn is listed as NA because there are no known developments or induced growth anticipated; therefore, population, households, and employment were not allocated to TAZs
The anticipated induced population and household growth for Sandown was not assigned to TAZs because Sandown is located in an external zone in the traffic demand model.

Table 24 shows the incremental population, household, and jobs growth based on the anticipated indirect land use effects of Alternative A. As detailed in Appendix D, the Project would result in the most indirect land use effects under Alternatives A and B, less indirect land use effects under Alternatives C and D, and no anticipated indirect land use effects under Alternative F. The projected indirect land use effects of Alternatives A and B are from the difference in the development approved and expected for Woodmont Commons development with and without the Project, the difference in development on the recently rezoned parcels in the Town of Derry along Folsom Road, and anticipated residential development in the Towns of Chester and Sandown based on improved access to I-93. The projected indirect land use effects of Alternatives C and D are only from the anticipated residential development in the Towns of Chester and Sandown based on improved access to I-93.
The travel demand modeling and traffic impact analyses will utilize the socioeconomic data results of this study as an input, and the details of these analyses will be documented separately in the Traffic and Transportation Technical Report.

\subsection*{7.0 REFERENCES}

Applied Economic Research. 2012. Presentation: Pettengill Road Development Opportunities Analysis and Findings. Prepared for Londonderry Housing and Redevelopment Authority. December 2012. Available at: http://www.londonderrynh.org/Pages/LondonderryNH_PlanEcoDev/TigerV/PR Develop mentOpportunities.pdf.
Chester Planning Board. 2015. Chester Master Plan 2015. Available at: http://www.chesternh.org/WP2012/wp-content/uploads/2012/08/2015-Chester-Master-Plan-Update.pdf.

FHWA (Federal Highway Administration). 2003. Interim Guidance: Questions and Answers Regarding the Consideration of Indirect and Cumulative Impacts in the NEPA Process. Available at: https://www.environment.fhwa.dot.gov/guidebook/qaimpact.asp
FHWA. 2010. Interim Guidance on the Application of Travel and Land Use Forecasting in NEPA. Available at: https://www.environment.fhwa.dot.gov/projdev/travel_landUse.asp.
Heritage Commission. 2016. Heritage Commission Meeting Minutes, Londonderry, New Hampshire - DRAFT. March 24, 2016. Available at: http://www.londonderrynh.org/pages/LondonderryNH_HistMin/2016/HC\%20Minutes\%2 0032416\%20(A).pdf.

Jaschik, S. 2012. Chester College will close. Inside Higher Ed, May 21, 2012. Available at: https://www.insidehighered.com/news/2012/05/21/chester-college-will-shut-down. Accessed September 8, 2016.
MWCOG (Metropolitan Washington Council of Governments). No Date. Round 7 Conversion Factors for Employment. Available at: http://www.mwcog.org/file.aspx?A=v0SA9I\%2BV005\%2F\%2Bgsoo02QiYnCTJWpX7s ZJJ0CY5cWjyI\%3D. Accessed September 20, 2016.

National Historical Geographic Information System. 1990. 1990 Decennial U.S. Census, Household Data. NHGIS data file 'nhgis0001_ds120_1990_cty_sub'. Available at: https://www.nhgis.org/documentation/tabular-data.
NHDOT (New Hampshire Department of Transportation) and FHWA (Federal Highway Administration). 2010. Final Supplemental Environmental Impact Statement and Reevaluation/Section 4(f) Evaluation for Interstate 93 Improvements Salem to Manchester; Appendix G - Indirect Effects Written Reevaluation/Technical Report. May 2010.

NHES (New Hampshire Employment Security). 2015. New Hampshire Community Profiles (individual town pages). Available at: http://www.nhes.nh.gov/elmi/products/cp/index.htm. Accessed September 13, 2016.

OEP (New Hampshire Office of Energy and Planning). 2013. New Hampshire Population Forecast by Municipality: 2013. Available at: https://www.nh.gov/oep/data-center/population-projections.htm.

OEP. 2016a. New Hampshire Population Projections by Municipality: 2016 (projection numbers). Received via email from Ken Gallager (OEP) to Kerri Snyder (Louis Berger) on September 9, 2016.
OEP. 2016b. County Population Projections, By Municipality: August 2016 (memo attached to projection numbers). Received via email from Ken Gallager (OEP) to Kerri Snyder (Louis Berger) on September 9, 2016.

Pillsbury Realty Development, LLC. 2013. Woodmont Commons Planned Unit Development Master Plan. Approved October 2, 2013. Available at: http://www.londonderrynh.org/Pages/LondonderryNH_BComm/Planning/commons.
Pillsbury Realty Development, LLC. 2016. Woodmont Commons - Phase I Development. Available at: http://www.londonderrynh.org/Pages/LondonderryNH_BComm/Planning/projectsunderr eview/Woodmont\%20Site\%20Plan\%20-\%20Overall\%20Site\%20Plan\%20Sheet.pdf.
Regional Economic Development Center of Southern New Hampshire. 2016. Comprehensive Economic Development Strategy. Available at: http://media.wix.com/ugd/69da16_9e03e77ffacc4e36b3b3e8607fa14491.pdf.

RKG Associates. 2016. Email to Laura Hodgson, Urban/Transportation Planner at Louis Berger, from Lawrence Cranor, Senior Project Manager at RKG Associates, regarding calculating employees per gross square feet of various development types. Received from RKG Associates on September 13, 2016 and September 20, 2016.
Rockingham Planning Commission. 2015. 2015 Regional Master Plan. Available at: http://www.rpcnh.org/application/files/5414/6168/4994/Complete2015RegionalMasterPlan.pdf. Accessed September 1, 2016.

Sandown Master Plan Steering Committee, Planning Board, and Rockingham Planning Commission. 2013. 2013 Sandown, NH Master Plan. Available at: http://sandown.us/Pages/Sandownnh Bcomm/PlanningBoard/masterplan/masterplanfinal 2013.pdf.

SNHPC (Southern New Hampshire Planning Commission). 2007. Town of Auburn, NH Master Plan. Prepared for the Auburn Planning Board. Available at: http://www.auburnnh.us/sites/auburnnh/files/file/file/masterplanfinalnomaps.pdf.

SNHPC. 2010. Regional Comprehensive Plan 2010 for the Southern New Hampshire Planning Commission Region. Available at: http://www.snhpc.org/pdf/Final_Full_RCP.pdf
SNHPC. 2012a. Letter to Mr. G. Sirois, Director of Derry Planning Department, from Mr. D.J. Preece, Executive Director, SNHPC, regarding population and dwelling unit projections. Received from SNHPC during interview on July 25, 2016.

SNHPC. 2012b. Email to Leo Tidd, Senior Planner at Louis Berger, from Julie Chen, Senior Transportation Planner at SNHPC, regarding population, dwelling unit, and household projections for 2010-2050. Received from SNHPC on August 10, 2016.

SNHPC. 2012c. Email to Leo Tidd, Senior Planner at Louis Berger, from Julie Chen, Senior Transportation Planner at SNHPC, regarding employment projections for 2010-2050. Received from SNHPC on August 22, 2016.
SNHPC. 2014. Moving Southern New Hampshire Forward: 2015-2035. Adopted December 16, 2014. Available at: http://www.snhpc.org/pdf/SNHPCRegionCompPlan2015.pdf.

SNHPC. 2016a. Email to Kerri Snyder, Principal Environmental Planner at Louis Berger, from Julie Chen, Senior Transportation Planner at SNHPC, regarding the allocation of OEP population projections to TAZ and calculation of households by TAZ. Received from SNHPC on October 21, 2016.
SNHPC. 2016b. Email to Leo Tidd, Senior Planner at Louis Berger, from Julie Chen, Senior Transportation Planner at SNHPC, regarding updated 2015 employment projections. Received from SNHPC on August 25, 2016.
SNHPC. 2016c. Email to Kerri Snyder, Principal Environmental Planner at Louis Berger, from Julie Chen, Senior Transportation Planner at SNHPC, regarding the adjusted employment projections for 2020-2040. Received from SNHPC on November 7, 2016.
SNHPC. 2016d. Email to Kerri Snyder, Principal Environmental Planner at Louis Berger, from Julie Chen, Senior Transportation Planner at SNHPC, regarding calculating household size and occupancy rate. Received from SNHPC on August 23, 2016.
SNHPC. 2017. Email to Kerri Snyder, Principal Environmental Planner at Louis Berger, from Julie Chen, Senior Transportation Planner at SNHPC, regarding the revised population and household projections for the Town of Chester. Received from SNHPC on February 14, 2017.
Town of Chester. No Date. Planning Board - Chester Planning Department - Plans for Approved Subdivision Plans. Available at: http://www.chesternh.org/boards-committees/planningboard. Accessed August 23, 2016.
Town of Chester. 2015. Town of Chester Zoning Ordinance. Updated May 12, 2015. Available at: http://www.chesternh.org/WP2012/wp-content/uploads/2012/08/2015-ZoningOrdinance.pdf.
Town of Derry. 2010. Master Plan. Adopted March 24, 2010. Available at: http://www.derry.nh.us/sites/derrynh/files/uploads/derrymasterplan2010 finaldraft 0.pdf.
Town of Derry. 2016. Zoning Ordinance. Dated July 7, 2016. Available at:
http://www.derrynh.org/sites/derrynh/files/uploads/zo_07.07.2016.pdf. Accessed on August 25, 2016.
Town of Londonderry. 2013. Comprehensive Master Plan. Adopted March 2013. Available at: http://www.londonderrynh.org/Pages/LondonderryNH_BComm/Planning/MPSCResourc es/LondonderryMasterPlan_FINAL_010413-ISSUU.pdf.

Town of Londonderry. 2015. Planning Board 2015 Annual Town Report. Available at: http://www.londonderrynh.org/Pages/LondonderryNH_BComm/SolidWaste/SOLID\%20 WASTE\%20FINAL.pdf
U.S. Census Bureau. 1990. 1990 Census of Population and Housing, Population and Housing Unit Counts, United States. Available at:
https://www.census.gov/prod/cen1990/cph2/cph-2-1-1.pdf
U.S. Census Bureau. 2000. Decennial Census, Summary Files 1 and 3 using AmericanFactFinder. Available at: http://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml.
U.S. Census Bureau. 2010. Decennial Census, Summary File 1 using AmericanFactFinder. Available at: http://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml.
U.S. Census Bureau. 2016a. OnTheMap Application. Longitudinal-Employer Household Dynamics Program. Available at: http://onthemap.ces.census.gov/.
U.S. Census Bureau. 2016b. American FactFinder. Available at: http://factfinder.census.gov/).
U.S. Census Bureau. 2016c. City and Town Intercensal Estimates. Available at: https://www.census.gov/popest/data/intercensal/cities/cities2010.htm.
U.S. Green Building Council. 2008. Building Area per Employee by Business Type. Available at: http://www.usgbc.org/Docs/Archive/General/Docs4111.pdf. Accessed on September 20, 2016.

Williams, P. 2015. Chinese international school buys Chester College site. Tri-Town Times, September 30, 2015. Available at: http://tritowntimes.net/2015/09/chinese-international-school-buys-chester-college-site/. Accessed September 8, 2016.

\section*{APPENDIX A: LOCAL LAND USE PLANNER INTERVIEW SUMMARIES AND SUPPLEMENTAL INFORMATION}

This page intentionally left blank.

\section*{Local Land Use Planner Interview Summaries and Supplemental Information}
Derry Interview Summary ..... A-1
Derry Industrial Rezoning ..... A-17
Londonderry Interview Summary ..... A-20
Londonderry Market Basket Redevelopment ..... A-23
SNHPC Interview Summary ..... A-24
SNHPC Supplemental Information. ..... A-59
OEP Interview Summary ..... A-64
Woodmont Commons Interview Summary ..... A-69
Woodmont Commons Market Basket Redevelopment ..... A-71
Auburn Interview Summary ..... A-73
Chester Interview Summary ..... A-76
Chester Interview Summary ..... A-79
Sandown Interview Summary ..... A-86

\title{
I-93 Exit 4A Supplemental Environmental Impact Statement Land Use Planner Interview Summary - Final 08/05/16 \\ \\ Town of Derry
} \\ \\ Town of Derry
}

Following is a summary of the interview held on July 26, 2016 at the Town of Derry offices. Attendees were as follows:
- Town of Derry - George Sioras, Liz Robidoux, and Mike Fowler
- Louis Berger - Leo Tidd and Kerri Snyder
- RKG Associates - Craig Seymour

\section*{Population and Employment}

The 2010 Comprehensive Plan includes dated population data, and the staff referenced the Granite State Future Project, which resulted in the SNHPC’s Moving Southern New Hampshire Forward Regional Comprehensive Plan (2015). \({ }^{1}\) This report included a 2015 population for Derry between 31,991 (SNHPC) and 33,991 (OEP) (see Attachment A). The decline from previously projected population numbers is based on school age families migrating away from the area, young adults who leave Derry to attend college or seek employment and settle elsewhere, and an aging population.

There was a general discussion of SNHPC's population projections and the towns input. The SNHPC projections include a straight-line assumption and do not consider individual transportation and land development projects. The Derry staff believe that growth generated by Exit 4A would be in addition to the SNHPC projections. In other words, the SNHPC projections would be representative of a "No Build" condition for Exit 4A in Derry.

The staffs provided additional information on population and growth through a school district facilities committee meeting report (see Attachment B).

\section*{Transportation}

Regarding the general discussion of how Exit 4A would affect Derry's plan for transportation facilities and services, if Exit 4A were built, it would make improvements on local roads accessing the exit. If Exit 4A were not built, the Town would have to evaluate how to address transportation needs.

Exit 4A would reduce travel times for residents and business travelers during the afternoon rush hour ingress to Derry. The project is not likely to make a difference for the morning rush hour egress from Derry, as travelers already find other routes to take. There is anecdotal evidence of collateral impacts in that residents report too much traffic or traffic traveling too fast on the more rural roadways southeast of downtown Derry. For example, to avoid Exit 4 and the traffic congestion on Route 102 through Downtown, some commuters leave I-93 at Exit 3 instead and

\footnotetext{
\({ }^{1}\) http://www.snhpc.org/pdf/SNHPCRegionCompPlan2015.pdf
}
take the Route 111 bypass into the southern portion of Derry, followed by navigation northward through Derry on local streets.

The staff discussed the effect of Exit 4A on traffic in downtown Derry. Derry is a "cut-through" town for towns farther to the east (e.g., Chester, Sandown) as drivers access I-93. By providing an alternative route for through-traffic, Exit 4A would alleviate the severe peak hour traffic congestion on Route 102 through downtown Derry, which some believe would be beneficial in terms of economic impacts because it would improve the accessibility to downtown businesses. Others believe that reduced traffic in downtown Derry would result in loss to businesses. The Town of Derry does not have an official position on this issue and has recommended additional study of the benefits and impacts of Exit 4A in the 2010 Comprehensive Plan.

Parts of Derry are primarily built-out, and the staff view the major impacts associated with not building Exit 4A as additional stress on state roads, as there are constraints that preclude expansion of these other roadways to four-lane facilities.

\section*{Development and Land Use}

Since 1990, the explosive growth experienced since the 1960s slowed. Derry's growth management ordinance was instituted in the mid-1990s along with changes in zoning to control density of residential development. In addition, the segmented ownership in the central business district and lack of large parcels of available land for development make substantial growth impracticable. Currently, Derry is experiencing a trend of population decline related to an aging population and an outward migration of young adults as they seek employment and educational opportunities.

The area immediately to the east of I-93, along Folsom Road north of High Street, has been rezoned to encourage higher quality industrial and commercial development near the proposed Exit 4A. There are also residential areas south of Folsom Road and North High Street that might be re-zoned to Industrial/Commercial zoning. The Derry staff indicated Exit 4A could have an effect on the timing and intensity of development/redevelopment in this small industrial-zoned area. Effects on commercial/industrial development in other areas of the Town are not anticipated. The commercial zoning district along the southern end of Rockingham Road (Route 28) was revised in 2013, and there has been some commercial development in that area. In addition, water and sewer services are being expanded along Rockingham Road (Route 28) to continue to encourage commercial development along that corridor.

Although there are no large parcels suitable for large-scale developments, there is a 13-apartment building of market rate apartments planned near the central business district. The staff indicated on the maps provided where the areas had been rezoned to encourage commercial and industrial development as well as the limits of municipal water and sewer service (Attachment C). Beyond the eastern limits of water service, there are private water companies that tie into the Town, but there is no sewer service. The limits of water and sewer service, the lack of large parcels, and the topography in the eastern portion of Derry, serve to limit development. Lot size requirements and conserved land are also factors constraining any major single-family home developments in Derry. Due the large number of development constraints, Derry staff suggested
that any indirect impacts of Exit 4A on residential development would be more likely to occur in other outlying towns such as Chester, Auburn and Sandown.

The Granite State Future Project is the latest in comprehensive planning for Derry, and the Town's comprehensive plan will most likely be updated in 2020.

\section*{Community and Quality of Life}

Derry is considered a large town in New Hampshire, yet it still maintains its small town, cohesive character. There is a good sense of community in Derry. The staff cited a recent election to overturn austere budget cuts because the residents want a "full-service" community for example, they want police and fire service, rather than a volunteer fire department.

The quality of life has improved in Derry over the last 25 years. The growth management ordinance was successful in limiting development, and Derry no longer suffers issues associated with explosive growth (e.g., overcrowded schools). Although some of the retail development Derry used to have is no longer present, the downtown is starting to be revitalized, and the Manchester Road/Crystal Avenue area is beginning to redevelop. There are sufficient plans and policies in place - zoning, capital improvements plan - to maintain Derry's quality of life in the future.

The staff stated that the Exit 4A project would have no effect on the provision, financing, or accessibility of community services. The primary benefit to Derry would be reduced traffic congestion through Downtown, although as noted previously above, some believe that a reduction in traffic downtown has the potential for negative effects on existing businesses.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SZL＇6IE & ZES 862 & \(96 z^{6}\) ¹E & 900962 & 8 ¢S＇ャ0¢ & S81＇16 & S9L゙t6z & \(170{ }^{\circ} \mathrm{S} 8 \mathrm{z}\) & ISI＇S87 &  & tS8＇tLZ & \(L t^{6} 65 \%\) & \({ }^{[810} \mathrm{L}\) \\
\hline VLL゙くI &  & \(190^{\circ} \mathrm{LI}\) & \(090{ }^{\circ} \mathrm{LI}\) & 6とで91 & \(69 L^{\circ} 91\) & \(02 \varepsilon^{*}\) ¢ 1 & \(80 ⿱ 口 丂^{\circ} 91\) & zos＂t1 & \(068^{\circ}+1\) & Z6S＇\(\varepsilon 1\) & 60L＇01 & игечри！м \\
\hline と10＇Z1 & ISI＇0］ & か9すく！ & \(690^{\circ} 01\) & LS8＇01 & £16\％ & E81＇01 & \(80 L^{\circ} 6\) & L6t＊ 6 & 261\％ 6 & ¢8L＇8 & 9LL＇L & ares M \\
\hline S0L＇ZI & 62801 & 19でて1 & 58L＇01 & \(816 \% 11\) & \(109{ }^{\circ} 01\) & さても゚ II & ELE＊01 & \＆65＊01 & L61＇01 & 881001 & －L9＊ 6 & риошкву \\
\hline S6L＇9 & 66L＇9 & £0t 9 & カャL＇9 & 0Z1＇9 & 6 69 \({ }^{\circ} 9\) & \(96 L^{\circ} \mathrm{S}\) & Z0S＇9 & 785＇s & ZL8＇s & \(12 \varepsilon^{\circ} \mathrm{S}\) & 8E1＇t & uolsog man \\
\hline てぐ0て1 & \(161^{\circ} \mathrm{S} 11\) & 158＊611 & \＆9ですい & SSS＇LII & と6げてい & ¢68＊+11 & \＆91001 & ¢68゙てII & \(808^{\prime} 601\) & S95＇601 & \(900{ }^{\circ} \mathrm{LOL}\) & ләเรวขวuew \\
\hline SZ6\％ 6 & 9t9＊sz & 8 8t「8て & くで「くて & L9でLZ & \(166^{\circ}+\) \％ & z80＇9 \({ }^{\circ}\) & \＆くガヤて & てE1「くて & カSİtて & 6zI＇カz & \(9 ¢ て ゙ ¢ Z\) & К．ıгриориот \\
\hline て\＆ャ91 & S9S＇SI & 196\％1 & 18E＊¢1 & IEt「SI & －\(\angle 0^{\circ} \mathrm{S}\) I & \(608^{\circ} \mathrm{t}\) & ¢1L゙ヤI & \(6 ¢ 1{ }^{\circ} \dagger 1\) & 820 ¢1 & ISt＊\({ }^{\text {a }}\) & IてL＇II & nosyoon \\
\hline て 7661 & \(016{ }^{\circ} \mathrm{I}\) & E8S＇61 & LSL＇8I & 291＇61 & L9t＇81 & E99＇81 & ＋80＇81 & ILI＇8I & カLLCLI & IS9 \({ }^{\circ} \mathrm{LI}\) & 626．91 & umolsjog \\
\hline 91．5＊S & ILL゙てE & ¢61．ce & 6てよ゙で & \(1 \varepsilon 6 \pm\) ¢ & \(948^{\prime} 1\) E & \(00 \downarrow^{\prime} \downarrow\) ¢ & \(681^{\prime} 1\) ¢ & 188＊ \(8^{\circ}\) ¢ & \(166^{6}\) İ & \(601^{\circ} \varepsilon \varepsilon\) & 120＇tを & К．1．2］ \\
\hline 195＇¢ & ち90＇s & カセ¢＇s & 0z0＊¢ & カII＇s & ¢E6 \({ }^{\text {¢ }}\) & 6 68＇t & \(878{ }^{\prime \prime}\) & ILS＇t & ＋ 2 S＇t \(^{\text {b }}\) & 08でゅ & 8L9 ¢ & ployrox \\
\hline \(68 z^{\circ} 9\) & \(966{ }^{\circ} \mathrm{S}\) & \(286^{\circ} \mathrm{S}\) & tt6 \({ }^{\circ} \mathrm{S}\) & HLL＇S & てヤ8＊\({ }^{\circ}\) & tot＇s & LIL＇S & L60＇s & toて＇s & 89L＇t & 26L＇\(¢\) & เэรञ⿳亠二口欠） \\
\hline 018＇t & \＄86 \({ }^{\circ} \mathrm{E}\) & 9ZL＇ヤ & \(0 ¢ 6{ }^{\circ} \mathrm{E}\) & 109＊＊ & ¢88 \(8^{\circ} \mathrm{E}\) & 0てが & \(66 L^{\circ} \mathrm{E}\) & 161＇t & \(\downarrow\) ¢ \(8^{\circ} \mathrm{\varepsilon}\) & \(606{ }^{\circ}\) & \(116^{\circ} \mathrm{E}\) & в！риед \\
\hline \(600^{\circ} \mathrm{S}\) \％ & \(190^{\circ} \mathrm{S}\) \％ & \(918{ }^{\circ} \mathrm{t}\) \％ & \(658^{\circ} \mathrm{\square}\) \％ & エてじャて & とLヤ゙ヤて & とャでをて & L96 \({ }^{\text {c }}\) \％ & てャでで & 6 かって「て & ย0て＇Iz & カ二で81 & projpeg \\
\hline £86 \({ }^{\text {¢ }}\) S & \(99 \varepsilon^{\text {c }} \mathrm{S}\) & ZIL＇S & 0 ¢ \({ }^{\text {¢ }}\) ¢ & 615＇S & 6てでS & 88て＇S & LII＇S & LEI＇S & \(900{ }^{\circ} \mathrm{S}\) & \＆S6＊ & 289＊＊ & umqny \\
\hline \(\overline{\mathrm{DdHNS}}\) & \[
\begin{aligned}
& \overline{\mathrm{dTO}} \\
& \overline{\mathrm{SE} 0 \mathrm{z}}
\end{aligned}
\] & \(\overline{\mathrm{JdHNS}}\) & \[
\begin{aligned}
& \overline{\mathrm{dTO}} \\
& \overline{0 \varepsilon 0 z}
\end{aligned}
\] & \(\overline{\text { JdHNS }}\) & \[
\overline{\mathrm{d} \mathrm{GO}}
\] & \(\overline{\text { DdHNS }}\) & \[
\frac{\overline{\mathrm{d} O}}{\overline{\mathrm{Nz}}}
\] & \(\overline{\text { DdHNS }}\) & \[
\begin{aligned}
& \overline{\mathrm{d} \mathrm{AO}} \\
& \overline{\sqrt{z}}
\end{aligned}
\] & \[
\begin{array}{r}
\overline{\text { susun }} \\
\overline{010 z}
\end{array}
\] & \[
\begin{aligned}
& \overline{\text { snsug }} \\
& \overline{000 z}
\end{aligned}
\] & रा！ \\
\hline
\end{tabular}

\title{
DERRY COOPERATIVE SCHOOL DISTRICT \#1 FACILITIES COMMITTEE MEETING
}

May 27, 2015
6:30 PM

AGENDA
- Welcome
- Population Presentation: George Sioras
- Facilities/Space Presentation: Jane Simard and Gary Webster

NEXT MEETING: June \(8^{\text {th }}\) and June \(24^{\text {th }}\) at \(6: 30\) PM at West Running Brook Middle School.

As we move forward all requests for information will be made through the facilitator. This will be an important process to observe to ensure the process runs as smoothly as possible. The Facilitator will be Dr. John Moody. Dr. Moody can be reached at jhmschool@comcast.net.

\section*{From:}

Sent:
To:
Cc:
Subject:

George Sioras
Wednesday, June 24, 2015 10:09 AM
Dan McKenna (84mckenna@gmail.com); CHarper@pinkertonacademy.org; debcovino@gmail.com
jhmschool@comcast.net; Laura Nelson; George Sioras
Population/Growth-Town of Derry Planning Department summary for subcommitteeFacilities Committee

A component of our subcommittee's work was to review future population growth and demographics in the town. Reviewing the growth patterns from the past 50 years as well the current development in town and a future build-out including the expansion of Interstate 93 and the potential Exit 4A, our subcommittee came to the conclusion the growth rate has peaked for the town and will most likely not peak again and how these changes would impact the school system.

Several factors have and will continue to have an impact on the future school population. The primary change has been in the zoning for the town. Zoning changes that began in the late 1990s now have lowered the density for single family lot sizes throughout town. Where in the past most of the town allowed for one-acre lots the requirement today is for one, two, and three-acre minimum lot size for single-family housing. This change has significantly lowered the number of new homes being built in comparison to the large housing developments of the 1960s, 1970s, and 1980 s .
Another more recent zoning change has been in the reduction of the density of multi-family apartments, townhouses, and condominiums. As the town saw large scale multi-family developments beginning in the 1960 s through the 19805 the most recent zoning change this past year has significantly reduced the density allowance for this type of housing. This zoning has and will significantly alter future multi-family housing particularly in the older, more compact neighborhoods of West Derry and the Downtown area which is serviced by municipal sewer and water and is a mandatory requirement in the zoning that multi-family housing shall be connected to the town's utility systems.

A third reason for less population in the future is the changing demographics of both the town and state. Our demographics show an aging population which is reflected in both the 2000 and 2010 Census. Both state and regional planning agencies who monitor and project future growth patterns see this aging population trend to continue well into the future over the next three decades as well as a smaller growth rate in the younger population age group from birth up to young adulthood.

A final factor contributing to the lower population growth of the town since the 1990 s has been the preservation of open space, purchase of parcels of land and easements which reduces the amount of land that would have been potentially a housing development.

As is highlighted in the Town's 2010 Master Plan which was adopted by the Planning Board the demographic and socio-economic trends that face a community are generally the keystone to the major decisions that need to be made in regards to issues such as economic development, land use, housing and growth and thus in turn impact the school system as well.
```

January 2014 to present

```

Apartments/Townhouses Approved
\begin{tabular}{lll}
26232 & 20 townhouses & Floyd School/Highland Avenue \\
23016 & 9 townhouses & Brook Street \\
24037 & 18 apartments & Magnolia Lane/Kendall Pond \\
27137 & 5 townhouses & Barka - South Avenue \\
(also \(30012 \& 30013\) ) & \\
24005 & 13 Apartments & Keystone Bldrs - Kendall Pond Road \\
& & \\
65 Units & & \\
34 townhouses & \\
31 apartments &
\end{tabular}

\section*{Lots Approved}
\begin{tabular}{llll}
04094 & Sederquist & 1 lot & Whitney's Grove Road \\
05074 & Murdoch & 1 lot & Lane Road \\
\(04038-005\) & Mark Young & 1 lot & Gulf Road \\
\(08066 \& 08067\) & Solomini & 1 lot & Tsienneto Road \\
09045 & Donahue & 8 lots & Beaver Lake Road and Old Chester Road \\
04075 & Cella & 2 lots & Cella Drive \\
04084 & BR-10 & 11 lots & Gulf Road/Bartlett Road
\end{tabular}

25 lots, single family residential

Completed
10024/10015 Harvest Estates 30 lots Hampstead Road/Harvest Drive

Single family residential

\section*{55+ Housing}
\begin{tabular}{lllll}
02020 & Bunker Estates & 115 Units & Fordway & almost completed \\
04003 & Indian Hill Estates & 26 Units & Kilrea Road
\end{tabular}

\section*{ZONING}


HOME
 POPULATION
The SNHPC's 2010 population of 261,262 represents an increase of approximately 5 percent since 2000 . This compares to New Hampshire's 6.5 percent increase from 2000 to 2010 and a 9.7 percent increase nationally. The SNHPC region had 105,829 total households in 2010 . The tables below show the Region's historical and projected population growth. REPORTS AND PUELICATIONS

EMPLOYMENT
REQUEST FOR PROPOSALIQUALIFICATIONS

NEWSLETTER
LINKS
WHATS NEW
BROMNFIELDS

OFFICEADDRESS
438 Dubuque Street
Nianchester, NH 03102
Phone: 503-659-4554
F20 603-559-4350
wow. Snhpe.org
Steff Dirsctov
Plesse browse the various areas of this web site
Historic Population

Pas browa the vaious arezs dis we sie you better.

For copies of meeting minutes and other related documentation, please contact SNHPC.


SNHPC
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Municipolity & 1960 & 2970 & 1980 & 1990 & 2000 & 2010 \\
\hline Aubura & 1,292 & 2.035 & 2,883 & 4.185 & 4.682 & 4,953 \\
\hline Bedforci & 3.636 & 5.859 & 9,481 & 12.565 & 18,274 & 21,203 \\
\hline Candia & 1,490 & 1,997 & 2,989 & 2,557 & 3,911 & 3,909 \\
\hline Chester & 1,053 & 1,382 & 2,006 & 2.691 & 3,792 & 4.768 \\
\hline Deerfield & 714 & 1,178 & 1,979 & 3.124 & 3,678 & 4.280 \\
\hline Derry & 6.987 & 11,712 & 18,875 & 29,603 & 34,021 & 55,109 \\
\hline Gonistown & 7230 & 9,284 & 11.315 & 14,62] & 16,929 & 17,651 \\
\hline Hooksert & \(3: 715\) & 5,564 & 7,303 & 9.0012 & 11,721 & 13,451 \\
\hline Lodionderry & 2,457 & 5,345 & 13,598 & 19,781 & 23,236 & 24.129 \\
\hline Manchester & 88,282 & 87,754 & 90,936 & 90,352 & 107,005 & 109,565 \\
\hline Nem Boston & 025 & 1,390 & 1.928 & 3,214 & 4.138 & 5,321 \\
\hline Raymond & 1,867 & 3,003 & 5,453 & 8,713 & 9.674 & 10,138 \\
\hline Freare & 1,420 & 1,851 & 3.232 & 6,198 & 7,776 & 8,785 \\
\hline Total & 121,066 & 138,355 & 171,978 & 216,479 & 248,838 & 261262 \\
\hline & & & & & & \\
\hline
\end{tabular}

\section*{Chapter 2 DEMOGRAPHIC TRENDS}

\subsection*{2.0 INTRODUCTION}

The demographic and socio-economic trends that face a community are generally the keystone to the major decisions that need to be made in regards to issues such as economic development, land use, housing and growth.

This chapter will focus on all the different aspects of demographic trends, Population, Housing and Economic development. Comparisons between other towns, the county and the state will provide context and understanding of how Derry is doing overall within the region.

\subsection*{2.1 POPULATION GROWTH TRENDS}

Figure 2.1: Historical Population, Town of Derry


\subsection*{2.2 POPULATION GROWTH PROJECTIONS}

There are an estimated 34,071 people in Derry as of 2008 and with the expansion of I-93, Derry can expect to experience more growth in the coming years, with a projected population of 40,430 in 2030 according to the Office of Energy and Planning. It is important that we plan well for this anticipated growth so that it follows the goals and objectives the town has outlined and so the intensity, patterns, and mix of land uses create a well-balanced, healthy and sustainable community.

Table 2.3 below shows projected populations for Derry, the County, and the State from 2008 through 2030 from the New Hampshire Office of Energy and Planning (NH OEP). These projections are based on the 2000 census and local projections are based on a community's historical share of its respective county's growth.

Table 2.3: Growth Projections 2007-2030

Source: NH Office of Energy and Planning
Table 2.4 below shows a comparative analysis of the NH OEP projections and those done by the Southern New Hampshire Planning Commission (SNHPC). The Commission methodology includes more localized data and assumptions about the Town and its surrounding area than does the OEP Procedure. The Commission makes its projections based on natural growth and net migration. The differences in projections are different by about \(1 \%\), but because the Commission's procedures are more sensitive to local situations the use of these results are recommended.

Table 2.4: Comparative Projections for Derry, 2010-2030
\begin{tabular}{|l|l|l|l|}
\hline & SNBPC & NH OEP & \begin{tabular}{l}
\(\%\) \\
Difference
\end{tabular} \\
\hline 2010 & 37,283 & 36,560 & \(-1.02 \%\) \\
\hline 2015 & 35,406 & 37,860 & \(0.94 \%\) \\
\hline 2020 & 36,471 & 38,980 & \(0.94 \%\) \\
\hline 2025 & 38,101 & 39,730 & \(0.96 \%\) \\
\hline 2030 & 39,998 & 40,430 & \(0.99 \%\) \\
\hline
\end{tabular}

Source, NH OEP Projections, SNHPC Projections

\footnotetext{
\({ }^{2}\) NH OEP Estimates
}

Derry, New Hampshire
The Population by Sex and Age
\begin{tabular}{|c|c|c|c|}
\hline Aoe Cohorts & \[
\begin{gathered}
\text { Census } \\
2000
\end{gathered}
\] & \[
\begin{gathered}
\text { Census } \\
2010
\end{gathered}
\] & Percent Change \\
\hline 0104 & 1.154 & 952 & -18\% \\
\hline 5109 & 1,471 & 986 & -33\% \\
\hline 101014 & 1,550 & 1,150 & -26\% \\
\hline 151019 & 1.216 & 1.285 & 6\% \\
\hline 201024 & 855 & 1.035 & 21\% \\
\hline 25 to 29 & 1.152 & 1.005 & -14\% \\
\hline 301034 & 1.452 & 985 & -33\% \\
\hline 35 to 38 & 1,634 & 1,219 & -34\% \\
\hline 401044 & 1.679 & 1.418 & -16\% \\
\hline 451048 & 1.398 & 1.640 & 17\% \\
\hline 50 to 54 & 1.042 & 1.442 & 38\% \\
\hline 555 to 59 & 619 & 1.118 & 81\% \\
\hline 501054 & 43 & 833 & 88\% \\
\hline 65 to 69 & 358 & 520 & 45\% \\
\hline 701074 & 334 & 330 & -1\% \\
\hline 75 to 79 & 205 & 282 & 38\% \\
\hline 801084 & 111 & 227 & 105\% \\
\hline 8 85+ & 240 & 246 & 3\% \\
\hline TOTAL & 17,944 & 16,674 & -3\% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Age Coharts & \[
\begin{gathered}
\text { Census } \\
2000
\end{gathered}
\] & \[
\begin{gathered}
\text { Census } \\
2010
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline \text { Percent } \\
\text { Change }
\end{array}
\] \\
\hline 0104 & 1.258 & 948 & -25\% \\
\hline 5 to 9 & 1.599 & 1,076 & -33\% \\
\hline 101014 & 1,446 & 1.304 & -10\% \\
\hline 15 to 18 & 1.307 & 1,376 & 5\% \\
\hline 20 to 23 & 833 & 1,126 & 35\% \\
\hline 25 to 29 & 1.160 & 521 & -21\% \\
\hline 301034 & 1.372 & 957 & -30\% \\
\hline 35 to 39 & 1,782 & 1,128 & -37\% \\
\hline 401044 & 1.642 & 1.300 & -21\% \\
\hline 45 to 49 & 1,374 & 1,554 & 14\% \\
\hline 501056 & 1.059 & 1.504 & 42\% \\
\hline 55 to 58 & 781 & 1.704 & 41\% \\
\hline 501056 & 373 & 851 & 128\% \\
\hline 65 to 68 & 272 & 583 & 107\% \\
\hline 701074 & 285 & 287 & 1\% \\
\hline 75 to 78 & 158 & 177 & 72\% \\
\hline 801084 & 73 & 132 & 81\% \\
\hline 85* & 93 & 117 & 28\% \\
\hline TOTAL & 16,877 & 16,435 & -3\% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Age } \\
& \text { Cohorts }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Census } \\
& 2000
\end{aligned}
\] & \[
\begin{gathered}
\text { Census } \\
2010
\end{gathered}
\] & \[
\begin{array}{|l|}
\hline \text { Percen! } \\
\text { Change }
\end{array}
\] \\
\hline 10t0 4 & 2.432 & 1.900 & -22\% \\
\hline 5 to 9 & 3,070 & 2,052 & -33\% \\
\hline 101014 & 2,995 & 2.454 & -18\% \\
\hline 15 to 19 & 2.523 & 2.651 & 5\% \\
\hline 207024 & 1,689 & 2,161 & 28\% \\
\hline 25 to 29 & 2.322 & 1.526 & -17\% \\
\hline 1301034 & 2.834 & 1.943 & -31\% \\
\hline 35 to 39 & 3.616 & 2.347 & -35\% \\
\hline 401044 & 3,321 & 2.718 & -18\% \\
\hline 45 to 49 & 2.772 & 3,204 & 16\% \\
\hline 50 to 54 & 2.101 & 2.946 & 40\% \\
\hline 55 to 59 & 1.400 & 2.222 & 59\% \\
\hline 100 to 56 & 816 & 1.684 & 105\% \\
\hline 65 to 69 & 630 & 1.083 & 72\% \\
\hline 701074 & 618 & 617 & \(0 \%\) \\
\hline 75 to 79 & 353 & 459 & 26\% \\
\hline 180 to 84 & 184 & 359 & 95\% \\
\hline 1854 & 333 & 363 & 9\% \\
\hline TOTAL & 34,029 & 33,909 & -3\% \\
\hline
\end{tabular}

MEDIAN AGE
THE POPULATION 18 YEARS AND OVER
THE POPULATION 21 YEARS AND OVER
Total: \(|\)\begin{tabular}{llll} 
& 22511 & 23559 & \(5 \%\) \\
\hline
\end{tabular}



HISPANIC OR LATINO BY SPECIFIC ORIGIN


Derry, New Hampshire


MEDIAN AGE
\begin{tabular}{l|llll} 
Soth sexes & 33.6 & 38.21 & \(14 \%\) \\
\hline
\end{tabular}


RACE (TOTAL RACES TALLIED)



From:
Sent:
To:
Cc:
Subject:

George Sioras
Monday, May 16, 2016 9:29 AM
Susan Hickey; Barbara Chapman
Stephen Daly
RE: Questions for Moody's

Hi Sue,
Here is the information regarding development over the last 18 months. The past two years have been the most busy in the Planning and Building Departments since 2008. I have highlighted various projects and the status of them as well listed the number of new building lots approved by the Planning Board and permits issued by the Building Department. As you will see it has been steady in our departments. In the past we have forwarded this information to the folks at Moody's in advance so when they call in and have asked me questions they have the information in advance which is helpful Just a suggestion.

\section*{George}

Non-residential development.
1. 72,000 sf self-storage facility-under construction.
2. 45.000 sf self-storage facility-work to begin this summer.
3. Auto custom exhaust garage-work to begin this summer.
4. Cumberland Farms expansion and store façade improvements-completed.
5. 16-bed Assisted Living Facility-under construction.
6. 7,000 sf addition to an Industrial building/summer beach products-work to begin this summer.
7. New landscaping business-under construction.
8. 40,000 sf retail development, Crystal Place, Phase I site work-work to begin this summer.
9. 34,000 sf retail development, Cowbell Corner, Phase I gas station/convenience store-under construction.

Residential development.
1. 65 units of townhouse and apartments which includes 34 townhouses and 31 apartments. All are under construction
2. 40 new single-family house lots approved by the Planning Board. In various stages of permitting.
3. Building-Code Enforcement Office issued 26 residential permits for 2015 and so far to May, 2016, 46 permits will have been issued.

There has been a couple of new economic development initiatives this past year. The Town has extended municipal water and sewer to Route 28 (Rockingham Road) which is a major arterial road which is zoned Commercial with the hope of expanding the town's tax base with future development in this part of town. Also the town has recertified and expanded our existing Economic Revitalization Zones located on Route 28, Manchester Road and Crystal Ave, which incorporate our largest commercial and industrial districts of the town. These zones encourage development and redevelopment opportunities that improve infrastructure and create jobs. New and expanding businesses in these areas are eligible to apply for tax credits against the NH Business Profits Tax and/or the Business Enterprise Tax as administered by the State of New Hampshire Department of Resources and Economic Development.

Lastly, the school enrollment continues to see yearly decreases in the student population and is projected to continue into the next five years. I am a member of the School District's Facilities Study Committee and the Committee has spent
the lest year and a half looking at the district's need for the future. A final report is expected to be completed in June, 2016, and presented to the School Board. In general the enrollment decline is reflective to many communities in New Hampshire which is an aging state, smaller population growth from past decades and less children being born. Even with the residential development cited above the enrollments numbers will not match previous enrollment numbers from the high residential development rates seen during the 1970,1980 s, and 1990 s both in Derry and the State of New Hampshire.

From: Susan Hickey
Sent: Friday, May 13, 2016 9:20 AM
To: Barbara Chapman; George Sioras
Subject: Questions for Moody's
Good morning,
Please have all information ready for our Moody's interview by Tuesday morning.
Thanks,
Sue
Susan A. Hickey
Chief Financial Officer
Town of Derry, NH
14 Manning Street
Derry, NH 03038
(603) 845-5421


\begin{tabular}{ll} 
From: & \(\underline{\text { George Sioras }}\) \\
To: & \(\underline{\text { Snyder, Kerri; Elizabeth Robidoux; Mike Fowler }}\) \\
Cc: & \(\underline{\text { Tidd, Leo; Chris Bean; Hodgson (Rydland), Laura; }} \underline{\text { I93-Exit4A-EIS (SM) }}\) \\
Subject: & RE: I-93 Exit 4A: Possible Industrial Development in Derry \\
Date: & Thursday, September 15, 2016 7:40:37 AM
\end{tabular}

Good Morning Kerri,
The revisions look great. I will also keep you updated as we move along with the potential zoning amendments with the Planning Board and Town Council. Thanks.

George

From: Snyder, Kerri [mailto:KSnyder@louisberger.com]
Sent: Wednesday, September 14, 2016 6:44 PM
To: George Sioras; Elizabeth Robidoux; Mike Fowler
Cc: Tidd, Leo; Chris Bean; Hodgson (Rydland), Laura; I93-Exit4A-EIS (SM)
Subject: RE: I-93 Exit 4A: Possible Industrial Development in Derry

George,
Based on our conversation on September 13, attached is a revised map showing the parcels in the vicinity of Alternative A that have been recently rezoned as Industrial 4 (north side of Folsom Road), developed parcels zoned as Industrial 6 (south side of Folsom Road), and parcels currently zoned as Medium High Density Residential that will be studied in the coming months to determine if they should be rezoned to Industrial 4 or Industrial 6.

It is my understanding that the Town Council is anticipated to ask the Planning Board to undertake a study of whether or not these parcels should be rezoned. The request is likely to come in late September, and the study would likely take about one year to complete.

I appreciate your review of and comments on the attached map and the information provided in this e-mail regarding the upcoming study.

Regards,
Kerri

From: Snyder, Kerri
Sent: Tuesday, September 06, 2016 2:12 PM
To: 'George Sioras' <georgesioras@derrynh.org>; 'Elizabeth Robidoux'
<elizabethrobidoux@derrynh.org>; 'Mike Fowler' <mikefowler@derrynh.org>
Cc: Leo Tidd (Itidd@louisberger.com) <ltidd@louisberger.com>; Chris Bean
<ChrisB@cldengineers.com>; Laura Hodgson (Rydland) (Ihodgson@louisberger.com)
<lhodgson@louisberger.com>; I93-Exit4A-EIS (SM) (I93-Exit4A-EIS@louisberger.com) <193-Exit4AEIS@louisberger.com>
Subject: I-93 Exit 4A: Possible Industrial Development in Derry

George, Liz, and Mike,
Based on our interview on July 26, 2016, we understand that the Town of Derry anticipates that
recently rezoned parcels along Folsom Road north of High Street may be redeveloped if Alternative A remains the preferred alternative for Exit 4A.

Attached is a map showing parcels, zoning, and the 2007 DEIS alignments for Alternatives A and B for your review and comment. Would you please comment on or confirm the following?
- The extent of the existing industrial parcels that could experience development or redevelopment as a result of Exit 4A.
- The extent of the existing residential parcels that could be rezoned as industrial to take advantage of the connector road frontage access to Exit 4A.
- List or mark-up the map to let us know of any parcel numbers that should be added or deleted based on what is shown in the attached map.

The results will be used to help identify industrial development that could be induced by the proposed project and will be included in the Land Use Scenarios Technical Report.

If you think a discussion is in order, please let me know what dates and times work for you, and I can call you to discuss the map and possible redevelopment in more detail. Thank you for your time in reviewing the map and providing input as we develop the Build and No Build Scenarios for the technical report.

Regards,
Kerri

\section*{Kerri Snyder, AICP}

Principal Environmental Planner | Transportation Planning and Environment

\section*{Louis Berger}
```

4 8 Wall Street, 16 { } ^ { th } Floor \| New York \| NY \| 10005 \| USA
direct +1-212-612-7908
mobile +1-646-584-9490
email ksnyder@louisberger.com
web louisberger.com

```

This message, including any attachments hereto, may contain privileged and/or confidential information and is intended solely for the attention and use of the intended addressee(s). If you are not the intended addressee, you may neither use, copy, nor deliver to anyone this message or any of its attachments. In such case, you should immediately destroy this message and its attachments and kindly notify the sender by reply mail. Unless made by a person with actual authority conferred by Louis Berger, the information and statements herein do not constitute a binding commitment or warranty by Louis Berger. Louis Berger assumes no responsibility for any misperceptions, errors or misunderstandings. You are urged to verify any information that is confusing and report any errors/concerns to us in writing.


\section*{I-93 Exit 4A Supplemental Environmental Impact Statement \\ Land Use Planner Interview Summary Final - 8/8/2016 \\ Town of Londonderry}

Following is a summary of the interview held on July 25, 2016 at the Town of Londonderry office. Attendees were as follows:
- Town of Londonderry - Colleen Mailloux and John Vogl
- Louis Berger - Leo Tidd and Kerri Snyder
- RKG Associates - Craig Seymour

\section*{Population and Employment}

There was a general discussion of SNHPC's population projections and the towns input. The SNHPC projections include a straight-line assumption. Although, Londonderry is currently in a growth phase, the planners believe the 2020 population projection \((31,688)\) included in the Town's 2013 Comprehensive Plan is ambitious.

The Pettengill Road development is industrial and would not contribute to population growth. The Woodmont Commons development has a large residential share and would help push the town toward the 2020 population projection of 31,668. If Woodmont Commons were not built out, the Town's population would likely be lower than projected though it is understood that other projects would likely take its place on the same parcels.

The Town participated in reviewing SNHPC’s population projections presented in the 2013 Comprehensive Plan; however, to date, they have not reviewed any subsequent projections. The I-93 Exit 4A project would contribute to growth by providing access to undeveloped land on the east side of I-93. Such growth is understood to be generally non-residential in nature.

\section*{Transportation}

The Exit 4A project would provide access to the eastern portion of Woodmont Commons. Woodmont Commons will be making some transportation improvements on the west side based on the Development Agreement for Phases I and II. Phase I includes five restaurants, an entertainment venue, and commercial/retail space with residential units on the higher floors. The design plans for Phase I are located on the Town's website. \({ }^{1}\) Phase II is planned to expand upon the development built during Phase I and would include additional single-family residential areas and additional commercial uses west of I-93. These phases of Woodmont Commons would proceed regardless of the Exit 4A project. The planners provided the Woodmont Commons traffic study for Phases I and II of the development (Traffic Impact and Access Study Woodmont Commons PUD Phases I and II, June 2016). As part of the Development Agreement, the agreed upon transportation improvements would be paid for by the developer prior to receiving building permits.

\footnotetext{
\({ }^{1}\) http://www.londonderrynh.org/Pages/LondonderryNH_BComm/Planning/projectsunderreview/
}

The Town does not have other major transportation projects planned. Based on the planning process for the 2013 Comprehensive Plan, bicycle and pedestrian trail connectivity is a high priority for the community, including the potential regional trail crossing near the eastern extent of the Exit 4A preferred alternative alignment. This is a vital link connecting trail networks in both Londonderry and Derry. At this time, no bicycle trails outside of the PUD study area are in development. However, the Woodmont Commons PUD states that accommodations for bicycles will be provided along or parallel to the Primary Street Network of the development and that shared use of streets will be permitted for all other portions of the development.

Exit 4A would not substantially alter travel times on the west side of I-93; it may improve the travel times on roadways east of I-93, including Pillsbury Road/Ash Street (two-lane facility). The planners do not anticipate major changes in travel patterns or transportation needs for Londonderry associated with the Exit 4A project.

\section*{Development and Land Use}

Since 2000, the explosive growth experienced in the 1980s and 1990s has slowed, and the current development trends are based on access to undeveloped or underdeveloped land and presence or absence of municipal services (water/sewer), which affects the density of development. For example, the industrial development occurring on Pettengill Road is driven by undeveloped land with access to Raymond Weiczorek Drive (Manchester Airport Access Road). It is not affected by the Exit 4A project. The planners indicated limits of municipal water and sewer access on the maps provided to indicate the limits for higher density development (Attachment B). The planners also indicated on the maps provided the most likely locations in Londonderry for growth outside of the planned Woodmont Commons area. On the east side of I93, Exit 4A would likely affect the timing and type of growth - the interchange and connector road would provide access and opportunity for commercial, institutional and higher density residential development.

The Woodmont Commons development density with and without Exit 4A was discussed, and the planners indicated that the "without Exit 4A" scenario presented in the approved 2013 PUD was based on design review meetings that included Town staff, project engineers/planners and the Town's review consultant. Thus, the PUD with and without 4A scenarios should not be construed as projections of growth, but rather provide an upper cap on the maximum amount of development that could occur. This explains why less commercial development is allowed on the west side of I-93 without Exit 4A than with Exit 4A, even though Exit 4A would provide no westerly access.

With regard to development associated with Build Alternatives A, B, C, D, and F, the planners stated that growth in Londonderry under Alternatives C and D would be more in line with a No Build Alternative in that they would not provide access to the parcels planned to be developed by Woodmont Commons for commercial and/or institutional use. Given the easterly-only access of Exit 4A, development of the interchange will likely have little effect on the job growth or attraction of industries to the west of I-93. The effects would most likely be experienced east of I-93.

To promote the villages and corridors growth scenario outlined in the 2013 Comprehensive Plan, the planners indicated that higher density development along the transportation corridor is generally acceptable, and the development permitting process allows the villages and corridors growth scenario to happen organically. While the Town is undertaking a zoning update, the planners do not foresee major changes to the way that parcels are currently zoned.

\section*{Community and Quality of Life}

The Town of Londonderry has retained its rural character as it has grown into more of a suburban rural community with high quality schools and rising property values. The industrial development in the northwestern portion of the Town (near the airport) is distribution-based and has increased in value as technology has improved. Through the master planning process, the Town committed to keep the residential areas as residential. Londonderry aims to improve connectivity of its open space and recreational resources by adding bicycle and pedestrian trails.

Exit 4A would provide the opportunity for commercial development, and as a result, an enhanced tax base. The planners indicated that the Exit 4A project would not result in net negative effects on the quality of life or community character because the development impacts will be mitigated through the requirements of the development agreement and the PUD (e.g. traffic mitigation measures as additional phases go through site plan review). Exit 4A would have no effect on the provision, financing, or accessibility of community services.
\begin{tabular}{ll} 
From: & Snyder, Kerri \\
To: & "Colleen Mailloux" \\
Cc: & \(\underline{\text { Leo Tidd (Itidd@louisberger.com); Chris Bean; Laura Hodgson (Rydland) (Ihodgson@louisberger.com); }}\) [93- \\
Subject: & Exit4A-EIS (SM) (I93-Exit4A-EIS@louisberger.com) \\
Darket Basket redevelopment area \\
& Tuesday, September 20, 2016 10:22:00 AM
\end{tabular}

Colleen,
Thank you for providing information regarding the four additional pad sites in the Market Basket redevelopment area. Based on your voicemail, I understand that the four pad sites have not been approved for development. Although they have currently been put aside, based on previous communications you have had with DeMoulas Supermarkets, Inc., it sounds like they have considered a combination of restaurant uses for three of the pads and bank/office/retail for the remaining pad. Based on this, it is possible that they could get about 20,000-30,000 gsf of commercial development from those four pads.

I appreciate your review of and comments on this information.

Regards,
Kerri

\section*{Kerri Snyder, AICP}

Principal Environmental Planner | Transportation Planning and Environment

\section*{Louis Berger}
```

4 8 Wall Street, 16 th Floor \| New York \| NY \| 10005 \| USA
direct +1-212-612-7908
mobile +1-646-584-9490
email ksnyder@louisberger.com
web louisberger.com

```

\section*{I-93 Exit 4A Supplemental Environmental Impact Statement \\ Land Use Planner Interview Summary- Draft- 8/2/2016 \\ Southern New Hampshire Planning Commission}

Following is a summary of the interview held on July 25, 2016 at the SNHPC office in Manchester. Attendees were as follows:
- SNHPC - Julie Chen, Adam Hlasny, and Jack Munn
- Louis Berger - Leo Tidd and Kerri Snyder
- RKG Associates - Craig Seymour

\section*{Population and Employment}

SNHPC has provided whole-town and zonal (traffic analysis zone [TAZ]) population projections for Derry and Londonderry through 2050 using the cohort-component method. An overview of the SNHPC methodology is provided in a letter provided to the project team by SNHPC (see Attachment A: Letter to George Sioras dated March 14, 2012, regarding population and dwelling unit projections). To generate population cohort and dwelling unit projections for 5-year increments (e.g., 2015, 2020, 2025) for the TAZs, SNHPC uses the following information:
- Birth and death rates from NH Department of Health and Human Services
- Region survival rates using a life table derived from OEP
- SNHPC's own projection of net migration, four scenarios were analyzed (high, middle, low and historical average).
- available land within the TAZs
- housing information/building permits from the towns and OEP

The SNHPC provides letters to each of the Towns (see Attachment A) to gain their input on the population projections.

SNHPC also makes projections for employment based on quarterly employment averages from the State, compared to building permit data to estimate the number of jobs per square foot of non-residential development.

The methods used for the 2015 employment projections differ from those used for the 2010 population projections. The 2010 projections used an ELMI employer database to identify number of employees per company, which were then assigned to the appropriate TAZs; however, this information is not currently available for 2015.

The Moving Southern New Hampshire Forward Plan (2015) mentions I-93 Exit 4A being constructed by 2024, and the travel demand model includes the Exit 4A project as discussed in the following section. However, the SNHPC population projections do not consider additional growth associated with individual transportation or development projects (e.g., Exit 4A/Woodmont Commons). Rather, these population projections through 2050 are considered background growth.

\section*{Transportation}

The Moving Southern New Hampshire Forward Plan (2015) considers individual projects that could affect regional transportation (e.g., I-93 widening) in developing the Future Build traffic volumes. As part of a scenario planning effort, the traffic modeling includes a Fast Build Scenario and a Continued Slow Growth Scenario on a regional level, and the individual projects that would contribute to higher traffic volumes (e.g. potential development induced by Exit 4A/Woodmont Commons, and Pettengill Road are considered to be captured in the Future Fast Build Scenario.

There was a general discussion of the proposed splitting of TAZs in Derry and Londonderry based on the proposed Woodmont Commons development. CLD Engineers proposed the splits (see Attachment B) and will provide additional input so that SNHPC can move forward with the 2015 base year updates for the SDEIS. The same TAZ structure will be used for the base year and all future analysis years.

SNHPC provided a technical report that documents the development and calibration of the 2010 travel demand forecast model (Attachment C).

\section*{Development and Land Use}

Commercial and industrial growth is transportation based. I-93 Exit 4A could improve access for economic development; however, other factors including available land and zoning also play a role in the location of the development.

Expanding the Community Technical Assistance Program (CTAP) through I-93 is listed as a strategic initiative in the SNHPC Regional Plan. Phases I and II of the program were strategic initiatives. Phase III of the CTAP is pending and being coordinated with NHDOT. SNHPC is considering a town survey to gauge needs. For example, SHNPC is currently assisting the Town of Chester with its impact fees program. SNHPC wants to determine needs in the other towns it serves to find out how to make the CTAP most effective.

\section*{Regional Planning Activities}

SNHPC's 2015 Regional Comprehensive Plan has been released. Based on State statutes, the next official update of the comprehensive plan would be in 2020. The next SNHPC planning product will be the housing needs assessment.

\section*{Other Topics}

SNHPC provided suggested contacts with other nearby towns for follow-up questions or information.

March 14, 2012
Mr. George Siroas, AICP, Director
Derry Planning Department
14 Manning Street
Derry, NH 03038
Re: Population and Dwelling Unit Projections

Dear Mr. Sioras:
The Southern New Hampshire Planning Commission (SNHPC) has completed the new population and dwelling unit projections for the region's towns and traffic zones. The projections look at the years 2010-2050. At this point, we would like to share our results with you for your review and comments.

The 2010 US Census counted population for Derry was 33,109 . According to the SNHPC figures, the number of dwelling units in Derry was 13,277 . The SNHPC projected population for 2050 is 34,437 , an absolute change of 1,328 persons, and the projected number of dwelling units is 14,926 , an absolute change of 1,649 units. These projections represent annual compound growth rates of 0.10 percent and 0.29 percent respectively. Please see the attached tables for details on a five-year basis.

The population projection was conducted using the Cohort Component Method. The actual births and deaths used were obtained from the NH Department of Health and Human Services, Bureau of Vital Records. The regional survival rates were calculated using life table derived from Office of Energy and Planning (OEP). The one variable generated by the SNHPC was the projected net migration. Using the past 40 years of net migration, we projected four possible future net migration outcomes: high, middle, low, and historical average. The most probable of the four was selected to generate the final projection; for Derry we used our low net migration projection.

Dwelling Units were projected based on the annual average of the past 40 years of Building Permits issued (1970-2009). The OEP figures from their "Current Estimates and Trends in New Hampshire's Housing Supply, Updates 1989, 1999 and 2009" were used along with "19701979 Estimates of Housing Supply for Towns and Counties in New Hampshire." The building permit data was analyzed and any years with atypical net dwelling unit increases were excluded from the calculation of the annual average. For Derry, the annual average of net dwelling unit increase used in the projection was 42.

Using the totals from the population and dwelling unit projections, the net increase expected for each projected five year increment was distributed to the various traffic zones. Please refer to
the attached traffic zone map for the location of zone boundaries. General assumptions made in this process were that growth rates would remain constant in each traffic zone and zoning ordinances would not change significantly over the projected time span. More specific assumptions were made in determining the amount of growth each traffic zone would receive based on the existing zoning of vacant land, the quantity of vacant land, the location of wetlands, steep slopes, water bodies or other natural development constraints, the existing land use coverage, the planned development area from SNHPC Comprehensive Plan; and the known proposed developments.

In Derry, the following assumptions were made to distribute the dwelling unit increases to the individual traffic zones:
- Traffic zones \(147,128,123\), and 140 would receive the greatest share of dwelling units given the combination of higher density zoning and quantity of buildable residential land, and the residential construction trend of 1990-2010 was to build in these zones.
- Traffic zones \(124,125,126,221,222\), and 223 would receive the least amount of dwelling units due in the case of zone 125 to a lack of residential zoned land, and in the other zones there is little vacant land to support growth other than infill development, despite zoning for the highest densities allowed.

Distribution of population increases to the individual traffic zones were in proportion to dwelling unit increase in the individual traffic zones.

Please review the information in this letter along with the attached supporting tables. We greatly welcome your comments so that our projections will best reflect Derry's future growth. If you have comments or suggested revisions, please contact Julie Chen, Ph.D. within the next two weeks at (603)669-4664 or jchen@snhpc.org. We would be happy to schedule an appointment to sit down with you and review the data in more detail. If we do not hear from you in the next three weeks, we will assume you are comfortable with our projections.

Sincerely,

\section*{SOUTHERN NEW HAMPSHIRE PLANNING COMMISSION}

David J. Preece, AICP
Executive Director/CEO
cc: SNHPC Representatives:
Ann Marie Alogni; Frank Bartkiewitz; Brian Chirichiello; Darrell Park.
\begin{tabular}{|c|}
\hline tEnv \\
\hline \multirow[t]{24}{*}{\begin{tabular}{l}
Figure 4.11-3 \\
Potential Petroleum, Hazardous Materials Sites, and Sohd Waste Sites for Alternative B \\
Legend \\
Hasardous Matenal Sutes \\
- flyh \\
Moderate/High \\
- Moderate \\
c. Low \\
- Nor Rated \\
:....: Atea of Dtsturbance \\
200 Proposed Davemen Layout \\
\(\square\) Study Area \\
- Bualdang \\
- Road \\
- Stream \\
- Town Boundary \\
Nous \\
The Not Rated deagration is meant to wientify those locations that have not been anked for hazaddous matemali concens because the sue was deemed (after conducting database tesearch. undstheld surveys and coordinating weth he NHDOT Hazadous Matertabs Coordinatot) to not Watrant fiuther review due to the me conditon or phywal tocation/dratance from the cemamug cothider: \\
Data Soucce: \\
Hzardaus matertal data were compied bo CLD) Consultumg, Engmeecs, The (CLD) personnel and a profestumal data search service, Envionmental Data Resources, Inc (EDR) of Southpot, CT Seardies petfortined by EDR and CLD personacl nechade revems of boih the Federal and Siate Regulatory Agency datsbsees udentefied ty the American Socrety of Testurg and Materals (.asTM) The date of EDR's reverw: October 20, 2005 CLD completed a wndsthech! wiver to re conturn exstang condtion: on Fehsury 15. 2006
\end{tabular}} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}




\title{
2010 TRAVEL DEMAND FORECAST MODEL DEVELOPMENT AND CALIBRATION REPORT FOR
}

THE SOUTHERN NEW HAMPSHIRE PLANNING COMMISSION


July 2012
CHAPTER 1 INTRODUCTION ..... 3
1.1 Overview ..... 3
1.2 Household Travel Survey ..... 3
1.3 Demographics ..... 4
1.3.1 Base year (2010) model ..... 4
1.3.2 Future Year ..... 6
CHAPTER 2 TRIP GENERATION ..... 8
2.1 Trip Productions ..... 8
2.1.1 Person Trip Data ..... 8
2.1.2 Cross-Classification Tables ..... 8
2.2 Attractions ..... 9
2.3 Special Generators ..... 10
2.4 External trips ..... 10
2.5 Trip Generation Results and Conclusions ..... 12
CHAPTER 3 TRIP DISTRIBUTION ..... 13
3.1 Traffic Analysis Zone (TAZ) ..... 13
3.2 Network ..... 13
3.2.1Functional Class ..... 14
3.2.2 Facility type ..... 14
3.2.3 Speed ..... 15
3.2.4 Model Capacities ..... 15
3.3 Terminal Times ..... 15
3.4 Turn Restrictions/Penalties ..... 15
3.5 External to External Trip Table ..... 16
3.6 Friction Factors ..... 16
3.7 Trip Length Frequency Distribution Curves Comparisons ..... 16
3.8 Trip Distribution Conclusions ..... 18
CHAPTER 4 TRUCK TRIP MODELLING ..... 19
4.1 Truck Trip Generation ..... 19
4.2 Truck Volumes at External Stations ..... 20
4.3 Truck Trip Distribution ..... 20
4.4 Input Files and Output File ..... 20
CHAPTER 5 EXTERNAL TO EXTERNAL TABLE ..... 22
5.1 Introduction ..... 22
5.2 O-D Survey ..... 22
5.3 X-X Trip Table ..... 23
CHAPTER 6 TRIP ASSIGNMENT ..... 25
6.1 Auto Occupancy Rates ..... 25
6.2 Volume - Delay Function ..... 25
7.1 Vehicle Miles Travelled ..... 27
7.2 Traffic Volume ..... 28
7.2.2 Screen Line and Cordon line ..... 29
7.2.3 Individual Links ..... 29

\section*{CHAPTER 1 INTRODUCTION}

\subsection*{1.1 Overview}

The development and calibration of the 2010 Southern New Hampshire Planning Commission (SNHPC) 24-hour model includes many refinements. This report describes the model and documents the calibration and validation process.

The 2010 model includes all regional roadways of functional class of collectors and higher as well as some local roads. The region was divided into 290 traffic analysis zones and 67 external stations where traffic enters and leaves the region. The model projects average weekday 24 -hour traffic volume for roads in the region.

The SNHPC model is used to perform analyses such as:
- Roadway system deficiencies
- Level of service
- Air quality conformity
- Long range transportation planning
- Transportation improvement program
- Special studies

\subsection*{1.2 Household Travel Survey}

SNHPC contracted with the University of New Hampshire Survey Center to conduct a household travel survey for the region. The 2007 household travel survey collected travel information for respondents on Tuesday, Wednesday, and Thursday during October and November 2007. In addition to providing basic demographic information about each household and its members, the survey documented specific travel characteristics of trips, including number of vehicle occupants, trip purpose, time of day, and trip mode. The survey included 786 households selected randomly from the region's telephone records. The survey data was analyzed by SNHPC using Microsoft Access. The following products from the analysis were used to develop model factors:
- Average number of vehicles available per household per community
- Vehicle - Person cross-classification tables
- Percentage of internal to external trips expressed as a percentage of total trips
- Auto occupancy rates by trip type
- Trip length (duration) frequency by trip type

\subsection*{1.3 Demographics}

Travel survey data and demographic data are essential to developing travel demand models. The demographic data as model inputs includes population, households, number of vehicle available per household, school enrollment by school type and employment.

\subsection*{1.3.1 Base year (2010) model}

\section*{Population and Households}

Population, Dwelling Unit, Households (2010) for each community used U.S. Census data.

\section*{Vehicle Ownership}

The number of vehicles available in a household influences travel behavior much like the number of persons in a household. The SNHPC model uses number of vehicles per household per TAZ as a demographic input. Average vehicle ownership from the 2007 travel survey for communities is shown in the following table. Average vehicles per household by community were then assigned to TAZs.

Table 1.1 Average Vehicles per Household
\begin{tabular}{|l|c|l|c|}
\hline Town & Vehicle & Town & Vehicle \\
\hline Auburn & 2.67 & Hooksett & 2.00 \\
\hline Bedford & 2.40 & Londonderry & 2.14 \\
\hline Candia & 2.50 & Manchester & 2.71 \\
\hline Chester & 1.86 & New Boston & 2.30 \\
\hline Deerfield & 2.76 & Raymond & 2.23 \\
\hline Derry & 2.04 & Weare & 2.65 \\
\hline Goffstown & 2.34 & & \\
\hline
\end{tabular}

\section*{Student Enrollment}

Student enrollment influences the number of trips attracted by schools. Data for 2010 student enrolments for all elementary, middle and high schools in the region were obtained from the New Hampshire Department of Education. College enrollments were collected by contacting the colleges in the region. School addresses were used for assigning a TAZ to an individual school.

\section*{Employment}

Employment data for 2010 was supplied by the New Hampshire Economic and Labor Market Information Bureau (ELMB). The database contained 8,181 records including business name, address, code of North American Industry Classification System (NAICS) and number of employees by month. Average employment for each employer was calculated by averaging monthly employment and excluding months with atypical employment. For some communities, all schools and government employment were located in one address. For such cases, SNHPC contacted those communities and local school district offices to obtain employment data and address for each school and each community department of the community where different physical addresses existed.

SNHPC maintained a roadway database in Microsoft Access in which roads were broken down by TAZs. With the division of TAZ, the database was updated accordingly. The database was used for assigning a TAZ to each employer. While attempting to assign traffic zones for individual employment records, SNHPC found several mistakes in the 2010 employment database which were subsequently corrected after additional research. Because of these corrections, the SNHPC 2010 employment and the ELMB employment did not match. SNHPC's total employment number for the region was approximately 2.3 percent higher.

As a model input, the employment were grouped based on the NAICS code as shown below.
- Retail: 44 and 45
- Service: 22, 48, 49, 51, 52, 53, 54, 55, 56, 61, 62, 71, 72, 81
- Industrial: 21, 23, 31, 32, 33, 42
- Government: 92
- Agriculture: 11

\subsection*{1.3.2 Future Year}

\section*{Population and Households}

Population projections were developed using the Cohort Component Method. Actual births and deaths used were obtained from the OEP and NH Department of Health and Human Services Bureau of Vital Records. The regional survival rates were calculated using life tables derived from OEP. The one variable generated by the SNHPC was the projected net migration. Using the past 40 years of net migration, we projected four possible future net migration outcomes for each community: high, middle, low, and historical average. The most probable of the four was selected to generate the final projection.

Dwelling Units were projected based on the annual average of building permits issued between 1970 and 2009. The OEP’s figures from "Current Estimates and Trends in New Hampshire’s Housing Supply, Updates 1989, through 2009," were used along with "1970-1979 Estimates of Housing Supply for Towns and Counties in New Hampshire". The building permit data was analyzed and those years with atypical net dwelling unit increases were excluded from the calculation of the annual average. 2010-2014 projections were based on 2008 annual dwelling unit increase to account for slower growth which has been the trend since the economic downturn.

Future number of households was calculated by population divided by occupied housing units.

\section*{Vehicle Ownership}

The model assumes that the future average number of vehicles available in a household is consistent with 2010.

\section*{Student Enrollment}

Student enrollments for future years were projected based on the population of the corresponding age cohorts for elementary school, middle school, high school and college.

\section*{Employment}

Employment data for 1990-2010 by community and NAICS code was downloaded from the website http://www.nh.gov/nhes/elmi/covempwag_arch.htm (New Hampshire Economic and Labor Market Information Bureau) for the projections. Growth rates were assumed based on historic employment data by categories and the State projection for 2008-2018. The growth rates were applied to the projections.

Using the community totals for each category of employment projections, the net increase expected for each projected five-year increment was distributed to the traffic zones. It was generally assumed that zoning ordinances would not change significantly over the projected time span. More specific assumptions were made in determining the amount of growth of each traffic zone would receive based on the existing zoning of vacant land; quantity of vacant land; location of wetlands, steep slopes, water bodies or other natural development constraints; existing land use coverage; and known proposed developments.

\section*{CHAPTER 2 TRIP GENERATION}

Trip generation step converts the demographic/land use data into productions and attractions. Households are converted into "production" and employment (retail, service, industrial, government and agriculture, school enrollments) is converted into "attractions". Many pieces of data including much of that gathered from the household travel survey goes into the trip generation step.

\subsection*{2.1 Trip Productions}

\subsection*{2.1.1 Person Trip Data}

SNHPC has expanded trips from four to six trip types by adding school and social trip types. Trip types are as follows.
- Home Based Work (HBW) : Trips with one end at home and one end at work
- Home Based Shop (HBSH) : Trips with one end at home and one end at a shopping establishment
- Home Based Social (HBSO): Trips with one end at home and one end at a social establishment (i.e. movies)
- Home Based School (HBSCH): Trips with one end at home and one end at a school
- Home Based Other (HBO): One end at home and one end anywhere except work, shopping, school or social
- Non-Home Based (NHB): Neither end of the trip at home

Adding two additional trip types will offer more refinement to the model. The 2007 household travel survey collected the "purpose of the trip" which was used to assign a trip type.

\subsection*{2.1.2 Cross-Classification Tables}

Household size and number of vehicles in the household influences person trips by a household. Trip rates from the 2007 household travel survey were found to be lower than national average and adjustments were made based on the national average trip rates per household. The following table shows trip rates by number of vehicles and persons in the household (cross-classification) that were used to generate productions in the model.

Table 2.1 Cross-Classification Trip Table
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Vehicles (equal to or greater than) & \begin{tabular}{l}
Vehicle \\
(less \\
than)
\end{tabular} & Home based work & Home based shop & Home based social & Home based School & Home based other & Nonhome based \\
\hline \multicolumn{8}{|c|}{Greater than 1 persons per household but less than 2} \\
\hline 0 & 1 & 0.25 & 0.56 & 0.23 & 0.24 & 1.27 & 0.79 \\
\hline 1 & 2 & 0.86 & 1.12 & 0.38 & 0.24 & 1.58 & 1.32 \\
\hline 2 & 3 & 1.12 & 0.84 & 0.43 & 0.24 & 1.58 & 0.78 \\
\hline 3 & 4 & 1.13 & 0.85 & 0.40 & 0.24 & 1.58 & 0.92 \\
\hline 4 & 99 & 1.88 & 0.85 & 0.40 & 0.24 & 1.58 & 0.92 \\
\hline \multicolumn{8}{|c|}{Greater than 2 persons per household but less than 3} \\
\hline 0 & 1 & 0.63 & 0.56 & 0.23 & 0.16 & 1.27 & 0.79 \\
\hline 1 & 2 & 0.85 & 0.83 & 0.51 & 0.37 & 1.72 & 1.39 \\
\hline 2 & 3 & 1.39 & 1.04 & 0.52 & 0.37 & 1.83 & 2.20 \\
\hline 3 & 4 & 1.59 & 0.96 & 0.58 & 0.37 & 1.83 & 1.47 \\
\hline 4 & 99 & 2.40 & 0.96 & 0.58 & 0.37 & 2.03 & 1.47 \\
\hline \multicolumn{8}{|c|}{Greater than 3 persons per household but less than 4} \\
\hline 0 & 1 & 1.26 & 0.56 & 0.23 & 0.41 & 1.53 & 1.57 \\
\hline 1 & 2 & 1.62 & 0.90 & 0.47 & 0.50 & 1.78 & 1.82 \\
\hline 2 & 3 & 1.63 & 0.87 & 0.51 & 0.43 & 2.32 & 2.55 \\
\hline 3 & 4 & 1.75 & 0.96 & 0.58 & 0.39 & 1.40 & 2.49 \\
\hline 4 & 99 & 1.73 & 0.99 & 0.63 & 0.51 & 1.59 & 3.61 \\
\hline \multicolumn{8}{|c|}{Greater than 4 persons} \\
\hline 0 & 1 & 1.26 & 0.56 & 0.47 & 0.65 & 1.53 & 1.84 \\
\hline 1 & 2 & 1.47 & 0.56 & 0.58 & 0.81 & 2.12 & 2.10 \\
\hline 2 & 3 & 1.50 & 0.87 & 0.60 & 0.88 & 1.65 & 2.99 \\
\hline 3 & 4 & 1.49 & 0.69 & 0.40 & 1.01 & 1.68 & 2.77 \\
\hline 4 & 99 & 2.04 & 1.00 & 0.65 & 0.58 & 1.91 & 3.33 \\
\hline
\end{tabular}

\subsection*{2.2 Attractions}

Establishment of trip attraction rates by type were initially based on data from NCHRP 365 and the NH I-93 Transit Investment Study. Adjustments were made to better reflect the number of trips by trip type estimated from the 2007 household travel survey. The final set of attraction rates is shown in the table below.
2.2 Trip Attraction Rates by Trip Type
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline Trip Type & \begin{tabular}{l} 
Total \\
Employ \\
ment
\end{tabular} & Retail & Service & Government & Industrial & Agriculture & Households \\
\hline Home Based Work & 1.35 & & & & & & \\
\hline Home Based Shop & & 5.8 & & & & & \\
\hline Home Based Social & & & 0.8 & 0.22 & & & 0.28 \\
\hline Home Based Other & & 3.0 & 0.9 & 0.25 & 0.25 & 0.25 & 0.70 \\
\hline Non-Home Based & & 4.49 & 1.13 & 1.13 & 0.38 & 0.38 & 0.59 \\
\hline
\end{tabular}

School trip rates per student per school type were determined by using the ITE Trip Generation Manual \(7^{\text {th }}\) Edition. The trip attraction rates used in the model are shown in the table below.

Table 2.3 Trip Generation Rate of school
\begin{tabular}{|c|c|c|c|c|}
\hline Trip Type & Elementary & Middle & High School & College \\
\hline Home Based School & 1.00 & 1.40 & 1.50 & 2.10 \\
\hline
\end{tabular}

\subsection*{2.3 Special Generators}

Trips created by individuals living in special facilities such as student dormitory, nursing home and jail are generated using special generators. Manchester Airport was maintained as special generator. The following special generators were in the following TAZs.
1. Manchester Airport (TAZ 64)
2. Southern New Hampshire University dormitory (TAZ 18)
3. Drug Treatment Center (TAZ 34)
4. Hillsborough County Jail in Manchester (TAZ)
5. State Prison for Women in Goffstown (TAZ 286)
6. Saint Anselm College dormitory (TAZ 88)
7. Southern New Hampshire University dormitory (TAZ 118)
8. Saint Anselm College dormitory (TAZ 236)
9. Nursing home in Bedford (TAZ 110)
10. Nursing home in Bedford (TAZ 89)
11. Nursing home in Derry (TAZ 131)
12. Nursing home in Goffstown (TAZ 235)
13. Nursing home in Goffstown (TAZ 87)
14. Nursing home in Manchester (TAZ 19)
15. Nursing home in Manchester (TAZ 7)
16. Nursing home in Manchester (TAZ 38)
17. Nursing home in Manchester (TAZ 52)
18. Nursing home in Manchester (TAZ 28)
19. Nursing home in Manchester (TAZ 29)
20. Nursing home in Manchester (TAZ115)
21. Nursing home in Manchester (TAZ 39)
22. Nursing home in Manchester (TAZ 40)

\subsection*{2.4 External trips}

Factors for each trip type were used for split trips into internal to internal (I-I) trips, internal to external (I-X) trips and external to internal (X-I) trips. I-X factors by trip type
and community were calculated using 2007 household travel survey. For very small samples, the number was adjusted during model calibration. The X-I factors for home based work trips were obtained using work place data from the 2000 Census. The nonwork trips X-I factors were generated based on the 2000 model factors, professional judgment, reasonable assumptions concerning the trip characteristic of commuters and the use of an interactive process during calibration. The factors used in the model were shown in the following tables.

Table 2.4 Internal to External Factor
\begin{tabular}{|l|r|r|r|r|r|r|}
\hline TOWN & HBWIX & HBSHIX & HBSOIX & HBSHCIX & \multicolumn{1}{l|}{ HBOIX } & \multicolumn{1}{l|}{ NHBIX } \\
\hline Auburn & 0.17 & 0.05 & 0.17 & 0.08 & 0.12 & 0.13 \\
\hline Bedford & 0.36 & 0.13 & 0.10 & 0.08 & 0.22 & 0.13 \\
\hline Candia & 0.67 & 0.33 & 0.17 & 0.09 & 0.44 & 0.12 \\
\hline Chester & 0.69 & 0.50 & 0.17 & 0.09 & 0.17 & 0.32 \\
\hline Deerfield & 0.34 & 0.56 & 0.17 & 0.50 & 0.67 & 0.47 \\
\hline Derry & 0.57 & 0.13 & 0.35 & 0.27 & 0.20 & 0.30 \\
\hline Goffstown & 0.43 & 0.07 & 0.13 & 0.06 & 0.17 & 0.17 \\
\hline Hooksett & 0.42 & 0.08 & 0.13 & 0.06 & 0.25 & 0.24 \\
\hline Londonderry & 0.57 & 0.10 & 0.30 & 0.20 & 0.19 & 0.27 \\
\hline Manchester & 0.26 & 0.07 & 0.32 & 0.12 & 0.11 & 0.17 \\
\hline New Boston & 0.47 & 0.44 & 0.32 & 0.08 & 0.24 & 0.36 \\
\hline Raymond & 0.67 & 0.45 & 0.40 & 0.08 & 0.33 & 0.50 \\
\hline Weare & 0.44 & 0.56 & 0.50 & 0.09 & 0.35 & 0.50 \\
\hline
\end{tabular}

Table 2.5 External to Internal Factor
\begin{tabular}{|l|r|r|r|r|r|r|}
\hline TOWN & XIHBW & XIHBSH & XIHBSO & XIHBSCH & XIHBO & \multicolumn{1}{l|}{ XINHB } \\
\hline Auburn & 0.28 & 0.04 & 0.05 & 0.00 & 0.07 & 0.09 \\
\hline Bedford & 0.35 & 0.28 & 0.28 & 0.00 & 0.28 & 0.28 \\
\hline Candia & 0.26 & 0.04 & 0.04 & 0.00 & 0.06 & 0.07 \\
\hline Chester & 0.21 & 0.03 & 0.02 & 0.00 & 0.02 & 0.07 \\
\hline Deerfield & 0.39 & 0.04 & 0.03 & 0.00 & 0.04 & 0.06 \\
\hline Derry & 0.25 & 0.35 & 0.25 & 0.10 & 0.30 & 0.22 \\
\hline Goffstown & 0.19 & 0.05 & 0.03 & 0.02 & 0.06 & 0.06 \\
\hline Hooksett & 0.37 & 0.30 & 0.26 & 0.03 & 0.26 & 0.26 \\
\hline Londonderry & 0.29 & 0.40 & 0.32 & 0.00 & 0.30 & 0.30 \\
\hline Manchester & 0.26 & 0.27 & 0.19 & 0.10 & 0.25 & 0.25 \\
\hline New Boston & 0.32 & 0.02 & 0.04 & 0.00 & 0.04 & 0.04 \\
\hline Raymond & 0.46 & 0.30 & 0.25 & 0.00 & 0.06 & 0.30 \\
\hline Weare & 0.32 & 0.04 & 0.04 & 0.00 & 0.04 & 0.08 \\
\hline
\end{tabular}

\subsection*{2.5 Trip Generation Results and Conclusions}

The following table summarizes the trip generation results before balancing, which count for a regional population of 261,262. The average motorized trip rate per capital is 3.1 which fall in the range of national average. The table productions and attractions reflect total trips generated by the region.

Table 2.6 Unbalanced Motorized Productions and Attractions
\begin{tabular}{|l|c|c|}
\hline Trip Type & Productions & Attractions \\
\hline Home Based Work & 151,600 & 162,980 \\
\hline Home Based Shop & 94,546 & 91,396 \\
\hline Home Based Social & 51,582 & 90,615 \\
\hline Home Based School & 41,290 & 100,318 \\
\hline Home Based Other & 207,600 & 193,687 \\
\hline Non-Home Based & 236,622 & 231,053 \\
\hline Total & 783,244 & 870,051 \\
\hline
\end{tabular}

\section*{CHAPTER 3 TRIP DISTRIBUTION}

Trip distribution involves the roadway networks, travel times, and conversion of productions and attractions from the trip generation step into a TAZ level person trip matrix. The data needed for trip distribution comes from the household travel survey.

\subsection*{3.1 Traffic Analysis Zone (TAZ)}

TAZs are geographic areas dividing the planning region into relatively similar areas of land use and land activity. Refinements were made to the 2005 existing TAZs to develop the 2010 TAZs. The 2010 census data boundaries land use type, and major physical and transportation boundaries were all considered in the refinement of TAZs. Total TAZs in each community is shown in the following table. No new TAZs were added to the 2005 model TAZ.

Table 3.1 Number of TAZs
\begin{tabular}{|l|c|l|c|}
\hline COMMUNITY & \# OF ZONES & COMMUNITY & \# OF ZONES \\
\hline Auburn & 5 & Hooksett & 12 \\
\hline Bedford & 25 & Londonderry & 28 \\
\hline Candia & 9 & Manchester & 95 \\
\hline Chester & 8 & New Boston & 10 \\
\hline Deerfield & 10 & Raymond & 17 \\
\hline Derry & 35 & Weare & 19 \\
\hline Goffstown & 17 & TOTAL & \(\mathbf{2 9 0}\) \\
\hline
\end{tabular}

\subsection*{3.2 Network}

The model network was adopted from 2005 network. Attributes used in the network includes A node, B node, distance, speed, SPDclass, CAPclass, Lanes, Count, KFAC, Town, CNT93, CNT94, CNT94, CNT95, CNT96, CNT97, ONETWOWAY, Type, CNT98, CNT99, CNT01, Totalest05 and Totalest10. Network roadways are functionally classified, including collectors and higher and some local road. To improve forecasting accuracy and meet needs of planning process, Totalest10 (for validation purpose) were added to the network. Network links were examined and inappropriately coded links were corrected based on local knowledge.

\subsection*{3.2.1Functional Class}

Function class as an attribute of links were coded in the network. Functional classes used are shown in the following table.

Table 3.2 Functional Class Classification
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ Rural } \\
\hline Code & Descriptions \\
\hline 01 & Principal Arterial - Interstate \\
\hline 02 & Principal Arterial -Other \\
\hline 06 & Minor Arterial \\
\hline 07 & Major Collector \\
\hline 08 & Minor Collector \\
\hline 09 & Local \\
\hline Urban & \\
\hline Code & Descriptions \\
\hline 11 & Principal Arterial - Interstate \\
\hline 12 & Principal Arterial -Other Freeway and Expressway \\
\hline 14 & Minor Arterial \\
\hline 16 & Major Collector \\
\hline 17 & Minor Collector \\
\hline 19 & Local \\
\hline
\end{tabular}

NHDOT GIS data was used to identify roadway functional class.

\subsection*{3.2.2 Facility type}

Facility type plays important roles in model calibration.
Network roadways were classified by 16 facility types based on roadway characteristics such as capacity and speed. Capacities were calculated based on 2000 Highway Capacity Manual (HCM) and adjusted during model calibration. Capacity and speed by facility types are presented in table 3.3.

Table 3.3 Facility Type
\begin{tabular}{|c|l|l|l|l|}
\hline Code & Facility Type & Description & Capacity/lane & Speed \\
\hline 1 & \begin{tabular}{l} 
Rural interstate and its \\
Ramps connect to freeway.
\end{tabular} & \begin{tabular}{l} 
Include functional class \\
1.
\end{tabular} & 1920 \\
\hline 2 & \begin{tabular}{l} 
Rural Other freeway and \\
expressways
\end{tabular} & \begin{tabular}{l} 
Include functional class \\
2
\end{tabular} & 1790 & 65 \\
\hline 3 & Entrance Ramp & Enter to the freeways & \(\mathbf{7 2 0}\) & \(\mathbf{3 5}\) \\
\hline 4 & Exit Ramp & Exit from freeways & \(\mathbf{7 2 0}\) & \(\mathbf{3 0}\) \\
\hline 5 & & \begin{tabular}{l} 
Include functional class \\
6
\end{tabular} & 1100 & 50 \\
\hline 6 & Rural Minor Arterial & \begin{tabular}{l} 
Include functional class \\
7
\end{tabular} & 800 & 45 \\
\hline 7 & Rural Major Collector & \begin{tabular}{l} 
Include functional class \\
8
\end{tabular} & 800 & 40 \\
\hline 8 & Rural Minor Collector & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|l|}
\hline 9 & Rural Local Road & \begin{tabular}{l} 
Include functional class \\
9
\end{tabular} & 600 & 30 \\
\hline 11 & \begin{tabular}{l} 
Urban Interstate and its \\
Ramps connect to freeway.
\end{tabular} & \begin{tabular}{l} 
Include functional class \\
11.
\end{tabular} & 1870 & 65 \\
\hline 12 & \begin{tabular}{l} 
Urban Other Freeways and \\
Expressway
\end{tabular} & \begin{tabular}{l} 
Include functional class \\
12
\end{tabular} & 1790 & 55 \\
\hline 13 & One-way Arterial & \begin{tabular}{l} 
Belongs to the \\
functional class 14 and \\
16.
\end{tabular} & \(\mathbf{1 3 8 0}\) & \(\mathbf{3 5}\) \\
\hline 14 & Urban Principal Arterial & Functional class 14 the & 1450 & \(\mathbf{1 0 0 0}\) \\
\hline 15 & One-way Collector & \begin{tabular}{l} 
Belongs to \\
functional class 17
\end{tabular} & \(\mathbf{3 0}\) \\
\hline 16 & Urban Minor Arterial & Functional class 16 & 1200 & 30 \\
\hline 17 & Urban Collector & Functional class 17 & 1100 & 25 \\
\hline 18 & & & & 20 \\
\hline 19 & Urban Local Road & Functional class 19 & 500 & 20 \\
\hline
\end{tabular}

\subsection*{3.2.3 Speed}

Average roadway speeds coded into the network were obtained from the SNHPC Congestion Quantity Study if it was included in the study or from the above table.

\subsection*{3.2.4 Model Capacities}

Model capacities listed in the above table, calculated based on information in the Highway Capacity Manual 2000 were subjected to change during model calibration.

\subsection*{3.3 Terminal Times}

Terminal times added to the beginning and end of a trip (TAZ to TAZ), were inherited from the 2005 model. TAZ terminal times were saved in Terminal.dbf file.

\subsection*{3.4 Turn Restrictions/Penalties}

The model includes turn restrictions to reflect actual traffic operations at certain locations. Most delays at intersections derived from the 2005 model. Delays were estimated using Synchro for the intersections with turning movement counts were done since 2005. Delays at toll plazas were modified to reflect the addition of open road
tolling. Restrictions at interchange ramps and one way streets were added to the delay file.

\subsection*{3.5 External to External Trip Table}

Percentages of external - external trips from the 2005 model were carried over to the 2010 model. Traffic volumes at these external stations were updated by using 2010 traffic estimates.

\subsection*{3.6 Friction Factors}

Friction factors for the 2005 model were carried over to the 2010 model.

\subsection*{3.7 Trip Length Frequency Distribution Curves Comparisons}

Following figures and tables compare the trip length frequency distribution developed from the household travel survey and the model results for each trip type.

Table 3.5 Trip Length Frequency Distribution
\begin{tabular}{|l|r|r|r|r|r|r|r|r|r|r|r|r|}
\hline \multirow{2}{*}{\begin{tabular}{l} 
Travel \\
time in \\
minutes
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l} 
Home Based
\end{tabular}} & \multicolumn{2}{l|}{\begin{tabular}{l} 
Home Based \\
Shop (\%) (\%)
\end{tabular}} & \multicolumn{2}{l|}{\begin{tabular}{l} 
Some Based \\
Social (\%)
\end{tabular}} & \multicolumn{2}{l|}{\begin{tabular}{l} 
Home Based \\
School (\%)
\end{tabular}} & \multicolumn{2}{l|}{\begin{tabular}{l} 
Home Based \\
Other (\%)
\end{tabular}} & \multicolumn{2}{l|}{\begin{tabular}{l} 
Non-Home \\
Based (\%)
\end{tabular}} \\
\hline 1 to 10 & 40.85 & 45.80 & 62.41 & 63.10 & 41.18 & 50.10 & 48.98 & 47.80 & 43.24 & 53.00 & 41.44 & 42.60 \\
\hline 11 to 15 & 22.81 & 26.20 & 17.02 & 19.50 & 30.88 & 32.70 & 30.61 & 35.80 & 19.26 & 26.20 & 30.56 & 29.00 \\
\hline 16 to 20 & 12.73 & 14.00 & 7.80 & 9.30 & 13.24 & 9.20 & 7.14 & 6.80 & 22.30 & 13.50 & 9.72 & 13.00 \\
\hline 21 to 25 & 6.90 & 7.30 & 6.38 & 5.10 & 2.94 & 4.0 & 5.10 & 5.90 & 6.08 & 3.70 & 4.40 & 7.80 \\
\hline 26 to 30 & 8.22 & 4.70 & 4.26 & 2.30 & 11.76 & 2.40 & 5.10 & 3.30 & 6.76 & 2.20 & 10.42 & 5.00 \\
\hline 31 to 35 & 4.24 & 1.30 & 2.13 & 0.40 & 0.00 & 1.00 & 0.00 & 0.40 & 1.69 & 1.00 & 1.85 & 2.20 \\
\hline\(>36\) & 4.24 & 0.70 & 0.00 & 0.30 & 0.00 & 0.70 & 3.06 & 0.00 & 0.68 & 0.60 & 1.62 & 0.40 \\
\hline
\end{tabular}


Figure 3.1 Home Based Work Trip Length Frequency



Figure 3.3 Home Based Other Trip Length Frequency


Figure 3.4 Home Based Social Trip Length Frequency


Figure 3.5 Home Based School Trip Length Frequency


Figure 3.6 Non-Home Based Trip Length Frequency

\subsection*{3.8 Trip Distribution Conclusions}

Based on the previous table and figures, similarities of trip length frequency between the 2007 household survey and the model are shown. The results of the trip distribution process were reasonable.

\section*{CHAPTER 4 TRUCK TRIP MODELLING}

Trip generation step only captures household-based trips rather than commodity-based trips. To generate commodity-based trips, a truck trip table was developed based on Quick Response Freight Manual and NCHRP Synthesis 298, Truck Trip Generation Data.

\subsection*{4.1 Truck Trip Generation}

Employment data used as inputs to the model were grouped as follows according to the NAICS codes:
- Agriculture, Mining and Construction (NAICS: 11, 21, 22, 23)
- Manufacturing, Transportation/Communications/Utilities (NAICS Code: 31, 32, 33, 42, 48, 49)
- Retail Trade (NAICS Code: 44, 45, 72)
- Offices and Services ( NAICS Code: 51, 52, 53, 54, 55, 56, 61, 62, 71, 81, 92)

Besides the four employment categories, number of household was another variable for truck trip generation.

Because of a lack of local truck trip rate data for industrial categories, trip rates data shown below in table 4.1 from "Quick Response Freight Manual", was used. Truck trip rates were adjusted during calibration.

Table 4.1 Trip Generation Rate
\begin{tabular}{|l|l|l|l|l|l|}
\hline Category & \begin{tabular}{l} 
Agriculture, \\
Mining and \\
construction \\
\((11,21,22,23)\)
\end{tabular} & \begin{tabular}{l} 
Manufacturing, \\
transportation/ \\
communications/ \\
Utilities \\
\((31,32,33,42,48,49)\)
\end{tabular} & \begin{tabular}{l} 
Retail \\
Trade \\
\((44,45,72)\)
\end{tabular} & \begin{tabular}{l} 
Offices and Services \\
\((51,52,53,54,55,56,6\) \\
\(1,62,71,81,92)\)
\end{tabular} & Households \\
\hline \begin{tabular}{l} 
Trip \\
Rate
\end{tabular} & 0.865 & 0.706 & 0.663 & 0.283 & 0.213 \\
\hline
\end{tabular}

The percentage of internal-external and external-internal in total truck trips in each TAZ was assumed to be similar to the 1990 truck trip table. The data was saved in the file IXper.DBF.

\subsection*{4.2 Truck Volumes at External Stations}

Vehicle classification counts at external stations were used to estimate truck volume at these stations. For external stations where no data was available, default truck percentage was estimated from FHWA data, Census’ Truck Inventory User Survey which can be found in the Quick Response Freight Manual or from adjacent roads with similar functional class. Truck volumes at external stations were stored in the file 10NBTRKEXT.dbf.

Six types of truck trip were generated. They are Productions, Productions of IX, Productions of XI, Attractions, Attractions of IX, and Attractions of XI.

\subsection*{4.3 Truck Trip Distribution}

The TP+ software standard gravity model was used for truck trip distribution. A trip table representing the origins and destinations of individual truck trips was produced in the process. Fraction factors for use with the gravity model were based on travel time between analysis areas. Travel time was calculated using model network. The factors for all types of truck trips were calculated using a formula in Quick Response Freight Manual showing as follows.
\[
F_{i j}=e^{-0.1 t_{i j}}
\]

Where:
\(\boldsymbol{F}_{i j}\) - Fraction factor.
\(\mathbf{t}_{\mathbf{i j}}\) - Travel time in minutes between analysis areas.
The factors were saved in the file 05NBTRKFRA.dat.

\subsection*{4.4 Input Files and Output File}

In this process, following files fed into TP+ script to produce truck trip table.
10NBTRKSCO.DBF
10NBTRKEXT.DBF
IXper.DBF
10NBNETWORK.NET
10NBdelay.prn
10NBTRKFRA.DAT

\section*{Output File}

10NBTRKOD.MAT

The truck trip table along with the passenger vehicle trip table and the external-external trip table were loaded onto the Viper Network in the trip assignment step.

\section*{CHAPTER 5 EXTERNAL TO EXTERNAL TABLE}

\subsection*{5.1 Introduction}

External stations in travel demand models are locations on the highway network through which trip travel in and out of the region. There are basically three types of movements through these external stations: internal to external (I-X), external to Internal (X-I), and External to External (X-X). The I-X trips have their origin inside the region and destination outside the region; the X-I trips have origin outside the region and destination inside the region; and \(\mathrm{X}-\mathrm{X}\) trips have both origin and destination outside the region. I-X and X-I trips are calculated in the trip generation process in the travel demand model. However, the X-X trips table, as a component of the regional travel demand model, has to be created externally (not using travel demand model) and to be integrated with the regular trips and truck trips for ultimate travel demand forecasting.

Basically, there are two methods to create a XX trip table: (1) Using equations such as those presented in Chapter 5 of the NCHRP report 365; (2) using an Origin-Destination (O-D) survey. An Origin-Destination survey was used to create XX trip table for the region.

\subsection*{5.2 O-D Survey}

Generally, there are four O-D survey methods to collect information on the current trip: (1) License plate survey, (2) roadside hand survey, (3) roadside interview survey, and (4) combined roadside interview and handout survey. The roadside hand survey is the most cost efficient method and results in fewer traffic delays. As a result, a roadside hand survey was used to complete the O-D survey in 2007.

In the regional model, 67 external stations exist as 291 to 357. Total Annual Average Daily Traffic (AADT) traveling through these stations is 157,189 vehicles. To survey each station is time, labor, and finance consuming, so to survey all stations is unfeasible. As a result, 1990 XX trip table was examined to select survey locations. In case that percentage of XX trip in total traffic volume per station is unrealisticly high, the station
was selected as a potential location for the survey. Nine locations were selected for the OD survey. For all stations exclusive of these nine, percentage of XX trip in total traffic volume per station was carried over from the order model. A summary of the survey responses for each of the location is shown in Table 5.1 below.

Table 5.1 O-D Survey Locations
\begin{tabular}{|l|c|r|r|}
\hline \multicolumn{1}{|c|}{ LOCATION } & LOCID & \begin{tabular}{l} 
Card \\
Needed
\end{tabular} & \begin{tabular}{l} 
Card \\
Received
\end{tabular} \\
\hline F.E.E.E TPK AT Bedford Toll Plaza, NB & 037100 & 3500 & 144 \\
\hline I-93 at Hooksett Toll Plaza, SB & 225083 & 3500 & 349 \\
\hline BEALS RD AT MERRIMACK T/L Over Baboosic Brook & 037091 & 300 & 28 \\
\hline STOWELL RD AT MERRIMACK T/L & 037130 & 250 & 10 \\
\hline North Amherst RD at Amherst T/L & 037074 & 380 & 38 \\
\hline Black Brook Road at Dunbarton T/L & 175308 & 230 & 22 \\
\hline RESERVOIR DR AT DEERING T/L & 471803 & 390 & 21 \\
\hline SUGAR HILL RD NORTH AT HOPKINTON T/L & 471801 & 470 & 21 \\
\hline PINE ST AT BOW T/L & 225369 & 700 & 49 \\
\hline
\end{tabular}

Number of vehicles requested for the survey based on the 2005 traffic volume per location was calculated using statistical methods. These numbers are also shown in table 5.1. The sample sizes were determined through an assumed confidence level of 95 percent and confidence interval of 4 percent.

\subsection*{5.3 X-X Trip Table}

To create the X - X trip table, following steps were taken:
1. The percentage of XX traffic volume in total traffic volume per station was computed using 2007 O-D survey data or 1990 XX trip table data.
2. The percentage of XX traffic volume of each O-D pair in total traffic volume of the origin station was calculated using 2007 O-D survey data or 1990 XX trip table data.
3. Unrealistic percentages were adjusted.
4. XX traffic volumes were distributed to each O-D pair according to the percentage of XX traffic volume from step 2 to get unbalanced XX trip table.
5. The unbalanced excel XX trip table was converted to a format that TP+ can be read by running the excel2TP visual basic script. The results will be saved in XXTPUNB2010 sheet.
6. Copy the sheet to OD2010.txt file.
7. Run TP+ Script to balance the XX trip table and the output XX trip table and vector.
8. Run Matrix Visual Basic script to convert the TP+ format data, the vector to an excel format trip table.

\section*{CHAPTER 6 TRIP ASSIGNMENT}

In the process of trip assignment, trips in trip table, which are output of the trip distribution step, load onto the highway network to produce estimates of traffic volumes, congested speed, Vehicle Miles Traveled (VMT), and Vehicle Hours Traveled (VHT). Prior to assigning vehicle trips to the roadway network, the conversion of people trips to vehicles trips is done at the trip generation phase for each trip type.

\subsection*{6.1 Auto Occupancy Rates}

The following auto occupancy rates used to convert person trips to vehicle trips were established using the 2007 household travel survey data.

Table 6.1 Auto Occupancy Rates, 2007
\begin{tabular}{|l|c|}
\hline Trip Type & Auto Occupancy (Person/vehicle) \\
\hline Home Based Work & 1.31 \\
\hline Home Based Shop & 1.36 \\
\hline Home Based Social & 1.65 \\
\hline Home Based School & 2.37 \\
\hline Home Based Other & 1.50 \\
\hline Non-Home Based & 1.45 \\
\hline
\end{tabular}

Once trips are converted to vehicle trips they are assigned to the network using a gap parameter of 0.0001 and volume-delay functions.

\subsection*{6.2 Volume - Delay Function}

Trip assignment assigns vehicle trips to the roadway network using equilibrium assignment based on the assumptions that people will use the shortest time path and have "perfect" information about the routes available. Trips for each O-D pair are assigned to the links on the minimum path and trips are totaled for each link. The assigned trip volume is then compared to the link capacity to determine congestion. If a link is congested, the travel time is adjusted to result in a longer travel time. Changes in travel time means that the shortest path may change. This process is repeated several times (iterated) until there is an equilibrium between travel demand and travel supply. Trips on congested links will be shifted to uncongested links until this equilibrium condition occurs.

Traffic assignment step is influenced by the relationship between assigned volume and delay caused by congestion. Volume - delay function used to determine this relationship is shown below.

TC [1] = T0 * VDF (Linkclass, VC)
A set of factors were set based on the link class and V/C ratio.
; V/C RI, UI, UPAO, RMiA, UMi_A,RMC, UC, U_Exp, R_Exp, RL, UL, Centroid \(R=" 0.00,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000,1.000 "\), " \(0.10,1.002,1.001,1.004,1.018,1.010,1.190,1.190,1.010,1.020,1.200,1.200,1.030 "\),
"0.30, 1.005,1.001,1.006,1.050,1.022,1.395,1.395,1.040, 1.060, 1.400, 1.400,1.040",
" \(0.50,1.008,1.002,1.010,1.600,1.100,1.550,1.550,1.102,1.869,1.550,1.550,1.060 "\),
" \(0.70,1.009,1.003,1.030,2.330,2.100,1.595,1.595,1.270,2.000,1.600,1.600,1.100 "\),
" \(0.80,1.250,1.050,1.060,2.490,2.200,1.600,1.600,1.440,2.850,1.670,1.670,1.140 "\),
" \(0.90,1.295,1.085,1.340,2.550,2.600,1.650,1.650,1.610,3.000,1.700,1.700,1.180 "\),
"1.00, 3.750,2.900,1.545,3.190,3.900,1.975,1.975,2.260, 3.890, 1.770, 1.770,1.260",
"1.10, 4.950,4.300,2.720,3.600,3.950,2.625,2.625,2.900, 4.690, 1.820, 1.820,1.340",
"1.17, 5.010,4.700,3.994,4.450,4.150,2.670,2.670,3.630, 5.000, 1.889, 1.889,1.453",
"1.30, 5.000,5.000,4.120,5.487,5.600,2.690,2.690,4.390, 5.890, 1.915, 1.915,1.660",
"1.50, 5.000,5.000,5.220,6.000,6.600,2.890,2.890,7.790, 7.790, 1.980, 1.980,2.300",
"99.99,5.000,5.000,5.220,6.000,6.600,3.200,3.200,7.790, 7.790, 2.000, 2.000,2.300"

\section*{Chapter 7 Model Validation}

Highway assignment is crucial for model to produce traffic volume estimates within acceptable ranges of tolerance compared to actual ground counts. Comparisons of VMT estimates between the model, the Highway Performance Monitoring System (HPMS) and SNHPC traffic count program are summarized in this chapter along with assignment statistics. EPA mandates a 3 percent difference of VMT estimates between the model and HPMS as an acceptable tolerance level for regional air quality planning and conformity purposes. A comparison of traffic volumes between model estimates and ground count screen line and cordon line are presented in this chapter as well as validation results of traffic volumes on individual links.

\subsection*{7.1 Vehicle Miles Travelled}

Because HPMS VMT estimates of 2010 are unavailable in New Hampshire, model VMT estimates were compared with 2010 VMT of the SNHPC Traffic Count Program. If traffic volume for a link was not available in traffic count program, estimates for the traffic volume on adjacent links were used. Region wide VMT calibration results are shown in the following table by functional class. The results show that region-wide VMT calibration meets the FHWA target percentage for VMT difference between the model and ground counts.

Table 7.1 Model VMT Estimates Verse VMT of Traffic Count Program
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
Functional \\
Class
\end{tabular} & \begin{tabular}{l} 
2010 VMT Estimates of Traffic \\
Count Program
\end{tabular} & \begin{tabular}{l} 
2010 Model \\
VMT
\end{tabular} & \begin{tabular}{l} 
\% \\
Difference
\end{tabular} \\
\hline 1 & 389,965 & 405,956 & \(3.94 \%\) \\
\hline 2 & 401,994 & 428,680 & \(6.23 \%\) \\
\hline 6 & 80,375 & 96,125 & \(16.39 \%\) \\
\hline 7 & 381,212 & 432,241 & \(11.81 \%\) \\
\hline 8 & 85,489 & 99,278 & \(13.89 \%\) \\
\hline 9 & 258,656 & 286,314 & \(9.66 \%\) \\
\hline 11 & \(1,864,079\) & \(1,809,259\) & \(-3.03 \%\) \\
\hline 12 & 399,050 & 415,206 & \(3.89 \%\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 14 & 860,674 & 791,242 & \(-8.78 \%\) \\
\hline 16 & \(1,177,920\) & \(1,201,258\) & \(1.94 \%\) \\
\hline 17 & 493,457 & 511,284 & \(3.49 \%\) \\
\hline 19 & 267,790 & 257,720 & \(-3.91 \%\) \\
\hline Total & \(\mathbf{6 , 6 6 0 , 6 6 0}\) & \(\mathbf{6 , 7 3 4 , 5 6 1}\) & \(\mathbf{1 . 1 0 \%}\) \\
\hline
\end{tabular}

In New Hampshire, 2008 HPMS VMT estimate was available for model calibration. To produce 2008 model VMT estimates, 2008 social economic data was applied to the 2010 model network. A comparison of VMT between 2008 HPMS and 2008 model generated is made in the following table. The table shows that the model VMT estimates satisfy the EPA requirement.

Table 7.22008 Model Estimate Versus 2008 HPMS VMT Estimates
\begin{tabular}{|c|c|c|c|}
\hline 2008 HPMS VMT & 2008 Model VMT & \% Difference & \begin{tabular}{l} 
Target for \% \\
Difference (EPA)
\end{tabular} \\
\hline \(6,606,565\) & \(6,773,936\) & 2.53 & 3 \\
\hline
\end{tabular}

\subsection*{7.2 Traffic Volume}

\subsection*{7.2.1 Region wide}

After validation of the VMT, the next level of validation of the highway assignment involves comparison of observed versus estimated traffic volume on the highway network. Two measures, the Coefficient of Determination ( \(\mathrm{R}^{2}\) ) and Percent Root Mean Square of the Error (\%RMSE), to examine performance of the model were calculated using following equations:
\[
R^{2}=[\operatorname{Correl}(\text { Model }, \text { Count })]^{2}
\]

Where: Correl=Correlation Coefficient
\[
\begin{gathered}
\operatorname{Correl}(\text { Model,Count }) .=\frac{\sum_{j}(\text { Model }- \text { Ave.Model })(\text { Count }- \text { Ave.count })}{\sqrt{\sum_{j}(\text { Model }- \text { Ave.Model })^{2}(\text { Count }- \text { Ave.count })^{2}}} \\
\% R M S E=\frac{\left(\sum_{j}\left(\text { Model }_{j}-\text { Count }_{j}\right)^{2} /(\text { Numberofcounts }-1)^{0.5} * 100\right.}{\left.\sum_{j} \text { Count }_{j} / \text { NumberofCounts }\right)}
\end{gathered}
\]
\(\mathrm{R}^{2}\) region wide equals 0.90 which is greater than FHWA requirement which is 0.88 . \%RMSE equals 27.55 for all roadways with functional class collector and higher which is less than the commonly accepted FHWA standard 30.

\subsection*{7.2.2 Screen Line and Cordon line}

Total observed versus model estimated volumes at a Merrimack River screen line crossing and external stations cordon line crossings were compared in the following table. The table shows both absolute percentage differences are less than 2 percent.

Table 7.3 Total Observed Versus Model Estimates Traffic Volumes
\begin{tabular}{|l|c|c|c|}
\hline Criteria & 2010 Ground Count & 2010 Model & \% Difference \\
\hline \begin{tabular}{l} 
Daily traffic volume at all \\
external stations
\end{tabular} & 493,818 & 481,120 & \(2.64 \%\) \\
\hline \begin{tabular}{l} 
Merrimack River screen line \\
crossing
\end{tabular} & 247,016 & 246,000 & \(0.41 \%\) \\
\hline
\end{tabular}

\subsection*{7.2.3 Individual Links}

A comparison of the actual ground count to assignment on a link by link basis is one of the more severe tests for a regional model. As can be seen from Figure 7.1, the ground count and model assignment pairs compared fell within the FHWA validation criteria.

\begin{tabular}{ll} 
From: & Lulie Chen \\
To: & Snyder, Kerri; Adam Hlasny; Lohn Munn \\
Cc: & Chris Bean; Tidd, Leo; "Craig R Seymour" (crs@rkgassociates.com); I93-Exit4A-EIS (SM); David Preece \\
Subject: & RE: I-93 Exit 4A: SNHPC Interview Summary \\
Date: & Thursday, August 04, 2016 10:03:21 AM \\
Attachments: & \(\underline{\text { Londondery 2012.doc }}\) \\
& Final Draft Economic Development Chapter December 26 2014 Copv.docx \\
& \multicolumn{1}{l}{\begin{tabular}{l} 
Final DRAFT Land Use Chapter December 26 2014.docx \\
\\
\end{tabular}} \\
&
\end{tabular}

Hi Kerri:

My answers to the questions in blue. If you have any questions, please let me know.

Julie Chen

From: Snyder, Kerri [mailto:KSnyder@louisberger.com]
Sent: Wednesday, August 03, 2016 11:14 AM
To: Julie Chen; Adam Hlasny; John Munn
Cc: Chris Bean; Tidd, Leo; 'Craig R Seymour' (crs@rkgassociates.com); I93-Exit4A-EIS (SM)
Subject: I-93 Exit 4A: SNHPC Interview Summary
Julie, Jack, and Adam,
Thank you for taking the time to meet with us on July 25. Attached is a draft summary of our discussion for your review and comment. In addition, we respectfully request the following information.
1. Confirmation of 2050 as the outlook year for the population projections. This is what is stated in the letter to the Town of Derry. Also, is 2012 the date the most recent projections were created (when letter is dated)? Were the projections updated in 2014? If so, is the outlook year still 2050?
Yes. We have projections up to 2050. The projections haven't updated since 2012.
2. Copies of the letters (similar to the copy you provided for the Town of Derry) sent to the towns in the SNHPC area requesting input on the population projections.

Attached.
3. Results of a search SNHPC files to determine if Derry or Londonderry submitted comments in response to the letters from SNHPC in 2012 explaining the updated population and dwelling unit projections.
Don't have any records showing comments on population and dwelling projection from the two towns. But we did contact Londonderry for employment projection regarding Pettengill Road and Woodmont Common. We adjusted TAZ level employment allocations for Pettengill Road development. At that time, it is too early to tell how many jobs will be created by Woodmont Common.

March 14, 2012
Mr. Andre Garron, AICP, Director
Londonderry Community Development Department
268B Mammoth Road
Londonderry, NH 03053
Re: Population and Dwelling Unit Projections

Dear Mr. Garron:
The Southern New Hampshire Planning Commission (SNHPC) has completed the new population and dwelling unit projections for the region's towns and traffic zones. The projections look at the years 2010-2050. At this point, we would like to share our results with you for your review and comments.

The 2010 U.S. Census counted population for Londonderry was 24,129. According to the SNHPC figures, the number of dwelling units in Londonderry was 8,771 . The SNHPC projected population for 2050 is 37,623 , an absolute change of 13,494 persons, and the projected number of dwelling units is 13,044 , an absolute change of 4,273 units. These projections represent annual compound growth rates of 1.12 percent and 1.00 percent respectively. Please see the attached tables for details on a five-year basis.

The population projection was conducted using the Cohort Component Method. The actual births and deaths used were obtained from the NH Department of Health and Human Services, Bureau of Vital Records. The regional survival rates were calculated using life table derived from Office of Energy and Planning (OEP). The one variable generated by the SNHPC was the projected net migration. Using the past 40 years of net migration, we projected four possible future net migration outcomes: high, middle, low, and historical average. The most probable of the four was selected to generate the final projection; for Londonderry we used our low net migration projection.

Dwelling Units were projected based on the annual average of the past 40 years of Building Permits issued (1970-2009). The OEP figures from their "Current Estimates and Trends in New Hampshire’s Housing Supply, Updates 1989, 1999 and 2009" were used along with "19701979 Estimates of Housing Supply for Towns and Counties in New Hampshire." The building permit data was analyzed and any years with atypical net dwelling unit increases were excluded from the calculation of the annual average. For Londonderry, the annual average of net dwelling unit increase used in the projection was 116.

Using the totals from the population and dwelling unit projections, the net increase expected for each projected five year increment was distributed to the various traffic zones. Please refer to the attached traffic zone map for the location of zone boundaries. General assumptions made in this process were that growth rates would remain constant in each traffic zone and zoning ordinances would not change significantly over the projected time span. More specific assumptions were made in determining the amount of growth each traffic zone would receive based on the existing zoning of vacant land, the quantity of vacant land, the location of wetlands, steep slopes, water bodies or other natural development constraints, the existing land use coverage, the planned development area from SNHPC Comprehensive Plan; and the known proposed developments.

In Londonderry, the following assumptions were made to distribute the dwelling unit increases to the individual traffic zones:
- Traffic zones 101,100 , and 102 would receive the greatest share of dwelling units given the quantity of buildable residential land, and residential construction trends of 19902010.
- Traffic zones 64L, 284, and 65 would receive the least amount of dwelling units due to less buildable residential land than elsewhere, and the industrial nature of zones 64 and 65.

Distribution of population increases to the individual traffic zones were in proportion to dwelling unit increase in the individual traffic zones.

Please review the information in this letter along with the attached supporting tables. We greatly welcome your comments so that our projections will best reflect Londonderry's future growth. If you have comments or suggested revisions, please contact Julie Chen, Ph.D. within the next two weeks at (603) 669-4664 or jchen@snhpc.org. We would be happy to schedule an appointment to sit down with you and review the data in more detail. If we do not hear from you in the next three weeks, we will assume you are comfortable with our projections.

Sincerely,

\section*{SOUTHERN NEW HAMPSHIRE PLANNING COMMISSION}

David J. Preece, AICP
Executive Director/CEO
cc: SNHPC Representatives:
Sharon Carson, Arthur Rugg, Donald Moskowitz, Deborah Lievens, Leitha Reilly, Martin Srugis
4. Confirmation of the source of the employer database used in the 2010 population projections
NHDOT got employment database form NH Employment Security.
5. The 2015 plan makes reference to a critical document to request from SNHPC in transmittal: "Economic Impact of Mixed Use/Commercial Developments in Rockingham County, March 2014. Would you provide a copy of this document?
You can find how we used the Results of the Economic Impact Final Report in the attached Land Use Chapter of Moving Southern NH Forward Regional Comprehensive Plan 2015-2035 pages 48-55. Also see future employment growth pages 26-28 in attached Economic Development Chapter. The BEA 2014 Report using the REMI model is also attached.
6. We have reviewed the technical report that outlines the methodology for and calibration of the model. Have there been any major updates to the model since this documentation was prepared?
Since then we added Windham and Francestown to the regional model. Right now we have three models: Original model including thirteen communities, Original model + Windham (2013), Original model + Windham + Francestown (2014). The three models used same methodology, social economic data and projections.
7. During the meeting, you mentioned that the next SNHPC planning effort was the housing needs assessment. Is there a timeline for estimated completion of this assessment?
The last full housing needs assessment was in 2010 with an update in 2015. Please refer to Housing Chapter in Moving Southern NH Forward Regional Plan 2015-2035

We look forward to your comments on the draft interview summary as well as the aforementioned information requests.

\section*{Regards,}

Kerri

\section*{Kerri Snyder, AICP}

Principal Environmental Planner | Transportation Planning and Environment
Louis Berger
48 Wall Street, \(16^{\text {th }}\) Floor | New York | NY | 10005 | USA
direct +1-212-612-7908
mobile \(+1-646-584-9490\)
email ksnyder@louisberger.com
web louisberger.com

This message, including any attachments hereto, may contain privileged and/or confidential information and is intended solely for the attention and use of the intended addressee(s). If you are not the intended addressee, you may neither use, copy, nor deliver to anyone this message or any of its attachments. In such case, you should immediately destroy this message and its attachments and kindly notify the sender by reply mail. Unless made by a
person with actual authority conferred by Louis Berger, the information and statements herein do not constitute a binding commitment or warranty by Louis Berger. Louis Berger assumes no responsibility for any misperceptions, errors or misunderstandings. You are urged to verify any information that is confusing and report any errors/concerns to us in writing.

\section*{I-93 Exit 4A Supplemental Environmental Impact Statement Land Use Planner Interview Summary- Draft 8/2/2016 \\ NH Office of Energy and Planning}

Following is a summary of the interview held on July 26, 2016 at the OEP office in Concord. Attendees were as follows:
- OEP - Ken Gallager
- Louis Berger - Leo Tidd and Kerri Snyder
- RKG Associates - Craig Seymour

\section*{Population}

OEP's last release of official state population projections for the state, counties, and municipalities was in 2013 (Attachment A). OEP is currently working on 2016 population projections, which are anticipated to be complete in September 2016. The factors behind the need the update the 2013 projections include OEP's 2015 population estimates and the change in migration of populations within the State. The vital statistics/trends have not changed, but migration to southern New Hampshire is greater than anticipated at the time the 2013 projections were prepared and migration to the northern and western portions of the State is less than anticipated.

The methods used to generate the population projections are outlined in the 2013 report \(^{1}\), and the 2016 projections are based on the same methods (i.e., cohort projections, IRS data, and migration rates). Differences in net-migration rates are shown in Attachment A. The OEP conducted a meeting with the regional planning commissions to reach consensus on the migration rates to be used in the population projections. The group reached consensus on using 2000-2005 migration rates, reflecting a moderate growth outlook more positive than the late 2000's, but not as robust as the 1990's.

In allocating county-level population projections to towns, OEP based on share of population in each town and how that share has changed between 2000 and 2010. In other words, the projections assume that the current trend in each town will continue, fast growing towns will continue to grow faster than the county average and slower growing towns will experience less growth.

The group discussed the trend of declining populations in Derry due to the aging of the population. Derry experienced a population loss of 1,000 between the 2000 and 2010 Census; however, the population losses in the younger cohorts were greater. Population estimates consider the number of dwelling permits issued, though it was noted that number of dwellings can lead to an overestimate that is adjusted in comparison to Census estimates.

\footnotetext{
\({ }^{1}\) https://www.nh.gov/oep/data-center/documents/2013-projections-municipalities.pdf
}

The Exit 4A project and related potential for land development was not considered by OEP explicitly or implicitly in making the latest population projections. The group discussed that the situation with Exit 4A is different than the situation with the I-93 Salem to Manchester project where coordination with OEP led NHDOT and FHWA to conclude that the OEP projections represented a "Build" scenario for purposes of the I-93 SEIS. I-93 is of major economic importance to the state, and links New Hampshire to economic activity in Massachusetts and Boston metro area. As a result, the I-93 SEIS concluded growth would be lower along the I-93 corridor without the widening because the level of traffic congestion would rise to level that would adversely impact economic development. Projects such as Exit 4A that not have a large regional effect are not considered in OEP's projection process, as a result OEP agreed that their projections best represent a "No Build" scenario for purposes of the Exit 4A project. In other words, the OEP projections do not already include growth that would potentially be caused by Exit 4A (such as additional build-out of Woodmont Commons). Large scale planned developments, such as Woodmont Commons, are not included in the population projections; however, these developments would be represented in the population estimates after the development is completed.

\title{
State of New Hampshire, Regional Planning Commissions County Population Projections, 2016 Preliminary Version 2 - Migration Scenarios
}

At the Regional Planning Commission meeting of April 18, it was decided to use the latest Census and OEP population estimates and reported vital statistics data to establish the 2010 to 2015 population change benchmark. The projection scenarios presented here use fertility, mortality and migration rates calibrated to the known input targets and then explore future migration rate changes to the year 2040.

The data inputs for the projections model include: the 2010 Census population by age and sex, special population distributions by age and sex (college, prison and nursing home populations), fertility patterns by age of mother, survival distributions by age and sex, and migration patterns by age and sex. The model is calibrated to these inputs for the 2010 to 2015 experience as defined by the actual reported data and estimates results. The projection scenarios to 2040 are based on the 2015 targets and future assumptions of possible migration patterns based on historical migration rates. The scenarios presented here illustrate the impact of migration rate changes alone. Fertility and mortality assumptions are held constant in each of the scenarios presented.

\section*{Historical Net Migration}

Age patterns of migration can remain remarkably stable through fluctuating economic cycles. But the Crude Migration Rate (the total net migrants divided by the beginning period population) is directly impacted by the economy and, in particular, long-term cycles of employment and housing market shifts. The most recent economic recession provides a good example of this impact with some areas showing recovery much more quickly than others.

In establishing future scenarios of net-migration for New Hampshire counties, it is useful to look at historical migration rates as a baseline for future assumptions. Table 1 presents 5-year migration rates by county for each 5 -year period from 1990 to 2015 . These rates are derived by breaking down the total population change for the period into the components of births, deaths and the residual net-migration. The total county population is obtained from the decennial census results for 1990,2000 and 2010, adjusted to a July 1 reference date. The Census Bureau's intercensal estimates provide the mid-decade population for 1995 and 2005 and the most current OEP and Census estimates are used for 2015. The birth and death data are based on the New Hampshire Vital Records Information Network web query system and New Hampshire Department of Health and Human Services vital statistics reports.
\[
2016 \text { Projections (drat) }
\]

\section*{RILS Demographics}

Table 1: Net-Migration Rates
\begin{tabular}{|l|r|r|r|r|r|}
\hline & \begin{tabular}{c}
1990 \\
\(\mathbf{1 9 9 5}\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{1 9 9 5}\) to \\
\(\mathbf{2 0 0 0}\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{2 0 0 0}\) to \\
\(\mathbf{2 0 0 5}\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{2 0 0 5}\) to \\
\(\mathbf{2 0 1 0}\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{2 0 1 0}\) to \\
\(\mathbf{2 0 1 5}\)
\end{tabular} \\
\hline New Hampshire & \(0.9 \%\) & \(5.3 \%\) & \(3.2 \%\) & \(0.2 \%\) & \(0.8 \%\) \\
\hline Belknap & \(3.8 \%\) & \(7.9 \%\) & \(6.3 \%\) & \(-0.6 \%\) & \(1.8 \%\) \\
\hline Carroll & \(8.4 \%\) & \(12.3 \%\) & \(6.1 \%\) & \(2.8 \%\) & \(0.7 \%\) \\
\hline Cheshire & \(0.0 \%\) & \(2.5 \%\) & \(3.4 \%\) & \(-0.9 \%\) & \(-0.8 \%\) \\
\hline Coos & \(-3.3 \%\) & \(-1.2 \%\) & \(3.1 \%\) & \(-1.9 \%\) & \(-3.0 \%\) \\
\hline Grafton & \(3.5 \%\) & \(3.6 \%\) & \(5.5 \%\) & \(3.4 \%\) & \(0.4 \%\) \\
\hline Hillsborough & \(0.8 \%\) & \(5.5 \%\) & \(1.4 \%\) & \(-0.9 \%\) & \(0.1 \%\) \\
\hline Merrimack & \(2.0 \%\) & \(6.8 \%\) & \(5.4 \%\) & \(0.1 \%\) & \(0.9 \%\) \\
\hline Rockingham & \(0.0 \%\) & \(6.3 \%\) & \(2.9 \%\) & \(0.2 \%\) & \(2.4 \%\) \\
\hline Strafford & \(-1.3 \%\) & \(3.6 \%\) & \(3.0 \%\) & \(2.0 \%\) & \(2.0 \%\) \\
\hline Sullivan & \(-0.6 \%\) & \(1.6 \%\) & \(3.3 \%\) & \(-0.1 \%\) & \(-1.1 \%\) \\
\hline
\end{tabular}

> Rockingham Co. returns to circled rate by 2030

Table 2 presents five different migration scenarios based on the historical experience. The assumptions underlying each scenario run are described below the table. Run 1 very closely approximates the results from the 2013 round of RPC projections with some slight adjustments of fertility and mortality rates to meet the target 2010 to 2015 experience.

Table 2: Preliminary Projections Version 2 Comparison
\begin{tabular}{|l|r|r|r|r|r|r|r|}
\hline & \begin{tabular}{c} 
2010 \\
Census \\
Estimates \\
Base
\end{tabular} & \begin{tabular}{c} 
2015 \\
Target \\
Population
\end{tabular} & \begin{tabular}{c} 
2040 \\
Projection \\
Scenario 1
\end{tabular} & \begin{tabular}{c} 
2040 \\
Projection \\
Scenario 2
\end{tabular} & \begin{tabular}{l} 
2040 \\
Projection \\
Scenario 3
\end{tabular} & \begin{tabular}{l} 
2040 \\
Projection \\
Scenario 4
\end{tabular} & \begin{tabular}{l} 
2040 \\
Projection \\
Scenario 5
\end{tabular} \\
\hline Belknap County & 60,088 & 60,441 & 64,373 & 68,687 & 66,817 & 69,615 & 57,118 \\
\hline Carroll County & 47,818 & 47,650 & 52,446 & 49,056 & 47,628 & 55,493 & 40,448 \\
\hline Cheshire County & 77,117 & 76,592 & 76,663 & 82,717 & 81,068 & 81,026 & 70,203 \\
\hline Coos County & 33,055 & 31,554 & 27,238 & 28,566 & 27,686 & 27,763 & 23,414 \\
\hline Grafton County & 89,118 & 89,377 & 95,877 & 102,079 & 99,950 & 99,999 & 83,303 \\
\hline Hillsborough County & 400,721 & 404,765 & 426,157 & 434,055 & 428,433 & 473,686 & 402,024 \\
\hline Merrimack County & 146,445 & 148,123 & 156,835 & 171,554 & 166,762 & 172,649 & 145,824 \\
\hline Rockingham County & 295,223 & 301,095 & 320,618 & 325,768 & 322,111 & 350,358 & 307,533 \\
\hline Strafford County & 123,143 & 126,440 & 137,182 & 146,848 & 145,636 & 147,770 & 139,630 \\
\hline Sullivan County & 14,742 & 43,152 & 46,449 & 43,878 & 42,601 & 42,605 & 36,865 \\
\hline New Hampshire Total & \(1,316,470\) & \(1,329,189\) & \(1,403,838\) & \(1,453,208\) & \(1,428,692\) & \(1,520,964\) & \(1,306,362\) \\
\hline
\end{tabular}

RLS Demographics, Inc.
P.O. Box 160

Rensselaerville, NY
518-द्य-67-3163

\section*{Demographics}

\section*{Assumptions:}

Scenario 1:
Target Total Fertility Rate 2010-2015 and held constant for the projections period,
Target Crude Migration Rate 2010-2015 with original 2013 rates for the projections period,
Target Survival Rate distribution 2010-2015 and adjusted for improved survival for the projections period.

\section*{Scenario 2:}

Target Total Fertility Rate 2010-2015 and held constant for the projections period, Target Crude Migration Rate 2010-2015, future assumption of return to 2000 to 2005 migration rates by 2030 and held constant to 2040,
Target Survival Rate distribution 2010-2015 and adjusted for improved survival for the projections period.
Scenario 3:
Target Total Fertility Rate 2010-2015 and held constant for the projections period,
Target Crude Migration Rate 2010-2015, future assumption of return to 2000 to 2005 migration rates by 2040,
Target Survival Rate distribution 2010-2015 and adjusted for improved survival for the projections period.
Scenario 4:
Target Total Fertility Rate 2010-2015 and held constant for the projections period,
Target Crude Migration Rate 2010-2015, future assumption of return to historically highest migration rates by 2040,
Target Survival Rate distribution 2010-2015 and adjusted for improved survival for the projections period.

\section*{Scenario 5:}

Total Fertility Rate 2010-2015 and held constant for the projections period,
Target Crude Migration Rate 2010-2015 held constant throughout 2040,
Target Survival Rate distribution 2010-2015 and adjusted for improved survival for the projections period.

Total non-farm and private sector employment in New Hampshire continue a nearly steady increase from the recessionary low in early 2010. Preliminary March 2015 to March 2016 total non-farm employment increased by 10,500 jobs and represents an increase of nearly 40,000 from March of 2010. Given the increased employment activity and the meeting discussion regarding housing supply and demand, it seems reasonable to assume a more optimistic migration scenario than what was assumed in the 2013 round of projections.

RLS Demographics, Inc.
P.O. Box 160

Rensselaerville, NY
518-797-68-3163

\title{
I-93 Exit 4A Supplemental Environmental Impact Statement Land Use Planner Interview Summary- Final 8/7/2016 \\ \\ Woodmont Commons
} \\ \\ Woodmont Commons
}

Following is a summary of the interview held on July 25, 2016 at the Gallagher, Callahan, and Gartrell, P.C. office in Concord. Attendees were as follows:
- Woodmont Commons Representative (Developer) - Ari Pollack of Gallagher, Callahan, and Gartrell, P.C.
- CLD Consulting Engineers - Chris Bean
- Louis Berger - Leo Tidd and Kerri Snyder
- RKG Associates - Craig Seymour

\section*{Development and Land Use}

The discussion centered on the planned development of Woodmont Commons and the Exit 4A project. The Planned Unit Development (PUD) Master Plan for Woodmont Commons approved by the Town of Londonderry in 2013 provides the overall framework for the development of the site, with additional details addressed through site plan review of specific development proposals. Currently, Phase I is currently under a design review by the Town. The Development Agreement with the Town for the entire Woodmont Commons project includes provisions for mitigation of traffic impacts for each phase (discussed below). The Developer's current expectation is a 20 -year build out for the entire development (east and west of I-93).

The PUD Master Plan includes caps on the maximum development permitted in specific areas of Woodmont Commons with and without Exit 4A. These caps were developed based on a negotiation between what the Developer and the Town. As part of these negotiations, detailed technical memoranda were produced by consultants to the Developer and the Town that helped shape the final development quantities presented in the PUD. The Exit 4A project team will request this documentation from the Town of Londonderry.

The group discussed what level of development would be likely to occur on the east side of I-93 without Exit 4A. Without Exit 4A, the development on the east side of I-93 would likely go back to a residential development model (up to 330 units as allowed by the PUD). The group agreed that the 400,000 gsf of office development potentially allowed in WC-12 without Exit 4A according to the PUD would not be likely actually occur given the amount of traffic mitigation that would be required. Instead, a more realistic No Build development scenario would be a small number of supporting commercial businesses serving the needs of the 330 residential units (such as a convenience store or pharmacy).

The current programming for the east side, which is also preferred by the Town of Londonderry, is for commercial land use accessed via Exit 4A. In the with- Exit 4A scenario, the Developer expects a mixed use build-out on the east side of I-93 to the level indicated by the caps in 2013 PUD Master Plan by 2040. In other words, the PUD caps represent a reasonable "Build" scenario for the Exit 4A project. In terms of the timing of the east-side development in the Build
scenario, no development would be expected to start until after the completion of Exit 4A (currently expected by 2022). Nothing has been pre-sold or pre-leased. If Exit 4A does not move forward, the land would be used for residential development as noted above.

Regardless of the type of development on the east side, the Developer is sensitive to the environmental features (e.g., wetlands and vernal pools) and intends to minimize potential impacts to these features.

For the west side of I-93, the Developer believes the same basic build-out by 2040 will occur with and without Exit 4A; however, as previously noted, the PUD includes slightly lower development caps on the west side without Exit 4A.

Alternative A is the preferred alignment for Woodmont Commons. Alternatives C and D would require creation of a road system to support the easterly development, and the traffic mitigation required would limit commercial development to ancillary development in support of an overall residential land use. With Exit 4A, Alternative A, subarea WC-12 (east of I-93) is desirable for a commercial/institutional campus, which would result in the creation of new jobs for the state rather than shifting jobs from elsewhere within New Hampshire. Woodmont Commons is currently considering opportunities for commercial markets that are not currently present in southern New Hampshire.

\section*{Transportation}

The Development Agreement with the Town of Londonderry contains provisions for transportation improvements to support Phase I and II of the Woodmont Commons development. The approval process for these phases and future phases includes provisions for traffic studies and requires mitigation based on those studies to support the traffic generated from the development. NHDOT weighs in on improvements of state facilities (e.g., Route 102); however, the primary coordination of transportation mitigation is with the Town. Although NHDOT does not have a site approval mechanism, per se, it does approve driveway access from state facilities.
\begin{tabular}{ll} 
From: & \(\underline{\text { Ari Pollack }}\) \\
To: & \(\underline{\text { Snyder, Kerri }}\) \\
Cc: & \(\underline{\text { Chris Bean; Tidd, Leo; }} \underline{\text { I93-Exit4A-EIS (SM) }}\) \\
Subject: & RE: Market Basket Redevelopment - Summary \\
Date: & Friday, September 16, 2016 11:03:49 AM
\end{tabular}

Perfect.
Ari B. Pollack, Esq.
603.228 .1181
800.528 .1181
国
http://www.gcglaw.com

\author{
Gallagher, Callahan \& Gartrell, P.C.
}

A multidisciplinary law firm
214 N. Main Street
Concord, New Hampshire 03301
NOTICE REGARDING PRIVILEGED COMMUNICATION - The information contained in this electronic message is intended only for the addressee named above. The contents of this electronic message are or may be protected by the attorney-client privilege, work product doctrine, joint defense privileges, trade secret protections, and/or other applicable protections from disclosure. If the reader of this message is not the intended recipient, you are hereby notified that any use, dissemination, distribution or reproduction of this communication is strictly prohibited. If you have received this communication in error, please immediately notify Ari B. Pollack by calling 1.800.528.1181, or by email to pollack@gcglaw.com.

From: Snyder, Kerri [mailto:KSnyder@louisberger.com]
Sent: Friday, September 16, 2016 11:42 AM
To: Ari Pollack <pollack@gcglaw.com>
Cc: Chris Bean <ChrisB@cldengineers.com>; Tidd, Leo <ltidd@louisberger.com>; I93-Exit4A-EIS (SM) <193-Exit4A-EIS@louisberger.com>
Subject: Market Basket Redevelopment - Summary

Ari,
Thank you for your time today in talking about the Market Basket Redevelopment Area. Following is a summary of our conversation.

The Market Basket Redevelopment area, owned by DeMoulas Super Markets Inc., is part of the Woodmont Commons Subarea WC-1GL. The new Market Basket was built on the other side of the plaza (in WC-1GL) in 2011. The redevelopment of the original Market Basket and associated retail area included the demolition of approximately 74,000 GSF of commercial space and the construction of approximately 42,000 GSF of commercial space. The construction is complete, and as of May

2016, the area was occupied completely by a state liquor store, card shop, TJMaxx, and Marshalls Home Goods.

In addition, there are four pads available for development within WC-1GL, also owned by DeMoulas. These pads are located along the roadway running through the Woodmont Commons development area connecting Garden Lane and Pillsbury Road.

DeMoulas is currently looking for potential tenants and has received interest from multiple parties. The development of these parcels would occur with or without the Exit 4A project. At this time, it is not possible to determine the GSF associated with these four pads, as the types of tenants and buildings that would be constructed are unknown.

I appreciate your review of the summary. Your comments are appreciated.

Regards,
Kerri

\section*{Kerri Snyder, AICP}

Principal Environmental Planner | Transportation Planning and Environment
Louis Berger
48 Wall Street, \(16^{\text {th }}\) Floor | New York | NY | 10005 | USA
direct +1-212-612-7908
mobile +1 -646-584-9490
email ksnyder@louisberger.com
web louisberger.com

This message, including any attachments hereto, may contain privileged and/or confidential information and is intended solely for the attention and use of the intended addressee(s). If you are not the intended addressee, you may neither use, copy, nor deliver to anyone this message or any of its attachments. In such case, you should immediately destroy this message and its attachments and kindly notify the sender by reply mail. Unless made by a person with actual authority conferred by Louis Berger, the information and statements herein do not constitute a binding commitment or warranty by Louis Berger. Louis Berger assumes no responsibility for any misperceptions, errors or misunderstandings. You are urged to verify any information that is confusing and report any errors/concerns to us in writing.

\section*{Disclaimer}

The information contained in this communication from the sender is confidential. It is intended solely for use by the recipient and others authorized to receive it. If you are not the recipient, you are hereby notified that any disclosure, copying, distribution or taking action in relation of the contents of this information is strictly prohibited and may be unlawful.

This email has been scanned for viruses and malware, and may have been automatically archived by Mimecast Ltd, an innovator in Software as a Service (SaaS) for business.

\section*{Snyder, Kerri}

From:
Sent:
To:
Cc:
Subject:

Snyder, Kerri
Thursday, August 11, 2016 1:21 PM
'Bill Herman'
I93-Exit4A-EIS (SM); Tidd, Leo; Chris Bean
RE: I-93 Exit 4A: Town of Auburn Land Use and Development Discussion with Bill Herman

Bill,
Thank you for your review. I appreciate your time in talking with me.
Regards,
Kerri

From: Bill Herman [mailto:townadmin@townofauburnnh.com]
Sent: Thursday, August 11, 2016 9:37 AM
To: Snyder, Kerri <KSnyder@louisberger.com>
Cc: I93-Exit4A-EIS (SM) <193-Exit4A-EIS@louisberger.com>; Tidd, Leo <ltidd@louisberger.com>; Chris Bean <ChrisB@cldengineers.com>
Subject: RE: I-93 Exit 4A: Town of Auburn Land Use and Development Discussion with Bill Herman

Thank you very much for sharing the summery below Kerri.

That is a very good and accurate reflection of our conversation, and I don't find anything to correct or have anything additional I can add.

I appreciate the ability to review the summary.

\section*{Bill}

Bill Herman, CPM
Town Administrator
Town of Auburn
PO Box 309
Auburn, NH 03032
(603) 483-5052, ext. 111

NOTICE: Privacy should not be assumed with e-mails associated with Town business. Under New Hampshire's Right-toKnow law (RSA 91-A), documents - including e-mail communications - in the possession of public officials or public agencies concerning Town business are classified as public records that may be subject to public disclosure.

From: Snyder, Kerri [mailto:KSnyder@louisberger.com]
Sent: Tuesday, August 09, 2016 5:46 PM

To: Bill Herman <townadmin@townofauburnnh.com>
Cc: I93-Exit4A-EIS (SM) <193-Exit4A-EIS@louisberger.com>; Tidd, Leo <ltidd@louisberger.com>; Chris Bean <ChrisB@cldengineers.com>
Subject: I-93 Exit 4A: Town of Auburn Land Use and Development Discussion with Bill Herman

Bill,
Thank you for your time today. Following is a summary of our discussion regarding l-93 Exit 4A and the Town of Auburn.

In the 2015 Regional Comprehensive Plan, Moving Southern New Hampshire Forward: 2015-2035, the SNHPC projects that Auburn will have a 2020 population of 5,288 and a 2040 population of 6,226 . You stated that the current population of Auburn was approximately 5,200 , so the 2020 projection may be slightly low.

In discussing the primary drivers for growth in Auburn, you stated that Auburn is largely a bedroom community with limited businesses. The Town is approximately 16,000 acres, with about a quarter of that area (approximately 4,200 acres) being the watershed for Massabesic Lake, which is the water supply for the City of Manchester. This limits the area available for development.

A primary driver of growth over the last five years has been the change in high school from Manchester to Pinkerton Academy. Auburn has a good local elementary school, and the change in high school has been viewed favorably and a selling point for homes in Auburn. The other primary driver of growth is location. Auburn is located near Exits 1 and 2 of Highway 101, and access between the town and I-93 is convenient. The majority of Auburn's population works elsewhere (Manchester and points north and south of Manchester).

Auburn has a growth management policy that has been in place for about 25 years. The growth management policy is based on the number of building permits allowed per year, and it is adjustable each year. Although the threshold to trigger the growth management policy has not been triggered, Auburn's development has been different than most of the surrounding communities. Auburn has issued about 35 new home building permits per year, and that did not change with the economic turndown in 2007-2008. The new home building permits are not for spec housing; rather they are for custom homes. The average housing price in Auburn is between \(\$ 350,000-\$ 600,000\). You mentioned that the steady increase in housing construction has not resulted in a commensurate increase in elementary school enrollment. It appears that many of the homes are built for older couples, with no children living in the home, or for families with older children, for which the Pinkerton Academy is the selling point.

Based on our discussion, the proposed Exit 4A project is not anticipated to affect development and population growth in Auburn. There may be a beneficial effect on travel time if some of the traffic on I-93 is pulled off of the interstate by Exit 4A, but it is likely that this effect would be minor. Auburn residents would not be likely to use Exit 4A to travel from l-93 to Auburn due to the convenience of access provided by Highway 101.

Any comments on the summary of our discussion are appreciated.

\section*{Regards,}

Kerri

\section*{Kerri Snyder, AICP}

Principal Environmental Planner | Transportation Planning and Environment

\section*{Louis Berger}

48 Wall Street, \(16^{\text {th }}\) Floor | New York | NY | 10005 | USA
direct +1-212-612-7908
mobile +1-646-584-9490
email ksnyder@louisberger.com
web louisberger.com

This message, including any attachments hereto, may contain privileged and/or confidential information and is intended solely for the attention and use of the intended addressee(s). If you are not the intended addressee, you may neither use, copy, nor deliver to anyone this message or any of its attachments. In such case, you should immediately destroy this message and its attachments and kindly notify the sender by reply mail. Unless made by a person with actual authority conferred by Louis Berger, the information and statements herein do not constitute a binding commitment or warranty by Louis Berger. Louis Berger assumes no responsibility for any misperceptions, errors or misunderstandings. You are urged to verify any information that is confusing and report any errors/concerns to us in writing.

\author{
From: \\ Sent: \\ Snyder, Kerri \\ Friday, August 12, 2016 4:36 PM \\ To: \\ 'Andrew Hadik' \\ Chris Bean; Leo Tidd (Itidd@louisberger.com); I93-Exit4A-EIS (SM) (193-Exit4AEIS@louisberger.com) \\ Subject: \\ RE: I-93 Exit 4A: Town of Chester Land Use and Development Discussion with Andrew Hadik
}

Andrew,
Thank you for reviewing the summary. Following is the updated summary with your changes in red accepted.
Regards,
Kerri

In the 2015 Regional Comprehensive Plan, Moving Southern New Hampshire Forward: 2015-2035, the SNHPC projects that Chester will have a 2020 population of 5,404 and a 2040 population of 6,437 . You mentioned of not having enough knowledge to dispute those projections, however, believe those numbers to be relatively conservative and stated that Chester is currently experiencing significant growth pressure in the form of single-family residential development. Many of the subdivisions that have been dormant since the 2007-2008 economic downturn have recently restarted development. This resurgence began in Spring 2016. The primary drivers for additional residential development in Chester are good schools and the desire for rural living.

We discussed schools and population growth. Due to the very recent resurgence of residential/subdivision development, it will likely be a year or two before Chester experiences a significant increase in elementary school enrollment. At this point, it is too early in the boom cycle to say whether or not there would be a commensurate increase in school-age population/shift in demographics of the population. You would, however, expect to see an increase because most new home buyers in Chester have one or more children.

From a transportation perspective, you stated that growth in the surrounding towns (Auburn, Sandown, and Raymond) has resulted in a noticeable traffic impact to Chester roadways, specifically the intersection of NH State Routes 121 and 102. At peak rush hour (am and pm), you see significant traffic congestion on SR 121 in both directions.

We discussed the proposed Exit 4A project and whether it would have an effect on growth in Chester. Based on your experience, you believe that Exit 4A will induce additional residential growth in Chester due to improved access to I-93. However, it seems unlikely that Exit 4A would result in a measurable long-term decrease in travel time for Chester residents due to the induced development associated with the project.

Although Exit 4A would enable additional growth in Chester, the Town has a growth management provision in its zoning ordinance that would go into effect if pressure on school, fire, and police services would outstrip the Town's ability to keep pace with development. There is also an open space subdivision provision to encourage subdivisions to be creatively designed in a way that reduces sprawl and protects natural resources and rural character. The most typical type of residential development seen in Chester is still open space subdivisions, however, recently, 3 small subdivisions have applied for approval with estate size lots that allow enough space to support horses.

From: Andrew Hadik [mailto:chstrpl@gsinet.net]
Sent: Friday, August 12, 2016 3:51 PM
To: Snyder, Kerri <KSnyder@louisberger.com>
Subject: RE: I-93 Exit 4A: Town of Chester Land Use and Development Discussion with Andrew Hadik

Hi Kerri,

Below is my review of your summary with comments in red.

It was nice speaking with you on Wednesday.

Regards,

Andrew

Andrew L. Hadik

Planning Coordinator
Chester Planning Board

Office: 603.887.5629

Town of Chester, 84 Chester Street, Chester, NH 03036

From: Snyder, Kerri [mailto:KSnyder@louisberger.com]
Sent: Tuesday, August 09, 2016 3:46 PM
To: chstrpl@gsinet.net
Cc: I93-Exit4A-EIS (SM) <l93-Exit4A-EIS@louisberger.com>; Chris Bean <ChrisB@cldengineers.com>; Tidd, Leo <ltidd@louisberger.com>
Subject: I-93 Exit 4A: Town of Chester Land Use and Development Discussion with Andrew Hadik

Andrew,
Thank you for your time today. Following is a summary of our discussion regarding I-93 Exit 4A and the Town of Chester.

In the 2015 Regional Comprehensive Plan, Moving Southern New Hampshire Forward: 2015-2035, the SNHPC projects that Chester will have a 2020 population of 5,404 and a 2040 population of 6,437 . You mentioned of not having enough knowledge to dispute those projections, however, believe those numbers to be relatively conservative that there is nothing about Chester's development that would dispute those numbers and stated that Chester is currently experiencing significant growth pressure in the form of single-family residential development. Many of the subdivisions that have been dormant since the 2007-2008 economic downturn have recently restarted development. This resurgence began in Spring 2016. The primary drivers for additional residential development in Chester are good schools and the desire for rural living.

We discussed schools and population growth. Due to the very recent resurgence of residential/subdivision development, it will likely be a year or two before Chester experiences a significant possible increase in elementary school enrollment. At this point, it is too early in the boom cycle to say whether or not there would be a commensurate increase in school-age population/shift in demographics of the population. I would, however, expect to see an increase because most new home buyers in Chester have one or more children.

From a transportation perspective, you stated that growth in the surrounding towns (Auburn, Sandown, and Raymond) has resulted in a noticeable an traffic impact to Chester roadways, specifically the intersection of NH State Routes 121 and 102. At peak rush hour (am and pm), you see significant traffic congestion on SR 121 in both directions.

We discussed the proposed Exit 4A project and whether it would have an effect on growth in Chester. Based on your experience, you believe that Exit 4A will induce additional residential growth in Chester due to improved access to I-93. However, it seems unlikely that Exit 4A would result in a measurable long-term decrease in travel time for Chester residents due to the induced development associated with the project.

Although Exit 4A would enable additional growth in Chester, the Town has a growth management provision in its zoning ordinance that would go into effect if pressure on school, fire, and police services would outstrip the Town's ability to keep pace with development. There is also an open space subdivision provision to encourage subdivisions to be creatively designed in a way that reduces sprawl and protects natural resources and rural character. The most typical type of residential development seen in Chester is still open space subdivisions, however, recently 3 small subdivisions have applied for approval with estate size lots that allow enough space to support horses.

Any comments on the summary of our discussion are appreciated.

Regards,
Kerri

Kerri Snyder, AICP
Principal Environmental Planner | Transportation Planning and Environment
```

Louis Berger
4 8 Wall Street, 16 th Floor \| New York \| NY \| 10005 \| USA
direct +1-212-612-7908
mobile +1-646-584-9490
email ksnyder@louisberger.com
web louisberger.com

```

This message, including any attachments hereto, may contain privileged and/or confidential information and is intended solely for the attention and use of the intended addressee(s). If you are not the intended addressee, you may neither use, copy, nor deliver to anyone this message or any of its attachments. In such case, you should immediately destroy this message and its attachments and kindly notify the sender by reply mail. Unless made by a person with actual authority conferred by Louis Berger, the information and statements herein do not constitute a binding commitment or warranty by Louis Berger. Louis Berger assumes no responsibility for any misperceptions, errors or misunderstandings. You are urged to verify any information that is confusing and report any errors/concerns to us in writing.

\section*{I-93 Exit 4A Supplemental Environmental Impact Statement \\ Land Use Planner Interview Summary - Final 02/22/17}

\section*{Town of Chester}

Following is a summary of the discussion held via telephone on January 27, 2017 between Mr. Dick Trask, Vice Chair, Chester Board of Selectmen and Kerri Snyder (Louis Berger). The purpose of the telephone call was to discuss the revision of the population projections for the Town of Chester.

Mr. Trask sent an e-mail to Leo Tidd (Louis Berger) on January 23, 2017 (Attachment A).

\section*{Building Permits}

Mr. Trask provided the following information on building permits for the Town of Chester.
Chester currently has approved or pending permits to develop about 300 lots, which are anticipated to be developed in the next 5 to 7 years (2022-2024). The 211 lots shown as currently approved and still under construction on the Town Planning Board website is correct, with regard to approved lots. \({ }^{1}\) In addition, the Town has two 30 -lot and three 5 -lot subdivisions that will be approved in the near future. One of the 30 -lot subdivisions is a Phase I - there will likely be an additional 90 lots in that 550 -acre subdivision. Table 1 shows the building permits issued since 2013.

Table 1. Chester dwelling units approved
\begin{tabular}{|c|c|}
\hline Year & Dwellings Approved \\
\hline 2013 & 30 \\
\hline 2014 & 27 \\
\hline 2015 & 30 \\
\hline 2016 & 43 \\
\hline 2017 (January only) & 12 \\
\hline
\end{tabular}

The Chester Master Plan 2015 recognizes a trend for residential growth in Chester. The plan notes that SNHPC projects that approximately 96 dwelling units would be constructed every 5 years through 2050 based on the town's historic growth rate and past building permit trends (Chester Planning Board, 2015). This projection equates to approximately 19 new home permits per year on average over a 35 -year period. However, the actual numbers for 2013-2016, as shown above, are higher. Mr. Trask stated that he believes the residential growth trend will continue to mirror the higher rate of development shown in Table 1 over the next 5 to 7 years. There was a general discussion of the previous conversation between Kerri Snyder and Andrew Hadik, Planning Coordinator for the Town of Chester (August 9, 2016). Mr. Hadik stated that many of the previously approved subdivisions had been "dormant" since the 2007-2008

\footnotetext{
\({ }^{1}\) http://www.chesternh.org/boards-committees/planning-board
}
recession, but that there had been a resurgence (Spring 2016) in development. Mr. Trask agreed with this statement and added that the number of previously approved subdivision plans that were still under construction was a combination of the effects of the recession and the rules regarding impact fees. In Chester, the developer must pay the impact fees at the time the subdivision is approved, which has led to developers applying for subdivision approval with the intention of delaying actual construction until the market is more favorable.

\section*{Population Projections}

In the August 9, 2016, interview with Mr. Hadik, he indicated that he thought the 2012 Southern New Hampshire Planning Commission (SNHPC) projections were too conservative (i.e. low) but stated that he did not have data at the time to dispute them due to the recent resurgence in growth. Mr. Trask asked that the population projections presented in the draft Land Use Scenarios Technical Report (December 2016) be revisited for Chester in light of the Town's building permit data. The population projections presented in the Land Use Scenarios Technical Report were the 2016 projections developed by NH Office of Energy and Planning (OEP).

Mr. Trask provided information based on a 1:1 dwelling unit to household ratio and estimated household size based on the average number of bedrooms proposed for each of the approved or pending subdivision permits, which yielded a household size of 3 . Table 2 includes the population and households for 2014 and 2016 provided in Attachment A and a comparison of the estimated population and households based on the SNHPC occupancy rate (0.96) and OEP household size (3.01). There was an additional adjustment made by SNHPC to increase the revised population number of 4,879 to match the OEP projection of 4,887 to suit the previously run 2015 traffic model - an increase of 8 people. The third-quarter 2016 number was used for the end of 2016. The average annual growth rate of \(3.28 \%\) is not anticipated to hold as a longer-term trend. For example, the population measured by the U.S. Census Bureau in 2010 was 4,768 . The average annual growth rate between 2010 and 2014 (estimate - 5,101) was \(1.70 \%\).

Table 2. Chester 2014 and 2016 population and household estimates
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{} & \multicolumn{2}{|c|}{2014} & \multicolumn{2}{c|}{ 2016 } & \begin{tabular}{c} 
Average \\
Annual
\end{tabular} \\
\cline { 2 - 5 } & Households & Population & Households & Population & \begin{tabular}{c} 
Annwth Rate \\
2014-2016
\end{tabular} \\
\hline Attachment A & 1,635 & 4,905 & 1,744 & 5,232 & \(3.28 \%\) \\
\hline Revised & 1,570 & 4,724 & 1,674 & 5,039 & \(3.28 \%\) \\
\hline
\end{tabular}

Based on the assumption that the 300 lots are developed by 2023, the Town projects about 2,000 dwelling units (total). Using the SNHPC occupancy rate and OEP household size yields a population projection of 5,779 by 2023 (middle ground in the 5 - to 7 -year building projection). Based on this projection, the average annual growth rate from 2015 to 2023 is 2.12\%.

Table 3 presents the revised population projections for the Town of Chester along with the 2016 OEP projections and 2012 SNHPC projections. Mr. Trask agreed that it was reasonable to apply the average annual growth rate for background population growth from 2015 to 2023 (2.12\%)
through the 2025 projection. Looking at 1990-2000 and 2000-2010, the average annual growth rates were \(3.49 \%\) and \(2.32 \%\), respectively for Chester, and these growth rates were higher than the other towns in the study area (see Table 1 in the Land Use Scenarios Technical Report). In addition, the Town of Chester has more available land for development than Derry or Londonderry. Mr. Trask indicated that the Town would like to encourage more senior housing in Chester to alleviate the potential burden on schools and other public services. The Town has growth management and open space provisions in its zoning ordinance. The growth management provision would go into effect if the development pressure on school, fire, and police services exceeds the Town's ability to serve its existing and future populations. The open space provision encourages subdivisions to be designed in a way that reduces sprawl and protects natural resources and rural character. In addition, all of the residential developments in Chester use septic systems, which limits the density of development.

Mr. Trask agreed that under the No Build condition, the Town's rate of development beyond 2025 would likely decrease. As a result, the population projections from 2025 through 2040 used the average annual growth rate projected by OEP. The average annual growth rate for Chester projected by OEP from 2025 to 2040 is \(0.25 \%\). The adjusted Town 2040 population projection is \(8.9 \%\) greater than that projected by OEP in 2016 (and presented in the Draft Land Use Scenarios Technical Report) and 2.9\% less than that projected by SNHPC in 2012.

Table 3. Adjusted No Build population projections, Town of Chester
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Source & \(\mathbf{2 0 1 5}\) a,b & \(\mathbf{2 0 2 0}\) & \(\mathbf{2 0 2 5}\) \\
& d & \(\mathbf{2 0 3 0}\) & \(\mathbf{2 0 3 5}\) & \(\mathbf{2 0 4 0}\)\begin{tabular}{c} 
Average \\
\begin{tabular}{c} 
Annual \\
Growth \\
Rate
\end{tabular} \\
\hline \begin{tabular}{c}
2017 \\
Adjusted \\
Town
\end{tabular} \\
\hline 2016 \\
OEP
\end{tabular} & 4,887 & 5,457 & 6,027 \\
\hline & 5,199 & 5,536 & 5,660 & 5,731 & 5,744 & \(0.65 \%\) \\
\hline \begin{tabular}{c}
2012 \\
SNHPC
\end{tabular} & 5,096 & 5,404 & 5,711 & 5,982 & 6,239 & 6,437 & \(0.94 \%\) \\
\hline
\end{tabular}

Notes:
a. 2015 estimate for adjusted Town is based on the OEP estimate pursuant to a request by SNHPC.
b. 2015 estimate for OEP and SNHPC were generated by the respective agencies.
c. 2020 is based on interpolation between 2015 and 2025 .
d. 2025 is based on applying the 2.12\% average annual growth rate derived from the 2015-2023 projections. The 2023 projection \((5,779)\) is based on estimated 2,000 dwellings and the SNHPC occupancy rate (0.96) and household size (3.01).

\section*{Incremental Impact of the Proposed Project (Exit 4A)}

Mr. Trask stated that the primary drivers for residential growth in Chester are access to Pinkerton Academy and the availability of new homes. Mr. Trask agreed that the incremental impact of Exit 4A on residential development would be similar to that described in the draft Land Use Scenarios Technical Report (December 2016) in that the Town of Chester would reach the 2040 population projection earlier under the Build condition than it would under the No Build
condition. Mr. Trask stated that the incremental impact of Exit 4A would be similar to what would be anticipated under the high growth impact scenario as outlined in the draft Land Use Scenarios Technical Report. It was agreed that the incremental impact for the Town of Chester would use the high growth scenario with the updated population projections. Table 4 presents a comparison of the No Build and both the moderate growth and high growth impact scenario populations for Chester. These moderate and high impact growth scenarios assume the same average annual growth rate within the 5 -year increments of \(1.24 \%\) and \(1.66 \%\), respectively. Based on the assertion that the incremental impact of the proposed Exit 4A project would be similar to the high growth impact scenario, there are projected to be 1,117 additional people in Chester in 2040 as a result of the proposed project. Using the average household size for Chester (3.01), the additional people yield approximately 371 additional households in 2040 for Chester.

Table 4. Chester 2040 Build condition population growth
\begin{tabular}{|c|l|c|c|c|c|c|}
\hline \multirow{3}{*}{ Town } & \multirow{3}{*}{ Impact Scenario } & \multicolumn{4}{|c|}{ Population } & \begin{tabular}{c} 
Population \\
Increase Over \\
No Build in \\
\(\mathbf{2 0 4 0}\)
\end{tabular} \\
\cline { 3 - 8 } & & \(\mathbf{2 0 1 5}\) & \(\mathbf{2 0 3 0}\) & \(\mathbf{2 0 3 5}\) & \(\mathbf{2 0 4 0}\) & \begin{tabular}{c} 
NA
\end{tabular} \\
\hline \multirow{3}{*}{ Chester } & No Build & 4,887 & 6,101 & 6,177 & \(\mathbf{6 , 2 5 3}\) & 535 \\
\cline { 2 - 7 } & Moderate Growth (Build) & 4,887 & 5,879 & \(\mathbf{6 , 2 5 3}\) & 6,789 & \(\mathbf{1 , 1 1 7}\) \\
\cline { 2 - 7 } & High Growth (Build) & 4,887 & \(\mathbf{6 , 2 5 3}\) & 6,789 & 7,370 & \\
\hline
\end{tabular}

\section*{Attachment A - Chester Growth Estimates}


Data showing Chester growth:
\begin{tabular}{lcccc} 
Building permits issued: & 2013 & 2014 & 2015 & 2016 \\
& 30 & 27 & 30 & 42
\end{tabular}

Households:
\begin{tabular}{lll} 
& 1635 & 1744 (as of Sept 2016) ~ 3.3\%/ year \\
Population (est.) & 4905 & 5232
\end{tabular}
~300 lots proposed or approved expected to be built out within 5-7 years, putting Chester at ~2000 households. [This data does not include lots-of-record that are undeveloped]. This would maintain the average of \(3 \%\) growth per annum, which is roughly 4.5 times the rate of growth projected by DOT.

Projections: Households by \(2020 \sim 1985\) or 260 more than projected by DOT Population by 2020 ~5955 or 756 more than projected by DOT
\begin{tabular}{ccc} 
DOT Projections: & 2015 & 2020 \\
Households: & 1621 & 1725 \\
Population & 4887 & 5199
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
 \\
 \\
－əృeس！！sə ue əлe elep gloz \\
 （GLOZ）Ody＇（egloz）OdHNS ：əounos
\end{tabular}} \\
\hline \％620 & SEO＇62 & ヤ18＇82 & OSE＇8Z & \(199^{\prime} \angle Z\) & \(90 \varepsilon^{\prime} \angle 2\) & LZO＇LZ & \(9 \downarrow \varepsilon^{\prime} 9\) ¢ & ｜ełol eart Kpmis \\
\hline \％カレレ & ヤレ6「て & ESL＇乙 & 109＇乙 & LSカ＇Z & レてどて & ع61＇乙 & \(210{ }^{\circ} \mathrm{Z}\) & gumopues \\
\hline \％ 990 & L06＇ & ع06＇1 & 628＇ & 8E8＇レ & GZL＇レ & して9＇レ & ヤEG＇レ & Jəゝ5040 \\
\hline \％ZS＇0 & 881＇乙 & て81＇Z & 991＇て & 801＇乙 & て10＇Z & EZ6＇ & 991＇ & unnqn＊ \\
\hline \％てE＇0 & ESE＇6 & て£ع＇6 & 6 6で6 & ZZO＇6 & て18＇8 & 829＇8 & 88t「8 & Кıəриорио7 \\
\hline \％100 & \＆L9＇Z1 & St9「てし & 96ち＇Zし & \(9 \varepsilon \chi^{\prime}\) ¢ & 9Eがで & 999「てし & LEG＇乙レ & Kıə̈ \\
\hline \begin{tabular}{l}
0ヵ0Z－SL0Z \\
opey чұмолs jenuuy obesonv
\end{tabular} & \[
070 Z
\] & Sعoz & \[
0 \varepsilon 02
\] & 9ZOZ & \[
0 \mathrm{ZOZ}
\] & gSLOZ & eOLOZ & Kyjediolunw \\
\hline
\end{tabular}

\section*{}
a 2015 data are an estimate． Source：OEP（2016a）314，418 \begin{tabular}{|r|} 
Kıunoう mey6u！yooy \\
leło1 eadV Kpn4s \\
umopues \\
\hline
\end{tabular}
 unnqn Kıəpuopuo7 KıJəO Kमediolunw
＇\＆əqе』

\author{
From: \\ Sent: \\ To: \\ Cc: \\ Subject: \\ Snyder, Kerri \\ Friday, August 26, 2016 9:33 AM \\ 'Mark Traeger' \\ Chris Bean; Leo Tidd (Itidd@louisberger.com); I93-Exit4A-EIS (SM) (193-Exit4AEIS@louisberger.com) \\ RE: I-93 Exit 4A: Town of Sandown Land Use and Development Discussion with Mark Traeger
}

Mark,
Thank you for reviewing the summary. Following is the updated summary with your changes in bold accepted.
Regards,
Kerri

The current OEP projections show a 2020 population of 6,754 and a 2040 population of 7,070 for Sandown. We discussed historic development trends, specifically Sandown's rapid growth since the 1980s. The primary driver for growth in Sandown is affordable housing - the bulk of housing in Sandown would be considered starter homes with regard to price and size. In addition, access to I-495 and an increase in people who work from home have led to an increase in residential development in Sandown. There was a major influx of people moving to Sandown during the 1990s until the economic downturn in 2007-2008. Sandown has recently seen a resurgence (2016) in development - a 50 -unit apartment building was recently approved, and two developments that were initially planned as \(55+\) are now being developed as any age.

Although Sandown has had growth management ordinances in the past, they no longer have them due to lawsuits by developers. Sandown is now focused on buying and conserving land to reduce the available developable land in the town.
For example, Sandown purchased 200 acres for conserved Open Space that had been approved for \(15455+\) dwellings resulting in a reduction of housing potential in Sandown. The Planning Board is considering applying for another CTAP grant to acquire and conserve more land. Most of the larger tracts have been developed, and Sandown has only a couple of 100 acre tracts left that could be developed as larger subdivisions.

Sandown has a lot of wetlands and rivers, and in addition to purchasing land to conserve, the town has a vernal pool protection provision in its zoning ordinance that includes a 25 -foot buffer around vernal pools and a building setback requirement of 50 feet. In addition, the Planning Board has passed variable road width and stormwater regulations to reduce impervious surface and to promote Low Impact Development. The conservation measures improve the quality of natural resources and allow the town to reduce the amount of development and the associated increase in school enrollment.

We discussed the widening of l-93, and you stated that it is having a major effect on growth in Sandown by reducing travel times on I-93, which makes Sandown more attractive for young homebuyers. You stated that the proposed Exit 4A would be anticipated to induce additional residential development in Sandown by providing better access and reduced travel time to l-93.

From: Mark Traeger [mailto:markt@eventide.com]
Sent: Friday, August 26, 2016 8:32 AM
To: Snyder, Kerri <KSnyder@louisberger.com>
Subject: RE: I-93 Exit 4A: Town of Sandown Land Use and Development Discussion with Mark Traeger

Kerri,

See my edits in bold below.

You did a great job at distilling a long conversation.

Mark

Mark Traeger
Eventide, Inc.
1 Alsan Way
Little Ferry, NJ 07643
(603) 887-5589 0
(603) 490-5258 C

From: Snyder, Kerri [mailto:KSnyder@louisberger.com]
Sent: Thursday, August 25, 2016 6:15 PM
To: Mark Traeger <markt@eventide.com>
Cc: Tidd, Leo <ltidd@louisberger.com>; Chris Bean <ChrisB@cldengineers.com>; I93-Exit4A-EIS (SM) <193-Exit4A-
EIS@louisberger.com>
Subject: I-93 Exit 4A: Town of Sandown Land Use and Development Discussion with Mark Traeger

Mark,
Thank you for your time in talking with me today. Following is a summary of our conversation as it relates to Sandown and the proposed I-93 Exit 4A.

The current OEP projections show a 2020 population of 6,754 and a 2040 population of 7,070 for Sandown. We discussed historic development trends, specifically Sandown's rapid growth since the 1980s. The primary driver for growth in Sandown is affordable housing - the bulk of housing in Sandown would be considered starter homes with regard to price and size. In addition, access to l-495 and an increase in people who work from home have led to an increase in residential development in Sandown. There was a major influx of people moving to Sandown during the 1990s until the economic downturn in 2007-2008. Sandown has recently seen a resurgence (2016) in development - a 50-unit apartment building was recently approved, and two developments that were initially planned as 55+ are now being developed as any age.

Although Sandown has had growth management ordinances in the past, they no longer have them due to lawsuits by developers. Sandown is now focused on buying and conserving land to reduce the available developable land in the town.
For example, Sandown purchased 200 acres for conserved Open Space that had been approved for 154 55+ dwellings resulting in a reduction of housing potential in Sandown. The Planning Board is considering applying for another CTAP grant to acquire and conserve more land. Most of the larger tracts have been developed, and Sandown has only a couple of 100 acre tracts left that could be developed as larger subdivisions.

Sandown has a lot of wetlands and rivers, and in addition to purchasing land to conserve, the town has a vernal pool protection provision in its zoning ordinance that includes a 25 -foot buffer around vernal pools and a building setback requirement of 50 feet. In addition, the Planning Board has passed variable road width and stormwater regulations to reduce impervious surface and to promote Low Impact Development. The conservation measures improve the quality of natural resources and allow the town to reduce the amount of development and the associated increase in school enrollment.

We discussed the widening of I-93, and you stated that it is having a major effect on growth in Sandown by reducing travel times on I-93, which makes Sandown more attractive for young homebuyers. You stated that the proposed Exit 4A would be anticipated to induce additional residential development in Sandown by providing better access and reduced travel time to l-93.

Any comments you may have on the summary of our discussion are appreciated.
Regards,
Kerri
Kerri Snyder, AICP
Principal Environmental Planner | Transportation Planning and Environment

\section*{Louis Berger}
```

4 8 Wall Street, 16 th Floor \| New York \| NY \| 10005 \| USA
direct +1-212-612-7908
mobile +1-646-584-9490
email ksnyder@louisberger.com
web louisberger.com

```

This message, including any attachments hereto, may contain privileged and/or confidential information and is intended solely for the attention and use of the intended addressee(s). If you are not the intended addressee, you may neither use, copy, nor deliver to anyone this message or any of its attachments. In such case, you should immediately destroy this message and its attachments and kindly notify the sender by reply mail. Unless made by a person with actual authority conferred by Louis Berger, the information and statements herein do not constitute a binding commitment or warranty by Louis Berger. Louis Berger assumes no responsibility for any misperceptions, errors or misunderstandings. You are urged to verify any information that is confusing and report any errors/concerns to us in writing.

This page intentionally left blank.

\section*{SNHPC DATA AND METHODOLOGY MEMORANDA}
E-mail Transmittal of Updated Population and Household Data for Chester ..... B-1
Chester Population, Dwelling Units, and Households Projections by TAZ ..... B-2
E-mail Transmittal of Population and Household Data and Memorandum ..... B-4
Memorandum re: 2015 Model Input - Population and Dwelling Units Data ..... B-5
Population, Dwelling Units, and Households Projections by TAZ ..... B-7
Special Population by TAZ. ..... B-31
Memorandum re: 2015 Model Input - Employment Data. ..... B-33
\begin{tabular}{ll} 
From: & \multicolumn{1}{l}{ Julie Chen } \\
To: & \(\underline{\text { Snyder, Kerri }}\) \\
Cc: & Tidd, Leo; Chris Bean; Paul Konieczka; \(\underline{\text { 193-Exit4A-EIS (SM) }}\) \\
Subject: & RE: I-93 Exit 4A: changes in population projections for Chester \\
Date: & Tuesday, February 14, 2017 10:50:14 AM \\
Attachments: & \(\underline{\text { 2015-2040 pop HH - Chester.xlsx }}\)
\end{tabular}

Hi Kerri:

Attached please find 2015-2040 population and household distributed based on the number below.
If you have any questions, please let me know.

Julie Chen
Southern NH Planning Commission

From: Snyder, Kerri [mailto:KSnyder@louisberger.com]
Sent: Tuesday, February 14, 2017 10:28 AM
To: Julie Chen
Cc: Tidd, Leo; Chris Bean; Paul Konieczka; I93-Exit4A-EIS (SM)
Subject: RE: I-93 Exit 4A: changes in population projections for Chester

Julie,
Following are the revised numbers for Chester based on your preference to use OEP's 2015 projection.
\begin{tabular}{ll}
2015 & 4,887 \\
2020 & 5,457 \\
2025 & 6,027 \\
2030 & 6,101 \\
2035 & 6,177 \\
2040 & 6,253
\end{tabular}

Please send me the TAZ breakdown for the population when you have allocated it.

Regards,
Kerri
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline TAZ & TOWN & Pop & \[
\begin{array}{ll} 
& 2015 \\
\mathrm{HH} & \\
\hline
\end{array}
\] & Pop & \[
\begin{array}{ll}
\hline & 2020 \\
\hline
\end{array}
\] & Pop \\
\hline 148 & Chester & 646 & 223 & 708 & 245 & 771 \\
\hline 149 & Chester & 427 & 152 & 513 & 182 & 598 \\
\hline 150 & Chester & 416 & 161 & 479 & 186 & 541 \\
\hline 151 & Chester & 447 & 160 & 521 & 186 & 595 \\
\hline 152 & Chester & 1126 & 328 & 1297 & 378 & 1468 \\
\hline 153 & Chester & 430 & 148 & 470 & 161 & 510 \\
\hline 154 & Chester & 567 & 204 & 595 & 215 & 624 \\
\hline 155 & Chester & 829 & 244 & 875 & 258 & 920 \\
\hline & & 4887 & 1621 & 5457 & 1811 & 6027 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{HH 2025} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{HH 2030}} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{HH 2035}} & \multicolumn{3}{|c|}{2040} \\
\hline & & & & & Pop & HH & HHS2015 \\
\hline 266 & 779 & 269 & 788 & 272 & 796 & 275 & 2.89 \\
\hline 213 & 610 & 217 & 621 & 221 & 632 & 225 & 2.81 \\
\hline 210 & 550 & 213 & 558 & 216 & 566 & 220 & 2.58 \\
\hline 213 & 604 & 216 & 614 & 220 & 624 & 223 & 2.80 \\
\hline 428 & 1490 & 435 & 1513 & 441 & 1535 & 448 & 3.43 \\
\hline 175 & 515 & 177 & 520 & 179 & 526 & 180 & 2.91 \\
\hline 225 & 627 & 226 & 631 & 228 & 635 & 229 & 2.77 \\
\hline 271 & 926 & 273 & 932 & 275 & 938 & 277 & 3.39 \\
\hline 2001 & 6101 & 2026 & 6177 & 2051 & 6253 & 2077 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline From: & Uulie Chen \\
\hline To: & Snyder, Kerri \\
\hline Cc: & Tidd, Leo; Hodgson (Rydland), Laura; I93-Exit4A-EIS (SM); Paul Konieczka (PaulK@cldengineers.com); David Preece \\
\hline Subject: & Population-Household 2015-2040 \\
\hline Date: & Friday, October 21, 2016 9:44:17 AM \\
\hline Attachments: & \[
\begin{aligned}
& \text { 2015-2040 Pop HH.pdf } \\
& \underline{2015-2040 \text { pop HH.xlsx }}
\end{aligned}
\] \\
\hline
\end{tabular}

As I promised, I have allocated OEP population projections to TAZs and calculated numbers of households for TAZs. Attached please find population and households from 2015 through 2040, household size of 2015, and a memo to document methodology .

If you have any questions, please let me know.

Julie Chen
Southern NH Planning Commission


\section*{SNHPC}

\section*{Southern New Hampshire Planning Commission}

438 Dubuque Street, Manchester, NH 03102-3546, Telephone (603) 669-4664 Fax (603) 669-4350
www.snhpc.org

\section*{MEMORANDUM}

\section*{TO:}

FROM: Julie Chen, Ph.D., Sr. Transportation Planner, Southern New Hampshire Planning Commission (SNHPC), 669-4664, jchen@SNHPC.org

DATE: \(\quad\) October 20,2016 JC

\section*{RE: \\ 2015-2040 Population Distribution to TAZs and Numbers of Households} Calculation

\section*{Population Projections Distribution}

The population projections from 2015 through 2040 for each community in the region were downloaded from the New Hampshire Office of Energy and Planning (NHOEP) website: http://www.nh.gov/oep/data-center/documents/2016-subcounty-projections-final-report.pdf.

To distribute population changes in five-year increments to TAZs, SNHPC dwelling unit projections adjusted based on 2015 dwelling unit estimates were used. There are two conditions considered as population projections for each community within the region were allocated to TAZs: 1) population increase in a five-year period; 2) Population decrease in a five-year period.

\section*{Condition one}

When the population increases during a five-year period, the allocation is calculated using the following formula.
\[
\Delta \boldsymbol{P}_{T A Z}=\frac{\Delta \boldsymbol{P}_{\text {com }}}{\Delta \boldsymbol{D}_{\text {com }}} * \Delta \boldsymbol{D}_{T A Z}
\]

Where:
\(\Delta P_{T A Z}=\) population change in a TAZ during a five-year period
\(\Delta P_{\text {com }}=\) Population change in the community in which the TAZ located during the fiveyear period
\(\Delta D_{T A Z}=\) Dwelling units change in a TAZ during the five-year period
\(\Delta D_{\text {com }}=\) Dwelling units change in the community in which the TAZ located during the five-year period

\section*{Condition two}

When the population decreases during a five-year period, the allocation is calculated using the following formula.
\[
\Delta \boldsymbol{P}_{T A Z}=\Delta \boldsymbol{P}_{D W T A Z}+\left(\Delta \boldsymbol{P}_{c o m}-\Delta \boldsymbol{P}_{D W c o m}\right) * \frac{\boldsymbol{D}_{T A Z}}{\boldsymbol{D}_{\text {com }}}
\]

Where:
\(\Delta P_{T A Z}=\) Population change in a TAZ during a five-year period
\(\Delta P_{D W T A Z}=H H S_{2015 T A Z} * \Delta D_{T A Z}=\) Assume that population change in a TAZ during a five-year period due to dwelling units change
\(H H S_{2015 T A Z}=2015\) household size within the TAZ
\(\Delta P_{\text {com }}=\) Increase of population in the community in which the TAZ located during the 5-year period
\(\Delta P_{\text {com }}=\sum \Delta P_{T A Z}=\) Population change in the community in which the TAZ located during the five-year period due to dwelling units change
\(D_{T A Z}=\) Dwelling units in the TAZ at the end of the five-year period
\(D_{D W c o m}\)
\(=\) Dwelling units in the cummunity in which the TAZ located at end of the five
- year period

Population within a TAZ at end of a five-year period was calculated as follows.
\[
P_{T A Z}=P_{T A Z-1}+\Delta P_{T A Z}
\]

Where:
\(\mathrm{P}_{\mathrm{TAZ}}=\) Population in the TAZ at end of the five-year period \(\mathrm{P}_{\mathrm{TAZ-1}}=\) Population in the TAZ at end of the prior five-year period

\section*{Number of Household Calculation}

Numbers of households for TAZs were calculated using the following formula.
\[
H H_{T A Z}=\left(P_{T A Z}-P_{\text {specialtAZ }}\right) / H H S_{2015}
\]

Where:
\(H H_{T A Z}=\) Number of households in a TAZ
\(P_{\text {specialtaZ }}=\) Special population in the TAZ
\(H H S_{2015 T A Z}=\) Household size in the TAZ
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{TAZ} & \multirow[b]{2}{*}{TOWN} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{HH \({ }^{2015}\)}} & \multirow[b]{2}{*}{Pop} & \multirow[t]{2}{*}{\[
\begin{array}{ll}
\hline & 2020 \\
\mathrm{HH} & \\
\hline
\end{array}
\]} & \multirow[b]{2}{*}{Pop} & \multirow[t]{2}{*}{HH \({ }^{2025}\)} \\
\hline & & & & & & & \\
\hline 71 & Auburn & 58 & 30 & 60 & 31 & 62 & 32 \\
\hline 72 & Auburn & 2159 & 796 & 2252 & 831 & 2354 & 868 \\
\hline 73 & Auburn & 998 & 345 & 1062 & 367 & 1131 & 391 \\
\hline 74 & Auburn & 932 & 320 & 969 & 332 & 1009 & 346 \\
\hline 98 & Auburn & 1167 & 432 & 1217 & 451 & 1271 & 471 \\
\hline 89 & Bedford & 1028 & 350 & 1052 & 359 & 1079 & 369 \\
\hline 90 & Bedford & 271 & 95 & 295 & 103 & 322 & 112 \\
\hline 91 & Bedford & 2100 & 664 & 2173 & 687 & 2254 & 712 \\
\hline 92 & Bedford & 1539 & 475 & 1624 & 501 & 1718 & 530 \\
\hline 93 & Bedford & 260 & 87 & 297 & 100 & 337 & 113 \\
\hline 94 & Bedford & 128 & 49 & 126 & 48 & 123 & 47 \\
\hline 95 & Bedford & 1613 & 791 & 1796 & 891 & 1998 & 1001 \\
\hline 104 & Bedford & 1622 & 505 & 1695 & 529 & 1776 & 556 \\
\hline 105 & Bedford & 1777 & 550 & 1825 & 565 & 1879 & 582 \\
\hline 106 & Bedford & 1308 & 412 & 1369 & 431 & 1436 & 452 \\
\hline 107 & Bedford & 611 & 224 & 623 & 228 & 637 & 233 \\
\hline 108 & Bedford & 548 & 195 & 560 & 199 & 574 & 204 \\
\hline 109 & Bedford & 770 & 308 & 807 & 323 & 847 & 340 \\
\hline 110 & Bedford & 1405 & 524 & 1417 & 530 & 1431 & 536 \\
\hline 238 & Bedford & 514 & 157 & 660 & 202 & 821 & 251 \\
\hline 239 & Bedford & 826 & 266 & 887 & 285 & 954 & 307 \\
\hline 240 & Bedford & 302 & 115 & 314 & 120 & 328 & 125 \\
\hline 241 & Bedford & 49 & 18 & 55 & 21 & 62 & 23 \\
\hline 242 & Bedford & 1157 & 364 & 1218 & 383 & 1285 & 404 \\
\hline 243 & Bedford & 900 & 302 & 961 & 322 & 1028 & 345 \\
\hline 244 & Bedford & 202 & 64 & 214 & 68 & 228 & 72 \\
\hline 245 & Bedford & 1783 & 591 & 1808 & 599 & 1835 & 608 \\
\hline 246 & Bedford & 292 & 149 & 301 & 153 & 310 & 158 \\
\hline 289 & Bedford & 605 & 174 & 629 & 181 & 656 & 189 \\
\hline 290 & Bedford & 624 & 185 & 746 & 221 & 880 & 261 \\
\hline 173 & Candia & 283 & 117 & 275 & 114 & 268 & 111 \\
\hline 174 & Candia & 506 & 193 & 495 & 189 & 485 & 185 \\
\hline 175 & Candia & 345 & 128 & 355 & 132 & 366 & 136 \\
\hline 176 & Candia & 431 & 152 & 444 & 156 & 457 & 161 \\
\hline 177 & Candia & 914 & 336 & 891 & 327 & 871 & 320 \\
\hline 178 & Candia & 199 & 75 & 194 & 73 & 190 & 72 \\
\hline 179 & Candia & 628 & 243 & 629 & 243 & 632 & 244 \\
\hline 180 & Candia & 307 & 116 & 305 & 116 & 304 & 115 \\
\hline 181 & Candia & 296 & 104 & 302 & 106 & 308 & 108 \\
\hline 148 & Chester & 646 & 223 & 680 & 235 & 717 & 248 \\
\hline 149 & Chester & 427 & 152 & 474 & 169 & 525 & 187 \\
\hline 150 & Chester & 416 & 161 & 450 & 175 & 487 & 189 \\
\hline 151 & Chester & 447 & 160 & 487 & 174 & 531 & 190 \\
\hline 152 & Chester & 1126 & 328 & 1219 & 356 & 1320 & 385 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{TAZ} & \multirow[b]{2}{*}{TOWN} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{HH \({ }^{2030}\)}} & \multirow[t]{2}{*}{Pop} & \multirow[t]{2}{*}{\(\mathrm{HH}^{2035}\)} & \multirow[b]{2}{*}{Pop} & 2040 \\
\hline & & Pop & & & & & \\
\hline 71 & Auburn & 63 & 32 & 64 & 33 & 64 & 33 \\
\hline 72 & Auburn & 2404 & 887 & 2432 & 897 & 2438 & 899 \\
\hline 73 & Auburn & 1165 & 403 & 1185 & 410 & 1189 & 411 \\
\hline 74 & Auburn & 1029 & 353 & 1040 & 357 & 1042 & 357 \\
\hline 98 & Auburn & 1297 & 480 & 1312 & 486 & 1315 & 487 \\
\hline 89 & Bedford & 1089 & 372 & 1095 & 375 & 1097 & 376 \\
\hline 90 & Bedford & 332 & 116 & 338 & 118 & 340 & 119 \\
\hline 91 & Bedford & 2283 & 721 & 2301 & 727 & 2307 & 729 \\
\hline 92 & Bedford & 1752 & 541 & 1773 & 547 & 1780 & 549 \\
\hline 93 & Bedford & 351 & 118 & 360 & 121 & 363 & 122 \\
\hline 94 & Bedford & 122 & 47 & 121 & 46 & 121 & 46 \\
\hline 95 & Bedford & 2069 & 1041 & 2114 & 1065 & 2130 & 1074 \\
\hline 104 & Bedford & 1804 & 566 & 1822 & 572 & 1829 & 574 \\
\hline 105 & Bedford & 1898 & 588 & 1910 & 592 & 1914 & 593 \\
\hline 106 & Bedford & 1460 & 460 & 1475 & 465 & 1480 & 466 \\
\hline 107 & Bedford & 642 & 235 & 645 & 236 & 646 & 236 \\
\hline 108 & Bedford & 579 & 205 & 582 & 206 & 583 & 207 \\
\hline 109 & Bedford & 861 & 346 & 870 & 350 & 873 & 351 \\
\hline 110 & Bedford & 1435 & 538 & 1438 & 540 & 1439 & 540 \\
\hline 238 & Bedford & 879 & 268 & 915 & 279 & 927 & 283 \\
\hline 239 & Bedford & 978 & 315 & 993 & 320 & 998 & 321 \\
\hline 240 & Bedford & 332 & 127 & 335 & 128 & 336 & 128 \\
\hline 241 & Bedford & 64 & 24 & 66 & 24 & 66 & 25 \\
\hline 242 & Bedford & 1309 & 412 & 1324 & 417 & 1329 & 418 \\
\hline 243 & Bedford & 1052 & 353 & 1067 & 358 & 1072 & 360 \\
\hline 244 & Bedford & 232 & 73 & 235 & 74 & 237 & 75 \\
\hline 245 & Bedford & 1844 & 611 & 1850 & 613 & 1852 & 613 \\
\hline 246 & Bedford & 313 & 160 & 315 & 161 & 316 & 161 \\
\hline 289 & Bedford & 666 & 191 & 672 & 193 & 674 & 194 \\
\hline 290 & Bedford & 928 & 275 & 958 & 284 & 969 & 287 \\
\hline 173 & Candia & 272 & 112 & 275 & 113 & 275 & 114 \\
\hline 174 & Candia & 493 & 188 & 497 & 190 & 498 & 190 \\
\hline 175 & Candia & 379 & 140 & 386 & 143 & 387 & 144 \\
\hline 176 & Candia & 472 & 166 & 480 & 169 & 482 & 170 \\
\hline 177 & Candia & 883 & 324 & 889 & 327 & 890 & 327 \\
\hline 178 & Candia & 193 & 73 & 194 & 73 & 195 & 73 \\
\hline 179 & Candia & 649 & 251 & 659 & 255 & 661 & 256 \\
\hline 180 & Candia & 311 & 118 & 315 & 119 & 316 & 120 \\
\hline 181 & Candia & 316 & 111 & 321 & 113 & 322 & 113 \\
\hline 148 & Chester & 731 & 252 & 739 & 255 & 740 & 256 \\
\hline 149 & Chester & 543 & 193 & 554 & 197 & 556 & 198 \\
\hline 150 & Chester & 501 & 194 & 509 & 197 & 510 & 198 \\
\hline 151 & Chester & 547 & 196 & 556 & 199 & 558 & 200 \\
\hline 152 & Chester & 1357 & 396 & 1379 & 402 & 1383 & 403 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TAZ & TOWN & HHS2015 \\
\hline 71 & Auburn & 1.96 \\
\hline 72 & Auburn & 2.71 \\
\hline 73 & Auburn & 2.89 \\
\hline 74 & Auburn & 2.92 \\
\hline 98 & Auburn & 2.70 \\
\hline 89 & Bedford & 2.67 \\
\hline 90 & Bedford & 2.87 \\
\hline 91 & Bedford & 3.16 \\
\hline 92 & Bedford & 3.24 \\
\hline 93 & Bedford & 2.97 \\
\hline 94 & Bedford & 2.61 \\
\hline 95 & Bedford & 1.83 \\
\hline 104 & Bedford & 3.02 \\
\hline 105 & Bedford & 3.23 \\
\hline 106 & Bedford & 3.18 \\
\hline 107 & Bedford & 2.73 \\
\hline 108 & Bedford & 2.82 \\
\hline 109 & Bedford & 2.38 \\
\hline 110 & Bedford & 2.13 \\
\hline 238 & Bedford & 3.27 \\
\hline 239 & Bedford & 3.11 \\
\hline 240 & Bedford & 2.63 \\
\hline 241 & Bedford & 2.68 \\
\hline 242 & Bedford & 3.18 \\
\hline 243 & Bedford & 2.98 \\
\hline 244 & Bedford & 3.16 \\
\hline 245 & Bedford & 3.02 \\
\hline 246 & Bedford & 1.96 \\
\hline 289 & Bedford & 3.48 \\
\hline 290 & Bedford & 3.38 \\
\hline 173 & Candia & 2.42 \\
\hline 174 & Candia & 2.62 \\
\hline 175 & Candia & 2.70 \\
\hline 176 & Candia & 2.84 \\
\hline 177 & Candia & 2.72 \\
\hline 178 & Candia & 2.65 \\
\hline 179 & Candia & 2.59 \\
\hline 180 & Candia & 2.64 \\
\hline 181 & Candia & 2.85 \\
\hline 148 & Chester & 2.89 \\
\hline 149 & Chester & 2.81 \\
\hline 150 & Chester & 2.58 \\
\hline 151 & Chester & 2.80 \\
\hline 152 & Chester & 3.43 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{TAZ} & \multirow[b]{2}{*}{TOWN} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{HH \({ }^{2015}\)}} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{HH \({ }^{2020}\)}} & \multicolumn{2}{|r|}{2025} \\
\hline & & & & & & Pop & \\
\hline 153 & Chester & 430 & 148 & 452 & 155 & 475 & 163 \\
\hline 154 & Chester & 567 & 204 & 582 & 210 & 599 & 216 \\
\hline 155 & Chester & 829 & 244 & 854 & 252 & 881 & 260 \\
\hline 182 & Deerfield & 593 & 198 & 633 & 211 & 675 & 225 \\
\hline 183 & Deerfield & 481 & 166 & 511 & 177 & 545 & 188 \\
\hline 184 & Deerfield & 432 & 152 & 460 & 162 & 491 & 173 \\
\hline 185 & Deerfield & 463 & 186 & 483 & 194 & 504 & 202 \\
\hline 186 & Deerfield & 362 & 125 & 386 & 133 & 412 & 142 \\
\hline 187 & Deerfield & 492 & 187 & 507 & 193 & 524 & 200 \\
\hline 188 & Deerfield & 416 & 141 & 438 & 148 & 462 & 157 \\
\hline 189 & Deerfield & 504 & 184 & 522 & 191 & 541 & 198 \\
\hline 190 & Deerfield & 257 & 102 & 268 & 106 & 280 & 111 \\
\hline 191 & Deerfield & 413 & 140 & 424 & 143 & 436 & 148 \\
\hline 121 & Derry & 2338 & 806 & 2295 & 791 & 2256 & 778 \\
\hline 122 & Derry & 809 & 276 & 796 & 271 & 783 & 267 \\
\hline 123 & Derry & 837 & 260 & 838 & 260 & 839 & 261 \\
\hline 124 & Derry & 1040 & 543 & 996 & 520 & 955 & 499 \\
\hline 125 & Derry & 3 & 2 & 3 & 2 & 3 & 2 \\
\hline 126 & Derry & 552 & 289 & 528 & 276 & 506 & 265 \\
\hline 127 & Derry & 1088 & 463 & 1056 & 448 & 1027 & 435 \\
\hline 128 & Derry & 882 & 282 & 917 & 293 & 952 & 304 \\
\hline 129 & Derry & 422 & 143 & 416 & 141 & 410 & 139 \\
\hline 130 & Derry & 674 & 258 & 661 & 253 & 648 & 248 \\
\hline 131 & Derry & 1352 & 609 & 1309 & 588 & 1269 & 568 \\
\hline 132 & Derry & 719 & 316 & 716 & 314 & 713 & 313 \\
\hline 133 & Derry & 70 & 24 & 73 & 25 & 76 & 26 \\
\hline 134 & Derry & 616 & 269 & 605 & 264 & 595 & 260 \\
\hline 135 & Derry & 743 & 397 & 714 & 381 & 687 & 367 \\
\hline 136 & Derry & 2418 & 1089 & 2342 & 1055 & 2272 & 1023 \\
\hline 137 & Derry & 530 & 206 & 529 & 205 & 528 & 205 \\
\hline 138 & Derry & 1411 & 491 & 1380 & 480 & 1350 & 470 \\
\hline 139 & Derry & 1162 & 366 & 1145 & 360 & 1130 & 355 \\
\hline 140 & Derry & 445 & 152 & 475 & 162 & 504 & 172 \\
\hline 141 & Derry & 863 & 304 & 861 & 304 & 860 & 303 \\
\hline 142 & Derry & 804 & 279 & 810 & 281 & 817 & 284 \\
\hline 143 & Derry & 845 & 264 & 843 & 263 & 842 & 262 \\
\hline 144 & Derry & 1519 & 553 & 1495 & 544 & 1473 & 537 \\
\hline 145 & Derry & 372 & 137 & 382 & 141 & 393 & 145 \\
\hline 146 & Derry & 1477 & 486 & 1466 & 483 & 1456 & 479 \\
\hline 147 & Derry & 2091 & 672 & 2107 & 677 & 2124 & 683 \\
\hline 221 & Derry & 712 & 299 & 685 & 288 & 660 & 277 \\
\hline 222 & Derry & 863 & 385 & 830 & 371 & 800 & 357 \\
\hline 223 & Derry & 445 & 167 & 432 & 162 & 419 & 157 \\
\hline 224 & Derry & 841 & 401 & 812 & 387 & 786 & 375 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{TAZ} & \multirow[t]{2}{*}{} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\[
\begin{array}{ll}
\hline & 2030 \\
\mathrm{HH} & \\
\hline
\end{array}
\]}} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\[
\begin{array}{ll}
\hline & 2035 \\
\mathrm{HH} & \\
\hline
\end{array}
\]}} & \multicolumn{2}{|r|}{2040} \\
\hline & & & & & & Pop & HH \\
\hline 153 & Chester & 484 & 166 & 489 & 168 & 490 & 168 \\
\hline 154 & Chester & 605 & 218 & 609 & 220 & 610 & 220 \\
\hline 155 & Chester & 891 & 263 & 897 & 264 & 898 & 265 \\
\hline 182 & Deerfield & 695 & 232 & 706 & 236 & 708 & 236 \\
\hline 183 & Deerfield & 560 & 194 & 569 & 197 & 570 & 197 \\
\hline 184 & Deerfield & 505 & 178 & 514 & 181 & 515 & 181 \\
\hline 185 & Deerfield & 514 & 206 & 519 & 209 & 521 & 209 \\
\hline 186 & Deerfield & 424 & 146 & 431 & 149 & 432 & 149 \\
\hline 187 & Deerfield & 532 & 203 & 536 & 204 & 537 & 205 \\
\hline 188 & Deerfield & 473 & 160 & 479 & 162 & 480 & 163 \\
\hline 189 & Deerfield & 549 & 201 & 554 & 203 & 555 & 203 \\
\hline 190 & Deerfield & 285 & 113 & 288 & 114 & 289 & 115 \\
\hline 191 & Deerfield & 441 & 149 & 444 & 151 & 445 & 151 \\
\hline 121 & Derry & 2284 & 788 & 2301 & 793 & 2304 & 794 \\
\hline 122 & Derry & 794 & 271 & 800 & 273 & 801 & 273 \\
\hline 123 & Derry & 863 & 268 & 877 & 272 & 879 & 273 \\
\hline 124 & Derry & 957 & 500 & 958 & 500 & 958 & 500 \\
\hline 125 & Derry & 3 & 2 & 3 & 2 & 3 & 2 \\
\hline 126 & Derry & 506 & 265 & 507 & 265 & 507 & 265 \\
\hline 127 & Derry & 1037 & 440 & 1043 & 442 & 1045 & 443 \\
\hline 128 & Derry & 1016 & 325 & 1053 & 336 & 1060 & 339 \\
\hline 129 & Derry & 417 & 142 & 421 & 143 & 422 & 144 \\
\hline 130 & Derry & 659 & 252 & 665 & 254 & 666 & 255 \\
\hline 131 & Derry & 1283 & 575 & 1291 & 579 & 1293 & 580 \\
\hline 132 & Derry & 748 & 329 & 769 & 338 & 773 & 339 \\
\hline 133 & Derry & 82 & 28 & 85 & 29 & 85 & 29 \\
\hline 134 & Derry & 616 & 269 & 629 & 275 & 631 & 276 \\
\hline 135 & Derry & 701 & 375 & 710 & 379 & 711 & 380 \\
\hline 136 & Derry & 2297 & 1034 & 2311 & 1041 & 2314 & 1042 \\
\hline 137 & Derry & 549 & 213 & 562 & 218 & 564 & 219 \\
\hline 138 & Derry & 1361 & 473 & 1367 & 476 & 1368 & 476 \\
\hline 139 & Derry & 1144 & 360 & 1152 & 363 & 1154 & 363 \\
\hline 140 & Derry & 554 & 189 & 583 & 199 & 588 & 201 \\
\hline 141 & Derry & 889 & 314 & 905 & 319 & 908 & 320 \\
\hline 142 & Derry & 853 & 296 & 874 & 303 & 877 & 304 \\
\hline 143 & Derry & 863 & 269 & 876 & 273 & 878 & 274 \\
\hline 144 & Derry & 1509 & 550 & 1529 & 557 & 1533 & 558 \\
\hline 145 & Derry & 422 & 156 & 438 & 162 & 441 & 163 \\
\hline 146 & Derry & 1488 & 490 & 1507 & 496 & 1510 & 497 \\
\hline 147 & Derry & 2203 & 708 & 2248 & 722 & 2257 & 725 \\
\hline 221 & Derry & 661 & 277 & 661 & 277 & 661 & 278 \\
\hline 222 & Derry & 800 & 357 & 801 & 357 & 801 & 357 \\
\hline 223 & Derry & 420 & 157 & 420 & 158 & 420 & 158 \\
\hline 224 & Derry & 796 & 380 & 802 & 383 & 804 & 383 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TAZ & TOWN & HHS2015 \\
\hline 153 & Chester & 2.91 \\
\hline 154 & Chester & 2.77 \\
\hline 155 & Chester & 3.39 \\
\hline 182 & Deerfield & 3.00 \\
\hline 183 & Deerfield & 2.89 \\
\hline 184 & Deerfield & 2.84 \\
\hline 185 & Deerfield & 2.49 \\
\hline 186 & Deerfield & 2.90 \\
\hline 187 & Deerfield & 2.47 \\
\hline 188 & Deerfield & 2.95 \\
\hline 189 & Deerfield & 2.73 \\
\hline 190 & Deerfield & 2.52 \\
\hline 191 & Deerfield & 2.87 \\
\hline 121 & Derry & 2.90 \\
\hline 122 & Derry & 2.93 \\
\hline 123 & Derry & 3.22 \\
\hline 124 & Derry & 1.91 \\
\hline 125 & Derry & 1.46 \\
\hline 126 & Derry & 1.91 \\
\hline 127 & Derry & 2.22 \\
\hline 128 & Derry & 3.13 \\
\hline 129 & Derry & 2.94 \\
\hline 130 & Derry & 2.61 \\
\hline 131 & Derry & 2.05 \\
\hline 132 & Derry & 2.28 \\
\hline 133 & Derry & 2.92 \\
\hline 134 & Derry & 2.29 \\
\hline 135 & Derry & 1.87 \\
\hline 136 & Derry & 2.22 \\
\hline 137 & Derry & 2.57 \\
\hline 138 & Derry & 2.87 \\
\hline 139 & Derry & 3.18 \\
\hline 140 & Derry & 2.93 \\
\hline 141 & Derry & 2.83 \\
\hline 142 & Derry & 2.88 \\
\hline 143 & Derry & 3.21 \\
\hline 144 & Derry & 2.75 \\
\hline 145 & Derry & 2.70 \\
\hline 146 & Derry & 3.04 \\
\hline 147 & Derry & 3.11 \\
\hline 221 & Derry & 2.38 \\
\hline 222 & Derry & 2.24 \\
\hline 223 & Derry & 2.67 \\
\hline 224 & Derry & 2.10 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{TAZ} & \multirow[b]{2}{*}{TOWN} & & 2015 & \multicolumn{2}{|r|}{2020} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Pop \({ }^{\text {HH }} 2025\)}} \\
\hline & & Pop & HH & Pop & HH & & \\
\hline 225 & Derry & 414 & 167 & 404 & 163 & 395 & 159 \\
\hline 226 & Derry & 1226 & 406 & 1206 & 399 & 1187 & 393 \\
\hline 227 & Derry & 645 & 215 & 640 & 213 & 635 & 212 \\
\hline 228 & Derry & 689 & 283 & 670 & 275 & 653 & 268 \\
\hline 83 & Goffstown & 822 & 302 & 845 & 311 & 876 & 322 \\
\hline 84 & Goffstown & 801 & 278 & 812 & 282 & 826 & 287 \\
\hline 85 & Goffstown & 1302 & 494 & 1310 & 497 & 1321 & 501 \\
\hline 86 & Goffstown & 803 & 316 & 807 & 318 & 813 & 320 \\
\hline 87 & Goffstown & 639 & 129 & 658 & 136 & 683 & 144 \\
\hline 88 & Goffstown & 3360 & 1369 & 3368 & 1372 & 3380 & 1377 \\
\hline 111 & Goffstown & 751 & 288 & 763 & 293 & 780 & 299 \\
\hline 112 & Goffstown & 1200 & 510 & 1214 & 516 & 1234 & 524 \\
\hline 113 & Goffstown & 692 & 269 & 698 & 271 & 707 & 274 \\
\hline 114 & Goffstown & 1295 & 596 & 1303 & 600 & 1315 & 605 \\
\hline 234 & Goffstown & 639 & 207 & 665 & 215 & 702 & 227 \\
\hline 235 & Goffstown & 1169 & 377 & 1199 & 387 & 1242 & 401 \\
\hline 236 & Goffstown & 1736 & 49 & 1738 & 50 & 1741 & 51 \\
\hline 237 & Goffstown & 754 & 262 & 760 & 264 & 769 & 267 \\
\hline 286 & Goffstown & 1102 & 489 & 1111 & 493 & 1122 & 499 \\
\hline 287 & Goffstown & 558 & 194 & 575 & 199 & 598 & 207 \\
\hline 288 & Goffstown & 222 & 77 & 224 & 78 & 227 & 79 \\
\hline 10 & Hooksett & 2436 & 1048 & 2603 & 1120 & 2802 & 1206 \\
\hline 18 & Hooksett & 2364 & 716 & 2411 & 735 & 2466 & 759 \\
\hline 75 & Hooksett & 2034 & 645 & 2164 & 687 & 2319 & 736 \\
\hline 76 & Hooksett & 843 & 307 & 890 & 324 & 945 & 344 \\
\hline 77 & Hooksett & 913 & 353 & 941 & 364 & 974 & 377 \\
\hline 78 & Hooksett & 1602 & 559 & 1741 & 608 & 1907 & 666 \\
\hline 79 & Hooksett & 615 & 267 & 671 & 291 & 737 & 320 \\
\hline 80 & Hooksett & 921 & 374 & 972 & 395 & 1033 & 420 \\
\hline 81 & Hooksett & 464 & 182 & 575 & 226 & 708 & 278 \\
\hline 82 & Hooksett & 1176 & 399 & 1260 & 428 & 1360 & 462 \\
\hline 96 & Hooksett & 985 & 342 & 1050 & 365 & 1127 & 392 \\
\hline 97 & Hooksett & 121 & 50 & 125 & 52 & 131 & 55 \\
\hline 64L & Londonderry & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 65 & Londonderry & 137 & 46 & 137 & 46 & 138 & 46 \\
\hline 66 & Londonderry & 236 & 97 & 241 & 99 & 247 & 102 \\
\hline 67 & Londonderry & 1473 & 621 & 1487 & 626 & 1502 & 633 \\
\hline 68 & Londonderry & 1830 & 678 & 1841 & 682 & 1854 & 687 \\
\hline 69 & Londonderry & 58 & 18 & 62 & 19 & 67 & 21 \\
\hline 70 & Londonderry & 577 & 183 & 585 & 186 & 595 & 188 \\
\hline 99 & Londonderry & 842 & 289 & 853 & 293 & 865 & 298 \\
\hline 100 & Londonderry & 1620 & 522 & 1695 & 546 & 1781 & 574 \\
\hline 101 & Londonderry & 2690 & 844 & 2771 & 869 & 2865 & 899 \\
\hline 102 & Londonderry & 2276 & 736 & 2341 & 757 & 2416 & 781 \\
\hline
\end{tabular}
\begin{tabular}{llrr|rr|rr|}
\hline & & & 2030 & & 2035 & & 2040 \\
TAZ & TOWN & Pop & HH & & Pop & HH & \\
\hline 225 & Derry & 402 & 162 & 406 & 164 & 407 & 164 \\
226 & Derry & 1202 & 398 & 1210 & 401 & 1211 & 401 \\
227 & Derry & 650 & 216 & 658 & 219 & 659 & 220 \\
228 & Derry & 660 & 271 & 664 & 273 & 665 & 273 \\
\hline 83 & Goffstown & 915 & 336 & 939 & 345 & 948 & 349 \\
84 & Goffstown & 844 & 293 & 855 & 297 & 859 & 298 \\
85 & Goffstown & 1336 & 507 & 1345 & 510 & 1348 & 511 \\
86 & Goffstown & 820 & 323 & 824 & 325 & 826 & 325 \\
87 & Goffstown & 715 & 155 & 735 & 162 & 742 & 164 \\
88 & Goffstown & 3394 & 1383 & 3403 & 1386 & 3406 & 1388 \\
111 & Goffstown & 802 & 307 & 815 & 312 & 820 & 314 \\
112 & Goffstown & 1259 & 535 & 1274 & 542 & 1280 & 544 \\
113 & Goffstown & 717 & 279 & 724 & 281 & 726 & 282 \\
114 & Goffstown & 1329 & 612 & 1338 & 616 & 1341 & 617 \\
234 & Goffstown & 748 & 242 & 777 & 252 & 787 & 255 \\
235 & Goffstown & 1295 & 419 & 1328 & 430 & 1340 & 434 \\
236 & Goffstown & 1745 & 52 & 1747 & 53 & 1748 & 53 \\
237 & Goffstown & 779 & 271 & 786 & 273 & 788 & 274 \\
286 & Goffstown & 1136 & 506 & 1145 & 510 & 1148 & 512 \\
287 & Goffstown & 626 & 217 & 644 & 223 & 650 & 225 \\
288 & Goffstown & Londonderry & 230 & 80 & 233 & 81 & 233
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TAZ & TOWN & HHS2015 \\
\hline 225 & Derry & 2.48 \\
\hline 226 & Derry & 3.02 \\
\hline 227 & Derry & 3.00 \\
\hline 228 & Derry & 2.44 \\
\hline 83 & Goffstown & 2.72 \\
\hline 84 & Goffstown & 2.82 \\
\hline 85 & Goffstown & 2.61 \\
\hline 86 & Goffstown & 2.54 \\
\hline 87 & Goffstown & 2.95 \\
\hline 88 & Goffstown & 2.41 \\
\hline 111 & Goffstown & 2.61 \\
\hline 112 & Goffstown & 2.35 \\
\hline 113 & Goffstown & 2.58 \\
\hline 114 & Goffstown & 2.17 \\
\hline 234 & Goffstown & 3.09 \\
\hline 235 & Goffstown & 2.99 \\
\hline 236 & Goffstown & 2.86 \\
\hline 237 & Goffstown & 2.88 \\
\hline 286 & Goffstown & 2.00 \\
\hline 287 & Goffstown & 2.88 \\
\hline 288 & Goffstown & 2.88 \\
\hline 10 & Hooksett & 2.32 \\
\hline 18 & Hooksett & 2.37 \\
\hline 75 & Hooksett & 3.15 \\
\hline 76 & Hooksett & 2.74 \\
\hline 77 & Hooksett & 2.59 \\
\hline 78 & Hooksett & 2.87 \\
\hline 79 & Hooksett & 2.30 \\
\hline 80 & Hooksett & 2.46 \\
\hline 81 & Hooksett & 2.54 \\
\hline 82 & Hooksett & 2.95 \\
\hline 96 & Hooksett & 2.88 \\
\hline 97 & Hooksett & 2.40 \\
\hline 64L & Londonderry & 0.00 \\
\hline 65 & Londonderry & 2.98 \\
\hline 66 & Londonderry & 2.43 \\
\hline 67 & Londonderry & 2.37 \\
\hline 68 & Londonderry & 2.70 \\
\hline 69 & Londonderry & 3.21 \\
\hline 70 & Londonderry & 3.15 \\
\hline 99 & Londonderry & 2.91 \\
\hline 100 & Londonderry & 3.10 \\
\hline 101 & Londonderry & 3.19 \\
\hline 102 & Londonderry & 3.09 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{TAZ} & \multirow[b]{2}{*}{TOWN} & & \multirow[t]{2}{*}{\(\mathrm{HH}^{2015}\)} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\[
\begin{array}{ll}
\hline & 2020 \\
\mathrm{HH} &
\end{array}
\]}} & \multirow[b]{2}{*}{Pop} & \multirow[t]{2}{*}{\(\mathrm{HH}^{2025}\)} \\
\hline & & Pop & & & & & \\
\hline 103 & Londonderry & 1347 & 434 & 1358 & 438 & 1370 & 442 \\
\hline 229 & Londonderry & 1186 & 369 & 1218 & 379 & 1256 & 390 \\
\hline 230 & Londonderry & 197 & 79 & 200 & 80 & 203 & 81 \\
\hline 231 & Londonderry & 155 & 53 & 160 & 54 & 167 & 57 \\
\hline 232 & Londonderry & 957 & 294 & 968 & 297 & 980 & 301 \\
\hline 233 & Londonderry & 956 & 296 & 1004 & 311 & 1061 & 329 \\
\hline 274 & Londonderry & 362 & 106 & 373 & 109 & 385 & 113 \\
\hline 275 & Londonderry & 845 & 309 & 872 & 319 & 903 & 330 \\
\hline 276 & Londonderry & 1304 & 531 & 1342 & 547 & 1386 & 565 \\
\hline 277 & Londonderry & 20 & 7 & 23 & 8 & 26 & 9 \\
\hline 278 & Londonderry & 263 & 98 & 268 & 100 & 275 & 102 \\
\hline 279 & Londonderry & 551 & 172 & 556 & 174 & 563 & 176 \\
\hline 280 & Londonderry & 304 & 181 & 309 & 184 & 315 & 188 \\
\hline 281 & Londonderry & 1152 & 396 & 1185 & 407 & 1222 & 420 \\
\hline 282 & Londonderry & 578 & 220 & 583 & 222 & 590 & 224 \\
\hline 283 & Londonderry & 815 & 313 & 818 & 314 & 821 & 315 \\
\hline 284 & Londonderry & 22 & 11 & 23 & 11 & 23 & 12 \\
\hline 285 & Londonderry & 1767 & 600 & 1783 & 605 & 1802 & 612 \\
\hline 1 & Manchester & 5337 & 2305 & 5344 & 2308 & 5408 & 2336 \\
\hline 2 & Manchester & 1617 & 631 & 1618 & 631 & 1620 & 632 \\
\hline 3 & Manchester & 427 & 178 & 427 & 178 & 428 & 178 \\
\hline 4 & Manchester & 1508 & 610 & 1508 & 610 & 1511 & 611 \\
\hline 5 & Manchester & 718 & 323 & 718 & 323 & 718 & 323 \\
\hline 6 & Manchester & 2675 & 1572 & 2677 & 1504 & 2704 & 1520 \\
\hline 7 & Manchester & 4154 & 2089 & 4164 & 2155 & 4263 & 2207 \\
\hline 8 & Manchester & 1385 & 648 & 1388 & 649 & 1423 & 665 \\
\hline 9 & Manchester & 3292 & 1460 & 3292 & 1460 & 3293 & 1460 \\
\hline 11 & Manchester & 6038 & 2422 & 6038 & 2422 & 6043 & 2424 \\
\hline 12 & Manchester & 2335 & 1038 & 2336 & 1038 & 2338 & 1039 \\
\hline 13 & Manchester & 1854 & 767 & 1855 & 767 & 1860 & 769 \\
\hline 14 & Manchester & 1372 & 656 & 1373 & 656 & 1378 & 659 \\
\hline 15 & Manchester & 2168 & 904 & 2168 & 904 & 2169 & 905 \\
\hline 16 & Manchester & 209 & 131 & 209 & 131 & 209 & 131 \\
\hline 17 & Manchester & 399 & 191 & 399 & 152 & 399 & 152 \\
\hline 19 & Manchester & 267 & 137 & 267 & 198 & 267 & 198 \\
\hline 20 & Manchester & 262 & 109 & 262 & 109 & 262 & 109 \\
\hline 21 & Manchester & 477 & 191 & 478 & 191 & 479 & 191 \\
\hline 22 & Manchester & 881 & 377 & 881 & 358 & 881 & 358 \\
\hline 23 & Manchester & 442 & 190 & 443 & 211 & 445 & 212 \\
\hline 24 & Manchester & 714 & 389 & 714 & 389 & 714 & 389 \\
\hline 25 & Manchester & 92 & 29 & 92 & 29 & 92 & 29 \\
\hline 26 & Manchester & 401 & 246 & 401 & 222 & 406 & 225 \\
\hline 27 & Manchester & 923 & 467 & 923 & 432 & 923 & 432 \\
\hline 28 & Manchester & 377 & 170 & 377 & 95 & 377 & 95 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{TAZ} & \multirow[b]{2}{*}{TOWN} & \multirow[b]{2}{*}{Pop} & \multirow[t]{2}{*}{\(\mathrm{HH}^{2030}\)} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\(\mathrm{HH}^{2035}\)}} & \multirow[b]{2}{*}{Pop} & \multirow[t]{2}{*}{HH \({ }^{2040}\)} \\
\hline & & & & & & & \\
\hline 103 & Londonderry & 1382 & 446 & 1388 & 448 & 1390 & 448 \\
\hline 229 & Londonderry & 1290 & 401 & 1311 & 407 & 1314 & 409 \\
\hline 230 & Londonderry & 206 & 83 & 207 & 83 & 208 & 83 \\
\hline 231 & Londonderry & 172 & 59 & 176 & 60 & 176 & 60 \\
\hline 232 & Londonderry & 992 & 304 & 998 & 306 & 1000 & 307 \\
\hline 233 & Londonderry & 1113 & 345 & 1143 & 354 & 1149 & 356 \\
\hline 274 & Londonderry & 397 & 116 & 404 & 118 & 405 & 118 \\
\hline 275 & Londonderry & 932 & 341 & 949 & 347 & 952 & 348 \\
\hline 276 & Londonderry & 1426 & 581 & 1450 & 591 & 1454 & 593 \\
\hline 277 & Londonderry & 29 & 10 & 30 & 11 & 31 & 11 \\
\hline 278 & Londonderry & 280 & 104 & 284 & 106 & 284 & 106 \\
\hline 279 & Londonderry & 568 & 177 & 572 & 178 & 572 & 179 \\
\hline 280 & Londonderry & 321 & 191 & 324 & 193 & 325 & 193 \\
\hline 281 & Londonderry & 1257 & 432 & 1277 & 439 & 1281 & 440 \\
\hline 282 & Londonderry & 595 & 227 & 599 & 228 & 599 & 228 \\
\hline 283 & Londonderry & 824 & 316 & 826 & 317 & 826 & 317 \\
\hline 284 & Londonderry & 24 & 12 & 24 & 12 & 24 & 12 \\
\hline 285 & Londonderry & 1819 & 618 & 1829 & 621 & 1831 & 622 \\
\hline 1 & Manchester & 5684 & 2455 & 5857 & 2530 & 5917 & 2556 \\
\hline 2 & Manchester & 1631 & 636 & 1637 & 639 & 1640 & 640 \\
\hline 3 & Manchester & 430 & 179 & 431 & 180 & 432 & 180 \\
\hline 4 & Manchester & 1521 & 615 & 1528 & 618 & 1530 & 619 \\
\hline 5 & Manchester & 719 & 323 & 720 & 324 & 720 & 324 \\
\hline 6 & Manchester & 2821 & 1589 & 2895 & 1632 & 2920 & 1647 \\
\hline 7 & Manchester & 4688 & 2427 & 4955 & 2565 & 5047 & 2613 \\
\hline 8 & Manchester & 1572 & 735 & 1665 & 779 & 1697 & 794 \\
\hline 9 & Manchester & 3297 & 1462 & 3300 & 1463 & 3301 & 1464 \\
\hline 11 & Manchester & 6064 & 2433 & 6078 & 2438 & 6082 & 2440 \\
\hline 12 & Manchester & 2349 & 1044 & 2355 & 1047 & 2358 & 1048 \\
\hline 13 & Manchester & 1881 & 778 & 1894 & 783 & 1899 & 785 \\
\hline 14 & Manchester & 1399 & 669 & 1412 & 675 & 1417 & 677 \\
\hline 15 & Manchester & 2173 & 907 & 2176 & 908 & 2177 & 908 \\
\hline 16 & Manchester & 209 & 131 & 209 & 131 & 209 & 131 \\
\hline 17 & Manchester & 401 & 153 & 403 & 154 & 403 & 154 \\
\hline 19 & Manchester & 267 & 198 & 267 & 198 & 267 & 198 \\
\hline 20 & Manchester & 262 & 109 & 262 & 109 & 262 & 109 \\
\hline 21 & Manchester & 483 & 193 & 485 & 194 & 486 & 195 \\
\hline 22 & Manchester & 881 & 358 & 881 & 358 & 881 & 358 \\
\hline 23 & Manchester & 456 & 217 & 462 & 221 & 465 & 222 \\
\hline 24 & Manchester & 714 & 389 & 714 & 389 & 714 & 389 \\
\hline 25 & Manchester & 94 & 30 & 96 & 30 & 96 & 30 \\
\hline 26 & Manchester & 428 & 238 & 441 & 247 & 446 & 249 \\
\hline 27 & Manchester & 923 & 432 & 923 & 432 & 923 & 432 \\
\hline 28 & Manchester & 377 & 95 & 377 & 95 & 377 & 95 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TAZ & TOWN & HHS2015 \\
\hline 103 & Londonderry & 3.10 \\
\hline 229 & Londonderry & 3.22 \\
\hline 230 & Londonderry & 2.49 \\
\hline 231 & Londonderry & 2.94 \\
\hline 232 & Londonderry & 3.26 \\
\hline 233 & Londonderry & 3.23 \\
\hline 274 & Londonderry & 3.42 \\
\hline 275 & Londonderry & 2.74 \\
\hline 276 & Londonderry & 2.45 \\
\hline 277 & Londonderry & 2.86 \\
\hline 278 & Londonderry & 2.69 \\
\hline 279 & Londonderry & 3.20 \\
\hline 280 & Londonderry & 1.68 \\
\hline 281 & Londonderry & 2.91 \\
\hline 282 & Londonderry & 2.63 \\
\hline 283 & Londonderry & 2.61 \\
\hline 284 & Londonderry & 2.00 \\
\hline 285 & Londonderry & 2.95 \\
\hline 1 & Manchester & 2.32 \\
\hline 2 & Manchester & 2.56 \\
\hline 3 & Manchester & 2.40 \\
\hline 4 & Manchester & 2.47 \\
\hline 5 & Manchester & 2.22 \\
\hline 6 & Manchester & 1.70 \\
\hline 7 & Manchester & 1.93 \\
\hline 8 & Manchester & 2.14 \\
\hline 9 & Manchester & 2.26 \\
\hline 11 & Manchester & 2.49 \\
\hline 12 & Manchester & 2.25 \\
\hline 13 & Manchester & 2.42 \\
\hline 14 & Manchester & 2.09 \\
\hline 15 & Manchester & 2.40 \\
\hline 16 & Manchester & 1.59 \\
\hline 17 & Manchester & 2.09 \\
\hline 19 & Manchester & 1.35 \\
\hline 20 & Manchester & 2.40 \\
\hline 21 & Manchester & 2.50 \\
\hline 22 & Manchester & 2.34 \\
\hline 23 & Manchester & 2.10 \\
\hline 24 & Manchester & 1.83 \\
\hline 25 & Manchester & 3.17 \\
\hline 26 & Manchester & 1.63 \\
\hline 27 & Manchester & 1.89 \\
\hline 28 & Manchester & 1.61 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{TAZ} & \multirow[b]{2}{*}{TOWN} & \multirow[b]{2}{*}{Pop} & \multirow[t]{2}{*}{HH \({ }^{2015}\)} & \multirow[t]{2}{*}{Pop} & \multirow[t]{2}{*}{HH \({ }^{2020}\)} & \multirow[b]{2}{*}{Pop} & \multirow[t]{2}{*}{HH \({ }^{2025}\)} \\
\hline & & & & & & & \\
\hline 29 & Manchester & 1835 & 695 & 1835 & 793 & 1835 & 793 \\
\hline 30 & Manchester & 2288 & 989 & 2288 & 989 & 2288 & 989 \\
\hline 31 & Manchester & 923 & 478 & 924 & 403 & 926 & 405 \\
\hline 32 & Manchester & 464 & 297 & 465 & 432 & 469 & 437 \\
\hline 33 & Manchester & 442 & 339 & 442 & 250 & 443 & 251 \\
\hline 34 & Manchester & 562 & 251 & 563 & 317 & 563 & 317 \\
\hline 35 & Manchester & 1170 & 444 & 1170 & 444 & 1170 & 444 \\
\hline 36 & Manchester & 1390 & 557 & 1390 & 557 & 1390 & 558 \\
\hline 37 & Manchester & 932 & 392 & 932 & 343 & 932 & 343 \\
\hline 38 & Manchester & 971 & 410 & 971 & 447 & 978 & 450 \\
\hline 39 & Manchester & 1145 & 435 & 1145 & 393 & 1146 & 393 \\
\hline 40 & Manchester & 2123 & 877 & 2126 & 943 & 2156 & 956 \\
\hline 41 & Manchester & 1406 & 579 & 1407 & 579 & 1409 & 580 \\
\hline 42 & Manchester & 784 & 414 & 784 & 415 & 786 & 416 \\
\hline 43 & Manchester & 656 & 238 & 656 & 238 & 657 & 238 \\
\hline 44 & Manchester & 594 & 183 & 594 & 183 & 594 & 183 \\
\hline 45 & Manchester & 606 & 181 & 606 & 181 & 608 & 181 \\
\hline 46 & Manchester & 292 & 110 & 293 & -113 & 295 & -112 \\
\hline 47 & Manchester & 890 & 123 & 890 & 368 & 890 & 368 \\
\hline 48 & Manchester & 464 & 161 & 464 & 161 & 464 & 161 \\
\hline 49 & Manchester & 1102 & 415 & 1103 & 415 & 1105 & 415 \\
\hline 50 & Manchester & 1372 & 567 & 1372 & 567 & 1373 & 567 \\
\hline 51 & Manchester & 1588 & 643 & 1589 & 597 & 1589 & 597 \\
\hline 52 & Manchester & 2472 & 990 & 2473 & 1038 & 2475 & 1039 \\
\hline 53 & Manchester & 701 & 275 & 702 & 276 & 707 & 278 \\
\hline 54 & Manchester & 213 & 46 & 213 & 46 & 214 & 46 \\
\hline 55 & Manchester & 3040 & 1201 & 3044 & 1202 & 3078 & 1216 \\
\hline 56 & Manchester & 638 & 245 & 639 & 245 & 644 & 247 \\
\hline 57 & Manchester & 1582 & 607 & 1583 & 607 & 1585 & 608 \\
\hline 58 & Manchester & 2702 & 1118 & 2702 & 1093 & 2702 & 1093 \\
\hline 59 & Manchester & 625 & 260 & 626 & 288 & 636 & 293 \\
\hline 60 & Manchester & 4167 & 1621 & 4168 & 1621 & 4174 & 1623 \\
\hline 61 & Manchester & 25 & 15 & 25 & 15 & 25 & 15 \\
\hline 62 & Manchester & 5 & 4 & 5 & 4 & 5 & 4 \\
\hline 63 & Manchester & 2226 & 759 & 2228 & 760 & 2245 & 766 \\
\hline 64 & Manchester & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 115 & Manchester & 297 & 102 & 297 & 120 & 298 & 120 \\
\hline 116 & Manchester & 1839 & 828 & 1839 & 829 & 1842 & 830 \\
\hline 117 & Manchester & 2075 & 834 & 2076 & 550 & 2085 & 554 \\
\hline 118 & Manchester & 1947 & 507 & 1948 & 796 & 1954 & 799 \\
\hline 119 & Manchester & 1570 & 611 & 1574 & 612 & 1608 & 625 \\
\hline 120 & Manchester & 1186 & 488 & 1186 & 488 & 1186 & 488 \\
\hline 247 & Manchester & 38 & 19 & 38 & 19 & 38 & 19 \\
\hline 248 & Manchester & 251 & 125 & 251 & 117 & 252 & 117 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{TAZ} & \multirow[b]{2}{*}{TOWN} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{HH \({ }^{2030}\)}} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\[
\begin{array}{ll} 
& 2035 \\
\mathrm{HH} & \\
\hline
\end{array}
\]}} & \multicolumn{2}{|r|}{2040} \\
\hline & & & & Pop & & Pop & HH \\
\hline 29 & Manchester & 1835 & 793 & 1835 & 793 & 1835 & 793 \\
\hline 30 & Manchester & 2288 & 989 & 2288 & 989 & 2288 & 989 \\
\hline 31 & Manchester & 937 & 410 & 943 & 414 & 946 & 415 \\
\hline 32 & Manchester & 491 & 457 & 504 & 469 & 509 & 474 \\
\hline 33 & Manchester & 445 & 252 & 446 & 253 & 447 & 254 \\
\hline 34 & Manchester & 564 & 317 & 564 & 318 & 565 & 318 \\
\hline 35 & Manchester & 1170 & 444 & 1170 & 444 & 1170 & 444 \\
\hline 36 & Manchester & 1392 & 559 & 1394 & 559 & 1394 & 559 \\
\hline 37 & Manchester & 932 & 343 & 932 & 343 & 932 & 343 \\
\hline 38 & Manchester & 1004 & 463 & 1021 & 471 & 1027 & 474 \\
\hline 39 & Manchester & 1150 & 395 & 1153 & 396 & 1154 & 396 \\
\hline 40 & Manchester & 2283 & 1013 & 2363 & 1048 & 2391 & 1061 \\
\hline 41 & Manchester & 1420 & 584 & 1426 & 587 & 1429 & 588 \\
\hline 42 & Manchester & 796 & 421 & 802 & 424 & 804 & 425 \\
\hline 43 & Manchester & 664 & 241 & 668 & 242 & 669 & 243 \\
\hline 44 & Manchester & 594 & 183 & 594 & 183 & 594 & 183 \\
\hline 45 & Manchester & 615 & 184 & 620 & 185 & 621 & 185 \\
\hline 46 & Manchester & 303 & -109 & 308 & -107 & 310 & -107 \\
\hline 47 & Manchester & 890 & 368 & 890 & 368 & 890 & 368 \\
\hline 48 & Manchester & 464 & 161 & 464 & 161 & 464 & 161 \\
\hline 49 & Manchester & 1114 & 419 & 1120 & 421 & 1122 & 422 \\
\hline 50 & Manchester & 1375 & 568 & 1376 & 569 & 1377 & 569 \\
\hline 51 & Manchester & 1591 & 598 & 1593 & 598 & 1593 & 598 \\
\hline 52 & Manchester & 2486 & 1044 & 2492 & 1047 & 2495 & 1048 \\
\hline 53 & Manchester & 728 & 286 & 741 & 291 & 746 & 293 \\
\hline 54 & Manchester & 219 & 47 & 221 & 48 & 222 & 48 \\
\hline 55 & Manchester & 3227 & 1274 & 3320 & 1311 & 3353 & 1324 \\
\hline 56 & Manchester & 665 & 255 & 678 & 260 & 683 & 262 \\
\hline 57 & Manchester & 1596 & 612 & 1602 & 614 & 1605 & 615 \\
\hline 58 & Manchester & 2702 & 1093 & 2702 & 1094 & 2702 & 1094 \\
\hline 59 & Manchester & 678 & 312 & 705 & 324 & 714 & 329 \\
\hline 60 & Manchester & 4199 & 1633 & 4215 & 1639 & 4221 & 1642 \\
\hline 61 & Manchester & 25 & 15 & 25 & 15 & 25 & 15 \\
\hline 62 & Manchester & 5 & 4 & 5 & 4 & 5 & 4 \\
\hline 63 & Manchester & 2320 & 791 & 2366 & 807 & 2382 & 813 \\
\hline 64 & Manchester & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 115 & Manchester & 302 & 122 & 305 & 123 & 306 & 123 \\
\hline 116 & Manchester & 1855 & 836 & 1863 & 839 & 1865 & 840 \\
\hline 117 & Manchester & 2122 & 569 & 2145 & 578 & 2154 & 582 \\
\hline 118 & Manchester & 1982 & 810 & 1999 & 817 & 2005 & 819 \\
\hline 119 & Manchester & 1757 & 683 & 1850 & 720 & 1882 & 732 \\
\hline 120 & Manchester & 1188 & 489 & 1190 & 490 & 1190 & 490 \\
\hline 247 & Manchester & 38 & 19 & 38 & 19 & 38 & 19 \\
\hline 248 & Manchester & 254 & 118 & 255 & 119 & 256 & 119 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TAZ & TOWN & HHS2015 \\
\hline 29 & Manchester & 2.32 \\
\hline 30 & Manchester & 2.31 \\
\hline 31 & Manchester & 1.93 \\
\hline 32 & Manchester & 1.07 \\
\hline 33 & Manchester & 1.30 \\
\hline 34 & Manchester & 1.78 \\
\hline 35 & Manchester & 2.64 \\
\hline 36 & Manchester & 2.49 \\
\hline 37 & Manchester & 2.38 \\
\hline 38 & Manchester & 2.08 \\
\hline 39 & Manchester & 2.55 \\
\hline 40 & Manchester & 2.25 \\
\hline 41 & Manchester & 2.43 \\
\hline 42 & Manchester & 1.89 \\
\hline 43 & Manchester & 2.76 \\
\hline 44 & Manchester & 3.25 \\
\hline 45 & Manchester & 3.35 \\
\hline 46 & Manchester & 2.65 \\
\hline 47 & Manchester & 2.42 \\
\hline 48 & Manchester & 2.88 \\
\hline 49 & Manchester & 2.66 \\
\hline 50 & Manchester & 2.42 \\
\hline 51 & Manchester & 2.47 \\
\hline 52 & Manchester & 2.38 \\
\hline 53 & Manchester & 2.55 \\
\hline 54 & Manchester & 4.64 \\
\hline 55 & Manchester & 2.53 \\
\hline 56 & Manchester & 2.61 \\
\hline 57 & Manchester & 2.61 \\
\hline 58 & Manchester & 2.42 \\
\hline 59 & Manchester & 2.17 \\
\hline 60 & Manchester & 2.57 \\
\hline 61 & Manchester & 1.70 \\
\hline 62 & Manchester & 1.20 \\
\hline 63 & Manchester & 2.93 \\
\hline 64 & Manchester & 0.00 \\
\hline 115 & Manchester & 2.48 \\
\hline 116 & Manchester & 2.22 \\
\hline 117 & Manchester & 2.49 \\
\hline 118 & Manchester & 2.45 \\
\hline 119 & Manchester & 2.57 \\
\hline 120 & Manchester & 2.43 \\
\hline 247 & Manchester & 2.01 \\
\hline 248 & Manchester & 2.01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{TAZ} & \multirow[b]{2}{*}{TOWN} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{HH \({ }^{2015}\)}} & \multirow[t]{2}{*}{Pop} & \multirow[t]{2}{*}{HH \({ }^{2020}\)} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{HH \({ }^{2025}\)}} \\
\hline & & & & & & & \\
\hline 249 & Manchester & 368 & 227 & 368 & 237 & 368 & 237 \\
\hline 250 & Manchester & 312 & 251 & 312 & 251 & 312 & 251 \\
\hline 251 & Manchester & 172 & 107 & 172 & 107 & 175 & 109 \\
\hline 252 & Manchester & 254 & 69 & 254 & 69 & 254 & 69 \\
\hline 253 & Manchester & 199 & 132 & 199 & 132 & 199 & 132 \\
\hline 254 & Manchester & 137 & 122 & 137 & 122 & 137 & 122 \\
\hline 255 & Manchester & 408 & 205 & 408 & 205 & 408 & 205 \\
\hline 256 & Manchester & 497 & 277 & 497 & 277 & 497 & 277 \\
\hline 257 & Manchester & 212 & 76 & 212 & 76 & 212 & 76 \\
\hline 258 & Manchester & 1169 & 331 & 1169 & 331 & 1170 & 331 \\
\hline 259 & Manchester & 893 & 316 & 893 & 316 & 894 & 316 \\
\hline 260 & Manchester & 1254 & 451 & 1254 & 451 & 1254 & 451 \\
\hline 261 & Manchester & 1708 & 687 & 1708 & 687 & 1710 & 688 \\
\hline 262 & Manchester & 573 & 255 & 573 & 255 & 574 & 256 \\
\hline 263 & Manchester & 1410 & 608 & 1410 & 608 & 1410 & 608 \\
\hline 264 & Manchester & 665 & 256 & 665 & 256 & 665 & 256 \\
\hline 265 & Manchester & 458 & 198 & 458 & 198 & 459 & 198 \\
\hline 266 & Manchester & 889 & 516 & 889 & 516 & 889 & 516 \\
\hline 267 & Manchester & 2477 & 990 & 2477 & 990 & 2477 & 990 \\
\hline 268 & Manchester & 130 & 57 & 130 & 57 & 130 & 57 \\
\hline 269 & Manchester & 264 & 109 & 264 & 109 & 264 & 109 \\
\hline 270 & Manchester & 1126 & 533 & 1129 & 534 & 1154 & 546 \\
\hline 271 & Manchester & 1364 & 817 & 1364 & 817 & 1367 & 819 \\
\hline 272 & Manchester & 445 & 172 & 445 & 172 & 445 & 172 \\
\hline 273 & Manchester & 112 & 58 & 112 & 58 & 112 & 58 \\
\hline 192 & New Boston & 707 & 268 & 739 & 276 & 775 & 290 \\
\hline 193 & New Boston & 399 & 153 & 413 & 162 & 429 & 169 \\
\hline 194 & New Boston & 458 & 165 & 483 & 174 & 511 & 184 \\
\hline 195 & New Boston & 402 & 153 & 435 & 165 & 471 & 178 \\
\hline 196 & New Boston & 433 & 162 & 447 & 167 & 463 & 173 \\
\hline 197 & New Boston & 581 & 210 & 624 & 226 & 671 & 243 \\
\hline 198 & New Boston & 504 & 182 & 569 & 205 & 641 & 231 \\
\hline 199 & New Boston & 894 & 295 & 966 & 318 & 1045 & 344 \\
\hline 200 & New Boston & 393 & 140 & 414 & 148 & 438 & 157 \\
\hline 201 & New Boston & 687 & 250 & 726 & 264 & 770 & 280 \\
\hline 156 & Raymond & 530 & 194 & 542 & 198 & 556 & 203 \\
\hline 157 & Raymond & 1036 & 404 & 1050 & 410 & 1068 & 417 \\
\hline 158 & Raymond & 818 & 276 & 828 & 279 & 840 & 284 \\
\hline 159 & Raymond & 1024 & 349 & 1037 & 354 & 1053 & 359 \\
\hline 160 & Raymond & 411 & 146 & 419 & 145 & 427 & 148 \\
\hline 161 & Raymond & 658 & 230 & 664 & 235 & 671 & 238 \\
\hline 162 & Raymond & 510 & 221 & 515 & 223 & 520 & 225 \\
\hline 163 & Raymond & 434 & 201 & 441 & 205 & 450 & 209 \\
\hline 164 & Raymond & 345 & 151 & 346 & 152 & 348 & 152 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{TAZ} & \multirow[b]{2}{*}{TOWN} & \multirow[b]{2}{*}{Pop} & \multirow[t]{2}{*}{\(\mathrm{HH}^{2030}\)} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{HH 2035}} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{HH \({ }^{2040}\)}} \\
\hline & & & & & & & \\
\hline 249 & Manchester & 368 & 237 & 368 & 237 & 368 & 237 \\
\hline 250 & Manchester & 312 & 251 & 312 & 251 & 312 & 251 \\
\hline 251 & Manchester & 190 & 119 & 200 & 124 & 203 & 126 \\
\hline 252 & Manchester & 256 & 69 & 256 & 70 & 256 & 70 \\
\hline 253 & Manchester & 199 & 132 & 199 & 132 & 199 & 132 \\
\hline 254 & Manchester & 138 & 123 & 139 & 124 & 139 & 124 \\
\hline 255 & Manchester & 409 & 206 & 410 & 206 & 410 & 206 \\
\hline 256 & Manchester & 497 & 277 & 497 & 277 & 497 & 277 \\
\hline 257 & Manchester & 213 & 77 & 214 & 77 & 214 & 77 \\
\hline 258 & Manchester & 1171 & 331 & 1171 & 332 & 1172 & 332 \\
\hline 259 & Manchester & 899 & 318 & 903 & 319 & 904 & 320 \\
\hline 260 & Manchester & 1256 & 452 & 1258 & 452 & 1258 & 452 \\
\hline 261 & Manchester & 1716 & 690 & 1720 & 692 & 1721 & 692 \\
\hline 262 & Manchester & 579 & 258 & 583 & 260 & 584 & 260 \\
\hline 263 & Manchester & 1413 & 609 & 1414 & 609 & 1414 & 610 \\
\hline 264 & Manchester & 665 & 256 & 665 & 256 & 665 & 256 \\
\hline 265 & Manchester & 463 & 200 & 466 & 201 & 467 & 202 \\
\hline 266 & Manchester & 889 & 516 & 889 & 517 & 889 & 517 \\
\hline 267 & Manchester & 2477 & 990 & 2477 & 990 & 2477 & 990 \\
\hline 268 & Manchester & 130 & 57 & 130 & 57 & 130 & 57 \\
\hline 269 & Manchester & 264 & 109 & 264 & 109 & 264 & 109 \\
\hline 270 & Manchester & 1260 & 596 & 1326 & 628 & 1349 & 639 \\
\hline 271 & Manchester & 1377 & 825 & 1384 & 829 & 1386 & 830 \\
\hline 272 & Manchester & 445 & 172 & 445 & 172 & 445 & 172 \\
\hline 273 & Manchester & 112 & 59 & 112 & 59 & 113 & 59 \\
\hline 192 & New Boston & 786 & 294 & 793 & 297 & 795 & 297 \\
\hline 193 & New Boston & 434 & 170 & 437 & 172 & 438 & 172 \\
\hline 194 & New Boston & 519 & 187 & 525 & 188 & 527 & 189 \\
\hline 195 & New Boston & 481 & 182 & 488 & 185 & 490 & 186 \\
\hline 196 & New Boston & 468 & 175 & 471 & 176 & 472 & 176 \\
\hline 197 & New Boston & 686 & 248 & 695 & 251 & 698 & 252 \\
\hline 198 & New Boston & 662 & 239 & 676 & 244 & 680 & 245 \\
\hline 199 & New Boston & 1069 & 352 & 1084 & 357 & 1089 & 359 \\
\hline 200 & New Boston & 445 & 159 & 450 & 161 & 451 & 161 \\
\hline 201 & New Boston & 783 & 285 & 791 & 288 & 794 & 289 \\
\hline 156 & Raymond & 574 & 210 & 585 & 214 & 587 & 215 \\
\hline 157 & Raymond & 1092 & 426 & 1105 & 431 & 1108 & 432 \\
\hline 158 & Raymond & 857 & 289 & 867 & 292 & 868 & 293 \\
\hline 159 & Raymond & 1074 & 367 & 1086 & 371 & 1088 & 371 \\
\hline 160 & Raymond & 439 & 152 & 446 & 154 & 447 & 155 \\
\hline 161 & Raymond & 680 & 241 & 686 & 243 & 687 & 244 \\
\hline 162 & Raymond & 527 & 228 & 531 & 230 & 532 & 230 \\
\hline 163 & Raymond & 461 & 214 & 468 & 217 & 469 & 218 \\
\hline 164 & Raymond & 351 & 153 & 352 & 154 & 352 & 154 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TAZ & TOWN & HHS2015 \\
\hline 249 & Manchester & 1.55 \\
\hline 250 & Manchester & 1.24 \\
\hline 251 & Manchester & 1.60 \\
\hline 252 & Manchester & 3.68 \\
\hline 253 & Manchester & 1.51 \\
\hline 254 & Manchester & 1.12 \\
\hline 255 & Manchester & 1.99 \\
\hline 256 & Manchester & 1.79 \\
\hline 257 & Manchester & 2.77 \\
\hline 258 & Manchester & 3.53 \\
\hline 259 & Manchester & 2.83 \\
\hline 260 & Manchester & 2.78 \\
\hline 261 & Manchester & 2.49 \\
\hline 262 & Manchester & 2.24 \\
\hline 263 & Manchester & 2.32 \\
\hline 264 & Manchester & 2.60 \\
\hline 265 & Manchester & 2.31 \\
\hline 266 & Manchester & 1.72 \\
\hline 267 & Manchester & 2.50 \\
\hline 268 & Manchester & 2.28 \\
\hline 269 & Manchester & 2.43 \\
\hline 270 & Manchester & 2.11 \\
\hline 271 & Manchester & 1.67 \\
\hline 272 & Manchester & 2.59 \\
\hline 273 & Manchester & 1.92 \\
\hline 192 & New Boston & 2.64 \\
\hline 193 & New Boston & 2.55 \\
\hline 194 & New Boston & 2.78 \\
\hline 195 & New Boston & 2.64 \\
\hline 196 & New Boston & 2.67 \\
\hline 197 & New Boston & 2.77 \\
\hline 198 & New Boston & 2.77 \\
\hline 199 & New Boston & 3.03 \\
\hline 200 & New Boston & 2.80 \\
\hline 201 & New Boston & 2.75 \\
\hline 156 & Raymond & 2.73 \\
\hline 157 & Raymond & 2.56 \\
\hline 158 & Raymond & 2.96 \\
\hline 159 & Raymond & 2.93 \\
\hline 160 & Raymond & 2.82 \\
\hline 161 & Raymond & 2.82 \\
\hline 162 & Raymond & 2.31 \\
\hline 163 & Raymond & 2.15 \\
\hline 164 & Raymond & 2.28 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{TAZ} & \multirow[b]{2}{*}{TOWN} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{HH \({ }^{2015}\)}} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{HH \({ }^{2020}\)}} & \multirow[b]{2}{*}{Pop} & \multirow[t]{2}{*}{HH \({ }^{2025}\)} \\
\hline & & & & & & & \\
\hline 165 & Raymond & 458 & 188 & 476 & 195 & 496 & 204 \\
\hline 166 & Raymond & 402 & 153 & 403 & 154 & 405 & 154 \\
\hline 167 & Raymond & 522 & 194 & 544 & 202 & 570 & 212 \\
\hline 168 & Raymond & 612 & 224 & 618 & 226 & 625 & 229 \\
\hline 169 & Raymond & 293 & 115 & 293 & 115 & 293 & 115 \\
\hline 170 & Raymond & 969 & 385 & 978 & 388 & 990 & 393 \\
\hline 171 & Raymond & 895 & 347 & 908 & 353 & 924 & 359 \\
\hline 172 & Raymond & 340 & 182 & 340 & 183 & 341 & 183 \\
\hline 202 & Weare & 645 & 221 & 657 & 225 & 671 & 230 \\
\hline 203 & Weare & 448 & 143 & 452 & 145 & 458 & 146 \\
\hline 204 & Weare & 324 & 111 & 329 & 113 & 335 & 115 \\
\hline 205 & Weare & 395 & 159 & 408 & 164 & 423 & 170 \\
\hline 206 & Weare & 507 & 197 & 522 & 202 & 539 & 209 \\
\hline 207 & Weare & 404 & 151 & 416 & 155 & 430 & 160 \\
\hline 208 & Weare & 644 & 229 & 664 & 236 & 686 & 244 \\
\hline 209 & Weare & 696 & 245 & 712 & 251 & 732 & 257 \\
\hline 210 & Weare & 437 & 168 & 449 & 172 & 463 & 178 \\
\hline 211 & Weare & 433 & 170 & 445 & 175 & 460 & 181 \\
\hline 212 & Weare & 428 & 179 & 457 & 191 & 491 & 205 \\
\hline 213 & Weare & 293 & 113 & 305 & 118 & 319 & 123 \\
\hline 214 & Weare & 607 & 197 & 626 & 204 & 649 & 211 \\
\hline 215 & Weare & 434 & 157 & 441 & 160 & 450 & 163 \\
\hline 216 & Weare & 264 & 110 & 268 & 112 & 274 & 114 \\
\hline 217 & Weare & 405 & 141 & 415 & 144 & 426 & 148 \\
\hline 218 & Weare & 475 & 155 & 492 & 160 & 512 & 167 \\
\hline 219 & Weare & 550 & 195 & 562 & 199 & 576 & 204 \\
\hline 220 & Weare & 422 & 159 & 430 & 162 & 440 & 166 \\
\hline 291 & Windham & 2736 & 947 & 2910 & 1007 & 3098 & 1072 \\
\hline 292 & Windham & 1545 & 484 & 1615 & 487 & 1690 & 511 \\
\hline 293 & Windham & 498 & 189 & 538 & 204 & 581 & 222 \\
\hline 294 & Windham & 2140 & 738 & 2400 & 853 & 2680 & 953 \\
\hline 295 & Windham & 636 & 266 & 691 & 283 & 750 & 308 \\
\hline 296 & Windham & 2797 & 1012 & 3150 & 1146 & 3530 & 1285 \\
\hline 297 & Windham & 1030 & 377 & 1067 & 391 & 1108 & 405 \\
\hline 298 & Windham & 399 & 162 & 426 & 173 & 455 & 185 \\
\hline 299 & Windham & 2521 & 840 & 2617 & 871 & 2720 & 906 \\
\hline 300 & Francestown & 248 & 92 & 249 & 93 & 250 & 93 \\
\hline 301 & Francestown & 250 & 104 & 253 & 105 & 256 & 107 \\
\hline 302 & Francestown & 148 & 62 & 150 & 62 & 152 & 63 \\
\hline 303 & Francestown & 189 & 67 & 190 & 67 & 192 & 68 \\
\hline 304 & Francestown & 471 & 184 & 477 & 186 & 486 & 190 \\
\hline 305 & Francestown & 256 & 104 & 258 & 105 & 260 & 106 \\
\hline 375 & Londonderry & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 376 & Londonderry & 374 & 127 & 378 & 128 & 383 & 130 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{TAZ} & \multirow[b]{2}{*}{TOWN} & \multirow[b]{2}{*}{Pop} & \multirow[t]{2}{*}{HH \({ }^{2030}\)} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{HH \({ }^{2035}\)}} & \multirow[b]{2}{*}{Pop} & 2040 \\
\hline & & & & & & & HH \\
\hline 165 & Raymond & 525 & 216 & 541 & 222 & 544 & 223 \\
\hline 166 & Raymond & 408 & 155 & 409 & 156 & 409 & 156 \\
\hline 167 & Raymond & 606 & 225 & 626 & 232 & 630 & 234 \\
\hline 168 & Raymond & 634 & 232 & 640 & 234 & 641 & 235 \\
\hline 169 & Raymond & 294 & 115 & 294 & 115 & 294 & 115 \\
\hline 170 & Raymond & 1005 & 399 & 1013 & 402 & 1015 & 403 \\
\hline 171 & Raymond & 945 & 367 & 957 & 372 & 960 & 373 \\
\hline 172 & Raymond & 342 & 184 & 343 & 184 & 343 & 184 \\
\hline 202 & Weare & 680 & 233 & 686 & 235 & 688 & 236 \\
\hline 203 & Weare & 462 & 148 & 464 & 148 & 465 & 149 \\
\hline 204 & Weare & 338 & 116 & 341 & 117 & 341 & 117 \\
\hline 205 & Weare & 433 & 174 & 440 & 177 & 442 & 178 \\
\hline 206 & Weare & 549 & 213 & 556 & 216 & 559 & 217 \\
\hline 207 & Weare & 439 & 164 & 445 & 166 & 447 & 167 \\
\hline 208 & Weare & 701 & 249 & 710 & 252 & 713 & 253 \\
\hline 209 & Weare & 745 & 262 & 753 & 265 & 756 & 266 \\
\hline 210 & Weare & 472 & 181 & 477 & 183 & 479 & 184 \\
\hline 211 & Weare & 469 & 184 & 474 & 186 & 476 & 187 \\
\hline 212 & Weare & 512 & 214 & 526 & 219 & 531 & 221 \\
\hline 213 & Weare & 328 & 127 & 333 & 129 & 335 & 130 \\
\hline 214 & Weare & 663 & 216 & 672 & 219 & 676 & 220 \\
\hline 215 & Weare & 455 & 165 & 458 & 166 & 460 & 166 \\
\hline 216 & Weare & 278 & 116 & 280 & 117 & 281 & 117 \\
\hline 217 & Weare & 433 & 151 & 438 & 152 & 439 & 153 \\
\hline 218 & Weare & 524 & 171 & 532 & 174 & 535 & 175 \\
\hline 219 & Weare & 585 & 207 & 591 & 209 & 593 & 210 \\
\hline 220 & Weare & 447 & 168 & 451 & 170 & 452 & 170 \\
\hline 291 & Windham & 3156 & 1092 & 3190 & 1104 & 3196 & 1106 \\
\hline 292 & Windham & 1714 & 518 & 1727 & 523 & 1730 & 523 \\
\hline 293 & Windham & 595 & 228 & 602 & 231 & 604 & 232 \\
\hline 294 & Windham & 2767 & 984 & 2816 & 1001 & 2826 & 1005 \\
\hline 295 & Windham & 768 & 315 & 778 & 320 & 780 & 321 \\
\hline 296 & Windham & 3647 & 1327 & 3715 & 1352 & 3728 & 1357 \\
\hline 297 & Windham & 1120 & 410 & 1128 & 413 & 1129 & 413 \\
\hline 298 & Windham & 464 & 188 & 470 & 190 & 471 & 191 \\
\hline 299 & Windham & 2752 & 916 & 2770 & 922 & 2774 & 924 \\
\hline 300 & Francestown & 253 & 94 & 254 & 94 & 255 & 95 \\
\hline 301 & Francestown & 262 & 109 & 265 & 111 & 267 & 111 \\
\hline 302 & Francestown & 156 & 65 & 158 & 66 & 159 & 66 \\
\hline 303 & Francestown & 194 & 69 & 196 & 69 & 196 & 69 \\
\hline 304 & Francestown & 500 & 195 & 508 & 198 & 511 & 199 \\
\hline 305 & Francestown & 263 & 107 & 265 & 108 & 266 & 108 \\
\hline 375 & Londonderry & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 376 & Londonderry & 387 & 131 & 389 & 132 & 390 & 132 \\
\hline
\end{tabular}
\begin{tabular}{llr}
\hline & & \\
TAZ & TOWN & \\
\hline 165 & Raymond & 2.44 \\
166 & Raymond & 2.63 \\
167 & Raymond & 2.69 \\
168 & Raymond & 2.73 \\
169 & Raymond & 2.55 \\
170 & Raymond & 2.52 \\
171 & Raymond & 2.58 \\
172 & Raymond & 1.86 \\
202 & Weare & 2.92 \\
203 & Weare & 3.13 \\
204 & Weare & 2.92 \\
205 & Weare & 2.49 \\
206 & Weare & 2.58 \\
207 & Weare & 2.68 \\
208 & Weare & 2.81 \\
209 & Weare & 2.84 \\
210 & Weare & 2.61 \\
211 & Weare & 2.54 \\
212 & Weare & 2.40 \\
213 & Weare & 2.58 \\
214 & Weare & 3.07 \\
215 & Wrances & Wrancestown
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{TAZ} & \multirow[b]{2}{*}{TOWN} & \multirow[b]{2}{*}{Pop} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{HH \({ }^{2030}\)}} & \multirow[b]{2}{*}{Pop} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{HH 2035}} & \multicolumn{3}{|r|}{2040} \\
\hline & & & & & & & & Pop & & \\
\hline 377 & Derry & & 12 & 3 & & 13 & 3 & & 13 & 3 \\
\hline 378 & Derry & & 292 & 143 & & 293 & 143 & & 293 & 143 \\
\hline 379 & Derry & & 460 & 148 & & 473 & 152 & & 476 & 153 \\
\hline 380 & Derry & & 265 & 98 & & 266 & 99 & & 266 & 99 \\
\hline 381 & Derry & & 14 & 5 & & 14 & 5 & & 14 & 5 \\
\hline
\end{tabular}
\begin{tabular}{llr}
\hline & & \\
TAZ & TOWN & HHS2015 \\
\hline 377 & Derry & 3.96 \\
378 & Derry & 2.05 \\
379 & Derry & 3.10 \\
380 & Derry & 2.70 \\
381 & Derry & 2.96 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
From: & \multicolumn{1}{l}{ Ulie Chen } \\
To: & \(\underline{\text { Snyder, Kerri }}\) \\
Cc: & \(\underline{\text { Tidd, Leo; Chris Bean; } \underline{\text { 193-Exit4A-EIS (SM); Hodgson (Rydland), Laura; David Preece }}} \mathbf{}\)\begin{tabular}{l} 
Subject:
\end{tabular} \\
RE: I-93 Exit 4A: Data for Average Household Size \\
Date: & Tuesday, August 23, 2016 1:16:57 PM \\
Attachments: & Special population.x|sx
\end{tabular}

Hi Kerri:

I calculated household size based on population, housing units, and occupancy rate (2010). The equation is as follow.

Household size= (Population - special population)/(housing units*occupancy rate)
Occupancy rate(2010)=2010 housing units/2010 household

Attached please find special population data I used.

If you have any questions, please let me know.

Julie Chen

From: Snyder, Kerri [mailto:KSnyder@louisberger.com]
Sent: Tuesday, August 23, 2016 11:48 AM
To: Julie Chen
Cc: Tidd, Leo; Chris Bean; I93-Exit4A-EIS (SM); Hodgson (Rydland), Laura
Subject: I-93 Exit 4A: Data for Average Household Size

Julie,
To follow up on my call/message for you this morning, I wanted to get your input what data you used for average household size in the 2015 population and household updates. The travel demand model methodology appears to have used U.S. Census household size (from 2010). Did you use the U.S. Census household size for your 2015 data? If so, did you use the Town-level or more detailed level (e.g., census block group)? If not, more detailed information on what was used is appreciated. We want to make sure we are consistent with your analysis.

Regards,
Kerri

\section*{Kerri Snyder, AICP}

Principal Environmental Planner | Transportation Planning and Environment

\section*{Louis Berger}

48 Wall Street, \(16^{\text {th }}\) Floor | New York | NY | 10005 | USA
direct +1-212-612-7908
mobile +1-646-584-9490
email ksnyder@louisberger.com
web louisberger.com

This message, including any attachments hereto, may contain privileged and/or confidential information and is intended solely for the attention and use of the intended addressee(s). If you are not the intended addressee, you may neither use, copy, nor deliver to anyone this message or any of its attachments. In such case, you should immediately destroy this message and its attachments and kindly notify the sender by reply mail. Unless made by a person with actual authority conferred by Louis Berger, the information and statements herein do not constitute a binding commitment or warranty by Louis Berger. Louis Berger assumes no responsibility for any misperceptions, errors or misunderstandings. You are urged to verify any information that is confusing and report any errors/concerns to us in writing.

Southern New Hampshire Planning Commission

\section*{MEMORANDUM}

TO: File

FROM: Julie Chen, Ph.D., Sr. Transportation Planner, Southern New Hampshire Planning Commission, 669-4664, jchen@SNHPC.org

DATE: \(\quad\) November 4, 2016
RE: \(\quad 2015-2040\) - Employment Projection for I-93 Exit 4A project
In order to reflect changes in employment between 2010 and 2015, the original SNHPC employment projection for 2010 through 2040 (completed in 2012) was adjusted for 2020 through 2040 projection. Three steps are followed in calculating 2015-2040 employment projection.

\section*{Step 1: Growth rates}

The study assumes that employment growth rates by employment category group for 2015-2040 were kept the same as the 2012 Southern NH Planning Commission employment projection for 2010-2040 which were reviewed by corresponding communities in the region. The following formula was used in calculating growth rates over a five-year interval.
\[
G R_{\text {Com EC } i}=\left(E_{2012 \text { Com EC } i}-E_{2012 \text { Com EC } i-1}\right) / E_{2012 \text { Com EC } i-1}
\]

Where:
\(i\) =projection years 2015, 2020, 2025, 2030, 2035 and 2040
\(G R_{\text {Com EC } i}=\) Growth rate by employment category group over i to i-1 five-year interval \(E_{2012 \text { com EC } i}=\) Total employment for an employment category group in a community
at projection year i in 2012 projection
\(E_{2012 \text { com EC } i-1}=\) Total employment for the employment category group in community at projection year i-1 in 2012 projection

\section*{Step 2: Total employment projection for an employment category group in a community 2020 through 2040}

The 2015 total employment estimate for an employment category group in a community was considered as base, total employment projections for the employment category group in the community 2020 through 2040 were calculated as follows:
\[
E_{2016 \text { Com EC } i}=E_{2016 \text { Com EC } i-1} *\left(1+G R_{\text {Com EC } i}\right)
\]

Where:
\(i\) =projection years 2020,2025,2030,2035 and 2040 \(E_{2016 \text { com EC } i}=\) Total employment for an employment category group in the community at projection year i in the 2016 projection \(E_{2016 \text { com EC } \text { i-1 }}=\) Total employment for the employment category group in the community at projection year i-1 in the 2016 projection

Step 3: Total employment for an employment category group in the community for 20202040 projection distributed to TAZs

Two conditions were used as total projected employment for an employment category group in the community was allocated into TAZs.

\section*{Condition one}

When developable land for a land use category is available and appropriate to use in a community, employment is distributed based on percentage of developable land in a TAZ in total of developable land in the community.
\[
E_{2016 \text { TAZ EC } i}=E_{2016 \text { TAZEC } i-1}+\left(E_{2016 \text { Com EC } i}-E_{2016 \text { Com EC } i-1}\right) * \text { Percentage }
\]

Where:
\(E_{2016 \text { TAZ EC } i}=2016\) Employment projection in a TAZ for an employment category group at projection year i
\(E_{2016 \text { TAZ EC } \text { i-1 }}=2016\) Employment projection in a TAZ for the employment category group at projection year i-1 in the 2016 projection
\(E_{2016 \text { com EC } i}=\) Total employment for the employment category group in the community at projection year i in the 2016 projection
\(E_{2016 \text { com EC i-1 }}=\) Total employment for the employment category group in the community at projection year i-1 in the 2016 projection

\section*{Condition two}

When developable land for the land use category is not available or not appropriate to use in a community, employment in a TAZ is calculated using same growth rate as that of employment of the employment category.
\[
E_{2016 T A Z E C i}=E_{2016 T A Z E C i-1} *\left(1+G R_{2016 \text { Com EC } i}\right)
\]

Where:
\(E_{2016 T A Z E C i}=2016\) Employment projection in a TAZ for an employment category group at projection year i
\(E_{2016 \text { TAZ EC } i-1}=2016\) Employment projection in a TAZ for the employment category group at projection year i-1 in the 2016 projection

Preparer's note: Employment data were provided on November 7, 2016. Pursuant to an agreement signed with NHDOT and SNHPC, the raw data are not available for public distribution.

APPENDIX C: MEMORANDUM: REVIEW OF EMPLOYMENT PROJECTIONS

This page intentionally left blank.

\section*{Memorandum}

DATE:
November 23, 2016
TO:
File

FROM:
Gabor Debreczeni

SUBJECT: I-93 Exit 4A: Review of Employment Projections

\section*{Introduction}

This memo is a brief evaluation of employment projections by the Southem New Hampshire Planning Commission for the towns of Aubum, Chester, Demy, Londondemy, and Sandown, all in Rockingham C ounty, through 2040.

\section*{SNHPC Projections}

The table below shows SNHPC's projection for the annual growth rate of employment from 2015 to 2040 for each of the five towns as well as for the collective study a rea. These projections were calculated from two inputs: historical growth rates for 1990-2010 (sourced from the New Hampshire Economic and Labor Market Information Bureau, NHELMIB), and a ten-year (2008-2018) employment projection by NHELMIB.

Table 1: Study Area Employment Growth Projection by Town
\begin{tabular}{|l|c|}
\hline Area & CAGR, 2015-40 \\
\hline Derry & \(0.90 \%\) \\
Londonderry & \(0.84 \%\) \\
Auburn & \(1.63 \%\) \\
Chester & \(2.24 \%\) \\
Sandown & \(0.99 \%\) \\
\hline Total Study Area & \(0.95 \%\) \\
\hline
\end{tabular}

\section*{Review of Historic al Trends}

Historical data for employment (defined by location of work rather than location of residence) and population growth from the U.S. Census Bureau \({ }^{1}\) was reviewed by Louis Berger for 2003-2014, the time range for which data was available at the town level. The table below shows the a nnual growth rate of employment for this period for the five towns, the study a rea, Rockingham County, and New Hampshire.

Historical data was also reviewed from Woods \& Poole, a firm specializing in countylevel economic projections. Employment data from Woods \& Poole measures the number of full- and part-time jobs by location of work.

Table 2: Employment Growth History
\begin{tabular}{|l|c|c|c|}
\hline Area & \begin{tabular}{c} 
U.S. Census Bureau \\
CAGR, 2003-14
\end{tabular} & \begin{tabular}{c} 
Woods \& Poole \\
CAGR, 2003-14
\end{tabular} & \begin{tabular}{c} 
Woods \& Poole \\
CAGR, 1969-2015
\end{tabular} \\
\hline Derry & \(0.53 \%\) & & \\
Londonderry & \(0.61 \%\) & & \\
Auburn & \(1.90 \%\) & & \\
Chester & \(-0.80 \%\) & & \\
Sandown & \(4.09 \%\) & & \\
\hline Total Study Area & \(0.67 \%\) & & \\
\hline Rockingham Co. & \(0.65 \%\) & \(0.96 \%\) & \(2.08 \%\) \\
New Hampshire & \(0.54 \%\) & \(0.54 \%\) & \\
\hline
\end{tabular}

The chart below shows the share of Rockingham County employment (place-of-work) that is located within the study area, for the 2003-14 period. As can be seen, the share varies from \(18 \%\) to just over \(19 \%\), but there is no clear trend of rising or declining share over time.

Figure 1: Study Area Employment as a Proportion of County Employment


\footnotetext{
\({ }^{1}\) Specific ally, the employment data was collected from the Longitudinal Employer-Household Dynamics section (http://onthemap.ces.census.gov/), while population data wascollected from the American FactFinder section (http://factfinder.census.gov/) and the City and Town Intercensal Estimates section (https://www.c ensus.gov/popest/data/interc ensal/cities/ cities2010.html).
}

The charts below show the pattems of employment as implied by historical data sourced from the U.S. Census Bureau as well as SNHPC's projected growth rates through 2040, for each of the five towns in the study area. A comparable chart for the entire study area is at the end of this document.

Figure 2: Aubum Employment History and Projection


Figure 3: Sandown Employment History and Projection


Figure 4: Londondemy Employment History and Projection


Figure 5: Deny Employment History and Projection


Figure 6: Chester Employment History and Projection


Overall the trajectory of projected employment is generally consistent with past pattems of growth in each town, with future growth rates at or below the linear trend in employment growth from 2003 to 2015.

The downward trend in employment in Chester as of 2012 is ascribed in the Land Use Scenarios Technical Report to the closing of Chester College, which is expected to reopen as a new education institution in 2020.

In Demy, the growth projection is somewhat higher than the linear trend of employment growth since 2003, but consistent with the rate of growth seen in employment following the recovery from the recession in 2011.

\section*{Historic al Models for Employment within Study Area}

To further assess the reasonableness of the regional employment growth projection, we conducted an evaluation of the historical relationship of employment growth in the study area to employment growth in the county and state as a whole. As a benchmark we also obtained an independent projection of county and state level employment through 2040.

Using the 2003-14 U.S. Census Bureau data referenced above, we developed simple regression models to investigate relationships between growth rates in employment in the study area, population in the study area, employment in Rockingham County, and employment in New Hampshire. Two models were found to have the most predictive power - one relating study area employment to county-level employment, and a
second relating it to county-level employment and study a rea population.

The tables below show information about the regression models. The logarithm of both the input and output data were taken for both regression models.

\section*{Table 3: Regression Model 1: Regional Employment as a Function of} County Employment
```

Ca11:
1m(formula = Com_Emp ~ Roc_Emp, data = log_added_data)
Residuals:
Min
Coefficients:
Estimate std. Error t value Pr (>|t|)
(Intercept) -0.1689 2.9563 -0.057 0.95556
ROC_Emp 0.8717 0.2494 3.496 0.00577 **
signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.01802 on 10 degrees of freedom
Multiple R-squared: 0.5499, Adjusted R-squared: 0.5049
F-statistic: 12.22 on 1 and 10 DF, p-value: 0.00577

```

The first regression model indicates that regional employment levels are closely correlated with the overall level of employment in Rockingham County. The model indicates that annual growth in employment at the county level at a rate of \(1.00 \%\) can be expected to result in regional employment growth at a rate of \(0.87 \%\).

\section*{Table 4: Regression Model 2: Regional Employment as a Function of County Employment and Regional Population}
```

cal1:
1m(formula = Com_Emp ~ Roc_Emp + Com_Pop, data = log_added_data)
Residuals:
Min
Coefficients:
Estimate std. Error t value Pr (>|t|)
(Intercept) -17.4068 10.0300
Roc_Emp
llllll
Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '.' 0.1 ', 1
Residual standard error: 0.01632 on 9 degrees of freedom
Multiple R-squared: 0.6674, Adjusted R-squared: 0.5935
F-statistic: 9.032 on 2 and 9 DF, p-value: 0.007053

```

The second regression model indicates that regional employment levels are closely correlated with the overall level of employment in Rockingham County along with the level of population in the region. This model indicates that employment in the region can be expected to grow at a rate of 0.57 times the rate of county employment growth and 1.86 times the rate of regional population growth.

\section*{Other Benchmark Employment Projections}

As shown in the table below, for the 2015-40 period, Woods \& Poole projects a yearly growth rate of approximately \(1.1 \%\) for both New Hampshire and Rockingham County, which is the smallest geographical area relevant to this memo that is projected by Woods \& Poole. (As a point of comparison, Woods \& Poole projects an annual population growth rate of \(0.69 \%\) for New Hampshire and \(0.85 \%\) for Rockingham County during this time period.)

Table 5: Woods \& Poole Employment Projection
\begin{tabular}{|l|c|}
\hline Area & CAGR, 2015-40 \\
\hline Rockingham Co. & \(1.07 \%\) \\
New Hampshire & \(1.06 \%\) \\
\hline
\end{tabular}

Using the Woods \& Poole projections as an input, the Regression Model 1 (considering only Rockingham County employment as an input) would suggest an average growth rate of \(\mathbf{0 . 9 3 \%}\) per year through 2040 ( \(1.07 \% * 0.87=0.93 \%\) ).

Regression Model 2 considers both Rockingham County employment and study area population as inputs. The latter is the Office of Energy and Planning (OEP) population projection, which indicates that Rockingham County is estimated to have an annual growth rate of \(0.26 \%\) through 2040 . As such, this model predicts an employment growth rate of 1.09\% per year through 2040 ( \(0.26 \% * 1.86+1.07 \% * 0.57\) ).

\section*{Conclusion}

SNHPC's projection for employment growth in the study area appears to be reasonable. The projected growth rate through 2040 aligns with Woods \& Poole's projection for employment growth in Rockingham County, a nd both regression models suggest study area employment growth rates that are comparable to the rate of growth implied by the SNHPC projection, as shown in Table 6, below.

Table 6: Study Area Employment Growth Rate Comparison
\begin{tabular}{|c|cccc|}
\hline & SHNPC & Model \#1 & Model \#2 & \begin{tabular}{c} 
Woods \& Poole \\
(Rockingham Co.)
\end{tabular} \\
\hline 2015-40 Employment CAGR & \(0.95 \%\) & \(0.93 \%\) & \(1.09 \%\) & \(1.07 \%\) \\
\hline
\end{tabular}

While it is notable that the study area employment growth rate is forecasted to be substantially greater than the study a rea population growth rate (which is pegged at a CAGR of \(0.26 \%\) ), a third regression model attempting to predict study a rea employment by using only study area population as an input showed that for each \(1 \%\) increase in population, we would expecta \(3.1 \%\) increase in employment.

The chart below shows the pattems of study area employment based on historical place of work employment as reported by the U.S. Census Bureau; and four projections through 2040 based on growth rates from sources discussed in this memorandum: the SNHPC projection, the two regression models described above, and Woods \& Poole projections for Roc kingha m County.

Figure 7: Historic al and Projected Study Area Employment


APPENDIX D: TAZ ALLOCATION UNDER THE NO BUILD AND BUILD CONDITIONS

This page intentionally left blank.

\section*{TAZ ALLOCATION UNDER THE NO BUILD AND BUILD CONDITIONS}
2040 Total Build Condition for Alternatives A and B ..... D-1
2040 Total Build Condition for Alternatives C and D ..... D-3
2040 Total No Build Condition and Build Condition for Alternative F ..... D-5

This page intentionally left blank.

2040 Total Build Condition for Alternatives A and B
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{TAZ} & \multicolumn{3}{|r|}{2040} \\
\hline & TOWN & Pop & \\
\hline 71 & Auburn & 64 & 33 \\
\hline 72 & Auburn & 2438 & 899 \\
\hline 73 & Auburn & 1189 & 411 \\
\hline 74 & Auburn & 1042 & 357 \\
\hline 98 & Auburn & 1315 & 487 \\
\hline 148 & Chester & 917 & 315 \\
\hline 149 & Chester & 758 & 267 \\
\hline 150 & Chester & 770 & 288 \\
\hline 151 & Chester & 768 & 271 \\
\hline 152 & Chester & 1776 & 528 \\
\hline 153 & Chester & 629 & 214 \\
\hline 154 & Chester & 728 & 260 \\
\hline 155 & Chester & 1023 & 305 \\
\hline 121 & Derry & 2304 & 794 \\
\hline 122 & Derry & 801 & 273 \\
\hline 123 & Derry & 879 & 273 \\
\hline 124 & Derry & 958 & 500 \\
\hline 125 & Derry & 3 & 2 \\
\hline 126 & Derry & 507 & 265 \\
\hline 127 & Derry & 1045 & 443 \\
\hline 128 & Derry & 1060 & 339 \\
\hline 129 & Derry & 422 & 144 \\
\hline 130 & Derry & 666 & 255 \\
\hline 131 & Derry & 1293 & 580 \\
\hline 132 & Derry & 773 & 339 \\
\hline 133 & Derry & 85 & 29 \\
\hline 134 & Derry & 631 & 276 \\
\hline 135 & Derry & 711 & 380 \\
\hline 136 & Derry & 2314 & 1042 \\
\hline 137 & Derry & 564 & 219 \\
\hline 138 & Derry & 1368 & 476 \\
\hline 139 & Derry & 1154 & 363 \\
\hline 140 & Derry & 588 & 201 \\
\hline 141 & Derry & 908 & 320 \\
\hline 142 & Derry & 877 & 304 \\
\hline 143 & Derry & 878 & 274 \\
\hline 144 & Derry & 1533 & 558 \\
\hline 145 & Derry & 441 & 163 \\
\hline 146 & Derry & 1510 & 497 \\
\hline 147 & Derry & 2257 & 725 \\
\hline 221 & Derry & 661 & 278 \\
\hline 222 & Derry & 801 & 357 \\
\hline 223 & Derry & 420 & 158 \\
\hline
\end{tabular}
\begin{tabular}{|lrrr|}
\hline & \multicolumn{3}{c|}{2040} \\
Town & Pop & \multicolumn{1}{c|}{HH} & \\
Auburn & 6048 & 2188 \\
Chester & 7370 & 2448 \\
Derry & 33,222 & 12,673 \\
Londonderry & 30,910 & 10,707 \\
\hline
\end{tabular}
\begin{tabular}{|llrr|}
224 & Derry & 804 & 383 \\
225 & Derry & 407 & 164 \\
226 & Derry & 1211 & 401 \\
227 & Derry & 659 & 220 \\
228 & Derry & 665 & 273 \\
\hline 64 L & Londonderry & 0 & 0 \\
65 & Londonderry & 139 & 47 \\
66 & Londonderry & 257 & 106 \\
67 & Londonderry & 1527 & 643 \\
68 & Londonderry & 1873 & 694 \\
69 & Londonderry & 599 & 207 \\
70 & Londonderry & 609 & 193 \\
99 & Londonderry & 1707 & 591 \\
100 & Londonderry & 1916 & 617 \\
101 & Londonderry & 3012 & 945 \\
102 & Londonderry & 2533 & 819 \\
103 & Londonderry & 1390 & 448 \\
229 & Londonderry & 1314 & 409 \\
230 & Londonderry & 208 & 83 \\
231 & Londonderry & 176 & 60 \\
232 & Londonderry & 1000 & 307 \\
233 & Londonderry & 1149 & 356 \\
274 & Londonderry & 405 & 118 \\
275 & Londonderry & 952 & 348 \\
276 & Londonderry & 1454 & 593 \\
277 & Londonderry & 2174 & 760 \\
278 & Londonderry & 284 & 106 \\
279 & Londonderry & 572 & 179 \\
280 & Londonderry & 325 & 193 \\
281 & Londonderry & 1281 & 440 \\
282 & Londonderry & 599 & 228 \\
283 & Londonderry & 826 & 317 \\
284 & Londonderry & 24 & 12 \\
285 & Londonderry & 1831 & 622 \\
\hline 375 & Londonderry & 384 & 134 \\
376 & Londonderry & 390 & 132 \\
\hline 377 & Derry & 13 & 3 \\
378 & Derry & 293 & 143 \\
379 & Derry & 476 & 153 \\
380 & Derry & 2666 & 99 \\
381 & 14 & 5 \\
\hline & & \\
\hline 20
\end{tabular}

2040 Total Build Condition for Alternatives C and D
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{TAZ} & & \multicolumn{2}{|r|}{2040} \\
\hline & TOWN & Pop & \\
\hline 71 & Auburn & 64 & 33 \\
\hline 72 & Auburn & 2438 & 899 \\
\hline 73 & Auburn & 1189 & 411 \\
\hline 74 & Auburn & 1042 & 357 \\
\hline 98 & Auburn & 1315 & 487 \\
\hline 148 & Chester & 917 & 315 \\
\hline 149 & Chester & 758 & 267 \\
\hline 150 & Chester & 770 & 288 \\
\hline 151 & Chester & 768 & 271 \\
\hline 152 & Chester & 1776 & 528 \\
\hline 153 & Chester & 629 & 214 \\
\hline 154 & Chester & 728 & 260 \\
\hline 155 & Chester & 1023 & 305 \\
\hline 121 & Derry & 2304 & 794 \\
\hline 122 & Derry & 801 & 273 \\
\hline 123 & Derry & 879 & 273 \\
\hline 124 & Derry & 958 & 500 \\
\hline 125 & Derry & 3 & 2 \\
\hline 126 & Derry & 507 & 265 \\
\hline 127 & Derry & 1045 & 443 \\
\hline 128 & Derry & 1060 & 339 \\
\hline 129 & Derry & 422 & 144 \\
\hline 130 & Derry & 666 & 255 \\
\hline 131 & Derry & 1293 & 580 \\
\hline 132 & Derry & 773 & 339 \\
\hline 133 & Derry & 85 & 29 \\
\hline 134 & Derry & 631 & 276 \\
\hline 135 & Derry & 711 & 380 \\
\hline 136 & Derry & 2314 & 1042 \\
\hline 137 & Derry & 564 & 219 \\
\hline 138 & Derry & 1368 & 476 \\
\hline 139 & Derry & 1154 & 363 \\
\hline 140 & Derry & 588 & 201 \\
\hline 141 & Derry & 908 & 320 \\
\hline 142 & Derry & 877 & 304 \\
\hline 143 & Derry & 878 & 274 \\
\hline 144 & Derry & 1533 & 558 \\
\hline 145 & Derry & 441 & 163 \\
\hline 146 & Derry & 1510 & 497 \\
\hline 147 & Derry & 2257 & 725 \\
\hline 221 & Derry & 661 & 278 \\
\hline 222 & Derry & 801 & 357 \\
\hline 223 & Derry & 420 & 158 \\
\hline
\end{tabular}
\begin{tabular}{|lrrr|}
\hline & \multicolumn{2}{c|}{2040} \\
Town & Pop & \multicolumn{1}{c|}{HH} & \\
Auburn & 6048 & 2188 \\
Chester & 7370 & 2448 \\
Derry & 33,222 & 12,673 \\
Londonderry & 30,885 & 10,698 \\
\hline
\end{tabular}
\begin{tabular}{|llrr|}
224 & Derry & 804 & 383 \\
225 & Derry & 407 & 164 \\
226 & Derry & 4011 & 420 \\
227 & Derry & 659 & 220 \\
228 & Derry & 665 & 273 \\
\hline 64 L & Londonderry & 0 & 0 \\
65 & Londonderry & 139 & 47 \\
66 & Londonderry & 257 & 106 \\
67 & Londonderry & 1527 & 643 \\
68 & Londonderry & 1873 & 694 \\
69 & Londonderry & 594 & 205 \\
70 & Londonderry & 609 & 193 \\
99 & Londonderry & 1698 & 588 \\
100 & Londonderry & 1916 & 617 \\
101 & Londonderry & 3012 & 945 \\
102 & Londonderry & 2533 & 819 \\
103 & Londonderry & 1390 & 448 \\
229 & Londonderry & 1314 & 409 \\
230 & Londonderry & 208 & 83 \\
231 & Londonderry & 176 & 60 \\
232 & Londonderry & 1000 & 307 \\
233 & Londonderry & 1149 & 356 \\
274 & Londonderry & 405 & 118 \\
275 & Londonderry & 952 & 348 \\
276 & Londonderry & 1454 & 593 \\
277 & Londonderry & 2166 & 757 \\
278 & Londonderry & 284 & 106 \\
279 & Londonderry & 572 & 179 \\
280 & Londonderry & 325 & 193 \\
281 & Londonderry & 1281 & 440 \\
282 & Londonderry & 599 & 228 \\
283 & Londonderry & 826 & 317 \\
284 & Londonderry & 24 & 12 \\
285 & Londonderry & 1831 & 622 \\
\hline 375 & Londonderry & 381 & 133 \\
376 & Londonderry & 390 & 132 \\
\hline 377 & Derry & 13 & 3 \\
378 & Derry & 293 & 143 \\
379 & Derry & 476 & 153 \\
380 & Derry & 266 & 99 \\
381 & 14 & 5 \\
\hline & & \\
\hline 20
\end{tabular}

2040 Total Under the No Build Condition. Also applies to Build Alternative F.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{TAZ} & \multirow[b]{2}{*}{TOWN} & & 2040 & \multicolumn{3}{|c|}{2040} \\
\hline & & Pop & & Town & Pop & \\
\hline 71 & Auburn & 64 & 33 & Auburn & 6048 & 2188 \\
\hline 72 & Auburn & 2438 & 899 & Chester & 6253 & 2077 \\
\hline 73 & Auburn & 1189 & 411 & Derry & 33,222 & 12,673 \\
\hline 74 & Auburn & 1042 & 357 & Londonderry & 30,885 & 10,698 \\
\hline 98 & Auburn & 1315 & 487 & & & \\
\hline 148 & Chester & 796 & 275 & & & \\
\hline 149 & Chester & 632 & 225 & & & \\
\hline 150 & Chester & 566 & 220 & & & \\
\hline 151 & Chester & 624 & 223 & & & \\
\hline 152 & Chester & 1535 & 448 & & & \\
\hline 153 & Chester & 526 & 180 & & & \\
\hline 154 & Chester & 635 & 229 & & & \\
\hline 155 & Chester & 938 & 277 & & & \\
\hline 121 & Derry & 2304 & 794 & & & \\
\hline 122 & Derry & 801 & 273 & & & \\
\hline 123 & Derry & 879 & 273 & & & \\
\hline 124 & Derry & 958 & 500 & & & \\
\hline 125 & Derry & 3 & 2 & & & \\
\hline 126 & Derry & 507 & 265 & & & \\
\hline 127 & Derry & 1045 & 443 & & & \\
\hline 128 & Derry & 1060 & 339 & & & \\
\hline 129 & Derry & 422 & 144 & & & \\
\hline 130 & Derry & 666 & 255 & & & \\
\hline 131 & Derry & 1293 & 580 & & & \\
\hline 132 & Derry & 773 & 339 & & & \\
\hline 133 & Derry & 85 & 29 & & & \\
\hline 134 & Derry & 631 & 276 & & & \\
\hline 135 & Derry & 711 & 380 & & & \\
\hline 136 & Derry & 2314 & 1042 & & & \\
\hline 137 & Derry & 564 & 219 & & & \\
\hline 138 & Derry & 1368 & 476 & & & \\
\hline 139 & Derry & 1154 & 363 & & & \\
\hline 140 & Derry & 588 & 201 & & & \\
\hline 141 & Derry & 908 & 320 & & & \\
\hline 142 & Derry & 877 & 304 & & & \\
\hline 143 & Derry & 878 & 274 & & & \\
\hline 144 & Derry & 1533 & 558 & & & \\
\hline 145 & Derry & 441 & 163 & & & \\
\hline 146 & Derry & 1510 & 497 & & & \\
\hline 147 & Derry & 2257 & 725 & & & \\
\hline 221 & Derry & 661 & 278 & & & \\
\hline 222 & Derry & 801 & 357 & & & \\
\hline 223 & Derry & 420 & 158 & & & \\
\hline
\end{tabular}
\begin{tabular}{|llrr|}
224 & Derry & 804 & 383 \\
225 & Derry & 407 & 164 \\
226 & Derry & 4011 & 420 \\
227 & Derry & 659 & 220 \\
228 & Derry & 665 & 273 \\
\hline 64 L & Londonderry & 0 & 0 \\
65 & Londonderry & 139 & 47 \\
66 & Londonderry & 257 & 106 \\
67 & Londonderry & 1527 & 643 \\
68 & Londonderry & 1873 & 694 \\
69 & Londonderry & 594 & 205 \\
70 & Londonderry & 609 & 193 \\
99 & Londonderry & 1698 & 588 \\
100 & Londonderry & 1916 & 617 \\
101 & Londonderry & 3012 & 945 \\
102 & Londonderry & 2533 & 819 \\
103 & Londonderry & 1390 & 448 \\
229 & Londonderry & 1314 & 409 \\
230 & Londonderry & 208 & 83 \\
231 & Londonderry & 176 & 60 \\
232 & Londonderry & 1000 & 307 \\
233 & Londonderry & 1149 & 356 \\
274 & Londonderry & 405 & 118 \\
275 & Londonderry & 952 & 348 \\
276 & Londonderry & 1454 & 593 \\
277 & Londonderry & 2166 & 757 \\
278 & Londonderry & 284 & 106 \\
279 & Londonderry & 572 & 179 \\
280 & Londonderry & 325 & 193 \\
281 & Londonderry & 1281 & 440 \\
282 & Londonderry & 599 & 228 \\
283 & Londonderry & 826 & 317 \\
284 & Londonderry & 24 & 12 \\
285 & Londonderry & 1831 & 622 \\
\hline 375 & Londonderry & 381 & 133 \\
376 & Londonderry & 390 & 132 \\
\hline 377 & Derry & 13 & 3 \\
378 & Derry & 293 & 143 \\
379 & Derry & 476 & 153 \\
380 & Derry & 266 & 99 \\
381 & 14 & 5 \\
\hline & & \\
\hline 20
\end{tabular}

Preparer's note: Pursuant to an agreement signed with NHDOT and SNHPC, the employment data are not available for public distribution.

\section*{Appendix C: Interchange Justification Report}

\title{
Interchange Justification Report
}

\section*{I-93 Exit 4A}

Prepared for:
Town of Derry
Town of Londonderry
New Hampshire Department of Transportation
Prepared by:
CLD and Louis Berger
Version: 2
April 27, 2018

NHDOT Project Number: 13065
Federal Project Number: IM-0931(201)
CLD/Towns Project Number 05-0244

This page intentionally left blank.

\section*{1}

\section*{TABLE OF CONTENTS}
1.0 INTRODUCTION ..... 1
1.1 Project Description ..... 1
1.2 Purpose and Need ..... 3
1.2.1 Purpose .....  3
1.2.2 Need. .....  3
1.2.3 Safety ..... 7
1.2.4 Goals \& Objectives ..... 8
2.0 METHODS AND ASSUMPTIONS ..... 8
2.1 Documentation ..... 8
2.2 Analysis Period ..... 8
2.3 Study Area ..... 8
3.0 EXISTING CONDITIONS ..... 11
3.1 Demographics. ..... 11
3.1.1 2040 No Build Condition ..... 11
3.1.2 2040 Build Condition ..... 13
3.2 Land Use. ..... 15
3.3 Roadway Network ..... 19
3.4 Alternative Travel Modes. ..... 22
3.5 Interchanges. ..... 22
3.6 Existing Data ..... 24
3.6.1 Introduction ..... 24
3.6.2 Traffic Data Collection ..... 24
3.6.3 Traffic Data Adjustments ..... 30
3.7 Operational Performance ..... 30
3.7.1 Analysis Tools ..... 30
3.7.2 Intersection Operations Analysis. ..... 30
3.7.3 Freeway Operations Analysis ..... 33
3.7.4 Existing Condition Intersection Operations Analysis ..... 34
3.7.5 Existing Condition Intersection Queuing Analysis ..... 35
3.7.6 Existing Condition Freeway Operations Analysis ..... 42
3.8 Safety Conditions ..... 42
4.0 EVALUATION METRICS ..... 48
5.0 THE NO BUILD CONDITION. ..... 48
5.1 Introduction ..... 48
5.2 No Build Roadway Improvements ..... 48
5.3 Development of No Build Volumes ..... 49
5.4 2040 No Build Condition Intersection Operations Analysis ..... 56
5.5 2040 No Build Queuing Analysis ..... 57
5.62040 No Build Condition Freeway Operations Analysis ..... 64
6.0 ALTERNATIVE DESCRIPTION. ..... 66
6.1 Build Alternatives Description ..... 68
6.1.1 Alternative A ..... 68
6.1.2 Alternative B ..... 68
6.1.3 Alternative C ..... 69
6.1.4 Alternative D ..... 70
6.1.5 Alternative F ..... 71
7.0 THE 2040 BUILD CONDITION ..... 72
7.1 Introduction ..... 72
7.2 Development of 2040 Build Condition Volumes ..... 72
7.3 2040 Build Alternative A Intersection Operations Analysis. ..... 82
7.4 2040 Build Alternative A Queuing Analysis ..... 83
7.5 2040 Build Alternative A Freeway Operations Analysis ..... 94
7.6 2040 Build Alternative B Intersection Operations Analysis. ..... 95
7.7 2040 Build Alternative B Queuing Analysis. ..... 96
7.82040 Build Alternative B Freeway Operations Analysis ..... 107
7.92040 Build Alternative C Intersection Operations Analysis ..... 108
7.10 2040 Build Alternative C Queuing Analysis ..... 109
7.112040 Build 2040 Alternative C Freeway Operations Analysis ..... 120
7.122040 Build Alternative D Intersection Operations Analysis ..... 121
7.132040 Build Alternative D Queuing Analysis ..... 122
7.142040 Build Alternative D Freeway Operations Analysis ..... 133
7.152040 Build Alternative F Intersection Operations Analysis ..... 134
7.162040 Build Alternative F Queuing Analysis ..... 135
7.172040 Build 2040 Alternative F Freeway Operations Analysis ..... 147
8.0 POLICY ANALYSIS ..... 149
8.1 Introduction ..... 149
8.2 Policy Requirement 1: Operational and Collision Analysis ..... 149
8.2.1 Introduction ..... 149
8.2.2 Traffic Volume Summary ..... 149
8.2.3 Traffic Operational and Queuing Analysis-Base Conditions ..... 154
8.2.4 Freeway Analysis-Base Conditions. ..... 154
8.2.5 Forecasting Travel Demand for No Build and Build Alternatives ..... 155
8.2.6 Traffic Operational and Queuing Analysis - Future Base Conditions for 2040 (Future Year) ..... 155
8.2.7 Freeway Analysis - Future Base Conditions for 2040 (Future Year) ..... 156
8.2.8 Traffic Operational and Queuing Analysis - 2040 Build Alternatives ..... 156
8.2.9 Freeway Analysis - 2040 Build Alternatives ..... 160
8.2.10 Collision Analysis - Base Conditions ..... 162
8.2.11 Collision Analysis - 2040 Build Alternatives ..... 163
8.2.12 Policy Requirement 1 Conclusion ..... 164
8.2.13 Conceptual Sign Plan167
8.3 Policy Requirement 2: Access Connections and Design ..... 167
8.3.1 Introduction ..... 167
8.3.2 Conceptual Layout ..... 168
8.3.3 Present and Future Interchange Spacing ..... 171
8.3.4 Policy Requirement 2 Conclusion ..... 171
8 10.0 REFERENCES172

\section*{LIST OF FIGURES}
Figure 1-1. Regional map ..... 2
Figure 2-1. IJR Study area intersections ..... 10
Figure 3-1. Land use in the study area. ..... 17
Figure 3-2. Proposed Woodmont Commons Planned Unit Development. ..... 18
Figure 3-3. Functional classification of roadways in the study area ..... 21
Figure 3-4. Alternative travel modes in the study area. ..... 23
Figure 3-5. I-93 Exit 4 and Exit 5 interchanges. ..... 25
Figure 3-6. AM and PM 2015 existing turning movement volumes ..... 28
Figure 3-7. AM and PM 2015 existing lane geometry ..... 29
Figure 3-8. Level of service diagram. ..... 31
Figure 3-9. 2015 AM and PM peak hour LOS by intersection ..... 37
Figure 5-1. Planned improvement at I-93 Exits 4 and 5 ..... 50
Figure 5-2. Planned improvement along NH 102 between Gilcreast Road and Hampton Drive/Garden Lane ..... 51
Figure 5-3. Planned improvement at NH 102 and Londonderry Road/St. Charles Street. ..... 52
Figure 5-4. AM and PM 2040 No Build condition turning movement volumes. ..... 54
Figure 5-5. AM and PM 2040 No Build condition lane geometry ..... 55
Figure 5-6. 2040 No Build AM and PM peak hour LOS by intersection. ..... 59
Figure 6-1. I-93 Exit 4A SDEIS alternatives. ..... 67
Figure 7-1. Alternative A 2040 Build turning movement volumes. ..... 74
Figure 7-2. Alternative B 2040 Build turning movement volumes ..... 75
Figure 7-3. Alternative C 2040 Build turning movement volumes ..... 76
Figure 7-4. Alternative D 2040 Build turning movement volumes. ..... 77
Figure 7-5. Alternative F 2040 Build turning movement volumes ..... 78
Figure 7-6. Alternatives A \& B 2040 Build lane geometry. ..... 79
Figure 7-7. Alternatives C \& D 2040 Build lane geometry. ..... 80
Figure 7-8. Alternative F 2040 Build lane geometry. ..... 81
Figure 7-9. 2040 Build Alternative A AM and PM peak hour LOS by intersection. ..... 85
Figure 7-10. 2040 Build Alternative B AM and PM peak hour LOS by intersection. ..... 98
Figure 7-11. 2040 Build Alternative C AM and PM peak hour LOS by intersection. ..... 111
Figure 7-12. 2040 Build Alternative D AM and PM peak hour LOS by intersection. ..... 124
\(\begin{array}{ll}\text { Figure 7-13. } & 2040 \text { Buil } \\ \text { Figure 8-1. } & \text { Alternativ } \\ \text { Figure 8-2. } & \\ \\ \text { LIST OF OF TABLIV }\end{array}\)
Table 1-1. Summary of 2015 and 2040 No Build Average Annual Weekday Traffic on NH 102 and Roadways Used to Bypass NH 102 ..... 5
Table 3-1. Total 2040 No Build population for study area ..... 12
Table 3-2. Total 2040 No Build households for study area ..... 12
Table 3-3. Total 2040 No Build employment for study area ..... 13
Table 3-4. Alternative A and B 2040 Build condition population ..... 14
Table 3-5. Alternative A and B 2040 Build condition households ..... 14
Table 3-6. Alternative A and B 2040 Build condition employment ..... 15
Table 3-7. Signalized intersection control delay and LOS thresholds - HCM 2000 method. ..... 32
Table 3-8. Unsignalized intersection control delay and LOS thresholds - HCM 2000 method. ..... 33
Table 3-9. HCM freeway facility level of service. ..... 34
Table 3-10. 2015 intersection capacity and queuing analyses ..... 38
Table 3-11. I-93 Exit 4 existing freeway analysis ..... 42
Table 3-12. I-93 Exit 5 existing freeway analysis ..... 42
Table 3-13. NH 28 and NH 102 K factors ..... 43
Table 3-14. Intersection crash summary ..... 43
Table 3-15. Detailed intersection crash analysis ..... 45
Table 3-16. Freeway crash summary ..... 46
Table 3-17. Detailed freeway crash analysis ..... 47
Table 4-1. Evaluation criteria summary ..... 48
Table 5-1. 2040 No Build intersection capacity and queuing analyses. ..... 60
Table 5-2. I-93 Exit 42040 No Build freeway analysis. ..... 64
Table 5-3. I-93 Exit 52040 No build freeway analysis ..... 65
Table 7-1. Comparison between Alternative A and No Build condition intersection capacity and queuing analyses. ..... 86
Table 7-2. I-93 Exit 42040 Build Alternative A freeway analysis compared to the No Build condition. ..... 94
Table 7-3. I-93 Exit 52040 Build Alternative A freeway analysis compared to the No Build condition ..... 94
Table 7-4. I-93 Exit 4A 2040 Build Alternative A freeway analysis ..... 95
Table 7-5. Comparison between Alternative B and No Build condition intersection capacity and queuing analyses. ..... 99
Table 7-6. I-93 Exit 42040 Build Alternative B freeway analysis compared to the No Build condition ..... 107
Table 7-7. I-93 Exit 52040 Build Alternative B freeway analysis compared to the No Build condition. ..... 108
Table 7-8. I-93 Exit 4A 2040 Build Alternative B freeway analysis ..... 108
Table 7-9. Comparison between Alternative C and No Build condition intersection capacity and queuing analyses ..... 112
Table 7-10. I-93 Exit 42040 Build Alternative C freeway analysis compared to the No Build condition ..... 120
Table 7-11. I-93 Exit 52040 Build Alternative C freeway analysis compared to the No Build condition. ..... 121
Table 7-12. I-93 Exit 4A 2040 Build Alternative C freeway analysis ..... 121
Table 7-13. Comparison between Alternative D and No Build condition intersection capacity and queuing analyses ..... 125
Table 7-14. I-93 Exit 42040 Build Alternative D freeway analysis compared to the No Build condition ..... 133
Table 7-15. I-93 Exit 52040 Build Alternative D freeway analysis compared to the No Build condition ..... 134
Table 7-16. I-93 Exit 4A 2040 Build Alternative D freeway analysis ..... 134
Table 7-17. Comparison between Alternative F and No Build condition intersection capacity and queuing analyses. ..... 139
Table 7-18. I-93 Exit 42040 Build Alternative F freeway analysis compared to the No Build condition. ..... 147
Table 7-19. I-93 Exit 52040 Build Alternative F freeway analysis compared to the No Build condition. ..... 148
Table 8-1. NH 102 vehicle volume summary at Location \#1 ..... 150
Table 8-2. NH 28 vehicle volume summary at Location \#2 ..... 151
Table 8-3. I-93 between Exit 4 and Exit 4A volume summary at Location \#3. ..... 152
Table 8-4. I-93 between Exit 5 and Exit 4A volume summary at Location \#4. ..... 152
Table 8-5. I-93 Exit 4A Connector Roadway volume summary at Location \#5. ..... 153

1 Table 8-6. Downtown Derry travel pattern shifted from Alternative A............................... 154
2 Table 8-7. Future intersection operations summary............................................................. 157
3 Table 8-8. Comparison of intersections analysis between Build Alternatives...................... 159
4 Table 8-9. Future freeway operations summary................................................................... 161
5 Table 9-1. Preliminary evaluation criteria assessment summary ......................................... 173
6 Table 9-2. FHWA policy requirement assessment summary............................................... 175 7

This page intentionally left blank.

\section*{1}
2
3
4
5
6

7
8
9
10
11
12
13
14
15
16
17
18

\section*{ABBREVIATIONS AND ACRONYMS}

AASHTO
AAWDT
ADT
ATR
CFR
DEIS
FHWA
HCM
HCS
I
IJR
LOS
MEV
mph
NEPA
NH
NHDOT
PUD
ROW
RPC
SDEIS
SEIS
SNHPC
TAZ
TIA
TIP
TSM
TWSC
U.S.C.

American Association of State Highway Transportation Officials
average annual weekday daily traffic
average daily traffic
automatic traffic recorder
Code of Federal Regulations
Draft Environmental Impact Statement
Federal Highway Administration
Highway Capacity Manual
Highway Capacity Software
Interstate
Interchange Justification Report
level of service
million entering vehicles
miles per hour
National Environmental Policy Act
New Hampshire
New Hampshire Department of Transportation
Planned Unit Development
right-of-way
Rockingham Planning Commission
Supplemental Draft Environmental Impact Statement
I-93 Supplemental EIS
Southern New Hampshire Planning Commission
Traffic Analysis Zone
Traffic Impact Assessment
Transportation Improvement Plan
Transportation Systems Management
two-way, STOP-controlled (intersection)
United States Code

\subsection*{1.0 INTRODUCTION}

The objective of this Interchange Justification Report (IJR) is to provide the necessary background for justifying the addition of a new interchange along Interstate 93 (I-93) between Exit 4 and Exit 5 in the Town of Londonderry, New Hampshire. The information included within this document will help determine if the proposed interchange improvements satisfy the Federal Highway Administration's (FHWA) two policy requirements that were developed to aid compliance with Title 23, United States Code, Highways Section 111 (23 United States Code [U.S.C.] 111), which requires all interstate construction projects to not add any points of access or exit from the project without prior FHWA approval. The FHWA Division office has been delegated approval authority for new Interstate access points involving freeway to crossroad interchanges. FHWA Headquarters approval is not required.
The two specific requirements that must be met to receive approval for the development of new or revised interstate access points are described in FHWA's May 2017 Policy on Access to the Interstate System (FHWA, 2017a). The intent of this policy is to "preserve and enhance the Interstate System to meet the needs of the 21st Century by assuring that it provides the highest level of service in terms of safety and mobility" (FHWA, 2017a).
Section 8, Policy Analysis, of this document describes the FHWA interstate access policy requirements and describes how the proposed changes at the new I-93 service interchange would fulfill them.

\subsection*{1.1 Project Description}

The proposed Project consists of a new, diamond interchange on I-93 in the Town of Londonderry, New Hampshire, between Exit 4 and Exit 5 (Figure 1-1). A connector roadway would be built on a new alignment from the new interchange to the east toward State Route 28 (NH 28) with a connection to State Route 102 (NH 102) at the east side of Derry following upgraded existing roadways, creating new roadways, or a mixture of both improvement types, depending on the alternative. Section 6.0 describes the four proposed alternatives.
Concurrently with this IJR, FHWA, NHDOT and the Towns of Londonderry and Derry are preparing a Supplemental Draft Environmental Impact Statement (SDEIS) for the Project under the National Environmental Policy Act.


Figure 1-1. Regional map

\subsection*{1.2 Purpose and Need}

The purpose and need for the project was identified early in project planning taking into consideration agency and public input. As noted in the SDEIS Appendix A, for purposes of meeting the guidelines of the U.S. Army Corps of Engineers (USACE) Highway Methodology (USACE, 1993), the basic purpose of the project is: to reduce congestion and improve safety along NH 102 from I-93 easterly through downtown Derry, and to promote economic vitality in the Derry-Londonderry area. This project purpose statement was used throughout the planning process for the identification, evaluation, and screening of potential alternatives (CLD, 2000; CLD, 2001).

\subsection*{1.2.1 Purpose}

The purpose of this project includes:
- providing for the safe and efficient movement of people, goods, and services between I93 and the towns served by NH 102, specifically Derry and Londonderry, that are immediately adjacent to I-93 Exit 4;
- providing an alternative route to the Interstate system for traffic using NH 102 to and from the east, thus removing a large volume of through traffic from the heavily congested downtown Derry street network;
- providing improved Interstate access for commercial and industrially-zoned lands near NH 28 in both Derry and Londonderry, thus allowing for the planned and orderly development of such lands to further locally-defined economic development goals and tax base diversification; and
- enhancing and promoting the economic vitality of the downtown Derry area, presently characterized by traffic congestion and decreasing vehicular and pedestrian safety, by separating local, destination-oriented traffic from through traffic destined for the Interstate system.

\subsection*{1.2.2 Need}

The Towns of Derry and Londonderry, working with the FHWA, NHDOT, and CATF \({ }^{1}\), identified several factors demonstrating the need for transportation improvements within the study area, including traffic congestion in downtown Derry, economic vitality, and safety. Each of these aspects of the need for the project is discussed below taking into account changes in traffic data and economic development opportunities since the 2007 DEIS.

\footnotetext{
\({ }^{1}\) The CATF was formed to offer opportunities for stakeholders to provide input into the project planning process. The CATF included local officials, interested citizens, and Federal and State agency staff. A list of the CATF members, and a summary of the highlights for the project meetings, including the scoping meetings, are provided in Chapter 11.
}

\section*{Traffic congestion in downtown Derry}

NH 102, known as Broadway, is the principal east-west roadway through both Derry and Londonderry and serves as the major route for traffic accessing I-93 via Exit 4. The section of NH 102 passing through downtown Derry serves as its "main street." It is currently a two-lane road from I-93 easterly through the downtown area, with several traffic signals and numerous intersections with side streets, on-street parallel parking, and a steady flow of pedestrian traffic. As a result of these complicating and often conflicting functions, downtown Derry experiences considerable congestion, as locally-oriented traffic intermingles with Interstate-bound throughtraffic. Traffic routinely backs up throughout the downtown area in the morning peak periods as the steady flow of westbound traffic from Derry tries to access the Interstate and local highway systems. In the evening peak periods, eastbound traffic on NH 102 backs up through most of the downtown area of Derry, often all the way to the I-93 Exit 4 ramps because the existing two-lane roadway and associated intersections cannot accommodate the existing traffic demands. As such, travelers attempt to find alternative routes to bypass the congestion in the downtown area, placing heavy traffic on local roads, which were not designed to have capacity for it, contributing to safety concerns in neighborhoods, and adding congestion to local roads and intersections.

The 2010 Derry Master Plan notes "The town is also continuing to pursue the I-93 Exit 4A project which is designed to relieve traffic on NH 102 and promote the safe and efficient movement of people, goods and services. Businesses in downtown Derry will benefit from the completion of the I-93 Exit 4A project through the reduction of traffic and related congestion and improved accessibility" (Town of Derry, 2010).

Although operating near capacity, the updated traffic analyses conducted for 2015 existing conditions and the 2040 No Build condition generally show acceptable peak hour Level of Service (LOS) D at the major intersections along NH 102 through downtown Derry, including the NH 102/NH 28 (Crystal Avenue/Birch Street) intersection. Traffic volumes in downtown Derry are projected to increase be approximately 15 percent between 2015 and 2040. Larger traffic increases and higher levels of congestion (LOS E or F) are not projected for Derry because of the availability of alternate routes to disperse traffic. The existing two-lane road is not capable of handling higher volumes without traffic flow breaking down. Therefore, traffic avoids the downtown NH 102 corridor, diverting to other local roads such as Folsom Road and Londonderry Road as alternate access routes to Exit 4. This situation has been observed on Folsom Road where traffic has increased from about 8,700 to 11,768 annual average daily traffic between 1998 and 2015.

The traffic diversions to avoid NH 102 result in congestion issues in additional portions of Derry, such as the intersection of N. High Street and Ash Street Extension, which is projected to operate at LOS F in the AM and PM peak hours in 2040. As traffic diverts around NH 102 to points easterly, it increases traffic on local streets not designed for high through traffic volumes. Table 1-1 provides a summary of existing and 2040 No Build Annual Average Weekday Daily Traffic (AAWDT) along key corridors in the study area.

Table 1-1. Summary of 2015 and 2040 No Build Average Annual Weekday Traffic on NH 102 and Roadways Used to Bypass NH 102
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c} 
Roadway \\
Segment
\end{tabular}} & \begin{tabular}{c} 
Adjusted 2015 \\
AAWDT
\end{tabular} & \begin{tabular}{c} 
2040 No Build \\
AAWDT
\end{tabular} & \begin{tabular}{c} 
2015 to 2040 \\
Increase
\end{tabular} & Percent Increase \\
\hline \begin{tabular}{l} 
NH 102, East of \\
Griffin Street
\end{tabular} & 16,400 & 18,958 & 2,558 & \(13 \%\) \\
\hline \begin{tabular}{l} 
NH 102, West of \\
Abbot. Street
\end{tabular} & 14,350 & 19,217 & 4,867 & \(25 \%\) \\
\hline \begin{tabular}{l} 
NH 102, at \\
Derry/Chester \\
town line
\end{tabular} & 8,200 & 9,671 & 1,471 & \(15 \%\) \\
\hline \begin{tabular}{l} 
Folsom Road, \\
West of NH 28
\end{tabular} & 11,768 & 13,839 & 2,071 & 3,242
\end{tabular}

In addition to congestion in Derry, the Exit 4 interchange is projected to experience congestion issues by 2040, even with the improvements made by the I-93 widening project and intersection spot improvements proposed by Woodmont Commons. Specifically, the following intersections in the I-93 Exit 4 area would operate at LOS E or F in the 2040 No Build:
- NH 102 \& Gilcreast Road in AM and PM Peak Hour
- NH 102 \& I-93 Exit 4 Southbound Off-Ramp in PM Peak Hour
- NH 102 \& I-93 Exit 4 Northbound On and Off-Ramp in AM and PM Peak Hour
- NH 102 \& St. Charles Street/Londonderry Road PM Peak Hour

The I-93 Exit 4 southbound off-ramp to NH 102 is also projected to operate at LOS F in the 2040 PM peak hour.

\section*{Economic vitality}

Economic development issues and opportunities in Derry and Londonderry are discussed in separate sections below. In Derry, constraints related through traffic are a concern to the accessibility of business downtown. In Londonderry, a large tract of undeveloped land on the east side of I-93 currently has poor highway access and is the subject of the Town's Woodmont Commons Planned Unit Development Master Plan to attract regionally significant business opportunities.

Derry
Economic vitality is essential for the Derry downtown area to remain the center of community activity, a clear priority identified in the Derry Master Plan. Results from the community survey conducted as part of the 2010 Master Plan show that residents of Derry support attracting new businesses and industries to Derry. New businesses with the most support were office development, light industrial, an industrial park, and downtown revitalization. One of the recommendations of the Master Plan is to "Continue to research the benefits, challenges and feasibility of Exit 4A." The Master Plan notes the following potential benefits for Derry:
- A direct access route to I-93 for commercial and industrial areas of town
- A bypass for the downtown, which will alleviate some of the current traffic problems and enhance the downtown area
- Create more connections to existing commercial and industrial areas and open them up for more development

The Master Plan acknowledges that the existing heavy traffic on NH 102 influences the quality of the downtown area and the businesses located there. Traffic congestion creates a less pedestrian-friendly downtown and likely results in some drivers seeking alternate shopping opportunities and traffic routes. The Master Plan notes several actions that could be implemented to improve conditions for pedestrians and to promote a business-friendly environment downtown. In order to be implemented, many of the actions recommended in the Derry Master Plan will require that downtown traffic congestion be alleviated. The Master Plan states that "Businesses in downtown Derry will benefit from the completion of the I-93 Exit 4A project through the reduction of traffic and related congestion and improved accessibility." Further economic benefits to both Derry and Londonderry could also be realized by providing access to the existing industrial zoned land adjacent to the east side of I-93 between Exits 4 and 5.

The Exit 4 southbound off-ramp is operating at or near capacity (LOS D) in the AM peak hour and failing (LOS F) in the PM peak hour. The northbound on- and off-ramp is operating at LOS E in the AM peak hour and LOS F in the PM peak hour. This has consequences to the economic well-being of Derry because the Exit 4 Interchange currently provides the only direct access between the Interstate and most of Derry's developed area. Although further improvements to the Exit 4 Interchange were constructed as part of the I-93 widening project, traffic congestion and associated safety issues along NH 102 in downtown Derry will continue, as described later in this IJR.

\section*{Londonderry}

There are large tracts of undeveloped land adjacent to the east side of I-93 between Exits 4 and 5, the economic value of which would be greatly enhanced by a direct connection to I-93. By providing direct access to the Interstate in this area, land value will increase as it will be better suited for larger scale commercial or industrial development. The proximity of the ManchesterBoston Regional Airport to this area also adds to the value and development potential of this land. As noted in the Land Use Scenarios Technical Report (Louis Berger, 2017), a new exit would provide accessibility to existing undeveloped land, thereby enhancing the development
potential. The net effect of these development activities would likely be a number of new, high paying jobs and increased tax revenue for both towns.

Since the 2007 DEIS, additional local planning efforts have further defined the development opportunities near I-93 in Londonderry. In 2013, the Town of Londonderry approved the Woodmont Commons Planned Unit Development Master Plan covering approximately 630 acres bordering the east and west sides of I-93. The Master Plan envisions a mixed-use urban village being developed in several phases over 20 years. Portions of development on the east side of I-93 are under construction, with completion expected in 2020 (Woodmont Commons Phase I). The Master Plan restricts the quantity of development allowed on both the east and west sides of I-93 if Exit 4A is not constructed to limit traffic impacts of development. On the east side of I-93 specifically, coordination conducted during the Exit 4A land use study found that a predominately residential development pattern would occur in a No Build scenario (approx. 330 units). The provision of new interstate access to the east side of I-93 would allow for substantially higher-intensity of development, nearly \(700,00 \mathrm{gsf}\) of commercial and \(420,00 \mathrm{gsf}\) of institutional uses based on the land use study (Woodmont Planning Team, 2011).

\subsection*{1.2.3 Safety}

Although the Exit 4 Interchange has been reconstructed to handle the projected design year traffic flows easterly into Derry as part of the I-93 widening project, the primary design intent is to address the north-south travel demands of the I-93 corridor and not the east-west demands along NH 102 in the study area. The section of NH 102 that runs easterly into downtown Derry from Exit 4 will continue to have an insufficient number of lanes, especially at the intersections, to handle the existing and future peak traffic flows. These peaks are especially high during the heavy evening commuting periods when both through traffic and traffic accessing local businesses are sharing the same roadway. Because the existing road has insufficient lanes to handle the peak traffic volumes, the traffic backs up into the Interchange area, which results in increased safety hazards for the traveling public. Several intersections with high crash rates based on analysis of 2013-2015 crash data are located along NH 102 in the study area, including at Gilcreast Road, Garden Lane/Hampton Drive and the I-93 Exit 4 Northbound Ramps.

Between 2010 and 2014, there were a total of 716 crashes in the DSEIS study area, including 240 crashes along NH 102 between Exit 4A and Tsienneto Road (NHDOT, 2010-2014). Of the total, approximately 24 percent resulted in injury or fatality. If traffic using NH 102 to the east could be moved away from the interchange area more efficiently, traffic congestion at the ramp intersections could be reduced and traffic flow improved, resulting in a more orderly and safer flow of traffic through the intersections, as well as elsewhere along NH 102.

The congestion in downtown Derry results in some vehicles seeking alternative routes, many of which result in additional traffic through residential neighborhoods, representing an additional safety concern. On Broadway itself, the congestion results in increased conflicts between through traffic, turning traffic, parked cars, pedestrians, and bicyclists.

\section*{Purpose Statement}

Provide safety improvements

Reduce traffic congestion in downtown Derry and discourage traffic from diverting from NH 102 onto local streets to avoid downtown Derry Improve economic vitality in the Towns of Derry and Londonderry

Increase Interstate access for commercial and industrial suppliers

\section*{Objectives}

Provide for the safe and efficient movement of people, goods, and services between I-93 and the towns served by NH 102, specifically Derry and Londonderry, that are immediately adjacent to I-93
Provide an alternative route to the Interstate system for traffic using NH 102 to and from the east, thus removing a large volume of through traffic from the heavily congested downtown Derry street network

Enhance and promote the economic vitality of the downtown Derry area, presently characterized by traffic congestion and decreasing vehicular and pedestrian safety, by separating local, destinationoriented traffic from through traffic destined for the Interstate system

Provide improved Interstate access for commercial and industriallyzoned lands near NH 28 in both Derry and Londonderry, thus allowing for the planned and orderly development of such lands to further locally defined economic development goals and tax base diversification

\subsection*{2.0 METHODS AND ASSUMPTIONS}

\subsection*{2.1 Documentation}

As required by New Hampshire Department of Transportation (NHDOT) and FHWA, the following two specific requirements are addressed in this document:
- Policy Requirement 1 - provides operational and collision analysis by evaluating the operation of existing interchanges in the study area for the base year (2015) and future year (2040) using the U.S. Department of Transportation’s Highway Capacity Manual (HCM) analysis and the Southern New Hampshire Planning Commission (SNHPC) to forecast future volumes.
- Policy Requirement 2 - describes access connections and design for all four traffic movements.

\subsection*{2.2 Analysis Period}

Operational analysis includes both AM and PM peak hours for the following years:
- Base Year: 2015
- Future Year: 2040

\subsection*{2.3 Study Area}

This section defines the traffic study area based on FHWA guidance and describes the data collection methods. The Project study area includes a mixture of Interstate and intersection facilities. According to FHWA guidance, when performing an IJR for a new interchange, the
closest existing interchange in each direction of a proposed new interchange must be included. In addition, the first major signalized intersections along the roadway (usually an arterial) serving the closest interchange must be included (FHWA, 2017a). To be conservative, the study includes signalized intersections within 0.5 miles of the interchange. This includes all interchange facilities such as merges, diverges, and weaves and intersections along the arterial. Based on this guidance, the Project study area includes the following:
- I-93 mainline between south of Exit 4 to north of Exit 5
- All merges and diverges at Exit 4 along I-93
- All merges and diverges at Exit 5 along I-93
- All proposed merges and diverges at the new proposed Exit 4A along I-93
- The following NH 102 intersections
o I-93 Southbound off-ramp (signalized) - ramp terminus at interchange
o I-93 Northbound off and on-ramp (signalized) - ramp termini at interchange
o Fordway/ Madden Hill Road (signalized) - approximately 2/3 mile to the east
o Londonderry Road/St. Charles Street (unsignalized) - approximately \(1 / 3\) mile to the east
o Garden Lane/Hampton Drive (signalized) - approximately \(1 / 3\) mile to the west
o Gilcreast Road (signalized) - approximately \(1 / 2\) mile to the west
- The following NH 28 Intersections
o I-93 Southbound off and on-ramp termini (signalized)
o I-93 Northbound off and on-ramp termini (signalized)
o Symmes Drive/Vista Ridge Drive (signalized) - approximately \(1 / 3\) mile to the west
o Liberty Drive (signalized) - approximately \(1 / 3\) mile to the east
Figure 2-1 shows the study area intersections.


Figure 2-1. IJR Study area intersections

\subsection*{3.0 EXISTING CONDITIONS}

The existing conditions describes the existing and future demographic forecasts, existing land use, roadway network, alternative travel modes, interchanges, traffic data sources, operational performance, and safety conditions.

\subsection*{3.1 Demographics}

A total of 84 Transportation Analysis Zones (TAZ) covering 143 square miles were used to represent the SNHPC's subarea travel demand model. The demographic values assigned to each TAZ, including population, households, and employment, are based on the report titled Land Use Scenarios Technical Report, a report prepared as part of the current I-93 Exit 4A SDEIS project. These demographic values directly influence the number of trips produced at the residence locations and number of trips attracted to work locations in the travel demand model. The model then converts these production and attraction values into the number of trips assigned from each model origin TAZ to a model destination TAZ to form an origin-destination trip table.
The process to develop the existing and future demographic values included a review of existing federal, state, and regional, and local data sources as well as interviews with planners at the state, regional, and local levels. Primary sources included the following:
- U.S. Census Bureau
- New Hampshire Office of Strategic Initiatives
- SNHPC
- Neighboring Regional Agency, Rockingham Planning Commission (RPC)
- Derry
- Londonderry
- Neighboring Communities of Auburn, Chester, and Sandown

The future demographic forecasts were developed for the No Build Condition and the Build Conditions. They rely on a review of past trends; projections at the state, regional, and local levels; an active list of planned development; and additional demographic trend information learned through the interviews.

\subsection*{3.1.1 \(\quad 2040\) No Build Condition}

Past trends evaluated demographic changes from 1990 through 2014 and focused on positive and negative patterns by municipality. Population projections have been forecasted in 5-year intervals between 2015 and 2040 by the New Hampshire Office of Energy and Planning and the municipalities; household and employment projections have been forecasted between 2010 and 2040 by SNHPC and RPC. The report synthesized the various data sources and provided future No Build Condition background demographic forecasts.
There are a number of planned developments in Londonderry, including an extensive mixed used development called Woodmont Commons. The Woodmont Commons Planned Unit
Development Master Plan includes land on both the west and east sides of I-93, as shown in Figures 3-1 and 3-2. The Woodmont Commons Phase I plan included as part of the No Build
\begin{tabular}{|c|c|c|c|c|}
\hline Municipality & Existing Population (2015 Projection) & Background Population Growth from the NH Office of Energy Planning/Chester Projections (2015-2040) & Population Growth from Known Development Proposals & Total 2040 No Build Population \\
\hline Derry & 32,948 & 274 & 0 & 33,222 \\
\hline Londonderry & 24,891 & 2,145 & 3,849 & 30,885 \\
\hline Auburn & 5,315 & 733 & 0 & 6,048 \\
\hline Chester & 4,887 & 1,366 & 0 & 6,253 \\
\hline Sandown & 6,255 & 991 & 0 & 7,246 \\
\hline Study Area Total & 74,296 & 5,509 & 3,849 & 83,654 \\
\hline
\end{tabular}

Table 3-2. Total 2040 No Build households for study area
\begin{tabular}{|l|c|c|c|c|}
\hline & \begin{tabular}{c} 
Existing \\
Households \\
(2015 \\
Mrojection)
\end{tabular} & \begin{tabular}{c} 
Background \\
Household Growth \\
(2015-2040)
\end{tabular} & \begin{tabular}{c} 
Household Growth \\
from Known \\
Development \\
Proposals
\end{tabular} & \begin{tabular}{c} 
Total 2040 \\
No Build \\
Households
\end{tabular} \\
\hline Derry & 12,656 & 17 & 0 & 12,673 \\
\hline Londonderry & 8,625 & 725 & 1,345 & 10,698 \\
\hline Auburn & 1,923 & 264 & 0 & 2,187 \\
\hline Chester & 1,621 & 456 & 0 & 2,077 \\
\hline Sandown & 2,193 & 721 & 0 & 2,914 \\
\hline Study Area Total & 27,018 & 2,183 & 1,345 & 30,548 \\
\hline
\end{tabular}
comprises 312,574 gross square feet of commercial, 510 units residential, and 135 hotel rooms. There is also a smaller, commercial development of 30,000 gross square feet and 1,094 gross square foot of industrial development. These developments are projected to create over 4,200 jobs and add over 3,800 in population and 1,345 households to the study area (Louis Berger, 2017).

The total 2040 No Build Condition demographic forecasts were developed by adding the existing values to the forecasted background growth and planned development projections. Tables 3-1, \(3-2\), and 3-3 contain the 2040 No Build Condition population, household, and employment projections for the study area, respectively.

\section*{Table 3-1. Total 2040 No Build population for study area}

11 Source: Louis Berger (2017)

\footnotetext{
Source: Louis Berger (2017)
}

Table 3-3. Total 2040 No Build employment for study area
\begin{tabular}{|l|c|c|c|c|}
\hline & \begin{tabular}{c} 
Existing \\
Employment \\
(2015 \\
Mrojection)
\end{tabular} & \begin{tabular}{c} 
Background \\
Employment Growth \\
from SNHPC/ RPC \\
Projections \\
(2015-2040)
\end{tabular} & \begin{tabular}{c} 
Employment \\
Growth From \\
Known \\
Development \\
Proposals
\end{tabular} & \begin{tabular}{c} 
Total 2040 \\
No Build \\
Employment
\end{tabular} \\
\hline Derry & 8,384 & 1,938 & 0 & 10,322 \\
\hline Londonderry & 13,517 & 4,033 & 4,219 & 21,769 \\
\hline Auburn & 1,846 & 914 & 0 & 2,760 \\
\hline Chester & 368 & 267 & 0 & 635 \\
\hline Sandown & 419 & 117 & 0 & 536 \\
\hline Total & 24,534 & 7,269 & 4,219 & 36,022 \\
\hline
\end{tabular}

Source: Louis Berger (2017)

\subsection*{3.1.2 2040 Build Condition}

Creating a new connection from I-93 to Londonderry and Derry would provide better access to a number of parcels and could influence the type and/or intensity of future development. This development potential is referred to as indirect land use effects. The 2040 Build Condition incorporates indirect land use effects of constructing a new interchange.

In total, 398 new residential units, 200 hotel rooms, 1,015,400 gross square feet commercial, 460,000 gross square feet institutional, and 168 industrial jobs could be added as a result of the indirect land use effects of creating I-93 Exit 4A (Louis Berger, 2017). For Woodmont Commons, the developments on both sides of I-93 (referred to as full build-out) are included containing 9 residential units, 200 hotel rooms, 1,015,400 gross square feet of commercial, and 460,000 gross square feet of institutional.
Each proposed alternative assessed in this study incorporates different levels of demographic growth based on proposed transportation improvements. Each alternative and its demographic components are as follows:
- Alternative A: Woodmont Commons Full Build-out plus growth in Derry, Londonderry, Auburn, Chester, and Sandown
- Alternative B: Similar to Alternative A
- Alternative C: Woodmont Commons Phase I (same as No Build) plus growth in Chester and Sandown
- Alternative D: Similar to Alternative C
- Alternative F: Similar to the No Build Condition

The total 2040 Build Condition demographic forecasts were developed by adding the 2040 No Build values to the forecasted indirect effects of land use. Tables 3-4, 3-5, and 3-6 contain the Alternative A and B 2040 Build Condition population, household, and employment projections for the study area, respectively. Population, households, and employment are not expected to

Table 3-4. Alternative A and B 2040 Build condition population
\begin{tabular}{|l|c|c|c|c|}
\hline & Municipality & \begin{tabular}{c} 
2040 No Build \\
Build \\
Population
\end{tabular} & \begin{tabular}{c} 
Incremental \\
Development \\
Project \\
Population
\end{tabular} & \begin{tabular}{c} 
Total 2040 \\
Build \\
Population
\end{tabular} \\
\hline Derry & 33,222 & 0 & \begin{tabular}{c} 
Percent \\
Difference \\
between No \\
Build and \\
Build
\end{tabular} \\
\hline Londonderry & 30,885 & 25 & 33,222 & \(0.00 \%\) \\
\hline Auburn & 6,048 & 0 & 30,910 & \(0.08 \%\) \\
\hline Chester & 6,253 & 1,117 & 6,048 & \(0.00 \%\) \\
\hline Sandown & 7,246 & 21 & 7,370 & \(16.40 \%\) \\
\hline Total & 83,654 & 1,163 & 7,267 & \(0.29 \%\) \\
\hline
\end{tabular}

Source: Louis Berger (2017)
Table 3-5. Alternative A and B 2040 Build condition households
\begin{tabular}{|l|c|c|c|c|}
\hline & \begin{tabular}{c} 
2040 No \\
Build
\end{tabular} & \begin{tabular}{c} 
2040 Build \\
Incremental \\
Development \\
Project \\
Households
\end{tabular} & \begin{tabular}{c} 
Total 2040 \\
Build \\
Households
\end{tabular} & \begin{tabular}{c} 
Percent \\
Difference \\
between No \\
Build and \\
Build
\end{tabular} \\
\hline Derry & 12,673 & 0 & 12,673 & \(0.00 \%\) \\
\hline Londonderry & 10,698 & 9 & 10,707 & \(0.09 \%\) \\
\hline Auburn & 2,187 & 0 & 2,187 & \(0.00 \%\) \\
\hline Chester & 2,077 & 371 & 2,448 & \(17.86 \%\) \\
\hline Sandown & 2,914 & 9 & 2,923 & \(0.31 \%\) \\
\hline Total & 30,548 & 389 & 30,937 & \(1.27 \%\) \\
\hline
\end{tabular}

Source: Louis Berger (2017)

Table 3-6. Alternative A and B 2040 Build condition employment
\begin{tabular}{|l|c|c|c|c|}
\hline & 2040 & \begin{tabular}{c} 
2040 \\
Build \\
No Build \\
Deveremental \\
Employment
\end{tabular} & \begin{tabular}{c} 
Total 2040 \\
Build \\
Employment
\end{tabular} & \begin{tabular}{c} 
Percent \\
Between No \\
Build and \\
Build
\end{tabular} \\
\hline Derry & 10,322 & 346 & 10,668 & \(3.25 \%\) \\
\hline Londonderry & 21,769 & 4,335 & 26,104 & \(18.81 \%\) \\
\hline Auburn & 2,760 & 0 & 2,760 & \(0.00 \%\) \\
\hline Chester & 635 & 0 & 635 & \(0.00 \%\) \\
\hline Sandown & 536 & 0 & 536 & \(0.00 \%\) \\
\hline Total & 36,022 & 4,681 & 40,703 & \(12.44 \%\) \\
\hline
\end{tabular}

Source: Louis Berger (2017)
Once the 2040 No Build and Build demographic values by municipality were developed, they were allocated to each TAZ representing the municipality. The anticipated population, household, and job growth associated with the known No Build developments was assigned to TAZs based on the percentage of the development land area in each TAZ. Only the TAZ that contained a proposed change in demographic data was updated. Out of the 84 TAZs, 17 TAZs were updated representing the zones in the municipalities where growth would occur based on background growth and planned development, or could occur based on indirect effects of land use. The I-93 Exit 4A SDEIS Land Use Scenarios Technical Report (Louis Berger, 2017) contains the detailed demographic data by TAZ.

\subsection*{3.2 Land Use}

In New Hampshire, land use is regulated at the local level by municipalities through zoning and subdivision regulations. Zoning ordinances regulate land uses by area and the type and form of built improvements allowed within each land use. Subdivision ordinances seek to control the density of development on new parcels of land. Land use can also be influenced by other public policy goals expressed as part of land use, transportation, and infrastructure planning processes.

Current land use and zoning conditions were identified using geographic information systems datasets of land use by tax parcel and zoning district boundaries provided by the Towns of Derry and Londonderry. In addition, the data were supplemented with reference to the towns' zoning ordinances (Town of Derry, 2016; Town of Londonderry, 2016). The land use within the study area was defined as the land area within 500 feet of the proposed alternative alignments (Figure \(3-1\) ). Field visits and windshield surveys were used to verify land use conditions.
Land use policies and plans for the Project area were identified through a review of the following comprehensive and master plans:
- Master Plan of Derry (Town of Derry, 2010)
- Comprehensive Master Plan of Londonderry (Town of Londonderry, 2013)
- Southern New Hampshire Planning Commission’s Moving Southern New Hampshire Forward: 2015-2035 Regional Comprehensive Plan (SNHPC, 2014)

Land use within the study area includes commercial, industrial, single- and multi-family residential, institutional, civic, open space, and recreational (golf course). Figure 3-1 also identifies the proposed Woodmont Commons Planned Unit Development (PUD).
The Woodmont Commons PUD is planned for construction on both the east and west sides of I-93 in Londonderry. Phase I is the only approved plan along the west side of I-93; it includes a Market Basket. Access to these parcels is available from John R. Michels Way and Pillsbury Road. Woodmont Commons East would be located north of Ash Street and directly serviced by a new I-93 Exit 4A under Alternatives A or B (See Section 6.1 for detailed alternative description). Pillsbury Road and Ash Street would provide a direct connection between the east and west sections of Woodmont Commons. Specific uses within the development have not been finalized but would include residential, office, medical, hotel, retail, and civic uses. Figure 3-2 illustrates the proposed Woodmont Commons PUD.


Figure 3-1. Land use in the study area


Figure 3-2. Proposed Woodmont Commons Planned Unit Development

\subsection*{3.3 Roadway Network}

The roadway network in the study area contains a mix of Interstate, principal arterials, collectors, and local roadways.
Interstate 93 is a north-south oriented, full access control roadway part of the Eisenhower Interstate System connecting Massachusetts to Vermont. It has a posted speed limit of 65 miles per hour (mph) through the study area and four travel lanes, two in each direction. The average daily traffic (ADT) in 2015 was approximately 35,000 vehicles in each direction or 71,000 total vehicles per day and is functionally classified by NHDOT as a principal arterial, Interstate (NHDOT, 2016a; 2017a). Two interchanges exist in the study area serving NH 102 and NH 28.
NHDOT is in the process of upgrading I-93 from four to eight lanes between Salem, New Hampshire, at the Massachusetts border and Manchester, New Hampshire, ending at Exit 6 at the I-293 interchange, more than 3 miles north of Exit 5. Exit 5 reconstruction was completed in 2014. Exit 4 reconstruction is currently ongoing with anticipated completion in fall 2020.

Widening the I-93 mainline to six lanes is currently ongoing between Exits 4 and 5 with anticipated completion in fall 2020. Final construction of the fourth lane in each direction (eight lanes total) will be achieved with a separate project in the NHDOT Ten Year Plan with anticipated completion in fall 2020 (NHDOT, 2017b). The No Build and all Build alternatives under study for Exit 4A assume completion of the I-93 widening project.
NH 28 is a north-south oriented roadway with partial access control in the vicinity of the interchange connecting Massachusetts to Manchester, New Hampshire. It has a posted speed limit of 30 mph through the study area and four travel lanes, two in each direction from the I-93 interchange and north. To the south it has two travel lanes, one in each direction. The ADT in 2014 was approximately 16,000 total vehicles per day and is functionally classified by NHDOT as an urban minor arterial (NHDOT, 2016b; 2017a).
NH 102 is a northeast-southwest oriented roadway with partial access control west of I-93 and no access control east of I-93 connecting Nashua to Chester, New Hampshire. It has a posted speed limit of 30 mph through the study area and has four travel lanes, two in each direction from the I-93 interchange and west. To the east it has two travel lanes, one in each direction. The ADT in 2014 was approximately 18,000 total vehicles per day and is functionally classified by NHDOT as an urban principal arterial - other (NHDOT, 2016c; 2017a). The roadway travels through a more urban environment to the east of I-93, entering the outskirts of downtown Derry.
Symmes Drive/Vista Ridge Drive is a north-south oriented local roadway with no access control. It has two travel lanes, one in each direction.
Liberty Drive is a north-south orientated local roadway with no access control. It has two travel lanes, one in each direction.

Gilcreast Drive is a northwest-southeast oriented local roadway with no access control. It has a posted speed limit of 35 mph through the study area and has two travel lanes, one in each direction. It is functionally classified by NHDOT as an urban major collector (NHDOT, 2016c).
Garden Lane/Hampton Drive is a northwest-southeast oriented local roadway with no access control. It has two travel lanes, one in each direction.

Londonderry Road/St. Charles Street is a northwest-southeast oriented local roadway with no access control. It has a posted speed limit of 35 mph along Londonderry Road through the study area and has two travel lanes, one in each direction.

Figure 3-3 shows the functional classification of roadways in the study area.


Figure 3-3. Functional classification of roadways in the study area

\subsection*{3.4 Alternative Travel Modes}

There are three bus routes, two park and ride lots serviced by the buses, and a bicycle trail in the study area. Figure 3-4 shows the alternative travel modes in the study area. The bus operations include Boston Express, Concord Coach Lines, and Cooperative Alliance for Regional Transportation.

Boston Express operates express bus service between Concord New Hampshire and Boston, Massachusetts. There are two bus stops in the study area composed of North Londonderry at Exit 5 off NH 28 and Londonderry at Exit 4 off NH 102. Buses either service one stop, then express to Boston during the AM peak period, but stop at both Londonderry stops on the return trip. A total of nine inbound buses operate during the AM peak period (6:00 a.m. - 9:00 a.m.) from either stop and 12 buses operate in the return direction during the PM peak period (4:00 p.m. 7:00 p.m.) (Boston Express, 2016).
Concord Coach Lines operates express bus service between northern New Hampshire and Boston, Massachusetts. There is one bus stop in the study area composed of North Londonderry at Exit 5 off NH 28. A total of six southbound buses operate over the course of the day and five northbound buses operate during the course of the day (Concord Coach Lines, 2017).
Cooperative Alliance for Regional Transportation is a specialty shuttle service that serves the study area by providing on-call rides and scheduled local shuttle routes to shopping and medical services. The routes can include deviations to accommodate patron requests (CART, n.d.).The two park and rides are located near I-93 at Exit 4 in Londonderry and Exit 5 in North Londonderry. Both are served by buses.
Londonderry Exit 4 Park and Ride is operated by Boston Express and Boston Express is the only bus that services the facility. It contains 452 parking spaces and provides a bus shelter and bicycle rack (NHGov, 2017a).
North Londonderry Park and Ride is operated by Boston Express and is served by Boston Express and Concord Coach Lines. It contains 728 parking spaces and provides a bus shelter and bicycle rack (NHGov, 2017b).
There is also a multiuse trail that traverses the study area called the Londonderry Rail Trail along the former Manchester and Lawrence Railroad. This trail is part of a larger trail initiative called the Granite State Rail Trail (Londonderry Trails, 2016).
New Hampshire does not have a high occupancy vehicle lane in the state.

\subsection*{3.5 Interchanges}

Two existing interchanges in the study area serve Exits 4 and 5 . I-93 at Exit 4 is a combination diamond interchange on the northbound side and partial cloverleaf or Parclo A on the southbound side (FHWA, 2012b). This interchange type provides a higher capacity for NH 102 in the westbound direction by allowing a free-flow move from NH 102 westbound to I-93 southbound. Exit 5 is a compressed diamond interchange, where the spacing between the two intersections at the ramp termini is less than 800 feet (FHWA, 2012b). This interchange was recently upgraded to provide partial access control along NH 28 between Liberty Drive and Symmes Drive. The distance between the two interchanges is approximately 3.6 miles.


Figure 3-4. Alternative travel modes in the study area

Figure 3-5 shows the I-93 Exit 4 and Exit 5 interchanges.

\subsection*{3.6 Existing Data}

\subsection*{3.6.1 Introduction}

The primary tool to forecast the future volumes for the proposed I-93 Exit 4A was the SNHPC's travel demand model. The model's most recent base year, 2015, was developed to only forecast daily traffic volumes, not AM or PM peak periods. Therefore, the traffic data collection effort focused on developing both a 2015 balanced AM and PM peak hour network and a daily volume network. The AM and PM peak hour networks provided the percent adjustments between the peak hour volumes and daily volumes while the daily volume network provided the model's 2015 base year data. SNHPC created a 17 TAZ subarea of the model representing Chester, Derry, and Londonderry, the project study area, and calibrated the subarea to the 2015 daily volume balanced network. Once calibrated, the model was ready to test different 2040 future I93 Exit 4A alternatives and produce the 2040 daily vehicle volumes, based on the land use growth projections. The percent vehicle adjustments between the 2015 AM and PM peak hour volumes and 2015 daily volumes provided the adjustment from the model's forecasted 2040 daily vehicle volume output and forecasted 2040 peak hour volumes. Traffic analysis tools relied on the peak hour volumes to assess the interstate facility and intersection operations.

\subsection*{3.6.2 Traffic Data Collection}

Traffic data collection focused on collecting recent data to develop a balanced 2015 network. Data were collected from five sources: (1) Project team, (2) NHDOT permanent count stations, (3) the SNHPC's NH 102 Corridor Update Study Report, (4) the I-93 Supplemental EIS (SEIS), and (5) NHDOT intersection report. The first two sources provided counts in 2016 covering the I-93 mainline and ramp volumes as well as NH 102 and NH 28 turning movement counts for intersections serving I-93 ramp termini and a few intersections east of the interchange along NH 102.

The project team collected daily and hourly ramp volumes at the following intersections in May 2016:
- I-93 northbound off-ramp to NH 102 (Exit 4)
- I-93 northbound on-ramp from NH 102 (Exit 4)
- I-93 southbound off-ramp to NH 102 (Exit 4)
- I-93 southbound on-ramp from NH 102 westbound (Exit 4)
- I-93 southbound on-ramp from NH 102 eastbound (Exit 4)
- I-93 northbound off-ramp to NH 28 (Exit 5)


Figure 3-5. I-93 Exit 4 and Exit 5 interchanges
- I-93 northbound on-ramp from NH 28 (Exit 5)
- I-93 southbound off-ramp to NH 28 (Exit 5)
- I-93 southbound on-ramp from NH 28 (Exit 5)

The project team collected AM and PM peak period turning movement counts at the follow intersections in May 2016:
- I-93 northbound on and off-ramps at NH 102 (Exit 4)
- I-93 southbound off-ramp at NH 102 (Exit 4)
- I-93 northbound on and off-ramps at NH 28 (Exit 5)
- I-93 southbound on and off-ramps at NH 28 (Exit 5)
- NH 102 at Londonderry Road/St. Charles Street
- NH 102 at Fordway/Madden Hill Road

The project team obtained hourly and daily vehicle volumes at the follow intersections from April 2014, July 2015, or September 2015:
- NH 102 east of Griffin Street (east of Exit 4)
- NH 102 east of Hampton Drive (west of Exit 4)
- NH 28 east of Perkins Road (west of Exit 5)
- NH 28 north of Liberty Drive (east of Exit 5)

NHDOT provided permanent count station hourly volume data from 2015. The following station data were collected:
- I-93 northbound and southbound, between Exits 3 and 4
- I-93 northbound and southbound mainline, between Exits 4 and 5
- I-93 northbound and southbound mainline, between Exits 5 and 6

The Woodmont Commons Phases I and II Traffic Impact Assessment (TIA) provided turning movement counts for two intersections located west of I-93 at Exit 4 (TEC, 2016). These volumes were obtained in 2016 and used to calculate the vehicle percentage for each tuning movement and applying that percentage to the balanced 2015 traffic network at Exit 4 composed of the project team traffic data. The Woodmont Commons TIA provided data on the following intersections to the study area:
- NH 102 at Gilcreast Road
- NH 102 at Garden Lane/Hampton Drive

The I-93 SEIS provided turning movement counts for one intersection located west of I-93 at Exit 5 (NHDOT, 2009). This volume was obtained in 2005 and used to calculate the vehicle percentage for each tuning movement and applying that percentage to the balanced 2015 traffic network at Exit 5 composed of the project team traffic data. The I-93 SEIS provided data on the following intersection to the study area:
- NH 28 at Symmes Drive/Vista Ridge Drive

NHDOT provided a turning movement count for one intersection located east of I-93 at Exit 5. This volume was obtained in 2005 and used to calculate the vehicle percentage for each tuning movement and applying that percentage to a combination of the balanced 2015 traffic network at Exit 5 composed of the project team traffic data and NHDOT automatic traffic recorder (ATR) data representing NH 28 north of Liberty Drive intersection. NHDOT provided data on the following intersection to the study area:
- NH 28 at Liberty Drive

Figure 3-6 shows the existing condition study area turning movement counts covering the AM and PM peak hours.

As part of the field data collected, a detailed inventory of the lane geometry was conducted through field reconnaissance and a study of aerial imagery. Based on this information, the existing lane geometry and traffic control type (signalized or unsignalized) are shown in Figure 3-7.


Figure 3-6. AM and PM 2015 existing turning movement volumes


Figure 3-7. AM and PM 2015 existing lane geometry

\subsection*{3.6.3 Traffic Data Adjustments}

The raw data from the daily counts were adjusted to create a 2015 base year balanced network using the following three processes. First, they were adjusted based on the count season to allow for seasonal traffic fluctuations and represent a more typical October or April time period. Second, the counts were adjusted to correct for the number of axles that triggered the counter to record a vehicle. Large trucks with more than two axles were counted as two or even three separate vehicles because the counter is programmed to record a vehicle every two axles that cross a sensor or tube. Third, the counts were increased or decreased following a growth factor calculated separately for I-93 mainline and all other roadways (including the I-93 ramps). The I-93 mainline applied a 1.1 percent growth per year based on comparing multiple years of data for a counter on I-93, and all other roadways applied a 2.5 percent growth per year rate based on comparing multiple years of data for a counter on NH 28. Counts were increased or decreased by the appropriate rate depending on whether the counts were before 2015 or after 2015 (no adjustment was applied to 2015 counts).

\subsection*{3.7 Operational Performance}

This operational performance explains the concepts and definitions for analyzing the traffic operations, the process used to analyze the study area intersections and freeway facilities along I93 , and the results of the traffic analyses.

\subsection*{3.7.1 Analysis Tools}

The study analyzed the study area intersections using Synchro \({ }^{\text {TM }}\) Traffic Signal Coordination Software Version 10.0 (Build 1, Revision 26). Two analyses were performed for traffic, including an intersection capacity analysis and an intersection queueing analysis. The intersection capacity analysis used the Synchro \({ }^{\text {TM }}\) software tool and various input values as described in the following sections to determine the level of service (LOS) or driver perception of an intersection's operation. The intersection queuing analysis used the Synchro \({ }^{\mathrm{TM}}\) tool to determine different levels of queuing or the length that vehicles may back up at an intersection.
The study analyzed the I-93 freeway facilities using Highway Capacity Software (HCS) 2010 (Version 6.90). Analyses were performed for ramp merge and diverge facilities. The HCS relied on various input values to determine the LOS or driver perception of a freeway segment's operation.

\subsection*{3.7.2 Intersection Operations Analysis}

LOS is the primary measure of traffic operations for both signalized and unsignalized intersections. LOS is a standard performance measure developed by the transportation profession to quantify driver perception for such elements as travel time, number of stops, total amount of stopped delay, and impediments caused by other vehicles. LOS provides a scale that is intended to match motorists' perception of how a transportation facility operates and to provide a scale to compare different facilities. Detailed LOS descriptions are presented in Figure 3-7.

\section*{Signalized Intersection Level of \\ Service}

The LOS for signalized intersections is based on the HCM 2000 method and requires the same inputs to determine an accurate LOS (TRB, 2000). HCM 2010 methods were not followed because the signal timings and phasing were not HCM 2010 compliant, for example, signal timings included pedestrian-only phases. Primary inputs include:
- vehicular volumes
- pedestrian volumes
- traffic signal timings
- roadway geometry
- speed limits
- truck percentages
- peak hour factor (measure of vehicle 15-minute flow rate)
The average vehicle control delay, measured in seconds per vehicle, is calculated using these parameters with the Synchro \({ }^{\text {TM }}\) procedures. This represents the average extra delay in seconds per vehicle caused by the presence of a traffic control device or traffic signal and includes the time required to decelerate, stop, and accelerate. The LOS can be characterized for the entire intersection, each intersection approach, and each lane group. Control delay is used to characterize the LOS for the entire intersection or an approach. The control delay and the volume-to-capacity ratio are used to characterize the LOS for a lane group. Delay quantifies the increase in travel time due to a traffic signal control. It is also a surrogate measure for driver discomfort and fuel


Figure 3-8. Level of service diagram consumption (TRB, 2010). Signalized intersections or approaches that exceed a delay of 55 seconds have LOS E and those that exceed a delay of 80 seconds have LOS F. Table 3-7 shows the average control delay and corresponding LOS for signalized intersections.

Table 3-7. Signalized intersection control delay and LOS thresholds - HCM 2000 method
\begin{tabular}{|c|c|c|}
\hline LOS & \begin{tabular}{c} 
Average Control Delay \\
(seconds/vehicle)
\end{tabular} & \begin{tabular}{c} 
Description
\end{tabular} \\
\hline A & Less than or equal to 10 & \\
\hline B & \(>10-20\) & \multirow{3}{*}{ Stable conditions } \\
\hline C & \(>20-35\) & \\
\hline D & \(>35-55\) & Unstable conditions \\
\hline E & More than 80 & \begin{tabular}{c} 
Above capacity and unstable \\
conditions
\end{tabular} \\
\hline F & \\
\hline
\end{tabular}

Source: TRB (2000)
To determine the LOS of an intersection, the critical input values were entered into the analysis software (Synchro \({ }^{\mathrm{TM}}\) ), and the average vehicle delay (seconds per vehicle) was calculated. Based on the average vehicle delay, the LOS was determined for all movements (left, through, and right), approaches, and the intersection as a whole.

\section*{Unsignalized Intersection Levels of Service}

The LOS for unsignalized intersections (STOP-controlled intersections) is based on the HCM 2000 method to be consistent with the intersections analysis and requires several inputs, including:
- vehicular volumes
- pedestrian volumes
- roadway geometry
- speed limits
- truck percentages
- peak hour factor

The average vehicle control delay, in seconds per vehicle, was calculated using these parameters with the HCM 2000 procedures (TRB, 2010). Average vehicle control delay represents the average delay caused by the presence of a stop sign or roundabout and includes the time required to decelerate, stop, and accelerate.
The LOS for a two-way, STOP-controlled (TWSC) intersection (i.e., unsignalized intersection) is determined for each minor-street movement or shared movement and the major-street left turns. LOS F is assigned to the movement if the volume-to-capacity ratio for the movement exceeds 1.0 or if the movement's control delay exceeds 50 seconds. The criteria used to determine LOS for TWSC intersections are different from the criteria used for signalized intersections primarily because user perceptions differ among transportation facility types. The expectation is that a signalized intersection is designed to carry higher traffic volumes and presents greater delay than an unsignalized intersection. Unsignalized intersections are also
associated with more uncertainty for users because delays are less predictable than at signals, which can reduce users' delay tolerance. LOS is not defined for the TWSC intersection as a whole or for major-street approaches for three primary reasons: (1) major-street through vehicles are assumed to experience zero delay; (2) the disproportionate number of major-street through vehicles at a typical TWSC intersection skews the weighted average of all movements, resulting in a very low overall average delay for all vehicles; and (3) the resulting low delay can mask important LOS deficiencies for minor movements (TRB, 2010).

The capacity of the controlled intersection legs is based primarily on three factors: the conflicting volume, the critical gap time (defined as the number of seconds between vehicles passing the same point along the major street approach), and the follow-up time (defined as the number of seconds between the departure of the first and second vehicle in queue along the minor street approach). The HCM-based capacity analysis procedure assumes that drivers are both consistent and homogeneous and assumes consistency for their critical gap time. Critical gap times are based on many factors, including delay experienced by drivers on the approaches controlled by STOP signs. As delay increases, drivers become less patient and accept shorter gaps, resulting in higher capacities for unsignalized intersections that are operating at LOS D or worse. The unsignalized intersection procedure uses fixed critical gap times. Unless the critical gap times are adjusted, the procedure tends to overestimate the delay at unsignalized intersections that are operating at LOS D or worse. Also, poor operations at an unsignalized intersection encourages some drivers to turn right and make a U-turn on the mainline or accept shorter critical gaps (safety issue) rather than attempt a left turn (TRB, 2010).

Table 3-8 shows the average control delay and corresponding LOS for unsignalized intersections. The worst LOS at one-way, STOP-controlled, and TWSC intersections represents the delay for the minor approach only.

Table 3-8. Unsignalized intersection control delay and LOS thresholds - HCM 2000 method
\begin{tabular}{|c|c|c|}
\hline LOS & \begin{tabular}{c} 
Average Control Delay \\
(seconds/vehicle)
\end{tabular} & \multirow{2}{*}{ Description } \\
\hline A & Less than or equal to 10 & \\
\hline B & \(>10-15\) & \multirow{2}{*}{ Stable conditions } \\
\hline C & \(>15-25\) & \\
\hline D & \(>25-35\) & \\
\hline E & More than 50 & \begin{tabular}{c} 
Above capacity and unstable \\
conditions
\end{tabular} \\
\hline F & & \begin{tabular}{c} 
Unstable conditions
\end{tabular} \\
\hline
\end{tabular}

Source: TRB (2010)

\subsection*{3.7.3 Freeway Operations Analysis}

The LOS for freeway facilities is based on the HCM 2010 method and requires inputs to determine an accurate LOS. Primary inputs include:
- vehicular volumes
- roadway geometry
- speed limits
- truck percentages
- peak hour factor

Freeway facilities are evaluated based on the density of vehicles. The higher the density the slower the vehicles travel and the worse the operations. Based on the vehicle density, the HCM provides LOS equivalents to represent the driver's perception of the facility operation. Table 3-9 shows the density and corresponding LOS for signalized intersections.

\section*{Table 3-9. HCM freeway facility level of service}
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{c} 
Freeway Merge and Diverge \\
Facilities
\end{tabular} & \multirow{2}{*}{} \\
\cline { 2 - 2 } LOS & Density (passenger cars/ mile/ lane) & \multirow{2}{*}{ Description } \\
\hline A & \(0-10\) & \multirow{2}{*}{} \\
\hline B & \(>10-20\) & \multirow{2}{*}{ Passing operation } \\
\hline C & \(>20-28\) & \\
\hline D & \(>28-35\) & \multirow{2}{*}{\begin{tabular}{l} 
Unstable conditions
\end{tabular}} \\
\hline E & Demand Exceeds Capacity & \begin{tabular}{l} 
Above capacity and \\
unstable conditions
\end{tabular} \\
\hline
\end{tabular}

Source: TRB (2010)

\subsection*{3.7.4 Existing Condition Intersection Operations Analysis}

Based on the Synchro \({ }^{\mathrm{TM}}\) signalized intersection analysis results, one signalized intersection at Gilcreast Road (Intersection \#5) operates at unacceptable conditions (LOS E or LOS F) during the AM peak hour. The remaining signalized intersections in the traffic study area operate at acceptable overall conditions (LOS D or better is considered an acceptable operating level) during the peak hours analyzed (weekday AM and PM peak hours).
Based on the Synchro \({ }^{\text {TM }}\) signalized intersection analysis results, one study area signalized intersection (Intersection \#5) has overall approaches that operate at unacceptable conditions (LOS E or LOS F) during one or two evaluated periods. The following are the individual signalized intersection approaches in the traffic study area that operate under unacceptable conditions during peak hours:
- NH 102 at Gilcreast Road (Intersection \#5)
o Eastbound and Westbound NH 102 during the AM peak hour
o Northbound Gilcreast Road during the PM peak hour
o Southbound Gilcreast Road during the AM and PM peak hours
Based on the Synchro \({ }^{\text {TM }}\) unsignalized intersection analysis results, the NH 102 at Saint Charles Street/Londonderry Road unsignalized intersection (Intersection \#9) operates at acceptable
conditions (LOS D or better is considered an acceptable operating level) during the two evaluated periods.
Based on the Synchro \({ }^{\mathrm{TM}}\) unsignalized intersection analysis results, the unsignalized Intersection \#9 has overall approaches that operate at unacceptable conditions (LOS E or LOS F) during one or two evaluated periods. The following are the individual unsignalized intersection approaches in the traffic study area that operate under unacceptable conditions during peak hours:

\section*{- NH 102 at Saint Charles Street/Londonderry Road (Intersection \#9)}
o Northbound Saint Charles Street during the PM peak hour
o Southbound Londonderry Road during the AM and PM peak hours
The overall intersection LOS grades are depicted in Figure 3-9. Table 3-10 contains the results of the LOS capacity analysis and the intersection vehicle delay for the existing condition during the AM and PM peak hours. Appendix A contains the Synchro \({ }^{\text {TM }}\) existing conditions intersection analysis reports.

\subsection*{3.7.5 Existing Condition Intersection Queuing Analysis}

In addition to analyzing the vehicle delay, the vehicle queue lengths were calculated for each approach. The 95th percentile queue length is the worst-case scenario, calculated as the queue that has a 5\% probability of being exceeded. A failing queue length is determined by a queue length exceeding the intersection approach storage capacity. Because the available storage for each intersection approach differs, these values reflect whether the existing storage provides enough space for vehicles waiting to pass through the intersection without blocking another lane or another intersection. The study used Synchro \({ }^{\mathrm{TM}}\) to calculate the 95 th percentile queue lengths for the nine signalized intersections and one unsignalized intersection.
Based on the Synchro \({ }^{\text {TM }}\) signalized intersection analysis results, five signalized intersections listed below experience queuing lengths that exceed the available storage capacity. The remaining signalized intersections in the traffic study area provide sufficient storage for the anticipated demand. The lane group in the approach that is operating under unacceptable conditions is noted in parentheses. Table 3-10 contains the queuing results. Appendix B contains the Synchro \({ }^{\mathrm{TM}}\) existing conditions intersection queuing reports.
- NH 28 at Symmes Drive/Vista Ridge Drive (Intersection \#1)
o Northbound Vista Ridge Drive (right turns) during the AM and the PM peak hours
- NH 102 at Gilcreast Road (Intersection \#5)
o Eastbound NH 102 (left turns) during the AM and PM peak hours
o Eastbound NH 102 (right turns and through movements) during the AM peak hour
o Westbound (right turns and through movements) during the PM peak hour
o Southbound Gilcreast Road (left turns and through movements) during the AM peak hour
- NH 102 at Garden Lane (Intersection \#6)
o Northbound Garden Lane (right turns) during the PM peak hour
- NH 102 at I-93 Southbound off-ramp (Exit 4) (Intersection \#7)
o I-93 Southbound off-ramp (all movements) during the PM peak hour
- NH 102 at Fordway/Madden Hill Road (Intersection \#10)
o Eastbound NH 102 (all movements) during the PM peak hour
o Westbound NH 102 (all movements) during the AM and PM peak hours
Based on the Synchro \({ }^{\text {TM }}\) unsignalized intersection analysis results, the unsignalized intersection (Intersection \#9) listed below experiences queuing lengths that exceed the available storage capacity.
- NH 102 at Saint Charles/Londonderry Road (Intersection \#9)
o Eastbound NH 102 (left turns) during the PM peak hour
The remaining signalized intersections in the traffic study area provide sufficient storage for the anticipated demand. The lane group in the approach that is operating under unacceptable conditions is highlighted in red In Table 3-10, which contains the queuing results. Note that the percentile values are expressed in feet, and a car occupies about 25 linear feet of roadway, including the space between cars.


Figure 3-9. 2015 AM and PM peak hour LOS by intersection

1 Table 3-10. 2015 intersection capacity and queuing analyses
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\(\begin{array}{cc} & \text { Lane } \\ \text { Intersection } & \text { Groups }\end{array}\)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Turning \\
Bay/Link \\
Length \\
(feet)
\end{tabular}} & \multicolumn{4}{|c|}{AM Peak Hour} & \multicolumn{4}{|c|}{PM Peak Hour} \\
\hline & & \begin{tabular}{l}
95\% \\
queue \\
(ft)
\end{tabular} & \begin{tabular}{l}
v/c \\
ratio
\end{tabular} & Average Delay (sec/veh) & LOS & \begin{tabular}{l}
95\% queue \\
(ft)
\end{tabular} & \begin{tabular}{l}
v/c \\
ratio
\end{tabular} & Average Delay (sec/veh) & LOS \\
\hline \#1 NH28 \& Symmes Dr/Vista EB L & 402 & 24 & 0.42 & 46.0 & D & 24 & 0.35 & 46.4 & D \\
\hline Ridge Dr (Signalized) \({ }^{\text {a }}\) ( EB TR & 726 & 145 & 0.47 & 10.3 & B & 142 & 0.54 & 11.2 & B \\
\hline EB Overall & & & & 10.7 & B & & & 11.5 & B \\
\hline WBL & 450 & 18 & 0.30 & 42.1 & D & 35 & 0.35 & 41.4 & D \\
\hline WB Thru & 1,537 & 291 & 0.51 & 10.7 & B & 189 & 0.43 & 9.5 & A \\
\hline WB R & 500 & 16 & 0.03 & 7.7 & A & 7 & 0.01 & 7.0 & A \\
\hline WB Overall & & & & 10.8 & B & & & 10.1 & B \\
\hline NB LT & 1,660 & 40 & 0.21 & 33.4 & C & 30 & 0.18 & 39.1 & D \\
\hline NB R & 10 & \#61 & 0.02 & 32.1 & C & \#26 & 0.00 & 37.3 & D \\
\hline NB Overall & & & & 32.5 & C & & & 38.3 & D \\
\hline SBL & 270 & 33 & 0.28 & 34.0 & C & 34 & 0.22 & 35.4 & D \\
\hline SB LTR & 270 & 48 & 0.02 & 31.9 & C & 55 & 0.03 & 34.1 & C \\
\hline SB Overall & & & & 33.0 & C & & & 34.6 & C \\
\hline Intersection Overall & & & 0.47 & 12.0 & B & & 0.49 & 12.0 & B \\
\hline \#2 NH28 \& I-93 SB On and Off- EB Thru & 1,537 & 221 & 0.73 & 34.1 & C & 270 & 0.59 & 27.7 & C \\
\hline Ramp (Exit 5) (Signalized) \({ }^{\text {a }}\) ( EB R & 350 & 55 & 0.21 & 0.3 & A & 55 & 0.21 & 0.3 & A \\
\hline EB Overall & & & & 22.2 & C & & & 19.5 & B \\
\hline WBL & 592 & 263 & 0.91 & 37.5 & D & 147 & 0.65 & 16.4 & B \\
\hline WB Thru & 592 & 142 & 0.47 & 6.7 & A & 121 & 0.29 & 3.3 & A \\
\hline WB Overall & & & & 15.3 & B & & & 6.1 & A \\
\hline SBL & 502 & 186 & 0.59 & 23.4 & C & 254 & 0.67 & 31.3 & C \\
\hline SB R & 502 & 57 & 0.64 & 25.9 & C & - & 0.21 & 25.3 & C \\
\hline SB Overall & & & & 24.4 & C & & & 29.6 & C \\
\hline Intersection Overall & & & 0.74 & 20.3 & C & & 0.63 & 19.6 & B \\
\hline \#3 NH28 \& I-93 NB On and Off- EB L & 592 & 255 & 0.85 & 19.8 & B & 252 & 0.68 & 16.0 & B \\
\hline Ramp (Exit 5) (Signalized) \({ }^{\text {a }} \quad\) EB Thru & 592 & 79 & 0.45 & 2.4 & A & 148 & 0.54 & 4.1 & A \\
\hline EB Overall & & & & 6.7 & A & & & 6.2 & A \\
\hline WB Thru & 481 & 142 & 0.57 & 25.7 & C & 112 & 0.40 & 26.6 & C \\
\hline WB R & - & - & 0.53 & 1.3 & A & - & 0.38 & 0.7 & A \\
\hline WB Overall & & & & 11.6 & B & & & 12.2 & B \\
\hline NB L & 798 & 302 & 0.86 & 42.6 & D & 253 & 0.71 & 38.1 & D \\
\hline NB R & 798 & - & 0.10 & 21.9 & C & 98 & 0.69 & 37.7 & D \\
\hline NB Overall & & & & 37.0 & D & & & 37.9 & D \\
\hline Intersection Overall & & & 0.78 & 14.1 & B & & 0.65 & 15.1 & B \\
\hline
\end{tabular}

1 Table 3-10. 2015 intersection capacity and queuing analyses (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Intersection} & \multirow[t]{2}{*}{Turning Bay/Link Length (feet)} & \multicolumn{4}{|c|}{AM Peak Hour} & \multicolumn{4}{|c|}{PM Peak Hour} \\
\hline & & \begin{tabular}{l}
95\% \\
queue \\
(ft)
\end{tabular} & v/c ratio & \begin{tabular}{l}
Average \\
Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{l}
95\% \\
queue \\
(ft)
\end{tabular} & v/c ratio & Average Delay (sec/veh) & LOS \\
\hline \#4 NH28 \& Liberty Dr EB L & 225 & 90 & 0.53 & 30.2 & C & 43 & 0.41 & 26.1 & C \\
\hline (Signalized) \({ }^{\text {a }}\) ( EB TR & 841 & 64 & 0.22 & 4.6 & A & 98 & 0.41 & 8.1 & A \\
\hline EB Overall & & & & 9.1 & A & & & 8.9 & A \\
\hline WBL & 250 & 21 & 0.33 & 42.9 & D & 19 & 0.19 & 27.2 & C \\
\hline WB TR & 332 & 145 & 0.45 & 9.0 & A & 85 & 0.27 & 8.3 & A \\
\hline WB Overall & & & & 9.3 & A & & & 8.5 & A \\
\hline NBL & 154 & 50 & 0.25 & 30.7 & C & 48 & 0.16 & 20.0 & B \\
\hline NB Overall & & & & 30.7 & C & & & 20.0 & B \\
\hline SB LT & 100 & 24 & 0.09 & 29.8 & C & 35 & 0.17 & 20.0 & C \\
\hline SB R & 502 & 78 & 0.05 & 29.5 & C & 90 & 0.09 & 19.6 & B \\
\hline SB Overall & & & & 29.6 & C & & & 19.6 & B \\
\hline Intersection Overall & & & 0.45 & 10.4 & B & & 0.38 & 10.3 & B \\
\hline \#5 NH102 \& Gilcreast Rd EB L & 275 & \#394 & 0.79 & 64.1 & E & \#279 & 0.80 & 68.4 & E \\
\hline (Signalized) \(^{\text {a }}\) EB RT & 1,140 & \#1385 & 1.04 & 71.4 & E & 374 & 0.79 & 40.9 & D \\
\hline EB Overall & & & & 70.7 & E & & & 45.1 & D \\
\hline WBL & 250 & 70 & 0.29 & 25.2 & C & 198 & 0.31 & 25.2 & C \\
\hline WB Thru & 666 & 281 & 1.06 & 63.1 & E & \#769 & 1.07 & 62.9 & E \\
\hline WB R & 375 & 85 & 0.06 & 173.6 & F & \#513 & 0.10 & 4.1 & A \\
\hline WB Overall & & & & 70.2 & E & & & 51.8 & D \\
\hline NB LT & 499 & 185 & 0.77 & 55.3 & E & 240 & 0.81 & 64.7 & E \\
\hline NB R & 499 & 226 & 0.13 & 38.1 & D & 158 & 0.08 & 43.4 & D \\
\hline NB Overall & & & & 46.5 & D & & & 56.9 & E \\
\hline SB LT & 303 & \#339 & 0.96 & 73.3 & E & 247 & 0.82 & 68.4 & E \\
\hline SB R & 303 & 220 & 0.11 & 31.9 & C & 194 & 0.11 & 45.3 & D \\
\hline SB Overall & & & & 60.1 & E & & & 58.0 & E \\
\hline Intersection Overall & & & 1.02 & 66.1 & E & & 0.96 & 50.7 & D \\
\hline
\end{tabular}

1 Table 3-10. 2015 intersection capacity and queuing analyses (continued)


1 Table 3-10. 2015 intersection capacity and queuing analyses (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Intersection}} & \multirow[b]{2}{*}{Lane Groups} & \multirow[t]{2}{*}{Turning Bay/Link Length (feet)} & \multicolumn{4}{|c|}{AM Peak Hour} & \multicolumn{4}{|c|}{PM Peak Hour} \\
\hline & & & & \begin{tabular}{l}
\[
95 \%
\] \\
queue \\
(ft)
\end{tabular} & v/c ratio & \begin{tabular}{l}
Average \\
Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{l}
\[
\begin{gathered}
95 \% \\
\text { queue }
\end{gathered}
\] \\
(ft)
\end{tabular} & v/c ratio & \begin{tabular}{l}
Average \\
Delay (sec/veh)
\end{tabular} & LOS \\
\hline \multicolumn{2}{|l|}{\multirow[t]{10}{*}{\[
\begin{aligned}
& \text { \#9 NH } 102 \text { \& St Charles } \\
& \text { St/Londonderry Rd (TWSC) }{ }^{\text {b }}
\end{aligned}
\]}} & EB L & 150 & 72 & 0.14 & 12.3 & B & \#180 & 0.35 & 11.7 & B \\
\hline & & EB TR & 1,434 & - & - & - & - & 545 & - & - & - \\
\hline & & EB Overall & & & & 1.5 & - & & & 2.5 & - \\
\hline & & WB LTR & 463 & 35 & 0.01 & 8.6 & A & 276 & 0.01 & 10.7 & B \\
\hline & & WB Overall & & & & 0.0 & - & & & 0.1 & - \\
\hline & & NB LTR & 412 & 10 & 0.01 & 11.9 & B & 88 & 1.23 & * & F \\
\hline & & NB Overall & & & & 11.9 & B & & & * & F \\
\hline & & SB LT & 780 & 35 & 0.25 & 115.0 & F & 109 & 1.13 & * & F \\
\hline & & SB R & 150 & 100 & 0.51 & 36.1 & E & 114 & 0.40 & 19.9 & C \\
\hline & & SB Overall & & & & 43.0 & E & & & 79.8 & F \\
\hline \multicolumn{2}{|l|}{\multirow[t]{9}{*}{\begin{tabular}{l}
\#10 NH 102 \& Fordway/Madden Hill Rd (Signalized) \({ }^{\text {a }}\) \\
Intersecti
\end{tabular}}} & EB TR & 455 & 277 & 0.72 & 15.5 & B & \#1315 & 0.99 & 41.5 & D \\
\hline & & EB Overall & & & & 15.5 & B & & & 41.5 & D \\
\hline & & WB LT & 165 & \#413 & 0.85 & 22.3 & C & \#693 & 0.79 & 18.5 & B \\
\hline & & WB Overall & & & & 22.3 & C & & & 18.5 & B \\
\hline & & NB LR & 375 & 248 & 0.94 & 47.1 & D & 196 & 0.82 & 33.8 & C \\
\hline & & NB Overall & & & & 47.1 & D & & & 33.8 & C \\
\hline & & SB LTR & 120 & 46 & 0.10 & 13.8 & B & 63 & 0.17 & 16.5 & B \\
\hline & & SB Overall & & & & 13.8 & B & & & 16.5 & B \\
\hline & & ion Overall & & & 0.89 & 25.7 & C & & 0.93 & 33.0 & C \\
\hline
\end{tabular}

Notes:
\# 95th percentile volume exceeds capacity, queue may be longer.
\(\mathrm{EB}=\) Eastbound, \(\mathrm{WB}=\) Westbound, \(\mathrm{NB}=\) Northbound, \(\mathrm{SB}=\) Southbound
LOS \(=\) Level of Service
LTR \(=\) left / through / right lanes
TWSC = Two-way STOP-Controlled unsignalized intersection (TWSC intersections do not have an overall LOS)
V/C = Volume-to-Capacity ratio
Delay is Measured in Seconds Per Vehicle.
Red cells denote intersections or approaches operating at unacceptable conditions or denote approaches and lane groups whose queuing length exceeds capacity
* Calculated delay exceeds 300 seconds
\({ }^{\text {a }}\) Highway Capacity Manual 2000 results (Signalized intersections)
\({ }^{\text {b }}\) Highway Capacity Manual 2010 results (Unsignalized intersection)

\subsection*{3.7.6 Existing Condition Freeway Operations Analysis}

Based on the analysis performed using HCS, all the freeway facilities operate below capacity, operating with a LOS D or better condition during the AM and PM peak hours. In addition, the demand to capacity ratio did not exceed 0.80 where 1.00 equates to the facility operating at capacity. Table 3-11 contains the Exit 4 existing condition freeway analysis and Table 3-12 contains the Exit 5 existing freeway analysis. Appendix C contains the existing conditions HCS freeway operation reports.

Table 3-11. l-93 Exit 4 existing freeway analysis
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Freeway Analysis} & \multirow[b]{2}{*}{Facility Type} & \multirow[b]{2}{*}{Time Period} & \multicolumn{2}{|l|}{Demand to Capacity Ratio} & \multirow[b]{2}{*}{Density (pc/mi/ln)} & \multirow[b]{2}{*}{LOS} \\
\hline & & & Freeway & Ramp & & \\
\hline \multirow[b]{2}{*}{I-93 Northbound to NH 102} & \multirow[b]{2}{*}{Diverge} & AM & 0.44 & 0.29 & 15.2 & B \\
\hline & & PM & 0.76 & 0.68 & 28.5 & D \\
\hline \multirow{2}{*}{NH 102 to I-93 Northbound} & \multirow[b]{2}{*}{Merge} & AM & 0.60 & 0.57 & 18.7 & B \\
\hline & & PM & 0.69 & 0.44 & 22.1 & C \\
\hline \multirow{2}{*}{I-93 Southbound to NH 102} & \multirow[b]{2}{*}{Diverge} & AM & 0.68 & 0.43 & 25.7 & C \\
\hline & & PM & 0.64 & 0.54 & 24.1 & C \\
\hline \multirow[t]{2}{*}{NH 102 Westbound to I-93 Southbound} & \multirow[b]{2}{*}{Merge} & AM & 0.64 & 0.34 & 19.8 & B \\
\hline & & PM & 0.49 & 0.14 & 14.4 & B \\
\hline \multirow[t]{2}{*}{NH 102 Eastbound to I-93 Southbound} & \multirow[b]{2}{*}{Merge} & AM & 0.80 & 0.42 & 26.1 & C \\
\hline & & PM & 0.56 & 0.19 & 17.5 & B \\
\hline
\end{tabular}

Notes: LOS = Level of Service; Density = Passenger cars per mile per lane (pc/mi/ln)
Table 3-12. I-93 Exit 5 existing freeway analysis
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Freeway Analysis} & \multirow[t]{2}{*}{Facility Type} & \multirow[t]{2}{*}{Time Period} & \multicolumn{2}{|l|}{Demand to Capacity Ratio} & \multirow[t]{2}{*}{Density (pc/mi/ln)} & \multirow[t]{2}{*}{LOS} \\
\hline & & & Freeway & Ramp & & \\
\hline \multirow[b]{2}{*}{I-93 Northbound to NH 28} & \multirow[b]{2}{*}{Diverge} & AM & 0.60 & 0.29 & 24.6 & C \\
\hline & & PM & 0.67 & 0.36 & 27.6 & C \\
\hline \multirow[b]{2}{*}{NH 28 to I-93 Northbound} & \multirow[b]{2}{*}{Merge} & AM & 0.76 & 0.58 & 28.6 & D \\
\hline & & PM & 0.75 & 0.42 & 28.5 & D \\
\hline \multirow[b]{2}{*}{I-93 Southbound to NH 28} & \multirow[b]{2}{*}{Diverge} & AM & 0.74 & 0.53 & 29.9 & D \\
\hline & & PM & 0.75 & 0.52 & 30.7 & D \\
\hline \multirow[t]{2}{*}{NH 28 to I-93 Southbound} & \multirow[b]{2}{*}{Merge} & AM & 0.70 & 0.31 & 25.8 & C \\
\hline & & PM & 0.66 & 0.25 & 24.4 & C \\
\hline
\end{tabular}

Notes: LOS = Level of Service; Density = Passenger cars per mile per lane (pc/mi/ln)

\subsection*{3.8 Safety Conditions}

Crash ratings are used in transportation analyses to help determine where additional attention or examination of safety should be undertaken. Crash ratings are evaluated based on recorded crash
information collected by jurisdiction, in this case 3 years of data from NHDOT (2013-2015), and calculated using the crash information and daily volume of vehicles that travel through the intersection. Crash and injury ratings are calculated based on the number of crashes or injuries that would occur per million entering vehicles (MEV) using the following formula:
\[
\text { Rate }=\frac{C * 1,000,000}{n * 365 * V}
\]

In this formula, C is the total number of intersection-related crashes or injuries in the study period, \(n\) is the number of years of data (i.e., study period), and \(V\) is the traffic volumes entering the intersection daily. NHDOT provided the crash information over a 3-year period. Daily traffic volumes were calculated by applying a K factor to the 2015 balanced study area intersection traffic counts (the K factor is defined as the percent of the 24-hour daily vehicle volume that represents the AM or PM peak hour). ATR data covering NH 28 and NH 102 were used to calculate the K factor. Table 3-13 contains the AM and PM K factors for NH 28 and NH 102.

\section*{Table 3-13. NH 28 and NH 102 K factors}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \begin{tabular}{c} 
Average \\
ATR Location
\end{tabular} & \begin{tabular}{c} 
Average \\
Daily \\
Vehicle \\
Volume
\end{tabular} & \begin{tabular}{c} 
Average \\
Hour \\
Volume
\end{tabular} & \begin{tabular}{c} 
PM Peak \\
Hour \\
Volume
\end{tabular} & \begin{tabular}{c} 
AM \\
K Factor
\end{tabular} \\
\hline KH Factor \\
\hline NH 28 North of Liberty Drive & 16,852 & 1,437 & 1,232 & 0.085 & 0.073 \\
\hline NH 102, East of Hampton Drive & 36,771 & 2,531 & 2,896 & 0.069 & 0.079 \\
\hline
\end{tabular}

Table 3-14 presents crash ratings for intersections in the study area using NHDOT crash data (NHDOT 2013-2015). The intersections with the highest crash rating are along NH 102 at the I93 NB off-ramp, Garden Lane/Hampton Drive, and Gilcreast Road. These locations had crash rates greater than 1.00 crashes per MEV. No intersections had injury rates greater than 1.00

Table 3-14. Intersection crash summary
\begin{tabular}{|c|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{\(\begin{array}{c}\text { Intersection Name }\end{array}\)} & \(\begin{array}{c}\text { Number } \\
\text { of } \\
\text { Crashes }\end{array}\) & \(\begin{array}{c}\text { Number of } \\
\text { Crashes } \\
\text { with } \\
\text { Injuries }\end{array}\) & \(\begin{array}{c}\text { Crash } \\
\text { Rate }\end{array}\) & \(\begin{array}{c}\text { Injury } \\
\text { Rate }\end{array}\) \\
\hline Crashes per million \\
entering vehicles
\end{tabular}\(]\)

Locations with crash rates over 1.0 are highlighted in orange.

Intersections that have a crash rating of greater than 1.0 may warrant further examination to determine if one or more particular causes can be gleaned from the detailed intersection crash data, and if mitigation is advisable, what mitigation measures would help to improve the safety of the intersection. Of the intersections for which sufficient data are available for analysis (a minimum of 3 years of data), three of the intersections have a crash rating of greater than 1.0.
All study area intersections are shown in more detail in Table 3-15, which helps to examine whether there is a high percentage of a particular type of crash. True reasons for a high crash rating cannot solely be determined with crash data because each situation has unique circumstances that are not reflected in the crash study. However, general trends can be determined or certain causes can be eliminated by examining the available crash-specific information. Collisions can be caused by the following roadway factors (FHWA, 2011):
- Access control: too many driveways causing potential conflict points
- Speed: drivers speeding through a congested corridor
- Roadway cross section: lane and shoulder widths do not match facility type
- Traffic volumes: high volume of traffic increasing exposure to more vehicles
- Pavement condition: ruts, potholes, and bumps causing drivers to swerve to avoid obstacles
A number of human and vehicle factors can also lead to crashes.
The data indicate that most crashes between motor vehicles involve rear-end crashes. Rear-end collisions are often the result of two vehicles traveling in the same direction in close proximity where the leading vehicle stops to avoid hitting a vehicle entering the same lane, runs a RED light, or stops or slows down to avoid roadway obstruction or a pavement condition issue. If the trailing vehicle is driving in close proximity not enough space may be available to avoid the collision.

Based on the location of the crashes along NH 102 and the crash types, most of the crashes seem to indicate that access control and pavement condition were not factors because the crashes were spaced out and not all clumped together near a specific driveway junction or other spot. The roadway is designed with a standard cross section with 12 -foot lanes, a shoulder, and the intersections are located along relatively straight sections of roadway. Therefore, the cause of the crashes could be a result of speeding through an area with high traffic volume or potentially distracted drivers not paying attention. Crash data that may provide clues about crash trends are highlighted in orange.

Table 3-15. Detailed intersection crash analysis
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Intersection Name & Crash Rate crashes/ MEV &  & \begin{tabular}{l}
\begin{tabular}{l}
0 \\
\hline
\end{tabular} \\
Othe
\end{tabular} & \[
\begin{aligned}
& \text { Ø } \\
& \text { ס } \\
& \text { © }
\end{aligned}
\]
\[
\mathrm{r} \mathrm{Vel}
\] &  &  &  &  &  &  & \(\stackrel{\text { ¢® }}{1}\) \\
\hline 1 & NH 28 \& Symmes Drive/Vista Ridge Drive & 0.12 & 1 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 3 \\
\hline 2 & NH 28 and I-93 SB ramps & 0.65 & 4 & 1 & 0 & 0 & 14 & 0 & 3 & 0 & 0 & 22 \\
\hline 3 & NH 28 \& I-93 NB Ramps & 0.16 & 1 & 0 & 0 & 0 & 3 & 1 & 1 & 0 & 0 & 6 \\
\hline 4 & NH 28 and Liberty Drive & 0.52 & 4 & 0 & 1 & 1 & 2 & 0 & 1 & 0 & 0 & 9 \\
\hline 5 & NH 102 \& Gilcreast Road & 1.29 & 18 & 6 & 2 & 5 & 26 & 0 & 2 & 0 & 0 & 59 \\
\hline 6 & NH 102 \& Garden Lane/Hampton Drive & 1.60 & 15 & 5 & 3 & 8 & 37 & 0 & 3 & 1 & 0 & 72 \\
\hline 7 & NH 102 \& I-93 SB off-ramp & 0.52 & 12 & 0 & 0 & 1 & 10 & 0 & 0 & 0 & 0 & 23 \\
\hline 8 & NH 102 \& I-93 NB Ramps & 1.78 & 36 & 1 & 0 & 1 & 34 & 1 & 2 & 0 & 6 & 81 \\
\hline 9 & NH 102 \& Londonderry Road/St. Charles Street & 0.43 & 2 & 2 & 0 & 1 & 7 & 0 & 1 & 0 & 0 & 13 \\
\hline 10 & NH 102 \& Madden Hill Road/Fordway & 0.28 & 0 & 0 & 0 & 0 & 7 & 0 & 0 & 0 & 0 & 7 \\
\hline
\end{tabular}

Sources: NHDOT crash data from 2013-2015, received August 30, 2017
Notes: MEV = Million entering vehicles
Crash data that may provide clues about crash trends are highlighted in orange

The freeway crash analysis follows a similar method as the intersection crash analysis to determine the freeway crash rate. A crash rate was calculated for each freeway facility (diverge and merge) and for the I-93 freeway mainline between Exits 4 and 5 by mile. In 2015, Massachusetts calculated an average crash rate for freeways in an urban and rural area of 0.61 and 0.40 , respectively (MassDOT, 2018). Following the more conservative rural measure, all freeway facilities and the two mainline I-93 segments between Exits 4 and 5 had crash rates below 0.40. All locations are shown in Table 3-16.

Table 3-16. Freeway crash summary
\begin{tabular}{|l|c|c|c|c|}
\hline & & Number of \\
Intersection Name & \begin{tabular}{c} 
Crash \\
Rate
\end{tabular} & \begin{tabular}{c} 
Injury \\
Rate
\end{tabular} \\
\cline { 3 - 5 } \begin{tabular}{l} 
Crashes \\
with \\
of \\
Injuries
\end{tabular} & \begin{tabular}{c} 
Crashes per million \\
entering vehicles
\end{tabular} \\
\hline I-93 NB at Exit 4 Diverge & 8 & 0 & 0.20 & 0.00 \\
\hline I-93 NB at Exit 4 Merge & 8 & 0 & 0.18 & 0.00 \\
\hline I-93 SB at Exit 4 Diverge & 7 & 3 & 0.14 & 0.06 \\
\hline I-93 SB at Exit 4 First Merge & 10 & 3 & 0.24 & 0.07 \\
\hline I-93 SB at Exit 4 Second Merge & 10 & 3 & 0.20 & 0.06 \\
\hline I-93 NB at Exit 5 Diverge & 6 & 2 & 0.13 & 0.04 \\
\hline I-93 NB at Exit 5 Merge & 7 & 2 & 0.13 & 0.04 \\
\hline I-93 SB at Exit 5 Diverge & 5 & 1 & 0.09 & 0.02 \\
\hline I-93 SB at Exit 5 Merge & 5 & 0 & 0.10 & 0.00 \\
\hline I-93 NB between Exit 4 and Exit 5 (2.5 miles) & 44 & 15 & 0.39 & 0.13 \\
\hline I-93 SB between Exit 4 and Exit 5 (2.0 miles) & 28 & 8 & 0.29 & 0.08 \\
\hline
\end{tabular}

The detailed data identify a high number of crashes with another vehicle and a majority of crashes in the northbound direction occurring during the evening commute period. Most of the crashes occurred on dry pavement on clear days and were scattered along the roadway sections and not clumped in one particular area. Similar to the findings of the intersection analysis, roadway design does not seem to be an issue, rather driver speeding or distracted drivers may be the main reason for the crashes. Another possibility is that heavy rush hour traffic constrained to two lanes could create crashes from aggressive drivers trying to pass slower-moving vehicles by frequently switching lanes. Crash data that may provide clues about crash trends have been highlighted in orange. Table 3-17 provides specific crash types by interstate facility.

1 Table 3-17. Detailed freeway crash analysis
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Intersection Name & \begin{tabular}{l}
Crash Rate \\
crashes/ MEV
\end{tabular} &  & \begin{tabular}{l}
\begin{tabular}{l} 
O \\
\(\stackrel{5}{4}\) \\
\hline 1
\end{tabular} \\
Othe
\end{tabular} & 
\[
\mathrm{r} \mathrm{Ve}
\] &  &  & Fixed Object in Road &  &  & \[
\begin{aligned}
& \text { ㅎ } \\
& \frac{1}{0}
\end{aligned}
\] & - \\
\hline I-93 NB at Exit 4 Diverge & 0.20 & 0 & 0 & 0 & 0 & 5 & 0 & 2 & 0 & 1 & 8 \\
\hline I-93 NB at Exit 4 Merge & 0.18 & 0 & 0 & 0 & 0 & 6 & 0 & 2 & 0 & 0 & 8 \\
\hline I-93 SB at Exit 4 Diverge & 0.14 & 0 & 0 & 1 & 0 & 3 & 0 & 2 & 0 & 1 & 7 \\
\hline I-93 SB at Exit 4 First Merge & 0.24 & 1 & 0 & 0 & 0 & 9 & 0 & 0 & 0 & 0 & 10 \\
\hline I-93 SB at Exit 4 Second Merge & 0.20 & 0 & 0 & 0 & 0 & 5 & 0 & 4 & 0 & 1 & 10 \\
\hline I-93 NB at Exit 5 Diverge & 0.13 & 0 & 0 & 0 & 0 & 5 & 0 & 1 & 0 & 0 & 6 \\
\hline I-93 NB at Exit 5 Merge & 0.13 & 0 & 0 & 0 & 0 & 6 & 0 & 1 & 0 & 0 & 7 \\
\hline I-93 SB at Exit 5 Diverge & 0.09 & 0 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 1 & 5 \\
\hline I-93 SB at Exit 5 Merge & 0.10 & 0 & 0 & 0 & 0 & 3 & 0 & 1 & 0 & 1 & 5 \\
\hline I-93 NB between Exit 4 and Exit 5 (2.5 miles) & 0.39 & 1 & 0 & 0 & 0 & 23 & 0 & 13 & 0 & 7 & 44 \\
\hline I-93 SB between Exit 4 and Exit 5 (2.0 miles) & 0.29 & 0 & 0 & 0 & 0 & 14 & 0 & 8 & 0 & 6 & 28 \\
\hline
\end{tabular}

Sources: NHDOT crash data from 2013-2015, received August 30, 2017
Notes: MEV = Million entering vehicles
Crash data that may provide clues about crash trends are highlighted in orange

\subsection*{4.0 EVALUATION METRICS}

The study developed evaluation criteria to provide a comparison between the different alternatives to help assess the pros and cons of each and support the need to construct a new I-93 Exit 4A interchange. Evaluation criteria include traffic and accessibility. The study also evaluates each policy requirement's pros and cons following the detailed assessment section. Traffic focuses on an operational assessment of the study area facilities (12 intersections and 13 freeway facilities). Accessibility reviews changes in the connectivity of the roadway network to improve or prohibit connections between I-93 and the Londonderry/Derry study area. Table 4-1 summarizes the evaluation criteria. Section 7.0 contains the evaluation criteria and policy requirement summary.

\section*{Table 4-1. Evaluation criteria summary}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Criteria } & \multicolumn{1}{c|}{ Definition } \\
\hline Traffic & The intersection and freeway facility LOS \\
\hline & \begin{tabular}{l} 
Change in the roadway system to provide connections in the \\
Londonderry/Derry study area
\end{tabular} \\
\hline Accessibility &
\end{tabular}

\subsection*{5.0 THE NO BUILD CONDITION}

\subsection*{5.1 Introduction}

The No Build condition represents the future conditions in the project design year of 2040 if all planned roadway improvements are implemented, Woodmont Commons is partially built out, and other background growth would follow the demographic projections contained in Tables 3-1, 3-2, and 3-3. I-93 Exit 4A would not occur, and downtown Derry would continue to experience traffic issues. This section summarizes the planned roadway improvements, development of the future traffic volumes, traffic operations, and queuing for the No Build Condition.

\subsection*{5.2 No Build Roadway Improvements}

The No Build condition planned roadway improvements include six upgrades along I-93 and NH 102. Improvements 1 through 3 are currently under construction. Improvements 4 through 6 are options presented as part of the Woodmont Commons PUD. The six improvements are as follows:
1. Widening of the I-93 mainline from two to four lanes in each direction
2. Construction of a new NH 102 bridge over I-93 at Exit 4
3. Upgrade of NH 102 and I-93 ramp termini intersections at Exit 4 (Intersections \#7 and \#8) to include additional turning lanes and align with the revised Exit 4 ramp termini
4. Widening of NH 102 from two through lanes to three through lanes in each direction between Hampton Drive/Garden Lane (Intersection \#6) and Gilcreast Road (Intersection \#5)
5. Additional turning lanes added at NH 102 intersections at Gilcreast Road (Intersection \#5) and Hampton Drive/Garden Lane (Intersection \#6)
6. Upgrade of NH 102 and Londonderry Road/St. Charles Street (Intersection \#9) from unsignalized to a signalized intersections and add additional turning lanes.

Figure 5-1 illustrates improvements 1 through 3, Figure 5-2 illustrates improvements 4 and 5, and Figure 5-3 illustrates improvement 6.

\subsection*{5.3 Development of No Build Volumes}

The future No Build condition volumes for the intersections and freeway facilities serving Exits 4 and 5, as well as the two intersections east of Exit 4, NH 102 at Saint Charles/Londonderry Road \& NH 102 at Fordway/Madden Hill Road (Intersections \#9 and \#10), relied on a custom subarea travel demand model built by the SNHPC. The model values represent 24 -hour vehicle volumes. The AM and PM peak hour volumes were calculated by applying AM and PM peak hour percentages to the 2040 No Build 24-hour model volume results. These percentages were computed by comparing the existing condition peak hour volumes to the 2015 base year 24-hour travel demand model volumes.


Figure 5-1. Planned improvement at I-93 Exits 4 and 5


Source: TEC, 2016
Figure 5-2. Planned improvement along NH 102 between Gilcreast Road and Hampton Drive/Garden Lane


2 Source: TEC, 2016
Figure 5-3. Planned improvement at NH 102 and Londonderry Road/St. Charles Street

Following the same procedure as the existing conditions, the Woodmont Commons Phases I and II TIA was used to provide turning movement counts for the two intersections located west of the I-93 at Exit 4: NH 102 at Gilcreast Road \& NH 102 at Garden Lane (Intersections \#5 and \#6). The volumes in the TIA were forecasted for a partial build-out of the development with roadway mitigation in place by 2017 and were used to calculate the vehicle percentage for each tuning movement. These turning movement percentages were applied to the balanced 2040 No Build condition traffic network at Exit 4 determined by the SNHPC travel demand model.
Following the same procedure as the existing conditions, the I-93 SEIS was used to provide turning movement counts for NH 28 at Symmes Drive/Vista Ridge Drive (Intersection \#1) located west of I-93 at Exit 5. The No Build condition volume was calculated by applying the vehicle percentage for each tuning movement based on the I-93 SEIS 2030 forecasted vehicle volumes and applying that percentage to the balanced 2040 No Build condition traffic network at Exit 5 determined by the SNHPC travel demand model.
Following the same procedure as the existing conditions, NHDOT provided a turning movement count for NH 28 and Liberty Drive (Intersection \#4) located east of I-93 at Exit 5. This volume was obtained in 2005 and used to calculate the vehicle percentage for each tuning movement and applying that percentage to the balanced 2040 No Build condition traffic network at Exit 5 determined by the SNHPC travel demand model.
Figure 5-4 shows the 2040 No Build condition tuning movement volumes. Figure 5-5 shows the 2040 No Build condition lane geometry. The changes in the lane geometry are based on the proposed mitigation as part of the Woodmont Commons development and affect Intersections \#5, \#6, \#7, and \#8. This is the Phase I Woodmont Commons build-out scenario and includes 312,574 gross square feet of commercial, 510 units residential, and 135 hotel rooms.


Figure 5-4. AM and PM 2040 No Build condition turning movement volumes


Figure 5-5. AM and PM 2040 No Build condition lane geometry

\subsection*{5.4 2040 No Build Condition Intersection Operations Analysis}

Based on the Synchro \({ }^{\mathrm{TM}}\) signalized intersection analysis results, five signalized intersections (Intersections \#2, \#5, \#7, \#8, and \#9) would operate at unacceptable conditions (LOS E or LOS F) during the AM or PM peak hours. The remaining signalized intersections in the traffic study area would operate at acceptable overall conditions (LOS D or better is considered an operating level) during the peak hours analyzed (weekday AM and PM peak hours).
Based on the Synchro \({ }^{\mathrm{TM}}\) signalized intersection analysis results, all the study area signalized intersections, with the exception of Intersection \#4, have overall approaches that would operate at unacceptable conditions (LOS E or LOS F) during one or two evaluated periods. The following individual signalized intersection approaches in the traffic study area would operate under unacceptable conditions during peak hours:
- NH 28 at Symmes Drive/Vista Ridge Drive (Intersection \#1)
o Southbound Symmes Drive during the AM peak hour
- NH 28 at I-93 Southbound on and off-ramp (Exit 5) (Intersection \#2)
o I-93 Southbound off-ramp during the AM peak hour
- NH 28 at I-93 Northbound on and off-ramp (Exit 5) (Intersection \#3)
o I-93 Northbound off-ramp during the AM and PM peak hours
- NH 102 at Gilcreast Road (Intersection \#5)
o Eastbound NH 102 during the AM and PM peak hours
o Westbound NH 102 during the PM peak hour
o Northbound Gilcreast Road during the AM and PM peak hours
o Southbound NH 102 during the AM and PM peak hours
- NH 102 at Hampton Drive/Garden Lane (Intersection \#6)
o Northbound Hampton Drive during the PM peak hour
o Southbound Garden Lane during the AM and PM peak hours
- NH 102 at I-93 Southbound off-ramp (Exit 4) (Intersection \#7)
o Eastbound and Westbound NH 102 during the PM peak hour
o I-93 Southbound off-ramp during the PM peak hour
- NH 102 at I-93 Northbound on and off-ramp (Exit 4) (Intersection \#8)
o Eastbound NH 102 during the PM peak hour
- NH 102 at St Charles Street/Londonderry Road (Intersection \#9)
o Eastbound and Westbound NH 102 during the PM peak hour
- NH 102 at Fordway/Madden Hill Road (Intersection \#10)
o Northbound Fordway during the AM and PM peak hours

The overall intersection LOS grades are depicted in Figure 5-6 for AM and PM peak hours. Table 5-1 shows the results of the LOS capacity analysis and the intersection vehicle delay for the No Build condition during the AM and PM peak hours. Appendix D contains the Synchro \({ }^{\mathrm{TM}}\) No Build condition intersection analysis reports.

\subsection*{5.5 2040 No Build Queuing Analysis}

Based on the Synchro \({ }^{\mathrm{TM}}\) signalized intersection analysis results, all the signalized intersections within the study area, with the exception of NH 28 at Liberty Drive (Intersection \#4), would experience queuing lengths that would exceed the available storage capacity. Intersection \#4 would provide sufficient storage for the anticipated demand. The lane group in the approach that would operate under unacceptable conditions is noted in parentheses in the following list. Table \(5-1\) contains the queuing results. Appendix E contains the Synchro \({ }^{\mathrm{TM}}\) No Build condition intersection queuing reports.
- NH 28 at Symmes Drive/Vista Ridge Drive (Intersection \#1)
o Northbound Vista Ridge Drive (right turns) during the AM and the PM peak hours
o Southbound Symmes Drive (left turns, right turns, and through movements) during the PM peak hour
- NH 28 at I-93 Southbound on and off-ramp (Exit 5) (Intersection \#2)
o Eastbound NH 28 (through movements) during the AM peak hour
o Eastbound NH 28 (right turns) during the AM and PM peak hours
o Westbound NH 28 (left turns) during the AM peak hour
o Southbound I-93 off-ramp (right turns) during the AM peak hour
- NH 28 at I-93 Northbound on and off-ramp (Exit 5) (Intersection \#3)
o Eastbound NH 28 (left turns) during the AM and PM peak hours
o Eastbound NH 28 (through movements) during the AM peak hour
o Westbound NH 28 (through movements) during the AM peak hour
- NH 102 at Gilcreast Road (Intersection \#5)
o Eastbound NH 102 (left turns) during the PM peak hour
o Northbound Gilcreast Road (all movements) during the AM and PM peak hours
o Southbound Gilcreast Road (left turns) during the AM peak hour
o Southbound Gilcreast Road (right turns and through movements) during the AM and PM peak hours
- NH 102 at Hampton Drive/Garden Lane (Intersection \#6)
o Westbound NH 102 (right turns) during the PM peak hour
o Northbound Hampton Drive (right turns) during the AM and PM peak hours
o Southbound Garden Lane (all movements) during the AM and PM peak hours
- NH 102 at I-93 Southbound off-ramp (Exit 4) (Intersection \#7)
o I-93 Southbound off-ramp (all movements) during the AM ad PM peak hours
- NH 102 at I-93 Northbound on and off-ramp (Exit 4) (Intersection \#8)
o Westbound NH 102 (right turns) during the AM peak hour
- NH 102 at St Charles Street/Londonderry Road (Intersection \#9)
o Eastbound NH 102 (left turns) during the PM peak hour
- NH 102 at Fordway/Madden Hill Road (Intersection \#10)
o Eastbound NH 102 (all movements) during the PM peak hour
o Westbound NH 102 (all movements) during the AM and PM peak hours
Intersection \#4 is the only signalized intersection in the traffic study area that would provide sufficient storage for the anticipated demand. The lane group in the approach that would operate under unacceptable conditions is highlighted in red in Table 5-1, which contains the queuing results.


Figure 5-6. 2040 No Build AM and PM peak hour LOS by intersection

1 Table 5-1. 2040 No Build intersection capacity and queuing analyses


1 Table 5-1. 2040 No Build intersection capacity and queuing analyses (continued)


1


Table 5-1. 2040 No Build intersection capacity and queuing analyses (continued)

1 Table 5-1. 2040 No Build intersection capacity and queuing analyses (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Intersection}} & \multirow[b]{2}{*}{Lane Groups} & & & AM P & eak Hour & & & PM Pe & eak Hour & \\
\hline & & & \[
\begin{gathered}
\text { Bay/Link } \\
\text { Length } \\
\text { (feet) }
\end{gathered}
\] & \begin{tabular}{l}
95\% queue \\
(ft)
\end{tabular} & v/c ratio & \begin{tabular}{l}
Average \\
Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{l}
95\% queue \\
(ft)
\end{tabular} & \begin{tabular}{l}
v/c \\
ratio
\end{tabular} & \begin{tabular}{l}
Average \\
Delay (sec/veh)
\end{tabular} & LOS \\
\hline \multirow[t]{12}{*}{} & 9 NH 102 \& St Charles & EB L & 350 & 202 & 0.85 & 58.1 & E & \#422 & 1.31 & 176.0 & F \\
\hline & St/Londonderry Rd & EB TR & \multirow[t]{2}{*}{1,462} & \multirow[t]{2}{*}{63} & \multirow[t]{2}{*}{0.27} & 2.7 & A & \multirow[t]{2}{*}{853} & \multirow[t]{2}{*}{0.49} & 3.5 & A \\
\hline & (Signalized) \({ }^{\text {a }}\) & EB Overall & & & & 17.4 & B & & & 77.9 & E \\
\hline & & WBL & 100 & 44 & 0.31 & 59.1 & E & 25 & 0.31 & 59.4 & E \\
\hline & & WB LTR/TR & \multirow[t]{2}{*}{410} & \multirow[t]{2}{*}{320} & \multirow[t]{2}{*}{0.87} & 19.0 & B & \multirow[t]{2}{*}{324} & \multirow[t]{2}{*}{1.01} & 59.5 & E \\
\hline & & WB Overall & & & & 19.1 & B & & & 59.5 & E \\
\hline & & NB LTR & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{-} & - & - & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{-} & - & - \\
\hline & & NB Overall & & & & 0.0 & A & & & 0.0 & A \\
\hline & & SB LT & 780 & 70 & 0.23 & 53.2 & D & 22 & 0.21 & 52.4 & D \\
\hline & & SB R & \multirow[t]{3}{*}{225} & \multirow[t]{3}{*}{194} & \multirow[t]{2}{*}{0.17} & 7.8 & A & \multirow[t]{3}{*}{141} & \multirow[t]{2}{*}{0.20} & 22.2 & C \\
\hline & & SB Overall & & & & 8.7 & A & & & 22.6 & C \\
\hline & Inters & ction Overall & & & 0.85 & 17.7 & B & & 1.16 & 67.5 & E \\
\hline \multirow[t]{9}{*}{} & 0 NH 102 \& Fordway/Madden & EB TR & \multirow[t]{2}{*}{455} & \multirow[t]{2}{*}{332} & \multirow[t]{2}{*}{0.73} & 17.0 & B & \#734 & 1.05 & 55.2 & E \\
\hline & Hill Rd (Signalized) \({ }^{\text {a }}\) & EB Overall & & & & 17.0 & B & & & 55.2 & E \\
\hline & & WBLT & \multirow[t]{2}{*}{165} & \#519 & 0.91 & 29.2 & C & \#535 & 0.71 & 12.2 & B \\
\hline & & WB Overall & & & & 29.2 & C & & & 12.2 & B \\
\hline & & NB LR & \multirow[t]{2}{*}{375} & \multirow[t]{2}{*}{298} & \multirow[t]{2}{*}{0.94} & 60.4 & E & \multirow[t]{2}{*}{277} & \multirow[t]{2}{*}{1.02} & 96.3 & F \\
\hline & & NB Overall & & & & 60.4 & E & & & 96.3 & F \\
\hline & & SB LTR & \multirow[t]{3}{*}{120} & \multirow[t]{3}{*}{40} & \multirow[t]{2}{*}{0.05} & 21.8 & C & \multirow[t]{3}{*}{61} & \multirow[t]{2}{*}{0.16} & 30.2 & C \\
\hline & & SB Overall & & & & 21.8 & C & & & 30.2 & C \\
\hline & Inters & ction Overall & & & 0.92 & 30.8 & C & & 1.04 & 47.3 & D \\
\hline
\end{tabular}

Notes:
\# 95th percentile volume exceeds capacity, queue may be longer.
\(\mathrm{EB}=\) Eastbound, \(\mathrm{WB}=\) Westbound, \(\mathrm{NB}=\) Northbound, \(\mathrm{SB}=\) Southbound
LOS \(=\) Level of Service
LTR = left / through / right lanes
V/C = Volume-to-Capacity ratio
Delay is Measured in Seconds Per Vehicle.
Red cells denote intersections or approaches operating at unacceptable conditions or denote approaches and lane groups whose queuing length exceeds cap acity
\({ }^{\text {a }}\) Highway Capacity Manual 2000 results (Signalized intersections)

\subsection*{5.6 2040 No Build Condition Freeway Operations Analysis}

Based on the analysis performed using HCS, one freeway facility would operate above capacity. This includes the I-93 SB off-ramp to NH 102 that would operate at LOS F. This facility would fail due to the off-ramp operating over capacity, thus queueing onto the I-93 mainline. The NH 102 on-ramp to I-93 NB would operate above capacity potentially creating a queue into the NH 102 mainline. Table 5-2 contains the Exit 4 No Build condition freeway analysis, and Table 5-3 contains the Exit 5 No Build freeway analysis. Appendix F contains the No Build condition HCS freeway operation reports.

Table 5-2. I-93 Exit 42040 No Build freeway analysis
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Freeway Analysis} & \multirow[b]{2}{*}{Facility Type} & \multirow[b]{2}{*}{Time Period} & \multicolumn{2}{|l|}{Demand to Capacity Ratio} & \multirow[b]{2}{*}{Density (pc/mi/ln)} & \multirow[b]{2}{*}{LOS} \\
\hline & & & Freeway & Ramp & & \\
\hline \multirow{2}{*}{I-93 Northbound to NH 102} & \multirow{2}{*}{Diverge} & AM & 0.37 & 0.26 & 0.0 & A \\
\hline & & PM & 0.63 & 0.61 & 12.3 & B \\
\hline \multirow{2}{*}{NH 102 to I-93 Northbound} & \multirow{2}{*}{Merge} & AM & 0.55 & \(1.25{ }^{\text {a }}\) & 21.9 & C \\
\hline & & PM & 0.59 & 0.99 & 23.0 & C \\
\hline \multirow{2}{*}{I-93 Southbound to NH 102} & \multirow{2}{*}{Diverge} & AM & 0.55 & 0.84 & 25.9 & C \\
\hline & & PM & 0.56 & 1.10 & 29.2 & F \\
\hline \multirow[t]{2}{*}{NH 102 Westbound to I-93 Southbound} & \multirow[b]{2}{*}{Merge} & AM & 0.50 & 0.69 & 16.5 & B \\
\hline & & PM & 0.39 & 0.32 & 10.2 & B \\
\hline \multirow[t]{2}{*}{NH 102 Eastbound to I-93 Southbound} & \multirow[b]{2}{*}{Merge} & AM & 0.66 & 0.85 & 24.1 & C \\
\hline & & PM & 0.47 & 0.40 & 14.4 & B \\
\hline
\end{tabular}

Notes: LOS = Level of Service; Density = Passenger cars per mile per lane ( \(\mathrm{pc} / \mathrm{mi} / \mathrm{ln}\) )
Red denotes interstate facilities that would result in failing operations and produce a queue extending to the I-93 mainline.
a Because the capacity of the on-ramp exceeds the demand, the ramp could produce a queue extending to NH 102.

1 Table 5-3. I-93 Exit \(5 \mathbf{2 0 4 0}\) No build freeway analysis
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Freeway Analysis} & \multirow[b]{2}{*}{Facility Type} & \multirow[b]{2}{*}{Time Period} & \multicolumn{2}{|l|}{Demand to Capacity Ratio} & \multirow[b]{2}{*}{Density (pc/mi/ln)} & \multirow[b]{2}{*}{LOS} \\
\hline & & & Freeway & Ramp & & \\
\hline \multirow{2}{*}{I-93 Northbound to NH 28} & \multirow[b]{2}{*}{Diverge} & AM & 0.55 & 0.37 & 20.7 & C \\
\hline & & PM & 0.57 & 0.49 & 25.4 & C \\
\hline \multirow[b]{2}{*}{NH 28 to I-93 Northbound} & \multirow[b]{2}{*}{Merge} & AM & 0.66 & 0.83 & 25.3 & C \\
\hline & & PM & 0.63 & 0.62 & 25.1 & C \\
\hline \multirow{2}{*}{I-93 Southbound to NH 28} & \multirow[b]{2}{*}{Diverge} & AM & 0.59 & 0.73 & 28.2 & D \\
\hline & & PM & 0.64 & 0.74 & 30.3 & D \\
\hline \multirow[b]{2}{*}{NH 28 to I-93 Southbound} & \multirow[b]{2}{*}{Merge} & AM & 0.56 & 0.45 & 20.7 & C \\
\hline & & PM & 0.57 & 0.38 & 20.2 & C \\
\hline
\end{tabular}

Notes: LOS = Level of Service; Density = Passenger cars per mile per lane (pc/mi/ln)

\subsection*{6.0 ALTERNATIVE DESCRIPTION}

The proposed Project would entail the construction of a new interchange between I-93 Exit 4 and Exit 5 in Londonderry, New Hampshire. The location of the new interchange has been narrowed to two locations, the first option is located approximately 1.5 miles north of Exit 4 and 2.3 miles south of Exit 5, and the second option is located 2 miles north of Exit 4 and 1.5 miles south of Exit 5 . For each option, a diamond interchange would be constructed with two signalized intersections located on either side of I-93 serving the ramp termini. Four proposed alternatives include a new interchange along I-93 as follows:
- Alternative A: New I-93 interchange 1.5 miles north of Exit 4, connects to the east to Folsom Road and includes improvements along Folsom Road and Tsienneto Road providing a new direct connection between I-93 and NH 102, east of Beaver Lake. The land use assumptions for the traffic analysis of this alternative assume the Woodmont Commons full build-out.
- Alternative B: New I-93 interchange 1.5 miles north of Exit 4, creates a new alignment 0.5 mile north of Folsom Road that runs parallel, then follows a power line ROW before connecting to NH 102 east of Beaver Lake. The land use assumptions for the traffic analysis of this alternative assume the Woodmont Commons full buildout
- Alternative C: New I-93 interchange 2 miles north of Exit 4, creates a new alignment along a power line ROW before connecting to NH 28, then follows the same ROW as Alternative B beginning at Ashleigh Drive, connecting to NH 102 east of Beaver Lake. Because Alternative C would not provide access to the undeveloped land on the east side of I-93 within the Woodmont Commons PUD, the Woodmont Commons development under Alternative C would be the same as the No Build Alternative.
- Alternative D: New I-93 interchange 2 miles north of Exit 4, creates a new alignment along a power line ROW before connecting to NH 28, then follows the same ROW as Alternative A beginning at Folsom Road, connecting to NH 102 east of Beaver Lake. The Woodmont Commons Phase I scenario is included in this alternative. Similar to Alternative C, this alternative would not provide access to the undeveloped land on the east side of I-93 within the Woodmont Commons PUD; therefore, the Woodmont Commons development under Alternative D would be the same as the No Build Alternative.
There is also Alternative F that can be considered the Transportation Systems Management (TSM) alternative composed of intersection improvements along NH 102 between Londonderry Road and Londonderry Turnpike that does not contain a new I-93 interchange. The next section contains detailed descriptions for each alternative.
Figure 6-1 illustrates the five SDEIS alternatives.


Figure 6-1. I-93 Exit 4A SDEIS alternatives

\subsection*{6.1 Build Alternatives Description}

\subsection*{6.1.1 Alternative A}

Alternative A was the Preferred Alternative in the 2007 DEIS (FHWA, 2007). This alternative includes a corridor that is approximately 3.2 miles in length between the new proposed I-93 Exit 4A interchange and eastern Derry. There would be approximately one mile of roadway construction on a new alignment and approximately 1.6 miles of existing roadway reconstruction, and approximately 0.6 mile of roadway with no improvements. It would originate from the southern I-93 Exit 4A interchange location and travel northeast along new alignment through a wooded area to Folsom Road, near its intersection with North High Street and Madden Road. This alternative would continue to follow Folsom Road past Ross’ Corner (Manchester Road/NH 28) and continue on Tsienneto Road across NH 28 Bypass to its end at NH 102, adjacent to Beaver Lake. Specific improvements are outlined below:

\section*{I-93 Exit 4A to Ross' Corner}

The section would contain five lanes of mostly new construction.

\section*{Ross' Corner Reconstruction}

Ross' Corner would require additional eastbound through and left-turn lanes and an additional westbound through-lane to handle the traffic added by Alternative A. The intersection of Tsienneto Road and Pinkerton Street would also require additional through-lanes and would be signalized.

\section*{Tsienneto Road from Ross' Corner to NH 28 Bypass}

The portion is an existing three-lane roadway (one lane in each direction with a middle turn lane) that would not be altered with this Project.

\section*{NH 28 Bypass/Tsienneto Road Intersection Reconstruction}

This intersection would also require an additional through-lane in each direction on Tsienneto Road.

Tsienneto Road from NH 28 Bypass to NH 102
This section would require completion of minor safety improvements on the east end of Tsienneto Road.

Tsienneto Road/NH 102 Intersection Reconstruction
This intersection would need to be signalized, with added turning lanes on NH 102 and Tsienneto Road.

\subsection*{6.1.2 Alternative B}

The Alternative B corridor is approximately 3.4 miles in length between the new proposed I-93 Exit 4A interchange and eastern Derry. The entire 3.4-mile corridor would consist of roadway construction on new alignment. It would originate from a new southern I-93 Exit 4A interchange
and travel northeast along a new alignment through a wooded area to the intersection of Ashleigh Drive and NH 28. From this intersection, this alternative would extend northeast towards the intersection of London Road and NH 28 Bypass and then continue on new alignment to the intersection of Tsienneto Road and NH 102. Specific improvements would be as follows:

\section*{I-93 Exit 4A to Ashleigh Drive/NH 28 Intersection}

The section leading from the new southern I-93 Exit 4A interchange to the intersection of Ashleigh Drive and NH 28 would contain five lanes of mostly new construction.

\section*{Ashleigh Drive/NH 28 Intersection Reconstruction}

This intersection would require addition eastbound left-turn lane and a new through lane and westbound through lane and shared through/right-turn lane. The NH 28 northbound approach would include a minor change to the lane geometry with the removal of the exclusive right-turn lane.

\section*{Corridor from NH 28 to NH 28 Bypass}

The portion would follow a new alignment following Ashleigh Drive to the power line ROW, then following the power line ROW to the NH 28 Bypass. This section would be a three-lane roadway (one lane in each direction with a middle turn lane).

\section*{NH 28 Bypass Intersection Construction}

There would be a new signalized intersection constructed with all four approaches containing a left-turn lane. The southbound approach would contain a right-turn lane, and the remaining approaches would contain shared through/right-turn lanes.

\section*{Corridor from NH 28 Bypass to NH 102}

This section would follow the power line ROW, then head southeast through a wooded section to intersect with Tsienneto Road and NH 102. It would contain two lanes.

\section*{Tsienneto Road/NH 102 Intersection Reconstruction}

This intersection would need to be signalized, with added turning lanes on NH 102 and Tsienneto Road.

\subsection*{6.1.3 Alternative C}

The Alternative C corridor is approximately 3.7 miles in length between the new proposed I-93 Exit 4A interchange and eastern Derry. Approximately 2.9 miles of corridor would be on new alignment, while approximately 0.8 mile would reconstruct existing roadways. The alternative would start from a new northern I-93 Exit 4A interchange and travel east approximately 0.7 mile along a power line ROW to NH 28. Following NH 28 south to the intersection of Ashleigh Drive, it would follow the same alignment as Alternative B to the intersection of Tsienneto Road and NH 102. Specific improvements would be as follows:

\section*{I-93 Exit 4A to Ashleigh Drive/NH 28 Intersection}

The section leading from the northern I-93 Exit 4A interchange option to the intersection of Ashleigh Drive and NH 28 would contain five lanes. Between Exit 4A and Scobie Pond Road, there would be new roadway construction that would tie into NH 28, an existing five-lane roadway.

\section*{Ashleigh Drive/NH 28 Intersection Reconstruction}

This intersection would require a minor change to the westbound approach lane geometry by changing the left-turn lane into a shared left/through lane and the right lane into a right-turn lane. The NH 28 northbound approach would include a minor change to the lane geometry with the removal of the exclusive right-turn lane.

\section*{Corridor from NH 28 to NH 28 Bypass}

This portion would be the same as Alternative B.

\section*{NH 28 Bypass Intersection Construction}

This intersection would be the same as Alternative B.

\section*{Corridor from NH 28 Bypass to NH 102}

This portion would be the same as Alternative B.
Tsienneto Road/NH Route 102 Intersection Reconstruction
This intersection would need to be signalized, with added turning lanes on NH 102 and Tsienneto Road.

\subsection*{6.1.4 Alternative D}

The Alternative D corridor is approximately 3.9 miles in length between the new proposed I-93 Exit 4A interchange and eastern Derry. Within this corridor, approximately 0.8 mile would be on new alignment, 2.5 mile on existing roadways would be reconstructed, and 0.6 mile would have no improvements. The alternative would commence from a new northern I-93 Exit 4A interchange and travel east approximately 0.7 mile along a power line ROW to NH 28. Following NH 28 south to Ross' Corner, the corridor would then follow the same path as Alternative A to the intersection of Tsienneto Road and NH 102. Specific improvements would be as follows:

\section*{l-93 Exit 4A to Ross' Corner}

Alternative D, originating from the northern I-93 Exit 4A interchange option, would traverse south on NH Route 28 to Ross' Corner. The section leading from the northern I-93 Exit 4A interchange option to the intersection at Ross' Corner would contain five lanes. Between Exit 4A and Scobie Pond Road, there would be new roadway construction that would tie into NH 28, an existing five-lane roadway.

\section*{Ross' Corner Reconstruction}

Ross’ Corner would require an additional eastbound through-lane, and an additional southbound through-lane to handle the traffic. The intersection of Tsienneto Road and Pinkerton Street would also require additional through-lanes on Tsienneto Road, in addition to being signalized.

Tsienneto Road from Ross' Corner to NH 28 Bypass
This portion would be the same as Alternative A.
NH 28 Bypass/Tsienneto Road Intersection Reconstruction
This intersection would be the same as Alternative A.
Tsienneto Road from NH 28 Bypass to NH 102
This portion would be the same as Alternative A.

\section*{Tsienneto Road/NH 102 Intersection Reconstruction}

This intersection would be the same as Alternative A.

\subsection*{6.1.5 Alternative \(F\)}

Alternative F focuses all improvements along the existing NH 102 corridor between Exit 4 at I93 and downtown Derry. A two-way center left-turn lane would be constructed from Londonderry Road to NH Route 28. The majority of existing on-street parking spaces would be lost to accommodate the center turn lane. Additional improvements included in the study area would be as follows:

\section*{NH 102/Londonderry Road/St. Charles Street}

There would be improvements to three approaches. The eastbound and westbound approaches would include a new left-turn lane and an additional through lane. The southbound approach would include an extension to the existing right-turn lane. The signal would be upgraded to operate the new lane geometry.

\section*{NH 102/Fordway/Madden Hill Road}

There would be improvements to two approaches. The eastbound approach would include a new right-turn lane, and the northbound approach would include a new left-turn lane. The signal would be upgraded to operate the new lane geometry. There would also be a three-lane cross section along NH 102 between Fordway and Crystal Avenue and additional lanes added to the NH 102 and Crystal Avenue/Birch Street intersection.

\subsection*{7.0 THE 2040 BUILD CONDITION}

\subsection*{7.1 Introduction}

The Build condition represents the future conditions with one of the five alternatives constructed. This section summarizes development of the future traffic volumes, traffic operations, and queuing for the Build condition.

\subsection*{7.2 Development of 2040 Build Condition Volumes}

The 2040 Build conditions represent the future conditions if all planned roadway improvements are implemented, Woodmont Commons is either fully built out or partially built out, and other background growth would follow the demographic projections contained in Tables 3-4, 3-5, and 3-6. I-93 Exit 4A would occur, and, under four of the alternatives, downtown Derry's traffic congestion would be improved. This section summarizes the development of the future traffic volumes, traffic operations, and queuing for the Build conditions.

The study relied on the SNHPC travel demand model, especially for modeling future forecasted traffic volumes generated by the Woodmont Commons PUD. Woodmont Commons is planned to include a variety of land uses such as residential, commercial, and office that could encourage a reduced number of daily work-based vehicle trips. The reduction in work-based trips is called internal capture and refers to a pedestrian or bicycle trip replacing a vehicle trip based on the origin and destination both located at Woodmont Commons. Because the travel demand model was unable to account for internal capture trips, the model likely forecasted more daily vehicle trips than might occur.
The future 2040 Build condition volumes for the intersections and freeway facilities serving Exits 4 and 5, as well as the two intersections east of Exit 4, NH 102 at Saint
Charles/Londonderry Road \& NH 102 at Fordway/Madden Hill Road (Intersections \#9 and \#10), relied on a custom travel demand model built by SNHPC to represent each alternative, resulting in five models. The model values represent 24 -hour vehicle volumes; therefore, the AM and PM peak hour volumes were calculated by applying AM and PM peak hour percentages to each of the five 2040 Build 24-hour model volume results. These percentages were computed by comparing the existing condition peak hour volumes to the 2015 base year 24-hour travel demand model volumes.
Following a procedure similar to that used for the existing conditions, the Woodmont Commons TIA published Phases I and II traffic counts or Woodmont Commons PUD traffic counts were used to provide turning movement counts for the two intersections located west of I-93 at Exit 4, NH 102 at Gilcreast Road \& NH 102 at Garden Lane (Intersections \#5 and \#6). The volumes in the TIA were used to calculate the vehicle percentage for each tuning movement as follows: (1) Alternatives A and B used the PUD traffic counts representing the full Woodmont Commons build-out; and (2) Alternatives C, D, and F used the Phase I and II traffic counts representing the partial Woodmont Commons build-out. These turning movement percentages were applied to the five balanced 2040 Build condition traffic networks at Exit 4 determined by the five SNHPC travel demand models representing each alternative.
Following the same procedure used for the existing conditions, the I-93 SEIS was used to provide turning movement counts for NH 28 at Symmes Drive/Vista Ridge Drive (Intersection \#1) located west of I-93 at Exit 5. The Build condition volumes were calculated by applying the
vehicle percentage for each tuning movement based on the I-93 SEIS 2030 forecasted vehicle volumes and applying that percentage to the five (Alternatives A, B, C, D, and F) balanced 2040 Build condition traffic networks at Exit 5 determined by the five SNHPC travel demand models representing each alternative.
Following the same procedure as the existing conditions, NHDOT provided a turning movement count for NH 28 and Liberty Drive (Intersection \#4) located east of I-93 at Exit 5. This volume was obtained in 2005 and used to calculate the vehicle percentage for each tuning movement and applying that percentage to the five (Alternatives A, B, C, D, and F) balanced 2040 Build condition traffic networks at Exit 5 determined by the five SNHPC travel demand model representing each alternative.
The proposed new interchange (I-93 Exit 4A) would contain two new intersections with the same lane geometry regardless of the alternative chosen (A, B, C, or D). The Connector Road and I-93 SB on and off-ramp (Intersection \# 11) would be signalized and contain two approaches. The other intersection, Connector Road and I-93 NB on and off-ramp (Intersection \#12) would be signalized and contain three approaches.
Figures 7-1 through 7-5 show the 2040 Build condition turning movement volumes representing Alternatives A, B, C, D, and F. Figure 7-6 shows the Alternatives A and B lane geometry. Figure 7-7 shows the Alternatives C and D lane geometry. Figure 7-8 shows the Alternative F lane geometry. The location of Exit 4A differs between the alternatives; however, the lane geometry remains the same for Alternatives A through D.


Figure 7-1. Alternative A 2040 Build turning movement volumes


Figure 7-2. Alternative B 2040 Build turning movement volumes


Figure 7-3. Alternative C 2040 Build turning movement volumes


Figure 7-4. Alternative D 2040 Build turning movement volumes


Figure 7-5. Alternative F 2040 Build turning movement volumes


Figure 7-6. Alternatives A \& B 2040 Build lane geometry


Figure 7-7. Alternatives C \& D 2040 Build lane geometry


Figure 7-8. Alternative F 2040 Build lane geometry

\subsection*{7.3 2040 Build Alternative A Intersection Operations Analysis}

Based on the Synchro \({ }^{\mathrm{TM}}\) signalized intersection analysis results, four signalized intersections (Intersections \#3, \#5, \#6, and \#8) would operate at unacceptable conditions (LOS E or LOS F) during the AM or PM peak hours. The remaining signalized intersections in the traffic study area would operate at acceptable overall conditions (LOS D or better is considered an operating level) during the peak hours analyzed (weekday AM and PM peak hours).

Based on the Synchro \({ }^{\mathrm{TM}}\) signalized intersection analysis results, eight of the study area signalized intersections have overall approaches that would operate at unacceptable conditions (LOS E or LOS F) during one or two evaluated periods. The following individual signalized intersection approaches in the traffic study area would operate under unacceptable conditions during peak hours:
- NH 28 at I-93 Southbound on and off-ramp (Exit 5) (Intersection \#2)
o I-93 Southbound off-ramp during the AM peak hour
- NH 28 at I-93 Northbound on and off-ramp (Exit 5) (Intersection \#3)
o Westbound NH 28 during the AM peak hour.
o I-93 Northbound off-ramp during the AM and PM peak hours
- NH 102 at Gilcreast Road (Intersection \#5)
o Eastbound NH 102 during the AM and PM peak hours
o Westbound NH 102 during the PM peak hour
o Northbound Gilcreast Road during the AM and PM peak hours
o Southbound Gilcreast Road during the AM and PM peak hours
- NH 102 at Hampton Drive/Garden Lane (Intersection \#6)
o Eastbound NH 102 during the PM peak hour
o Westbound NH 102 during the PM peak hour
o Northbound Hampton Drive during the AM and PM peak hours
o Southbound Garden Lane during the AM and PM peak hours
- NH 102 at I-93 Southbound off-ramp (Exit 4) (Intersection \#7)
o I-93 Southbound off-ramp during the PM peak hour
- NH 102 at I-93 Northbound on and off-ramp (Exit 4) (Intersection \#8)
o Eastbound NH 102 during the AM and PM peak hours
o Westbound NH 102 during the AM peak hour
o I-93 Northbound on-ramp during the AM and PM peak hours
- NH 102 at Fordway/Madden Hill Road (Intersection \#10)
o Northbound Fordway during the AM and PM peak hours
- Connector Roadway and I-93 Southbound on and off-ramp (Exit 4A) (Intersection \#11)
o Westbound Connector Roadway during the AM peak hour
The overall Alternative A intersection LOS grades are depicted in Figure 7-9 for AM and PM peak hours. Table 7-1 shows the comparison between Alternative A and No Build condition LOS capacity analysis and the intersection vehicle delay results during the AM and PM peak hours. Appendices G, H, and I contain the Synchro \({ }^{\mathrm{TM}}\) Build condition intersection analysis reports.

\subsection*{7.4 2040 Build Alternative A Queuing Analysis}

Based on the Synchro \({ }^{\mathrm{TM}}\) signalized intersection analysis results, nine of the signalized intersections within the study area would experience queuing lengths that would exceed the available storage capacity. Intersections \#4, \#8, and \#9 would provide sufficient storage for the anticipated demand. The lane group in the approach that would operate under unacceptable conditions is noted in parentheses. Table 7-1 contains the queuing results. Appendices J, K, and L contain the Synchro \({ }^{\mathrm{TM}}\) Build condition intersection queuing reports.
- NH 28 at Symmes Drive/Vista Ridge Drive (Intersection \#1)
o Northbound Vista Ridge Drive (right turns) during the AM and the PM peak hours
o Southbound Symmes Drive (left turns, right turns, and through movements) during the PM peak hour
- NH 28 at I-93 Southbound on and off-ramp (Exit 5) (Intersection \#2)
o Eastbound NH 28 (right turns) during the AM peak hour
o Westbound NH 28 (left turns) during the AM peak hour
- NH 28 at I-93 Northbound on and off-ramp (Exit 5) (Intersection \#3)
o Eastbound NH 28 (left turns) during the AM peak hour
o Westbound NH 28 (through movements) during the AM peak hour
- NH 102 at Gilcreast Road (Intersection \#5)
o Eastbound NH 102 (left turns) during the AM and PM peak hours
o Northbound Gilcreast Road (all movements) during the AM and PM peak hours
o Southbound Gilcreast Road (left turns) during the AM peak hour
o Southbound Gilcreast Road (right turns and through movements) during the AM and PM peak hours
- NH 102 at Hampton Drive/Garden Lane (Intersection \#6)
o Eastbound NH 102 (left turns) during the AM and PM peak hours
o Eastbound NH 102 (right turns and through movements) during the AM peak hour
o Westbound NH 102 (right turns) during the AM and PM peak hours
o Northbound Hampton Drive (right turns) during the AM and PM peak hours
o Southbound Garden Lane (all movements) during the AM and PM peak hours
- NH 102 at I-93 Southbound off-ramp (Exit 4) (Intersection \#7)
o I-93 Southbound off-ramp (all movements) during the AM ad PM peak hours
- NH 102 at Fordway/Madden Hill Road (Intersection \#10)
o Eastbound NH 102 (all movements) during the PM peak hour
o Westbound NH 102 (all movements) during the AM and PM peak hours
o Southbound Madden Hill Road during the PM peak hour
- Connector Roadway and I-93 Southbound on and off-ramp (Exit 4A) (Intersection \#11)
o Westbound Connector Roadway (left turns) during the AM peak hour
- Connector Roadway and I-93 Northbound on and off-ramp (Exit 4A) (Intersection \#12)
o Westbound Connector Roadway (right turns) during the AM and PM peak hours The remaining signalized intersections in the traffic study area would provide sufficient storage for the anticipated demand. The lane group in the approach that would operate under unacceptable conditions is highlighted in red in Table 7-1, which contains a comparison between Alternative A and No Build condition queuing results.


Figure 7-9. 2040 Build Alternative A AM and PM peak hour LOS by intersection

Table 7-1. Comparison between Alternative A and No Build condition intersection capacity and queuing analyses
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Intersection \(\quad \begin{array}{r}\text { Lane } \\ \text { Groups }\end{array}\)} & \multicolumn{9}{|c|}{No Build Condition} & \multicolumn{9}{|c|}{Alternative A} \\
\hline & \[
\begin{gathered}
\text { Turning } \\
\text { Bay/ } \\
\text { Link } \\
\text { Length } \\
\text { (feet) }
\end{gathered}
\] & \begin{tabular}{|c} 
\\
\\
\(95 \%\) \\
queue \\
(ft)
\end{tabular} & AM Pe

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & \[
\begin{array}{|c}
95 \% \\
\text { queue } \\
\text { (ft) }
\end{array}
\] & PM Pe

v/c
ratio & \begin{tabular}{l}
ak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS & Turning
Bay/
Link
Length
(feet) & \begin{tabular}{l}
95\% \\
queue \\
(ft)
\end{tabular} & AM Pe

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & 95\% queue (ft) & PM Pea

v/c
ratio & \begin{tabular}{l}
ak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS \\
\hline \#1 NH28 \& EBL & 408 & 353 & 0.97 & 85.5 & F & 50 & 0.76 & 111.3 & F & 408 & 349 & 1.07 & 110.4 & F & 58 & 0.59 & 54.9 & D \\
\hline Symmes Dr/ EB TR & 729 & 414 & 0.51 & 13.0 & B & 458 & 0.81 & 31.9 & C & 408 & 233 & 0.54 & 13.6 & B & 313 & 0.86 & 29.9 & C \\
\hline Vista Ridge Dr EB Overall & & & & 30.8 & C & & & 33.9 & C & & & & 37.2 & D & & & 30.6 & C \\
\hline (Signalized) \({ }^{\text {a }}\) WB L & 450 & 40 & 0.55 & 71.3 & E & 154 & 0.81 & 74.0 & E & 450 & 85 & 0.46 & 50.6 & D & 182 & 0.92 & 85.6 & F \\
\hline WB Thru & 1,537 & 409 & 0.84 & 33.8 & C & 298 & 0.61 & 20.4 & C & 755 & 474 & 0.93 & 37.9 & D & 288 & 0.73 & 21.3 & C \\
\hline WB R & 500 & 137 & 0.08 & 19.5 & B & 31 & 0.04 & 14.0 & B & 500 & 214 & 0.08 & 17.1 & B & 46 & 0.04 & 13.4 & B \\
\hline WB Overall & & & & 32.9 & C & & & 26.2 & C & & & & 36.1 & D & & & 28.2 & C \\
\hline NB LT & 1,660 & 330 & 0.43 & 48.5 & D & 120 & 0.55 & 55.5 & E & 1,660 & 128 & 0.44 & 39.6 & D & 94 & 0.48 & 39.5 & D \\
\hline NB R & 10 & \#101 & 0.08 & 45.4 & D & \#79 & 0.02 & 49.0 & D & 10 & \#90 & 0.07 & 36.6 & D & \#70 & 0.02 & 35.7 & D \\
\hline NB Overall & & & & 46.5 & D & & & 53.3 & D & & & & 37.7 & D & & & 38.3 & D \\
\hline SB L & 270 & 181 & 0.93 & 110.8 & F & 267 & 0.84 & 63.6 & E & 270 & 115 & 0.82 & 70.6 & E & \#369 & 0.93 & 72.2 & E \\
\hline SB LTR & 270 & 191 & 0.07 & 47.1 & D & \#368 & 0.39 & 42.0 & D & 270 & 122 & 0.07 & 36.9 & D & \#631 & 0.35 & 33.3 & C \\
\hline SB Overall & & & & 79.0 & E & & & 51.9 & D & & & & 54.1 & D & & & 50.0 & D \\
\hline Intersection Overall & & & 0.84 & 36.4 & D & & & 34.7 & C & & & 0.89 & 38.0 & D & & 0.84 & 33.3 & C \\
\hline
\end{tabular}

1
Table 7-1. Comparison between Alternative A and No Build condition intersection capacity and queuing analyses (continued)


Table 7-1. Comparison between Alternative A and No Build condition intersection capacity and queuing analyses (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Intersection \(\quad \begin{array}{r}\text { Lane } \\ \text { Groups }\end{array}\)} & \multicolumn{9}{|c|}{No Build Condition} & \multicolumn{9}{|c|}{Alternative A} \\
\hline & \begin{tabular}{l}
Turning \\
Bay/ Link Length (feet)
\end{tabular} & \begin{tabular}{l}
95\% \\
queue \\
(ft)
\end{tabular} & AM Pe

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS & \[
\begin{array}{|c}
\hline 95 \% \\
\text { queue } \\
(\mathrm{ft})
\end{array}
\] & PM Pe

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{|c} 
Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & \begin{tabular}{l}
95\% \\
(ft)
\end{tabular} & AM Pe

v/c
ratio & \begin{tabular}{l}
ak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{l}
95\% queue \\
(ft)
\end{tabular} & PM Pe

v/c
ratio & \begin{tabular}{l}
ak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS \\
\hline \#4 NH28 \& EBL & 225 & 79 & 0.51 & 42.4 & D & 50 & 0.49 & 30.6 & C & 225 & 53 & 0.48 & 41.2 & D & 35 & 0.69 & 62.9 & E \\
\hline Liberty Dr EB TR & 841 & 46 & 0.13 & 3.9 & A & 116 & 0.47 & 8.8 & A & 841 & 30 & 0.08 & 4.0 & A & 83 & 0.37 & 8.7 & A \\
\hline (Signalized) \(^{\text {a }}\) EB Overall & & & & 10.7 & B & & & 9.9 & A & & & & 10.6 & B & & & 11.2 & B \\
\hline WBL & 250 & 19 & 0.29 & 51.2 & D & 17 & 0.22 & 31.7 & C & 250 & 22 & 0.29 & 46.5 & D & 19 & 0.19 & 23.9 & C \\
\hline WB TR & 332 & 178 & 0.52 & 8.5 & A & 88 & 0.27 & 8.7 & A & 332 & 148 & 0.51 & 7.3 & A & 92 & 0.30 & 8.4 & A \\
\hline WB Overall & & & & 8.7 & A & & & 9.0 & A & & & & 7.5 & A & & & 8.6 & A \\
\hline NB L & 154 & 51 & 0.29 & 41.6 & D & 52 & 0.14 & 21.4 & C & 154 & 23 & 0.05 & 35.1 & D & 48 & 0.14 & 16.7 & B \\
\hline NB Overall & & & & 41.6 & D & & & 21.4 & C & & & & 35.1 & D & & & 16.7 & B \\
\hline SB LT & 100 & 29 & 0.15 & 40.6 & D & 38 & 0.17 & 21.6 & C & 100 & 34 & 0.12 & 35.8 & D & 29 & 0.12 & 16.6 & B \\
\hline SB R & 502 & 96 & 0.07 & 39.7 & D & 97 & 0.10 & 21.1 & C & 502 & 89 & 0.07 & 35.3 & D & 83 & 0.09 & 16.4 & B \\
\hline SB Overall & & & & 39.8 & D & & & 21.2 & C & & & & 35.3 & D & & & 16.5 & B \\
\hline Intersection Overall & & & 0.50 & 11.3 & B & & 0.43 & 11.2 & B & & & 0.47 & 9.6 & A & & 0.33 & 11.1 & B \\
\hline
\end{tabular}

Table 7-1. Comparison between Alternative A and No Build condition intersection capacity and queuing analyses (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Intersection \(\quad \begin{array}{r}\text { Lane } \\ \text { Groups }\end{array}\)} & \multicolumn{9}{|c|}{No Build Condition} & \multicolumn{9}{|c|}{Alternative A} \\
\hline & \begin{tabular}{l}
Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & \[
\begin{aligned}
& \text { A } \\
& 95 \% \\
& \text { queue } \\
& \text { (ft) }
\end{aligned}
\] & AM Pe

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{l}
95\% \\
queue \\
(ft)
\end{tabular} & \begin{tabular}{l}
PM Pe \\
v/c \\
ratio
\end{tabular} & \begin{tabular}{l}
ak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{l}
Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & 95\% queue (ft) & AM P

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS & \[
\begin{gathered}
95 \% \\
\text { queue } \\
\text { (ft) }
\end{gathered}
\] & PM Pe

v/c
ratio & \begin{tabular}{l}
ak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS \\
\hline \#5 NH102 \& EB L & 275 & 255 & 1.00 & 117.3 & F & \#345 & 1.24 & 193.4 & F & 275 & \#280 & 0.95 & 105.7 & F & \#338 & 1.24 & 193.6 & F \\
\hline Gilcreast Rd EB RT & 852 & 373 & 1.10 & 88.9 & F & 386 & 0.81 & 35.9 & D & 852 & 383 & 1.05 & 76.3 & E & 374 & 0.71 & 31.7 & C \\
\hline (Signalized) \(^{\text {a }}\) EB Overall & & & & 91.5 & F & & & 60.6 & E & & & & 79.6 & E & & & 60.9 & E \\
\hline WB L & 275 & 86 & 0.78 & 53.7 & D & 135 & 0.79 & 32.0 & C & 275 & 110 & 0.79 & 76.5 & E & 102 & 0.63 & 31.9 & C \\
\hline WB Thru & 669 & 150 & 0.97 & 33.7 & C & 266 & 1.27 & 134.1 & F & 669 & 200 & 0.92 & 37.6 & D & 212 & 1.19 & 99.9 & F \\
\hline WB R & 225 & 40 & 0.06 & 24.2 & C & 117 & 0.14 & 0.2 & A & 225 & 64 & 0.05 & 29.5 & C & 83 & 0.14 & 0.7 & A \\
\hline WB Overall & & & & 34.9 & C & & & 111.7 & F & & & & 40.4 & D & & & 85.2 & F \\
\hline NB LT & 488 & \#610 & 1.16 & 155.1 & F & \#567 & 1.29 & 200.5 & F & 488 & \#609 & 1.07 & 139.8 & F & \#615 & 1.23 & 189.0 & F \\
\hline NB R & 488 & \#598 & 0.63 & 47.0 & D & \#682 & 0.19 & 32.8 & C & 488 & \#601 & 0.68 & 62.0 & E & \#661 & 0.17 & 36.5 & D \\
\hline NB Overall & & & & 100.5 & F & & & 144.8 & F & & & & 98.9 & F & & & 134.5 & F \\
\hline SB L & 356 & \#442 & 1.13 & 142.9 & F & 314 & 0.95 & 114.4 & F & 356 & \#444 & 1.10 & 144.5 & F & 313 & 0.90 & 106.6 & F \\
\hline SBT & 356 & \#483 & 0.53 & 47.3 & D & \#433 & 0.97 & 116.8 & F & 356 & \#478 & 0.44 & 56.4 & E & \#451 & 0.97 & 123.9 & F \\
\hline SB R & 225 & \#291 & 0.35 & 45.0 & D & \#303 & 0.55 & 49.0 & D & 225 & \#278 & 0.43 & 56.5 & E & \#277 & 0.91 & 86.1 & F \\
\hline SB Overall & & & & 87.6 & F & & & 83.2 & F & & & & 94.2 & F & & & 98.6 & F \\
\hline Intersection Overall & & & 1.14 & 76.3 & E & & 1.24 & 94.0 & F & & & 1.08 & 73.3 & E & & 1.18 & 82.7 & F \\
\hline
\end{tabular}

Table 7-1. Comparison between Alternative A and No Build condition intersection capacity and queuing analyses (continued)


Table 7-1. Comparison between Alternative A and No Build condition intersection capacity and queuing analyses (continued)


1
Table 7-1. Comparison between Alternative \(A\) and No Build condition intersection capacity and queuing analyses (continued)



Notes:
\# 95th percentile volume exceeds capacity, queue may be longer.
EB = Eastbound, WB = Westbound, NB= Northbound, SB = Southbound
LOS \(=\) Level of Service
LTR \(=\) left / through / right lanes
V/C = Volume-to-Capacity ratio
Delay is Measured in Seconds Per Vehicle.
Red cells denote intersections or approaches operating at unacceptable conditions or denote approaches and lane groups whose queuing length exceeds capacity
\({ }^{\text {a }}\) Highway Capacity Manual 2000 results (Signalized intersections)

\subsection*{7.5 2040 Build Alternative A Freeway Operations Analysis}

Analysis performed using HCS shows all freeway facilities would operate below capacity. The one failing freeway facility under the No Build condition (the I-93 SB off-ramp to NH 102) would improve to LOS A. Table 7-2 contains the Exit 4 Alternative A freeway analysis compared to the No Build condition, and Table 7-3 contains the Exit 5 Alternative A freeway analysis compared to the No Build condition. Table 7-4 contains the Exit 4A Alternative A freeway analysis. Appendix M contains the Build condition HCS freeway operation reports.

Table 7-2. I-93 Exit 42040 Build Alternative A freeway analysis compared to the No Build condition
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Freeway Analysis} & \multirow[t]{2}{*}{Facility Type} & \multirow[t]{2}{*}{Time Period} & \multicolumn{2}{|l|}{Demand to Capacity Ratio} & \multirow[t]{2}{*}{Density (pc/mi/ln)} & \multirow[t]{2}{*}{Alt A LOS} & \multirow[t]{2}{*}{No Build LOS} \\
\hline & & & Freeway & Ramp & & & \\
\hline \multirow[t]{2}{*}{I-93 Northbound to NH 102} & \multirow[b]{2}{*}{Diverge} & AM & 0.38 & 0.23 & 0.0 & A & A \\
\hline & & PM & 0.66 & 0.67 & 14.4 & B & B \\
\hline \multirow[t]{2}{*}{NH 102 to I-93 Northbound} & \multirow{2}{*}{Merge} & AM & 0.49 & 0.89 & 19.3 & B & C \\
\hline & & PM & 0.57 & 0.70 & 20.1 & C & C \\
\hline \multirow[t]{2}{*}{I-93 Southbound to NH 102} & \multirow{2}{*}{Diverge} & AM & 0.57 & 0.76 & 25.2 & C & C \\
\hline & & PM & 0.54 & 0.46 & 7.6 & A & F \\
\hline \multirow[t]{2}{*}{NH 102 Westbound to I93 Southbound} & \multirow[b]{2}{*}{Merge} & AM & 0.49 & 0.36 & 13.8 & B & B \\
\hline & & PM & 0.39 & 0.17 & 9.2 & A & B \\
\hline \multirow[t]{2}{*}{NH 102 Eastbound to I-93 Southbound} & \multirow[b]{2}{*}{Merge} & AM & 0.69 & 0.93 & 25.6 & C & C \\
\hline & & PM & 0.49 & 0.46 & 15.1 & B & B \\
\hline
\end{tabular}

Notes: LOS = Level of Service; Density = Passenger cars per mile per lane ( \(\mathrm{pc} / \mathrm{mi} / \mathrm{ln}\) )
Red denotes interstate facilities that would result in failing operations and would produce a queue extending to the I-93 mainline.

Table 7-3. I-93 Exit 52040 Build Alternative A freeway analysis compared to the No Build condition
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Freeway Analysis} & \multirow[t]{2}{*}{Facility Type} & \multirow[t]{2}{*}{Time Period} & \multicolumn{2}{|l|}{Demand to Capacity Ratio} & \multirow[t]{2}{*}{Density (pc/mi/ln)} & \multirow[t]{2}{*}{Alt A LOS} & \multirow[t]{2}{*}{No Build LOS} \\
\hline & & & Freeway & Ramp & & & \\
\hline \multirow{2}{*}{I-93 Northbound to NH 28} & \multirow[b]{2}{*}{Diverge} & AM & 0.56 & 0.43 & 24.5 & C & C \\
\hline & & PM & 0.63 & 0.58 & 28.6 & D & C \\
\hline \multirow{2}{*}{NH 28 to I-93 Northbound} & \multirow[b]{2}{*}{Merge} & AM & 0.63 & 0.67 & 25.7 & C & C \\
\hline & & PM & 0.65 & 0.50 & 24.8 & C & C \\
\hline \multirow[t]{2}{*}{I-93 Southbound to NH 28} & \multirow[b]{2}{*}{Diverge} & AM & 0.62 & 0.41 & 24.2 & C & D \\
\hline & & PM & 0.62 & 0.42 & 24.0 & C & D \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Freeway Analysis} & \multirow[t]{2}{*}{Facility Type} & \multirow[t]{2}{*}{Time Period} & \multicolumn{2}{|l|}{Demand to Capacity Ratio} & \multirow[t]{2}{*}{Density (pc/mi/ln)} & \multirow[t]{2}{*}{Alt A LOS} & \multirow[t]{2}{*}{No Build LOS} \\
\hline & & & Freeway & Ramp & & & \\
\hline \multirow[t]{2}{*}{NH 28 to I-93 Southbound} & \multirow[b]{2}{*}{Merge} & AM & 0.67 & 0.52 & 21.2 & C & C \\
\hline & & PM & 0.63 & 0.44 & 19.5 & B & C \\
\hline
\end{tabular}

Notes: LOS = Level of Service; Density = Passenger cars per mile per lane (pc/mi/ln)
Table 7-4. I-93 Exit 4A 2040 Build Alternative A freeway analysis
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Freeway Analysis} & \multirow[t]{2}{*}{Facility Type} & \multirow[t]{2}{*}{Time Period} & \multicolumn{2}{|l|}{Demand to Capacity Ratio} & \multirow[t]{2}{*}{Density (pc/mi/ln)} & \multirow[t]{2}{*}{LOS} \\
\hline & & & Freeway & Ramp & & \\
\hline \multirow[t]{2}{*}{I-93 Northbound to Connector Roadway} & \multirow{2}{*}{Diverge} & AM & 0.49 & 0.48 & 20.2 & C \\
\hline & & PM & 0.56 & 0.41 & 24.3 & C \\
\hline \multirow[t]{2}{*}{Connector Roadway to I93 Northbound} & \multirow{2}{*}{Merge} & AM & 0.59 & 0.84 & 24.9 & C \\
\hline & & PM & 0.63 & 0.72 & 25.1 & C \\
\hline \multirow[t]{2}{*}{I-93 Southbound to Connector Roadway} & \multirow{2}{*}{Diverge} & AM & 0.65 & 0.53 & 16.3 & B \\
\hline & & PM & 0.61 & 0.45 & 13.2 & B \\
\hline \multirow[t]{2}{*}{Connector Roadway to I93 Southbound} & \multirow[b]{2}{*}{Merge} & AM & 0.61 & 0.60 & 0.00 & C \\
\hline & & PM & 0.55 & 0.51 & 21.4 & C \\
\hline
\end{tabular}

Notes: LOS = Level of Service; Density = Passenger cars per mile per lane (pc/mi/ln)

\subsection*{7.6 2040 Build Alternative B Intersection Operations Analysis}

Based on the Synchro \({ }^{\text {TM }}\) signalized intersection analysis results, three signalized intersections (Intersections \#5, \#6, and \#8) would operate at unacceptable conditions (LOS E or LOS F) during the AM or PM peak hours. The remaining signalized intersections in the traffic study area would operate at acceptable overall conditions (LOS D or better is considered an operating level) during the peak hours analyzed (weekday AM and PM peak hours).
Based on the Synchro \({ }^{\text {TM }}\) signalized intersection analysis results, eight of the study area signalized intersections have overall approaches that would operate at unacceptable conditions (LOS E or LOS F) during one or two evaluated periods. The following individual signalized intersection approaches in the traffic study area would operate under unacceptable conditions during peak hours:
- NH 28 at I-93 Southbound on and off-ramp (Exit 5) (Intersection \#2)
o I-93 Southbound off-ramp during the AM peak hour
- NH 28 at I-93 Northbound on and off-ramp (Exit 5) (Intersection \#3)
o I-93 Northbound off-ramp during the AM peak hour
- NH 102 at Gilcreast Road (Intersection \#5)
o Eastbound NH 102 during the AM and PM peak hours
o Westbound NH 102 during the PM peak hour
o Northbound Gilcreast Road during the AM and PM peak hours
o Southbound Gilcreast Road during the AM and PM peak hours
- NH 102 at Hampton Drive/Garden Lane (Intersection \#6)
o Eastbound NH 102 during the PM peak hour
o Westbound NH 102 during the PM peak hour
o Northbound Hampton Drive during the AM and PM peak hours
o Southbound Garden Lane during the AM and PM peak hours
- NH 102 at I-93 Southbound off-ramp (Exit 4) (Intersection \#7)
o I-93 Southbound off-ramp during the PM peak hour
- NH 102 at I-93 Northbound on and off-ramp (Exit 4) (Intersection \#8)
o Eastbound NH 102 during the PM peak hour
o I-93 Northbound off-ramp during the AM and PM peak hours
- Connector Roadway and I-93 Southbound on and off-ramp (Exit 4A) (Intersection \#11)
o I-93 Southbound off-ramp during the AM peak hour
- Connector Roadway and I-93 Northbound on and off-ramp (Exit 4A) (Intersection \#12)
o I-93 Northbound on-ramp during the AM and PM peak hours
The overall Alternative B intersection LOS grades are depicted in Figure 7-10 for AM and PM peak hours. Table 7-5 shows the comparison between Alternative B and No Build condition LOS capacity analysis and the intersection vehicle delay results during the AM and PM peak hours. Appendices G, H, and I contain the Synchro \({ }^{\mathrm{TM}}\) Build condition intersection analysis reports.

\subsection*{7.7 2040 Build Alternative B Queuing Analysis}

Based on the Synchro \({ }^{\text {TM }}\) signalized intersection analysis results, eight of the signalized intersections within the study area would experience queuing lengths that would exceed the available storage capacity. Intersections \#2, \#4, \#8, and \#9 would provide sufficient storage for the anticipated demand. The lane group in the approach that would operate under unacceptable conditions is noted in parentheses. Table 7-5 contains the queuing results. Appendices J, K, and L contain the Synchro \({ }^{\mathrm{TM}}\) Build condition intersection queuing reports.
- NH 28 at Symmes Drive/Vista Ridge Drive (Intersection \#1)
o Northbound Vista Ridge Drive (right turns) during the AM and the PM peak hours
o Southbound Symmes Drive (left turns, right turns, and through movements) during the PM peak hour
- NH 28 at I-93 Northbound on and off-ramp (Exit 5) (Intersection \#3)
o Eastbound NH 28 (left turns) during the AM and PM peak hours
- NH 102 at Gilcreast Road (Intersection \#5)
o Eastbound NH 102 (left turns) during the AM and PM peak hours
o Northbound Gilcreast Road (left turns) during the AM and PM peak hours
o Northbound Gilcreast Road (right turns) during the PM peak hour
o Southbound Gilcreast Road (left turns) during the AM peak hour
o Southbound Gilcreast Road (right turns and through movements) during the AM and PM peak hours
- NH 102 at Hampton Drive/Garden Lane (Intersection \#6)
o Eastbound NH 102 (left turns) during the AM and PM peak hours
o Eastbound NH 102 (right turns and through movements) during the AM peak hour
o Westbound NH 102 (right turns) during the AM and PM peak hours
o Northbound Hampton Dr. (right turns) during the AM and PM peak hours
o Southbound Garden Lane (all movements) during the AM and PM peak hours
- NH 102 at I-93 Southbound off-ramp (Exit 4) (Intersection \#7)
o I-93 Southbound off-ramp (all movements) during the AM and PM peak hours
- NH 102 at Fordway/Madden Hill Road (Intersection \#10)
o Eastbound NH 102 (right turns and through movements) during the PM peak hour
o Westbound NH 102 (all movements) during the AM and PM peak hours
- Connector Roadway and I-93 Southbound on and off-ramp (Exit 4A) (Intersection \#11)
o Westbound Connector Roadway (left turns) during the AM and PM peak hours
o I-93 Southbound off-ramp (left turns) during the AM peak hour
- Connector Roadway and I-93 Northbound on and off-ramp (Exit 4A) (Intersection \#12)
o Westbound Connector Roadway (right turns) during the AM and PM peak hours
o I-93 Northbound on-ramp (all movements) during the AM peak hour
The remaining signalized intersections in the traffic study area would provide sufficient storage for the anticipated demand. The lane group in the approach that would operate under unacceptable conditions is highlighted in red in Table 7-5, which contains a comparison between Alternative B and No Build condition queuing results.


2 Figure 7-10. 2040 Build Alternative B AM and PM peak hour LOS by intersection

Table 7-5. Comparison between Alternative B and No Build condition intersection capacity and queuing analyses
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Intersection \(\quad \begin{array}{r}\text { Lane } \\ \text { Groups }\end{array}\)} & \multicolumn{9}{|c|}{No Build Condition} & \multicolumn{9}{|c|}{Alternative B} \\
\hline & \begin{tabular}{l}
Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & \begin{tabular}{|c} 
\\
\\
\(95 \%\) \\
queue \\
(ft)
\end{tabular} & AM Pe

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & \[
\begin{gathered}
95 \% \\
\text { queue } \\
\text { (ft) }
\end{gathered}
\] & PM Pe

v/c
ratio & \begin{tabular}{l}
ak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{l}
Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & \[
\begin{gathered}
\text { A } \\
\text { 95\% } \\
\text { queue } \\
\text { (ft) }
\end{gathered}
\] & AM Pe

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & \[
\begin{gathered}
95 \% \\
\text { queue } \\
\text { (ft) }
\end{gathered}
\] & PM Pe

v/c
ratio & \begin{tabular}{l}
ak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS \\
\hline \#1 NH28 \& & 408 & 353 & 0.97 & 85.5 & F & 50 & 0.76 & 111.3 & F & 408 & 299 & 1.02 & 93.1 & F & 58 & 0.53 & 48.7 & D \\
\hline \begin{tabular}{l}
Symmes Dr/ \\
EB TR
\end{tabular} & 729 & 414 & 0.51 & 13.0 & B & 458 & 0.81 & 31.9 & C & 729 & 224 & 0.52 & 12.7 & B & 341 & 0.84 & 28.5 & C \\
\hline \begin{tabular}{l}
Vista Ridge Dr \\
EB Overall
\end{tabular} & & & & 30.8 & & & & 33.9 & C & & & & 32.4 & & & & 29.1 & C \\
\hline (Signalized) \({ }^{\text {a }}\) WB L & 450 & 40 & 0.55 & 71.3 & E & 154 & 0.81 & 74.0 & E & 450 & 34 & 0.94 & 231.9 & F & 136 & 0.83 & 67.1 & E \\
\hline WB Thru & 1,537 & 409 & 0.84 & 33.8 & C & 298 & 0.61 & 20.4 & C & 1,537 & 428 & 0.85 & 30.6 & C & 239 & 0.66 & 19.7 & B \\
\hline WB R & 500 & 137 & 0.08 & 19.5 & B & 31 & 0.04 & 14.0 & B & 500 & 96 & 0.07 & 17.5 & B & 36 & 0.03 & 13.3 & B \\
\hline WB Overall & & & & 32.9 & C & & & 26.2 & C & & & & 32.1 & C & & & 24.8 & C \\
\hline NB LT & 1,660 & 330 & 0.43 & 48.5 & D & 120 & 0.55 & 55.5 & E & 1,660 & 131 & 0.44 & 40.2 & D & 95 & 0.45 & 39.3 & D \\
\hline NB R & 10 & \#101 & 0.08 & 45.4 & D & \#79 & 0.02 & 49.0 & D & 10 & \#89 & 0.07 & 37.2 & D & \#70 & 0.02 & 35.8 & D \\
\hline NB Overall & & & & 46.5 & D & & & 53.3 & D & & & & 38.3 & D & & & 38.1 & D \\
\hline SBL & 270 & 181 & 0.93 & 110.8 & F & 267 & 0.84 & 63.6 & E & 270 & 121 & 0.82 & 71.2 & E & 225 & 0.91 & 67.8 & E \\
\hline SB LTR & 270 & 191 & 0.07 & 47.1 & D & \#368 & 0.39 & 42.0 & D & 270 & 121 & 0.07 & 37.5 & D & \#325 & 0.32 & 32.9 & C \\
\hline SB Overall & & & & 79.0 & E & & & 51.9 & D & & & & 54.5 & D & & & 48.5 & D \\
\hline Intersection Overall & & & 0.84 & 36.4 & D & & & 34.7 & C & & & 0.84 & 34.3 & C & & 0.81 & 31.1 & C \\
\hline
\end{tabular}

Table 7-5. Comparison between Alternative B and No Build condition intersection capacity and queuing analyses (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Intersection \(\quad \begin{array}{r}\text { Lane } \\ \text { Groups }\end{array}\)} & \multicolumn{9}{|c|}{No Build Condition} & \multicolumn{9}{|c|}{Alternative B} \\
\hline & \begin{tabular}{l}
Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & 95\% queue (ft) & AM Pe

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{l}
95\% queue \\
(ft)
\end{tabular} & PM Pe

v/c
ratio & \begin{tabular}{l}
ak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{|c|}
\hline Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & \[
\begin{gathered}
\text { A } \\
95 \% \\
\text { queue } \\
\text { (ft) }
\end{gathered}
\] & AM Pe

v/c
ratio & \begin{tabular}{l}
ak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{l}
95\% queue \\
(ft)
\end{tabular} & PM Pea

v/c
ratio & \begin{tabular}{l}
ak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS \\
\hline \#2 NH28 \& I-93 EB Thru & 1,537 & \#1904 & 0.97 & 73.6 & E & 1243 & 0.88 & 39.4 & D & 1,537 & 571 & 0.76 & 46.2 & D & 300 & 0.65 & 23.8 & C \\
\hline SB On and Off- & 350 & \#546 & 0.28 & 0.5 & A & \#463 & 0.29 & 0.5 & A & 350 & 284 & 0.32 & 0.6 & A & - & 0.31 & 0.5 & A \\
\hline \begin{tabular}{l}
Ramp (Exit 5) \\
EB Overall
\end{tabular} & & & & 51.1 & & & & 27.9 & C & & & & 28.9 & C & & & 15.7 & B \\
\hline \begin{tabular}{l}
(Signalized) \({ }^{\text {a }}\) \\
WB L
\end{tabular} & 592 & \#632 & 1.17 & 111.5 & F & 280 & 0.92 & 20.7 & C & 592 & 390 & 0.89 & 36.9 & D & 164 & 0.71 & 17.0 & B \\
\hline WB Thru & 592 & 101 & 0.44 & 1.8 & A & 59 & 0.32 & 0.2 & A & 592 & 91 & 0.50 & 2.7 & A & 79 & 0.34 & 0.3 & A \\
\hline WB Overall & & & & 42.9 & D & & & 6.4 & A & & & & 11.7 & B & & & 3.6 & A \\
\hline SB L & 502 & 492 & 0.72 & 44.8 & D & 406 & 0.92 & 48.2 & D & 502 & 91 & 0.14 & 31.9 & C & 93 & 0.23 & 26.8 & C \\
\hline SB R & 502 & \#526 & 1.35 & 217.5 & F & 109 & 0.89 & 52.5 & D & 502 & 268 & 0.93 & 67.0 & E & 35 & 0.79 & 41.4 & D \\
\hline SB Overall & & & & 131.6 & F & & & 49.9 & D & & & & 59.4 & E & & & 37.2 & D \\
\hline Intersection Overall & & & 1.17 & 77.0 & E & & 0.90 & 31.2 & C & & & 0.86 & 28.0 & C & & 0.70 & 16.9 & B \\
\hline \#3 NH28 \& I-93 EB L & 592 & \#729 & 1.11 & 67.9 & E & \#706 & 1.07 & 53.5 & D & 592 & \#756 & 1.04 & 52.6 & D & \#610 & 1.02 & 48.7 & D \\
\hline NB On and Off- & 592 & \#789 & 0.39 & 0.6 & A & 316 & 0.62 & 6.1 & A & 592 & 481 & 0.16 & 2.7 & A & 212 & 0.26 & 3.3 & A \\
\hline \begin{tabular}{l}
Ramp (Exit 5) \\
EB Overall
\end{tabular} & & & & 32.0 & C & & & 22.5 & C & & & & 35.7 & D & & & 26.6 & C \\
\hline (Signalized) \({ }^{\text {a }}\) ( WB Thru & 481 & \#580 & 1.05 & 104.5 & F & 217 & 0.91 & 61.7 & E & 481 & 301 & 1.00 & 89.2 & F & 131 & 0.66 & 38.3 & D \\
\hline WB R & 481 & 171 & 0.56 & 1.5 & A & - & 0.38 & 0.7 & A & - & - & 0.41 & 0.8 & A & - & 0.28 & 0.4 & A \\
\hline WB Overall & & & & 48.5 & D & & & 29.7 & C & & & & 44.0 & D & & & 19.6 & B \\
\hline NB L & 798 & 685 & 1.11 & 128.2 & F & 337 & 0.86 & 47.1 & D & 798 & 624 & 1.04 & 93.9 & F & 387 & 1.01 & 72.8 & E \\
\hline NB R & 798 & 349 & 0.23 & 39.9 & D & 213 & 1.08 & 98.8 & F & 798 & 86 & 0.20 & 31.4 & C & 27 & 0.73 & 33.9 & C \\
\hline NB Overall & & & & 101.9 & & & & 76.0 & E & & & & 77.0 & E & & & 52.4 & D \\
\hline Intersection Overall & & & 1.10 & 51.7 & D & & 1.04 & 37.7 & D & & & 1.03 & 50.2 & D & & 0.93 & 33.9 & C \\
\hline
\end{tabular}

Table 7-5. Comparison between Alternative B and No Build condition intersection capacity and queuing analyses (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Intersection \(\quad \begin{array}{r}\text { Lane } \\ \text { Groups }\end{array}\)} & \multicolumn{9}{|c|}{No Build Condition} & \multicolumn{9}{|c|}{Alternative B} \\
\hline & \begin{tabular}{l}
Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & \begin{tabular}{l}
95\% \\
queue \\
(ft)
\end{tabular} & AM Pe

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{l}
95\% queue \\
(ft)
\end{tabular} & PM Pe

v/c
ratio & \begin{tabular}{l}
ak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS & \[
\begin{array}{|l}
\text { Turning } \\
\text { Bay/ } \\
\text { Link } \\
\text { Length } \\
\text { (feet) }
\end{array}
\] & \[
\begin{gathered}
95 \% \\
\text { queue } \\
\text { (ft) }
\end{gathered}
\] & AM P

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS & 95\% queue (ft) & PM Pe

v/c
ratio & \begin{tabular}{l}
ak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS \\
\hline \#4 NH28 \& EBL & 225 & 79 & 0.51 & 42.4 & D & 50 & 0.49 & 30.6 & C & 225 & 46 & 0.54 & 40.2 & D & 32 & 0.60 & 42.3 & D \\
\hline Liberty Dr EB TR & 841 & 46 & 0.13 & 3.9 & A & 116 & 0.47 & 8.8 & A & 841 & 26 & 0.07 & 4.1 & A & 71 & 0.33 & 8.6 & A \\
\hline (Signalized) \({ }^{\text {a }}\) EB Overall & & & & 10.7 & B & & & 9.9 & A & & & & 10.6 & B & & & 10.2 & B \\
\hline WBL & 250 & 19 & 0.29 & 51.2 & D & 17 & 0.22 & 31.7 & C & 250 & 18 & 0.23 & 37.1 & D & 15 & 0.16 & 22.3 & C \\
\hline WB TR & 332 & 178 & 0.52 & 8.5 & A & 88 & 0.27 & 8.7 & A & 332 & 114 & 0.43 & 6.2 & A & 71 & 0.24 & 8.3 & A \\
\hline WB Overall & & & & 8.7 & A & & & 9.0 & A & & & & 6.4 & A & & & 8.5 & A \\
\hline NB L & 154 & 51 & 0.29 & 41.6 & D & 52 & 0.14 & 21.4 & C & 154 & 24 & 0.05 & 30.1 & C & 43 & 0.14 & 16.2 & B \\
\hline NB Overall & & & & 41.6 & D & & & 21.4 & C & & & & 30.1 & C & & & 16.2 & B \\
\hline SB LT & 100 & 29 & 0.15 & 40.6 & D & 38 & 0.17 & 21.6 & C & 100 & 22 & 0.10 & 30.6 & C & 26 & 0.10 & 16.0 & B \\
\hline SB R & 502 & 96 & 0.07 & 39.7 & D & 97 & 0.10 & 21.1 & C & 502 & 81 & 0.05 & 30.3 & C & 83 & 0.08 & 15.9 & B \\
\hline SB Overall & & & & 39.8 & D & & & 21.2 & C & & & & 30.4 & C & & & 15.9 & B \\
\hline Intersection Overall & & & 0.50 & 11.3 & B & & & 11.2 & B & & & 0.41 & 8.4 & A & & 0.30 & 10.5 & B \\
\hline
\end{tabular}

Table 7-5. Comparison between Alternative B and No Build condition intersection capacity and queuing analyses (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{9}{|c|}{No Build Condition} & \multicolumn{9}{|c|}{Alternative B} \\
\hline Intersection \(\quad \begin{array}{r}\text { Lane } \\ \text { Groups }\end{array}\) & \[
\left.\begin{array}{|c|}
\text { Turning } \\
\text { Bay/ } \\
\text { Link } \\
\text { Length } \\
\text { (feet) }
\end{array} \right\rvert\,
\] & A
\(95 \%\)
queue
(ft) & \begin{tabular}{l}
AM P \\
v/c ratio
\end{tabular} & \begin{tabular}{l}
eak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & \[
\begin{array}{r}
\mathrm{P} \\
95 \% \\
\text { queue } \\
(\mathrm{ft})
\end{array}
\] & \begin{tabular}{l}
PM Peak \\
v/c ratio
\end{tabular} & \begin{tabular}{l}
ak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{|c|}
\hline Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & \[
\begin{array}{|c}
\hline \mathrm{A} \\
\text { 95\% } \\
\text { queue } \\
\text { (ft) }
\end{array}
\] & AM Pe

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & \[
\begin{array}{|c}
95 \% \\
\text { queue } \\
(\mathrm{ft})
\end{array}
\] & PM Pea

v/c
ratio & \begin{tabular}{l}
ak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS \\
\hline \#5 NH102 \& EBL & 275 & 255 & 1.00 & 117.3 & F & \#345 & 1.24 & 193.4 & F & 275 & \#276 & 0.92 & 99.0 & F & \#338 & 1.21 & 191.8 & F \\
\hline Gilcreast Rd
EB RT & 852 & 373 & 1.10 & 88.9 & F & 386 & 0.81 & 35.9 & D & 852 & 373 & 1.04 & 71.3 & E & 373 & 0.65 & 31.5 & C \\
\hline (Signalized) \({ }^{\text {a }} \quad\) EB Overall & & & & 91.5 & F & & & 60.6 & E & & & & 74.4 & E & & & 60.9 & E \\
\hline WBL & 275 & 86 & 0.78 & 53.7 & D & 135 & 0.79 & 32.0 & C & 275 & 84 & 0.60 & 40.9 & D & 134 & 0.65 & 39.8 & D \\
\hline WB Thru & 669 & 150 & 0.97 & 33.7 & C & 266 & 1.27 & 134.1 & F & 669 & 142 & 0.88 & 21.4 & C & 201 & 1.13 & 73.4 & E \\
\hline WBR & 225 & 40 & 0.06 & 24.2 & C & 117 & 0.14 & 0.2 & A & 225 & 26 & 0.05 & 6.4 & A & 60 & 0.15 & 1.0 & A \\
\hline WB Overall & & & & 34.9 & C & & & 111.7 & F & & & & 22.2 & C & & & 64.4 & E \\
\hline NB LT & 488 & \#610 & 1.16 & 155.1 & F & \#567 & 1.29 & 200.5 & F & 488 & \#539 & 1.09 & 147.7 & F & \#600 & 1.18 & 176.6 & F \\
\hline NB R & 488 & \#598 & 0.63 & 47.0 & D & \#682 & 0.19 & 32.8 & C & 488 & 464 & 0.63 & 59.0 & E & \#586 & 0.19 & 42.0 & D \\
\hline NB Overall & & & & 100.5 & F & & & 144.8 & F & & & & 101.1 & F & & & 129.3 & F \\
\hline SB L & 356 & \#442 & 1.13 & 142.9 & F & 314 & 0.95 & 114.4 & F & 356 & \#431 & 1.07 & 133.8 & F & 273 & 1.00 & 152.9 & F \\
\hline SBT & 356 & \#483 & 0.53 & 47.3 & D & \#433 & 0.97 & 116.8 & F & 356 & \#478 & 0.43 & 56.2 & E & \#385 & 1.12 & 187.0 & F \\
\hline SB R & 225 & \#291 & 0.35 & 45.0 & D & \#303 & 0.55 & 49.0 & D & 225 & \#287 & 0.40 & 56.0 & E & \#250 & 1.03 & 128.0 & F \\
\hline SB Overall & & & & 87.6 & F & & & 83.2 & F & & & & 89.5 & F & & & 146.1 & F \\
\hline Intersection Overall & & & 1.14 & 76.3 & E & & 1.24 & 94.0 & F & & & 1.06 & 65.4 & E & & 1.15 & 78.4 & E \\
\hline
\end{tabular}

Table 7-5. Comparison between Alternative B and No Build condition intersection capacity and queuing analyses (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{9}{|c|}{No Build Condition} & \multicolumn{9}{|c|}{Alternative B} \\
\hline Intersection \(\quad \begin{array}{r}\text { Lane } \\ \text { Groups }\end{array}\) & \[
\begin{array}{|c|}
\hline \text { Turning } \\
\text { Bay/ } \\
\text { Link } \\
\text { Length } \\
\text { (feet) }
\end{array}
\] & A
95\%
queue
(ft) & \begin{tabular}{l}
AM P \\
v/c ratio
\end{tabular} & \begin{tabular}{l}
eak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS & \[
\begin{array}{|c}
\hline \mathrm{P} \\
\text { 95\% } \\
\text { queue } \\
\text { (ft) }
\end{array}
\] & PM Pe

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS & \[
\left.\begin{array}{|c|}
\text { Turning } \\
\text { Bay/ } \\
\text { Link } \\
\text { Length } \\
\text { (feet) }
\end{array} \right\rvert\,
\] & \[
\begin{array}{|c}
\hline \text { A } \\
\text { 95\% } \\
\text { queue } \\
(\mathrm{ft})
\end{array}
\] & AM Pe

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS & \[
\begin{array}{|c|}
\hline \mathrm{P} \\
95 \% \\
\text { queue } \\
\text { (ft) } \\
\hline
\end{array}
\] & PM Pea

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS \\
\hline \#6 NH102 \& EBL & 275 & 179 & 0.58 & 61.3 & E & 242 & 1.08 & 125.2 & F & 275 & \#282 & 0.74 & 84.8 & F & \#325 & 1.18 & 192.5 & F \\
\hline \begin{tabular}{l}
Hampton \\
EB TR
\end{tabular} & 669 & 615 & 1.00 & 14.9 & B & 239 & 0.76 & 18.9 & B & 669 & \#762 & 0.97 & 12.3 & B & 384 & 0.64 & 18.7 & B \\
\hline Dr/Garden Ln EB Overall & & & & 17.6 & B & & & 42.7 & D & & & & 20.9 & C & & & 70.4 & E \\
\hline \begin{tabular}{l}
(Signalized) \({ }^{\text {a }}\) \\
WB L
\end{tabular} & 275 & 62 & 0.47 & 62.2 & E & 182 & 0.61 & 51.4 & D & 275 & 72 & 0.47 & 78.8 & E & 198 & 0.60 & 67.7 & E \\
\hline WB Thru & 715 & 221 & 0.55 & 16.9 & B & 367 & 0.99 & 44.7 & D & 715 & 326 & 0.56 & 35.9 & D & 450 & 1.08 & 86.6 & F \\
\hline WB R & 275 & 133 & 0.22 & 20.4 & C & \#329 & 0.81 & 26.1 & C & 275 & \#314 & 0.55 & 31.6 & C & \#340 & 1.12 & 86.0 & F \\
\hline WB Overall & & & & 19.3 & B & & & 39.9 & D & & & & 35.6 & D & & & 85.4 & F \\
\hline NB LT & 630 & 78 & 0.28 & 56.2 & E & 175 & 0.77 & 84.4 & F & 630 & 95 & 0.29 & 72.6 & E & 196 & 0.76 & 104.3 & F \\
\hline NB R & 100 & \#110 & 0.11 & 47.0 & D & \#137 & 0.06 & 51.5 & D & 100 & \#115 & 0.06 & 61.3 & E & \#138 & 0.05 & 66.3 & E \\
\hline NB Overall & & & & 49.5 & D & & & 70.1 & E & & & & 64.4 & E & & & 87.7 & F \\
\hline SB L & 175 & \#258 & 0.91 & 92.2 & F & \#242 & 1.02 & 104.3 & F & 175 & \#249 & 0.86 & 79.6 & E & \#234 & 0.89 & 70.4 & E \\
\hline SB LT & 291 & \#374 0 & 0.93 & 96.9 & F & \#323 & 1.00 & 99.1 & F & 291 & \#352 & 0.84 & 76.9 & E & \#325 & 0.90 & 71.5 & E \\
\hline SB R & 175 & \#266 & 0.10 & 34.2 & C & \#210 & 0.79 & 59.4 & E & 175 & \#278 & 0.27 & 33.4 & C & \#215 & 0.89 & 70.8 & E \\
\hline SB Overall & & & & 77.5 & E & & & 84.5 & F & & & & 64.5 & E & & & 70.9 & E \\
\hline Intersection Overall & & & 0.92 & 24.9 & C & & 0.99 & 49.9 & D & & & 0.90 & 32.7 & C & & 1.10 & 78.1 & E \\
\hline
\end{tabular}

Table 7-5. Comparison between Alternative B and No Build condition intersection capacity and queuing analyses (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Intersection \(\quad \begin{array}{r}\text { Lane } \\ \text { Groups }\end{array}\)} & \multicolumn{9}{|c|}{No Build Condition} & \multicolumn{9}{|c|}{Alternative B} \\
\hline & \[
\begin{array}{|l|}
\hline \text { Turning } \\
\text { Bay/ } \\
\text { Link } \\
\text { Length } \\
\text { (feet) }
\end{array}
\] & \begin{tabular}{l}
95\% queue \\
(ft)
\end{tabular} & \[
\begin{gathered}
\mathrm{v} / \mathrm{c} \\
\text { ratio }
\end{gathered}
\] &  & LOS & \begin{tabular}{l}
95\% queue \\
(ft)
\end{tabular} & \begin{tabular}{l}
v/c \\
ratio
\end{tabular} &  & LOS & Turning
Bay/
Link
Length
(feet) & \begin{tabular}{l}
95\% \\
queu \\
(ft)
\end{tabular} & AM Pe

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{l}
95\% queue \\
(ft)
\end{tabular} & & \begin{tabular}{l}
Average \\
Delay (sec/veh)
\end{tabular} & LOS \\
\hline \multirow[t]{8}{*}{\begin{tabular}{|lr|}
\hline \#7 NH 102 \& & EB Thru \\
I-93 SB Off- & EB Overall \\
Ramp & WB Thru \\
(Exit 4) & WB Overall \\
(Signalized) \(^{\text {a }}\) & SB L \\
& \\
& \\
& SB R Overall \\
& \\
& Intersection Overall
\end{tabular}} & \multirow[t]{8}{*}{\begin{tabular}{l}
895
\[
1,057
\] \\
138 \\
138
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{aligned}
& 540 \\
& 193
\end{aligned}
\]} & \multirow[t]{2}{*}{1.06} & 53.2 & D & 565 & 1.12 & 87.4 & F & \multirow[t]{2}{*}{895} & \multirow[t]{2}{*}{760} & \multirow[t]{2}{*}{0.93} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline 25.8 \\
& 25.8
\end{aligned}
\]} & C & \multirow[t]{2}{*}{590} & \multirow[t]{2}{*}{0.86} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline 31.0 \\
& 31.0
\end{aligned}
\]} & C \\
\hline & & & & 53.2 & D & & & 87.4 & F & & & & & C & & & & C \\
\hline & & & 0.58 & 13.4 & B & 420 & 1.26 & 146.7 & F & 1,057 & 256 & 0.56 & 22.5 & C & 287 & 1.08 & 40.7 & D \\
\hline & & & & 13.4 & B & & & 146.7 & F & & & & 22.5 & C & & & 40.7 & D \\
\hline & & \#203 & 1.10 & 81.8 & F & \#205 & 1.20 & 116.3 & F & 138 & \#215 & 0.54 & 17.4 & B & \#219 & 0.46 & 25.3 & C \\
\hline & & \#167 & 0.84 & 21.4 & C & \#192 & 1.09 & 72.2 & E & 138 & \#238 & 0.94 & 35.4 & D & \#248 & 1.10 & 96.5 & F \\
\hline & & & & 50.8 & D & & & 91.7 & F & & & & 30.1 & C & & & 80.1 & F \\
\hline & & & 1.08 & 44.5 & D & & 1.22 & 106.4 & F & & & 0.93 & 26.8 & C & & 1.09 & 53.9 & D \\
\hline \#8 NH102 \& EBL & 550 & 529 & 1.11 & 85.6 & F & 475 & 1.20 & 127.6 & F & 550 & 468 & 1.01 & 50.8 & D & 486 & 1.19 & 124.3 & F \\
\hline I-93 NB On EB Thru & 1,057 & 238 & 0.37 & 5.7 & A & 357 & 0.69 & 21.2 & C & 1,057 & 112 & 0.10 & 8.9 & A & 257 & 0.26 & 8.1 & A \\
\hline and Off-Ramp EB Overall & & & & 50.9 & D & & & 69.9 & E & & & & 44.5 & D & & & 92.5 & F \\
\hline WB Thru & 1,462 & 767 & 1.07 & 82.8 & F & 266 & 0.77 & 51.8 & D & 1,462 & 612 & 0.95 & 74.3 & E & 201 & 0.56 & 60.3 & E \\
\hline WBR & 786 & \#1006 & 0.78 & 3.9 & A & 230 & 0.54 & 1.3 & A & 786 & 378 & 0.35 & 0.6 & A & 38 & 0.23 & 0.3 & A \\
\hline WB Overall & & & & 45.6 & D & & & 22.0 & C & & & & 46.4 & D & & & 29.4 & C \\
\hline NB L & 1,440 & 496 & 1.14 & 137.6 & F & 897 & 1.21 & 140.7 & F & 1,440 & 345 & 1.02 & 106.5 & F & 913 & 1.18 & 133.8 & F \\
\hline NB R & 1,440 & 231 & 1.08 & 122.3 & F & 937 & 1.26 & 163.5 & F & 1,440 & 179 & 0.63 & 61.2 & E & 995 & 0.81 & 44.6 & D \\
\hline NB Overall & & & & 130.9 & F & & & 151.2 & F & & & & 91.3 & F & & & 101.9 & F \\
\hline Intersection Overall & & & 1.10 & 61.4 & E & & 1.12 & 92.8 & F & & & 0.99 & 54.8 & D & & 1.06 & 88.0 & F \\
\hline
\end{tabular}

Table 7-5. Comparison between Alternative B and No Build condition intersection capacity and queuing analyses (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Intersection \(\quad \begin{array}{r}\text { Lane } \\ \text { Groups }\end{array}\)} & \multicolumn{9}{|c|}{No Build Condition} & \multicolumn{9}{|c|}{Alternative B} \\
\hline & \begin{tabular}{l}
Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & \[
\begin{gathered}
\text { A } \\
95 \% \\
\text { queue } \\
\text { (ft) }
\end{gathered}
\] & AM Pe
v/c
ratio & \begin{tabular}{l}
ak Hour \\
Average Delay (sec/veh)
\end{tabular} & & 95\% queue (ft) & PM Pe

v/c
ratio & \begin{tabular}{l}
ak Hour \\
Average Delay (sec/veh)
\end{tabular} & & \begin{tabular}{|c|}
\hline Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & \begin{tabular}{l}
95\% queue \\
(ft)
\end{tabular} & AM Pe

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{l}
95\% queue \\
(ft)
\end{tabular} & PM Pe

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS \\
\hline \#9 NH102 \& St EBL & 350 & 202 & 0.85 & 58.1 & E & \#422 & 1.31 & 176.0 & F & 350 & 70 & 0.41 & 32.3 & C & 154 & 0.65 & 31.3 & C \\
\hline \begin{tabular}{l}
Charles St/ \\
EB TR
\end{tabular} & 1,462 & 63 & 0.27 & 2.7 & A & 853 & 0.49 & 3.5 & A & 1,462 & 56 & 0.18 & 3.3 & A & 165 & 0.46 & 7.2 & A \\
\hline Londonderry Rd EB Overall & & & & 17.4 & B & & & 77.9 & E & & & & 7.0 & A & & & 11.5 & B \\
\hline \begin{tabular}{l}
(Signalized) \({ }^{\text {a }}\) \\
WBL
\end{tabular} & 100 & 44 & 0.31 & 59.1 & E & 25 & 0.31 & 59.4 & E & 100 & 26 & 0.26 & 42.0 & D & 23 & 0.26 & 43.7 & D \\
\hline WB TR & 410 & 320 & 0.87 & 19.0 & B & 324 & 1.01 & 59.5 & E & 410 & 180 & 0.51 & 7.0 & A & 205 & 0.49 & 14.8 & B \\
\hline WB Overall & & & & 19.1 & B & & & 59.5 & E & & & & 7.2 & A & & & 15.0 & B \\
\hline NB LTR & - & - & - & - & - & - & - & - & - & 400 & 7 & 0.12 & 35.8 & D & 43 & 0.06 & 29.6 & C \\
\hline NB Overall & & & & 0.0 & A & & & 0.0 & A & & & & 35.8 & D & & & 29.6 & C \\
\hline SB LT & 780 & 70 & 0.23 & 53.2 & D & 22 & 0.21 & 52.4 & D & 780 & 31 & 0.32 & 39.8 & D & 94 & 0.55 & 34.8 & C \\
\hline SB R & 225 & 194 & 0.17 & 7.8 & A & 141 & 0.20 & 22.2 & C & 225 & 83 & 0.10 & 5.0 & A & 60 & 0.08 & 11.9 & B \\
\hline SB Overall & & & & 8.7 & A & & & 22.6 & C & & & & 7.2 & A & & & 21.4 & C \\
\hline Intersection Overall & & & 0.85 & 17.7 & B & & 1.16 & 67.5 & E & & & 0.48 & 7.2 & A & & 0.54 & 14.2 & B \\
\hline \#10 NH102 \& EB TR & 455 & 332 & 0.73 & 17.0 & B & \#734 & 1.05 & 55.2 & E & 455 & 289 & 0.64 & 17.1 & B & \#529 & 0.92 & 29.3 & C \\
\hline Fordway/ EB Overall & & & & 17.0 & B & & & 55.2 & E & & & & 17.1 & B & & & 29.3 & C \\
\hline Madden Hill Rd WB LT & 165 & \#519 & 0.91 & 29.2 & C & \#535 & 0.71 & 12.2 & B & 165 & \#418 & 0.78 & 21.5 & C & \#355 & 0.49 & 11.3 & B \\
\hline (Signalized) \(^{\text {a }}\) WB Overall & & & & 29.2 & C & & & 12.2 & B & & & & 21.5 & C & & & 11.3 & B \\
\hline NB LR & 375 & 298 & 0.94 & 60.4 & E & 277 & 1.02 & 96.3 & F & 375 & 266 & 0.84 & 34.7 & C & 254 & 0.90 & 54.2 & D \\
\hline NB Overall & & & & 60.4 & E & & & 96.3 & F & & & & 34.7 & C & & & 54.2 & D \\
\hline SB LTR & 120 & 40 & 0.05 & 21.8 & C & 61 & 0.16 & 30.2 & C & 120 & 70 & 0.16 & 16.2 & B & 110 & 0.36 & 24.6 & C \\
\hline SB Overall & & & & 21.8 & C & & & 30.2 & C & & & & 16.2 & B & & & 24.6 & C \\
\hline Intersection Overall & & & 0.92 & 30.8 & C & & 1.04 & 47.3 & D & & & 0.80 & 23.0 & C & & 0.91 & 29.1 & C \\
\hline
\end{tabular}


Notes:
\# 95th percentile volume exceeds capacity, queue may be longer.
EB = Eastbound, WB = Westbound, NB= Northbound, SB = Southbound
LOS = Level of Service
LTR \(=\) left \(/\) through \(/\) right lanes
V/C = Volume-to-Capacity ratio
Delay is Measured in Seconds Per Vehicle.
Red cells denote intersections or approaches operating at unacceptable conditions or denote approaches and lane groups whose queuing length exceeds capacity
Table 7-5. Comparison between Alternative B and No Build condition intersection capacity and queuing analyses (continued)
\({ }^{\text {a }}\) Highway Capacity Manual 2000 results (Signalized intersections)

\subsection*{7.82040 Build Alternative B Freeway Operations Analysis}

Based on the analysis performed using HCS, all freeway facilities would operate below capacity. The one failing freeway facility under the No Build condition would improve to LOS C. This includes the I-93 SB off-ramp to NH 102. The NH 102 on-ramp to I-93 NB would operate above capacity potentially creating a queue into the NH 102 mainline. Table 7-6 contains the Exit 4 Alternative B freeway analysis compared to the No Build condition, and Table 7-7 contains the Exit 5 Alternative B freeway analysis compared to the No Build condition. Table 7-8 contains the Exit 4A Alternative B freeway analysis. Appendix M contains the Build condition HCS freeway operation reports.

Table 7-6. I-93 Exit 42040 Build Alternative B freeway analysis compared to the No Build condition
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Freeway Analysis} & \multirow[b]{2}{*}{Facility Type} & \multirow[b]{2}{*}{Time Period} & \multicolumn{2}{|l|}{Demand to Capacity Ratio} & \multirow[b]{2}{*}{Density (pc/mi/ln)} & \multirow[b]{2}{*}{Alt B LOS} & \multirow[t]{2}{*}{No Build LOS} \\
\hline & & & Freeway & Ramp & & & \\
\hline \multirow[t]{2}{*}{I-93 Northbound to NH 102} & \multirow[b]{2}{*}{Diverge} & AM & 0.38 & 0.23 & 0.0 & A & A \\
\hline & & PM & 0.66 & 0.67 & 14.5 & B & B \\
\hline \multirow[t]{2}{*}{NH 102 to I-93 Northbound} & \multirow[b]{2}{*}{Merge} & AM & 0.53 & \(1.03{ }^{\text {a }}\) & 20.8 & C & C \\
\hline & & PM & 0.60 & 0.81 & 21.9 & C & C \\
\hline \multirow[t]{2}{*}{I-93 Southbound to NH 102} & \multirow[b]{2}{*}{Diverge} & AM & 0.58 & 0.81 & 26.1 & C & C \\
\hline & & PM & 0.55 & 0.98 & 27.5 & C & F \\
\hline \multirow[t]{2}{*}{NH 102 Westbound to I93 Southbound} & \multirow[b]{2}{*}{Merge} & AM & 0.50 & 0.39 & 14.2 & B & B \\
\hline & & PM & 0.40 & 0.18 & 9.4 & A & B \\
\hline \multirow[t]{2}{*}{NH 102 Eastbound to I-93 Southbound} & \multirow[b]{2}{*}{Merge} & AM & 0.69 & 0.92 & 25.6 & C & C \\
\hline & & PM & 0.49 & 0.45 & 15.1 & B & B \\
\hline
\end{tabular}

Notes: LOS = Level of Service; Density = Passenger cars per mile per lane (pc/mi/ln)
Red denotes interstate facilities that would result in failing operations and would produce a queue extending to the l-93 mainline.
a The capacity of the on-ramp exceeds the demand; therefore, the ramp would produce a queue extending to NH 102.

Table 7-7. I-93 Exit 52040 Build Alternative B freeway analysis compared to the No Build condition
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Freeway Analysis} & \multirow[b]{2}{*}{Facility Type} & \multirow[b]{2}{*}{Time Period} & \multicolumn{2}{|l|}{Demand to Capacity Ratio} & \multirow[b]{2}{*}{Density (pc/mi/ln)} & \multirow[b]{2}{*}{Alt B LOS} & \multirow[t]{2}{*}{No Build LOS} \\
\hline & & & Freeway & Ramp & & & \\
\hline \multirow{2}{*}{I-93 Northbound to NH 28} & \multirow[b]{2}{*}{Diverge} & AM & 0.56 & 0.41 & 23.6 & C & C \\
\hline & & PM & 0.63 & 0.54 & 28.2 & D & C \\
\hline \multirow{2}{*}{NH 28 to I-93 Northbound} & \multirow{2}{*}{Merge} & AM & 0.64 & 0.65 & 24.4 & C & C \\
\hline & & PM & 0.65 & 0.48 & 24.6 & C & C \\
\hline \multirow[t]{2}{*}{I-93 Southbound to NH
\[
28
\]} & \multirow{2}{*}{Diverge} & AM & 0.63 & 0.32 & 23.5 & C & D \\
\hline & & PM & 0.62 & 0.33 & 23.2 & C & D \\
\hline \multirow[t]{2}{*}{NH 28 to I-93 Southbound} & \multirow[b]{2}{*}{Merge} & AM & 0.66 & 0.40 & 20.0 & B & C \\
\hline & & PM & 0.63 & 0.34 & 18.6 & B & C \\
\hline
\end{tabular}

Notes: LOS = Level of Service; Density = Passenger cars per mile per lane ( \(\mathrm{pc} / \mathrm{mi} / \mathrm{ln}\) )
Table 7-8. I-93 Exit 4A 2040 Build Alternative B freeway analysis
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Freeway Analysis} & \multirow[b]{2}{*}{Facility Type} & \multirow[b]{2}{*}{Time Period} & \multicolumn{2}{|l|}{Demand to Capacity Ratio} & \multirow[b]{2}{*}{Density (pc/mi/ln)} & \multirow[b]{2}{*}{LOS} \\
\hline & & & Freeway & Ramp & & \\
\hline \multirow[t]{2}{*}{I-93 Northbound to Connector Roadway} & \multirow[b]{2}{*}{Diverge} & AM & 0.52 & 0.52 & 23.2 & C \\
\hline & & PM & 0.59 & 0.44 & 23.2 & C \\
\hline \multirow[t]{2}{*}{Connector Roadway to I93 Northbound} & \multirow[b]{2}{*}{Merge} & AM & 0.59 & 0.73 & 22.7 & C \\
\hline & & PM & 0.63 & 0.62 & 24.1 & C \\
\hline \multirow[t]{2}{*}{I-93 Southbound to Connector Roadway} & \multirow[b]{2}{*}{Diverge} & AM & 0.65 & 0.55 & 16.6 & B \\
\hline & & PM & 0.62 & 0.46 & 13.5 & B \\
\hline \multirow[t]{2}{*}{Connector Roadway to I93 Southbound} & \multirow[b]{2}{*}{Merge} & AM & 0.60 & 0.70 & 24.7 & C \\
\hline & & PM & 0.57 & 0.58 & 22.5 & C \\
\hline
\end{tabular}

Notes: LOS = Level of Service; Density = Passenger cars per mile per lane ( \(\mathrm{pc} / \mathrm{mi} / \mathrm{ln}\) )

\subsection*{7.9 2040 Build Alternative C Intersection Operations Analysis}

Based on the Synchro \({ }^{\mathrm{TM}}\) signalized intersection analysis results, three signalized intersections (Intersections \#5, \#7, and \#8) would operate at unacceptable conditions (LOS E or LOS F) during the AM or PM peak hours. The remaining signalized intersections in the traffic study area would operate at acceptable overall conditions (LOS D or better is considered an operating level) during the peak hours analyzed (weekday AM and PM peak hours).
Based on the Synchro \({ }^{\text {TM }}\) signalized intersection analysis results, six study area signalized intersections have overall approaches that would operate at unacceptable conditions (LOS E or LOS F) during one or two evaluated periods. The following are the individual signalized
intersection approaches in the traffic study area that would operate under unacceptable conditions during peak hours:
- NH 28 at I-93 Northbound on and off-ramp (Exit 5) (Intersection \#3)
o I-93 Northbound off-ramp during the AM peak hour
- NH 102 at Gilcreast Road (Intersection \#5)
o Eastbound NH 102 during the AM and PM peak hours
o Westbound NH 102 during the PM peak hour
o Northbound Gilcreast Road during the AM and PM peak hours
o Southbound NH 102 during the AM and PM peak hours
- NH 102 at Hampton Drive/Garden Lane (Intersection \#6)
o Northbound Hampton Drive during the AM and PM peak hours
o Southbound Garden Lane during the AM and PM peak hours
- NH 102 at I-93 Southbound off-ramp (Exit 4) (Intersection \#7)
o I-93 Southbound off-ramp during the PM peak hour
- NH 102 at I-93 Northbound on and off-ramp (Exit 4) (Intersection \#8)
o Eastbound NH 102 during the PM peak hour
o Westbound NH 102 during the AM peak hour
o I-93 Northbound off-ramp during the AM and PM peak hours
- NH 102 at Fordway/Madden Hill Road (Intersection \#10)
o Northbound Fordway during the PM peak hour
The overall Alternative C intersection LOS grades are depicted in Figure 7-11 for AM and PM peak hours. Table 7-9 shows the comparison between Alternative C and No Build condition LOS capacity analysis and the intersection vehicle delay results during the AM and PM peak hours. Appendices G, H, and I contain the Synchro \({ }^{\mathrm{TM}}\) Build condition intersection analysis reports.

\subsection*{7.10 2040 Build Alternative C Queuing Analysis}

Based on the Synchro \({ }^{\mathrm{TM}}\) signalized intersection analysis results, seven signalized intersections within the study area, would experience queuing lengths that would exceed the available storage capacity. Intersections \#2, \#4, \#8, \#9, and \#11 would provide sufficient storage for the anticipated demand. The lane group in the approach that would operate under unacceptable conditions is noted in parentheses. Table 7-9 contains the queuing results. Appendices J, K, and L contain the Synchro \({ }^{\mathrm{TM}}\) Build condition intersection queuing reports.
- NH 28 at Symmes Drive/Vista Ridge Drive (Intersection \#1)
o Northbound Vista Ridge Drive (right turns) during the AM and the PM peak hours
- NH 28 at I-93 Northbound on and off-ramp (Exit 5) (Intersection \#3)
o Eastbound NH 28 (left turns) during the AM peak hour
- NH 102 at Gilcreast Road (Intersection \#5)
o Eastbound NH 102 (left turns) during the PM peak hour
o Northbound Gilcreast Road (all movements) during the AM and PM peak hours
o Southbound Gilcreast Road (all movements) during the AM and PM peak hours
- NH 102 at Hampton Drive/Garden Lane (Intersection \#6)
o Eastbound NH 102 (left turns) during the PM peak hour
o Eastbound NH 102 (right turns and through movements) during the AM peak hour
o Westbound NH 102 (right turns) during the PM peak hour
o Northbound Hampton Drive (right turns) during the AM and PM peak hours
o Southbound Garden Lane (all movements) during the AM and PM peak hours
- NH 102 at I-93 Southbound off-ramp (Exit 4) (Intersection \#7)
o I-93 Southbound off-ramp (right turns) during the AM ad PM peak hours
- NH 102 at Fordway/Madden Hill Road (Intersection \#10)
o Eastbound NH 102 (all movements) during the PM peak hour
o Westbound NH 102 (all movements) during the AM and PM peak hours
- Connector Roadway and I-93 Northbound on and off-ramp (Exit 4A) (Intersection \#12)
o Westbound Connector Roadway (right turns) during the AM and PM peak hours The remaining signalized intersections in the traffic study area would provide sufficient storage for the anticipated demand. The lane group in the approach that would operate under unacceptable conditions is highlighted in red in Table 7-9, which contains a comparison between Alternative C and No Build condition queuing results.


2 Figure 7-11. 2040 Build Alternative C AM and PM peak hour LOS by intersection

Table 7-9. Comparison between Alternative \(C\) and No Build condition intersection capacity and queuing analyses
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Intersection Groups} & \multicolumn{9}{|c|}{No Build Condition} & \multicolumn{9}{|c|}{Alternative C} \\
\hline & \begin{tabular}{l}
Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & \[
\begin{gathered}
\text { A } \\
95 \% \\
\text { queue } \\
\text { (ft) }
\end{gathered}
\] & AM Pe

v/c
ratio & \begin{tabular}{l}
ak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & \[
\begin{gathered}
95 \% \\
\text { queue } \\
(\mathrm{ft})
\end{gathered}
\] & PM Pe

v/c
ratio & \begin{tabular}{l}
ak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{l}
Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & \[
\begin{gathered}
\text { A } \\
95 \% \\
\text { queue } \\
\text { (ft) }
\end{gathered}
\] & AM Pe

v/c
ratio & \begin{tabular}{l}
ak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{l}
95\% queue \\
(ft)
\end{tabular} & PM Pe

v/c
ratio & \begin{tabular}{l}
ak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS \\
\hline \#1 NH28 \& EBL & 408 & 353 & 0.97 & 85.5 & F & 50 & 0.76 & 111.3 & F & 408 & 270 & 0.95 & 75.0 & E & 48 & 0.53 & 48.6 & D \\
\hline Symmes Dr/ EB TR & 729 & 414 & 0.51 & 13.0 & B & 458 & 0.81 & 31.9 & C & 729 & 208 & 0.49 & 12.3 & B & 280 & 0.77 & 25.6 & C \\
\hline Vista Ridge Dr EB Overall & & & & 30.8 & C & & & 33.9 & C & & & & 27.6 & C & & & 26.3 & C \\
\hline (Signalized) \({ }^{\text {a }}\) WB L & 450 & 40 & 0.55 & 71.3 & E & 154 & 0.81 & 74.0 & E & 450 & 29 & 0.88 & 203.0 & F & 130 & 0.81 & 61.5 & E \\
\hline WB Thru & 1,537 & 409 & 0.84 & 33.8 & C & 298 & 0.61 & 20.4 & C & 1,537 & 356 & 0.83 & 29.4 & C & 241 & 0.64 & 19.1 & B \\
\hline WB R & 500 & 137 & 0.08 & 19.5 & B & 31 & 0.04 & 14.0 & B & 500 & 84 & 0.07 & 17.4 & B & 45 & 0.03 & 13.1 & B \\
\hline WB Overall & & & & 32.9 & C & & & 26.2 & C & & & & 30.5 & C & & & 23.6 & C \\
\hline NB LT & 1,660 & 330 & 0.43 & 48.5 & D & 120 & 0.55 & 55.5 & E & 1,660 & 130 & 0.43 & 40.1 & D & 90 & 0.45 & 38.8 & D \\
\hline NB R & 10 & \#101 & 0.08 & 45.4 & D & \#79 & 0.02 & 49.0 & D & 10 & \#90 & 0.07 & 37.2 & D & \#63 & 0.02 & 35.5 & D \\
\hline NB Overall & & & & 46.5 & D & & & 53.3 & D & & & & 38.3 & D & & & 37.8 & D \\
\hline SBL & 270 & 181 & 0.93 & 110.8 & F & 267 & 0.84 & 63.6 & E & 270 & 108 & 0.77 & 62.3 & E & 175 & 0.84 & 55.6 & E \\
\hline SB LTR & 270 & 191 & 0.07 & 47.1 & D & \#368 & 0.39 & 42.0 & D & 270 & 114 & 0.06 & 37.4 & D & 267 & 0.31 & 32.6 & C \\
\hline SB Overall & & & & 79.0 & E & & & 51.9 & D & & & & 49.9 & D & & & 42.5 & D \\
\hline Intersection Overall & & & 0.84 & 36.4 & D & & 0.79 & 34.7 & C & & & 0.81 & 31.2 & C & & 0.76 & 28.4 & C \\
\hline
\end{tabular}

Table 7-9. Comparison between Alternative C and No Build condition intersection capacity and queuing analyses (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Intersection \(\quad \begin{array}{r}\text { Lane } \\ \text { Groups }\end{array}\)} & \multicolumn{9}{|c|}{No Build Condition} & \multicolumn{9}{|c|}{Alternative C} \\
\hline & \begin{tabular}{l}
Turning \\
Bay/ Link Length (feet)
\end{tabular} & \begin{tabular}{|c} 
\\
\\
\begin{tabular}{c} 
A \\
queue \\
(ft)
\end{tabular} \\
\hline
\end{tabular} & AM Pe
v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & \[
\begin{array}{|c|}
\hline \mathrm{P} \\
95 \% \\
\text { queue } \\
\text { (ft) } \\
\hline
\end{array}
\] & PM Pe

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{l}
Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & AM
95\%
queue
\((\mathrm{ft})\) & AM Pe

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & 95\% queue (ft) & PM Pe

v/c
ratio & \begin{tabular}{l}
ak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS \\
\hline \multirow[t]{10}{*}{\begin{tabular}{lr} 
\#2 NH 28 \& I-93 SB & EB Thru \\
On and Off- & EB R \\
Ramp (Exit 5) & EB Overall \\
(Signalized) \(^{\text {a }}\) & WB L \\
& WB Thru \\
& WB Overall \\
& SB L \\
& SB R \\
& SB Overall \\
& Intersection Overall
\end{tabular}} & 1,537 & \#1904 & 0.97 & 73.6 & E & 1243 & 0.88 & 39.4 & D & 1,537 & 492 & 0.69 & 39.0 & D & 244 & 0.53 & 21.9 & C \\
\hline & 350 & \#546 & 0.28 & 0.5 & A & \#463 & 0.29 & 0.5 & A & 350 & 224 & 0.36 & 0.7 & A & 57 & 0.35 & 0.6 & A \\
\hline & & & & 51.1 & D & & & 27.9 & C & & & & 21.8 & C & & & 12.9 & B \\
\hline & 592 & \#632 & 1.17 & 111.5 & F & 280 & 0.92 & 20.7 & C & 592 & 327 & 0.89 & 32.5 & C & 167 & 0.69 & 17.3 & B \\
\hline & 592 & 101 & 0.44 & 1.8 & A & 59 & 0.32 & 0.2 & A & 592 & 75 & 0.50 & 1.7 & A & 91 & 0.33 & 0.4 & A \\
\hline & & & & 42.9 & D & & & 6.4 & A & & & & 10.3 & B & & & 3.9 & A \\
\hline & 502 & 492 & 0.72 & 44.8 & D & 406 & 0.92 & 48.2 & D & 502 & 75 & 0.15 & 28.7 & C & 108 & 0.24 & 27.7 & C \\
\hline & 502 & \#526 & 1.35 & 217.5 & F & 109 & 0.89 & 52.5 & D & 502 & 170 & 0.91 & 59.9 & E & - & 0.74 & 38.8 & D \\
\hline & & & & 131.6 & F & & & 49.9 & D & & & & 52.9 & D & & & 35.3 & D \\
\hline & & & 1.17 & 77.0 & E & & 0.90 & 31.2 & C & & & 0.83 & 22.9 & C & & 0.62 & 15.0 & B \\
\hline \#3 NH28 \& I-93 EBL & 592 & \#729 & 1.11 & 67.9 & E & \#706 & 1.07 & 53.5 & D & 592 & \#661 & 1.03 & 50.8 & D & 508 & 0.91 & 27.2 & C \\
\hline NB On and Off- EB Thru & 592 & \#789 & 0.39 & 0.6 & A & 316 & 0.62 & 6.1 & A & 592 & 321 & 0.12 & 1.6 & A & 106 & 0.21 & 3.6 & A \\
\hline \begin{tabular}{l}
Ramp (Exit 5) \\
EB Overall
\end{tabular} & & & & 32.0 & C & & & 22.5 & C & & & & 36.3 & D & & & 16.3 & B \\
\hline (Signalized) \({ }^{\text {a }}\) ( WB Thru & 481 & \#580 & 1.05 & 104.5 & F & 217 & 0.91 & 61.7 & E & 481 & 302 & 0.96 & 69.8 & E & 140 & 0.75 & 41.8 & D \\
\hline WB R & 481 & 171 & 0.56 & 1.5 & A & - & 0.38 & 0.7 & A & - & - & 0.25 & 0.4 & A & - & 0.16 & 0.2 & A \\
\hline WB Overall & & & & 48.5 & D & & & 29.7 & C & & & & 44.6 & D & & & 27.8 & C \\
\hline NB L & 798 & 685 & 1.11 & 128.2 & F & 337 & 0.86 & 47.1 & D & 798 & 493 & 1.04 & 88.9 & F & 303 & 0.91 & 49.0 & D \\
\hline NB R & 798 & 349 & 0.23 & 39.9 & D & 213 & 1.08 & 98.8 & F & 798 & 65 & 0.14 & 27.6 & C & 41 & 0.56 & 27.3 & C \\
\hline NB Overall & & & & 101.9 & F & & & 76.0 & E & & & & 71.9 & E & & & 37.4 & D \\
\hline Intersection Overall & & & 1.10 & 51.7 & D & & 1.04 & 37.7 & D & & & 1.02 & 49.9 & D & & 0.87 & 27.7 & C \\
\hline
\end{tabular}

Table 7-9. Comparison between Alternative C and No build condition intersection capacity and queuing analyses (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{9}{|c|}{No Build Condition} & \multicolumn{9}{|c|}{Alternative C} \\
\hline Intersection \(\quad \begin{array}{r}\text { Lane } \\ \text { Groups }\end{array}\) & \begin{tabular}{|l}
\hline Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & \[
\begin{gathered}
\text { A } \\
95 \% \\
9 \text { queue } \\
\text { que } \\
\text { (ft) }
\end{gathered}
\] & AM Pe

v/c
ratio & \begin{tabular}{l}
ak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & 95\% queue (ft) & PM Pe

v/c
ratio & \begin{tabular}{l}
ak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{l}
Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & \[
95 \%
\] queue (ft) & AM Pe

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{l}
95\% queue \\
(ft)
\end{tabular} & PM Pea

v/c
ratio & \begin{tabular}{l}
ak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS \\
\hline \#4 NH28 \& Liberty EB L & 225 & 79 & 0.51 & 42.4 & D & 50 & 0.49 & 30.6 & C & 225 & 39 & 0.42 & 31.8 & C & 32 & 0.51 & 30.6 & C \\
\hline Dr (Signalized) \({ }^{\text {a }}\) EB TR & 841 & 46 & 0.13 & 3.9 & A & 116 & 0.47 & 8.8 & A & 841 & 20 & 0.06 & 4.5 & A & 58 & 0.29 & 8.4 & A \\
\hline EB Overall & & & & 10.7 & B & & & 9.9 & A & & & & 9.4 & A & & & 9.5 & A \\
\hline WB L & 250 & 19 & 0.29 & 51.2 & D & 17 & 0.22 & 31.7 & C & 250 & 21 & 0.23 & 33.1 & C & 13 & 0.16 & 22.2 & C \\
\hline WB TR & 332 & 178 & 0.52 & 8.5 & A & 88 & 0.27 & 8.7 & A & 332 & 87 & 0.38 & 6.5 & A & 50 & 0.20 & 8.1 & A \\
\hline WB Overall & & & & 8.7 & A & & & 9.0 & A & & & & 6.7 & A & & & 8.4 & A \\
\hline NB L & 154 & 51 & 0.29 & 41.6 & D & 52 & 0.14 & 21.4 & C & 154 & 17 & 0.04 & 26.1 & C & 42 & 0.14 & 16.2 & B \\
\hline NB Overall & & & & 41.6 & D & & & 21.4 & C & & & & 26.1 & C & & & 16.2 & B \\
\hline SB LT & 100 & 29 & 0.15 & 40.6 & D & 38 & 0.17 & 21.6 & C & 100 & 21 & 0.07 & 26.4 & C & 22 & 0.09 & 16.0 & B \\
\hline SBR & 502 & 96 & 0.07 & 39.7 & D & 97 & 0.10 & 21.1 & C & 502 & 75 & 0.05 & 26.2 & C & 67 & 0.06 & 15.8 & B \\
\hline SB Overall & & & & 39.8 & D & & & 21.2 & C & & & & 26.2 & C & & & 15.8 & B \\
\hline Intersection Overall & & & 0.50 & 11.3 & B & & 0.43 & 11.2 & B & & & 0.36 & 8.2 & A & & 0.27 & 10.1 & B \\
\hline
\end{tabular}

Table 7-9. Comparison between Alternative C and No Build condition intersection capacity and queuing analyses (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Intersection \(\quad \begin{array}{r}\text { Lane } \\ \text { Groups }\end{array}\)} & \multicolumn{9}{|c|}{No Build Condition} & \multicolumn{9}{|c|}{Alternative C} \\
\hline & \begin{tabular}{l}
Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & \begin{tabular}{l}
95\% \\
queue \\
(ft)
\end{tabular} & AM P

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{l}
95\% \\
queue \\
(ft)
\end{tabular} & \begin{tabular}{l}
PM P \\
v/c \\
ratio
\end{tabular} & \begin{tabular}{l}
eak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{|c} 
Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & \begin{tabular}{l}
95\% \\
queue \\
(ft)
\end{tabular} & AM Pe

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{l}
95\% queue \\
(ft)
\end{tabular} & PM Pe

v/c
ratio
cher & \begin{tabular}{l}
ak Hour \\
Average \\
Delay \\
(sec/veh)
\end{tabular} & LOS \\
\hline \#5 NH102 \& EBL & 275 & 255 & 1.00 & 117.3 & F & \#345 & 1.24 & 193.4 & F & 275 & 262 & 1.02 & 134.8 & F & \#338 & 1.26 & 207.4 & F \\
\hline Gilcreast Rd EB RT & 852 & 373 & 1.10 & 88.9 & F & 386 & 0.81 & 35.9 & D & 852 & 390 & 1.08 & 91.7 & F & 387 & 0.78 & 37.5 & D \\
\hline (Signalized) \({ }^{\text {a }}\) EB Overall & & & & 91.5 & F & & & 60.6 & E & & & & 95.7 & F & & & 65.0 & E \\
\hline WBL & 275 & 86 & 0.78 & 53.7 & D & 135 & 0.79 & 32.0 & C & 275 & 104 & 0.82 & 62.3 & E & 133 & 0.80 & 38.2 & D \\
\hline WB Thru & 669 & 150 & 0.97 & 33.7 & C & 266 & 1.27 & 134.1 & F & 669 & 156 & 1.05 & 51.7 & D & 261 & 1.26 & 131.6 & F \\
\hline WB R & 225 & 40 & 0.06 & 24.2 & C & 117 & 0.14 & 0.2 & A & 225 & 63 & 0.07 & 1.0 & A & 138 & 0.17 & 0.6 & A \\
\hline WB Overall & & & & 34.9 & C & & & 111.7 & F & & & & 49.4 & D & & & 110.4 & F \\
\hline NB LT & 488 & \#610 & 1.16 & 155.1 & F & \#567 & 1.29 & 200.5 & F & 488 & \#625 & 1.08 & 135.1 & F & \#551 & 1.29 & 210.0 & F \\
\hline NB R & 488 & \#598 & 0.63 & 47.0 & D & \#682 & 0.19 & 32.8 & C & 488 & \#642 & 0.67 & 57.5 & E & \#681 & 0.23 & 37.1 & D \\
\hline NB Overall & & & & 100.5 & F & & & 144.8 & F & & & & 96.0 & F & & & 154.2 & F \\
\hline SB L & 356 & \#442 & 1.13 & 142.9 & F & 314 & 0.95 & 114.4 & F & 356 & \#418 & 1.07 & 130.5 & F & \#419 & 1.13 & 183.4 & F \\
\hline SBT & 356 & \#483 & 0.53 & 47.3 & D & \#433 & 0.97 & 116.8 & F & 356 & \#485 & 0.49 & 56.5 & E & \#440 & 1.20 & 207.7 & F \\
\hline SB R & 225 & \#291 & 0.35 & 45.0 & D & \#303 & 0.55 & 49.0 & D & 225 & \#309 & 0.48 & 56.4 & E & \#299 & 0.73 & 67.5 & E \\
\hline SB Overall & & & & 87.6 & F & & & 83.2 & F & & & & 88.3 & F & & & 133.0 & F \\
\hline Intersection Overall & & & 1.14 & 76.3 & E & & 1.24 & 94.0 & & & & 1.10 & 80.8 & F & & 1.26 & 101.6 & F \\
\hline
\end{tabular}

Table 7-9. Comparison between Alternative C and No Build condition intersection capacity and queuing analyses (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{lr} 
Intersection & \(\begin{array}{r}\text { Lane } \\
\text { Groups }\end{array}\) \\
\hline
\end{tabular}} & \multicolumn{9}{|c|}{No Build Condition} & \multicolumn{9}{|c|}{Alternative C} \\
\hline & \begin{tabular}{l}
Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & \[
\begin{array}{r}
\text { A } \\
95 \% \\
\text { queue } \\
\text { (ft) }
\end{array}
\] & AM Pe

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & & \[
\begin{gathered}
\text { P } \\
95 \% \\
9 \text { queue } \\
\text { que } \\
(\mathrm{ft})
\end{gathered}
\] & M Pe

v/c
ratio & \begin{tabular}{l}
ak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & \[
\begin{array}{|l}
\hline \text { Turning } \\
\text { Bay/ } \\
\text { Link } \\
\text { Length } \\
\text { (feet) }
\end{array}
\] &  & AM Pe

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average \\
Delay \\
(sec/veh)
\end{tabular} & LOS & 95\% queue (ft) & PM Pe

v/c
ratio & \begin{tabular}{l}
ak Hour \\
Average \\
Delay \\
(sec/veh)
\end{tabular} & LOS \\
\hline \#6 NH102 \& EBL & 275 & 179 & 0.58 & 61.3 & E & 242 & 1.08 & 125.2 & F & 275 & 259 & 0.62 & 76.0 & E & \#306 & 1.04 & 127.9 & F \\
\hline Hampton EB TR & 669 & 615 & 1.00 & 14.9 & B & 239 & 0.76 & 18.9 & B & 669 & \#804 & 0.93 & 10.7 & B & 515 & 0.69 & 14.1 & B \\
\hline Dr/Garden Ln EB Overall & & & & 17.6 & & & & 42.7 & D & & & & 14.4 & B & & & 40.7 & D \\
\hline (Signalized) \(^{\text {a }}\) WBL & 275 & 62 & 0.47 & 62.2 & E & 182 & 0.61 & 51.4 & D & 275 & 88 & 0.66 & 89.3 & F & 238 & 0.66 & 61.2 & E \\
\hline WB Thru & 715 & 221 & 0.55 & 16.9 & B & 367 & 0.99 & 44.7 & D & 715 & 295 & 0.58 & 24.9 & C & 423 & 0.99 & 47.0 & D \\
\hline WBR & 275 & 133 & 0.22 & 20.4 & C & \#329 & 0.81 & 26.1 & C & 275 & 150 & 0.25 & 18.0 & B & \#344 & 0.86 & 26.7 & C \\
\hline WB Overall & & & & 19.3 & B & & & 39.9 & D & & & & 26.0 & C & & & 42.3 & D \\
\hline NB LT & 630 & 78 & 0.28 & 56.2 & E & 175 & 0.77 & 84.4 & F & 630 & 107 & 0.35 & 74.8 & E & 274 & 0.95 & 132.4 & F \\
\hline NB R & 100 & \#110 & 0.11 & 47.0 & D & \#137 & 0.06 & 51.5 & D & 100 & \#120 & 0.25 & 63.3 & E & \#155 & 0.06 & 61.5 & E \\
\hline NB Overall & & & & 49.5 & D & & & 70.1 & E & & & & 66.4 & E & & & 102.8 & F \\
\hline SB L & 175 & \#258 & 0.91 & 92.2 & F & \#242 & 1.02 & 104.3 & F & 175 & \#225 & 0.77 & 77.7 & E & \#219 & 0.98 & 98.8 & F \\
\hline SB LT & 291 & \#374 & 0.93 & 96.9 & F & \#323 & 1.00 & 99.1 & F & 291 & \#333 & 0.79 & 79.8 & E & \#317 & 0.98 & 97.9 & F \\
\hline SB R & 175 & \#266 & 0.10 & 34.2 & C & \#210 & 0.79 & 59.4 & E & 175 & \#237 & 0.18 & 43.0 & D & \#211 & 0.92 & 85.0 & F \\
\hline SB Overall & & & & 77.5 & E & & & 84.5 & F & & & & 68.6 & E & & & 92.7 & F \\
\hline Intersection Overall & & & 0.92 & 24.9 & C & & 0.99 & 49.9 & D & & & 0.87 & 25.1 & C & & 1.00 & 53.0 & D \\
\hline
\end{tabular}

Table 7-9. Comparison between Alternative \(C\) and No Build condition intersection capacity and queuing analyses (continued)


Table 7-9. Comparison between Alternative \(\mathbf{C}\) and No Build condition intersection capacity and queuing analyses (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Intersection \(\quad \begin{array}{r}\text { Lane } \\ \text { Groups }\end{array}\)} & \multicolumn{9}{|c|}{No Build Condition} & \multicolumn{9}{|c|}{Alternative C} \\
\hline & \begin{tabular}{|l}
\hline Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & \begin{tabular}{l}
\[
\begin{aligned}
\mathrm{A} \\
95 \% \\
\text { queue }
\end{aligned}
\] \\
(ft)
\end{tabular} & AM Pe
v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average Delay (sec/veh)
\end{tabular} & & \begin{tabular}{l}
95\% \\
queue \\
(ft)
\end{tabular} & \begin{tabular}{l}
PM Pe \\
v/c \\
ratio
\end{tabular} & \begin{tabular}{l}
ak Hour \\
Average Delay (sec/veh)
\end{tabular} & & Turning
Bay/
Link
Length
(feet) & \begin{tabular}{l}
95\% queue \\
(ft)
\end{tabular} & AM Pe

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS &  & PM Pe

v/c
ratio & \begin{tabular}{l}
ak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS \\
\hline \#9 NH102 \& St EBL & 350 & 202 & 0.85 & 58.1 & E & \#422 & 1.31 & 176.0 & F & 350 & 107 & 0.57 & 34.2 & C & 216 & 0.71 & 31.0 & C \\
\hline Charles St/ EB TR & 1,462 & 63 & 0.27 & 2.7 & A & 853 & 0.49 & 3.5 & A & 1,462 & 57 & 0.19 & 3.3 & A & 139 & 0.43 & 5.6 & A \\
\hline Londonderry Rd EB Overall & & & & 17.4 & B & & & 77.9 & E & & & & 8.9 & A & & & 11.2 & B \\
\hline (Signalized) \({ }^{\text {a }}\) WBL & 100 & 44 & 0.31 & 59.1 & E & 25 & 0.31 & 59.4 & E & 100 & 28 & 0.25 & 41.1 & D & 18 & 0.26 & 42.7 & D \\
\hline WB TR & 410 & 320 & 0.87 & 19.0 & B & 324 & 1.01 & 59.5 & E & 410 & 172 & 0.52 & 7.7 & A & 178 & 0.49 & 14.3 & B \\
\hline WB Overall & & & & 19.1 & B & & & 59.5 & E & & & & 7.9 & A & & & 14.4 & B \\
\hline NB LTR & - & - & - & - & - & - & - & - & - & 400 & - & - & - & - & 52 & 0.05 & 31.9 & C \\
\hline NB Overall & & & & 0.0 & A & & & 0.0 & A & & & & 0.0 & A & & & 31.9 & C \\
\hline SB LT & 780 & 70 & 0.23 & 53.2 & D & 22 & 0.21 & 52.4 & D & 780 & 31 & 0.35 & 41.2 & D & 37 & 0.15 & 32.5 & C \\
\hline SB R & 225 & 194 & 0.17 & 7.8 & A & 141 & 0.20 & 22.2 & C & 225 & 88 & 0.12 & 5.5 & A & 79 & 0.14 & 11.8 & B \\
\hline SB Overall & & & & 8.7 & A & & & 22.6 & C & & & & 7.5 & A & & & 13.1 & B \\
\hline Intersection Overall & & & 0.85 & 17.7 & B & & 1.16 & 67.5 & E & & & 0.52 & 8.2 & A & & 0.53 & 13.1 & B \\
\hline \#10 NH102 \& EB TR & 455 & 332 & 0.73 & 17.0 & B & \#734 & 1.05 & 55.2 & E & 455 & 374 & 0.68 & 17.9 & B & \#550 & 0.92 & 28.6 & C \\
\hline Fordway/ Madden EB Overall & & & & 17.0 & B & & & 55.2 & E & & & & 17.9 & B & & & 28.6 & C \\
\hline WBLT & 165 & \#519 & 0.91 & 29.2 & C & \#535 & 0.71 & 12.2 & B & 165 & \#415 & 0.76 & 20.5 & C & \#277 & 0.47 & 9.8 & A \\
\hline (Signalized) \({ }^{\text {a }}\) WB Overall & & & & 29.2 & C & & & 12.2 & B & & & & 20.5 & C & & & 9.8 & A \\
\hline NB LR & 375 & 298 & 0.94 & 60.4 & E & 277 & 1.02 & 96.3 & F & 375 & 266 & 0.82 & 31.5 & C & 244 & 0.93 & 62.5 & E \\
\hline NB Overall & & & & 60.4 & E & & & 96.3 & F & & & & 31.5 & C & & & 62.5 & E \\
\hline SB LTR & 120 & 40 & 0.05 & 21.8 & C & 61 & 0.16 & 30.2 & C & 120 & 49 & 0.07 & 15.1 & B & 72 & 0.17 & 25.1 & C \\
\hline SB Overall & & & & 21.8 & C & & & 30.2 & C & & & & 15.1 & B & & & 25.1 & C \\
\hline Intersection Overall & & & & 30.8 & C & & & & D & & & 0.78 & 22.3 & C & & 0.92 & 30.0 & C \\
\hline
\end{tabular}


Notes:
\# 95th percentile volume exceeds capacity, queue may be longer
\(\mathrm{EB}=\) Eastbound, \(\mathrm{WB}=\) Westbound, \(\mathrm{NB}=\) Northbound, \(\mathrm{SB}=\) Southbound
LOS = Level of Service
LTR \(=\) left / through / right lanes
V/C \(=\) Volume-to-Capacity ratio
Delay is Measured in Seconds Per Vehicle.
Red cells denote intersections or approaches operating at unacceptable conditions or denote approaches and lane groups whose queuing length exceeds capacity
Table 7-9. Comparison between Alternative C and No Build condition intersection capacity and queuing analyses (continued)
\({ }^{\text {a }}\) Highway Capacity Manual 2000 results (Signalized intersections)

\subsection*{7.112040 Build 2040 Alternative C Freeway Operations Analysis}

Based on the analysis performed using HCS, all freeway facilities would operate below capacity and result in LOS C or better. The one failing freeway facility under the No Build condition would improve to LOS C. This includes the I-93 SB off-ramp to NH 102. Table 7-10 contains the Exit 4 Alternative C freeway analysis compared to the No Build condition and Table 7-11 contains the Exit 5 Alternative C freeway analysis compared to the No Build condition. Table 712 contains the Exit 4A Alternative C freeway analysis. Appendix M contains the Build condition HCS freeway operation reports.

Table 7-10. I-93 Exit 42040 Build Alternative C freeway analysis compared to the No Build condition
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Freeway Analysis} & \multirow[b]{2}{*}{Facility Type} & \multirow[b]{2}{*}{Time Period} & \multicolumn{2}{|l|}{Demand to Capacity Ratio} & \multirow[b]{2}{*}{Density (pc/mi/ln)} & \multirow[b]{2}{*}{\begin{tabular}{l}
Alt C \\
LOS
\end{tabular}} & \multirow[t]{2}{*}{No Build LOS} \\
\hline & & & Freeway & Ramp & & & \\
\hline \multirow[t]{2}{*}{I-93 Northbound to NH 102} & \multirow{2}{*}{Diverge} & AM & 0.37 & 0.24 & 0.0 & A & A \\
\hline & & PM & 0.64 & 0.56 & 11.1 & B & B \\
\hline \multirow[t]{2}{*}{NH 102 to I-93 Northbound} & \multirow[b]{2}{*}{Merge} & AM & 0.49 & 0.93 & 19.5 & B & C \\
\hline & & PM & 0.55 & 0.73 & 19.8 & B & C \\
\hline \multirow[t]{2}{*}{I-93 Southbound to NH 102} & \multirow[b]{2}{*}{Diverge} & AM & 0.53 & 0.64 & 22.5 & C & C \\
\hline & & PM & 0.51 & 0.76 & 23.6 & C & F \\
\hline \multirow[t]{2}{*}{NH 102 Westbound to I93 Southbound} & \multirow[b]{2}{*}{Merge} & AM & 0.49 & 0.48 & 15.5 & B & B \\
\hline & & PM & 0.39 & 0.22 & 10.2 & B & B \\
\hline \multirow[t]{2}{*}{NH 102 Eastbound to I-93 Southbound} & \multirow[b]{2}{*}{Merge} & AM & 0.67 & 0.86 & 24.3 & C & C \\
\hline & & PM & 0.47 & 0.40 & 14.3 & B & B \\
\hline
\end{tabular}

Notes: LOS = Level of Service; Density = Passenger cars per mile per lane (pc/mi/ln)
Red denotes interstate facilities that would result in failing operations and would produce a queue extending to the I-93 mainline.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Freeway Analysis} & \multirow[b]{2}{*}{Facility Type} & \multirow[b]{2}{*}{Time Period} & \multicolumn{2}{|l|}{Demand to Capacity Ratio} & \multirow[b]{2}{*}{Density ( \(\mathrm{pc} / \mathrm{mi} / \mathrm{ln}\) )} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Alt C } \\
& \text { LOS }
\end{aligned}
\]} & \multirow[t]{2}{*}{No Build LOS} \\
\hline & & & Freeway & Ramp & & & \\
\hline \multirow{2}{*}{I-93 Northbound to NH 28} & \multirow[b]{2}{*}{Diverge} & AM & 0.59 & 0.40 & 25.1 & c & C \\
\hline & & PM & 0.64 & 0.51 & 28.0 & C & C \\
\hline \multirow{2}{*}{NH 28 to I-93 Northbound} & \multirow[b]{2}{*}{Merge} & AM & 0.64 & 0.48 & 24.2 & C & C \\
\hline & & PM & 0.64 & 0.36 & 23.1 & C & C \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
I-93 Southbound to NH \\
28
\end{tabular}} & \multirow[b]{2}{*}{Diverge} & AM & 0.62 & 0.31 & 25.2 & C & D \\
\hline & & PM & 0.61 & 0.31 & 24.8 & C & D \\
\hline \multirow[t]{2}{*}{NH 28 to I-93 Southbound} & \multirow[b]{2}{*}{Merge} & AM & 0.67 & 0.45 & 23.9 & C & C \\
\hline & & PM & 0.63 & 0.38 & 22.2 & C & C \\
\hline
\end{tabular}

Table 7-11. I-93 Exit 52040 Build Alternative C freeway analysis compared to the No Build condition

Notes: LOS = Level of Service; Density = Passenger cars per mile per lane ( \(\mathrm{pc} / \mathrm{mi} / \mathrm{ln}\) )

\section*{Table 7-12. I-93 Exit 4A 2040 Build Alternative C freeway analysis}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Freeway Analysis} & \multirow[t]{2}{*}{Facility Type} & \multirow[t]{2}{*}{Time Period} & \multicolumn{2}{|l|}{Demand to Capacity Ratio} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Density } \\
& \text { (pc/mi/ln) }
\end{aligned}
\]} & \multirow[t]{2}{*}{LOS} \\
\hline & & & Freeway & Ramp & & \\
\hline \multirow[t]{2}{*}{I-93 Northbound to Connector Roadway} & \multirow{2}{*}{Diverge} & AM & 0.49 & 0.15 & 19.0 & B \\
\hline & & PM & 0.54 & 0.13 & 20.6 & C \\
\hline \multirow[t]{2}{*}{Connector Roadway to I93 Northbound} & \multirow{2}{*}{Merge} & AM & 0.62 & 0.74 & 21.9 & C \\
\hline & & PM & 0.65 & 0.63 & 21.8 & C \\
\hline \multirow[t]{2}{*}{I-93 Southbound to Connector Roadway} & \multirow{2}{*}{Diverge} & AM & 0.66 & 0.92 & 32.9 & D \\
\hline & & PM & 0.62 & 0.79 & 30.2 & D \\
\hline \multirow[t]{2}{*}{Connector Roadway to I93 Southbound} & \multirow{2}{*}{Merge} & AM & 0.52 & 0.27 & 14.7 & B \\
\hline & & PM & 0.51 & 0.23 & 14.1 & B \\
\hline
\end{tabular}

Notes: LOS = Level of Service; Density = Passenger cars per mile per lane ( \(\mathrm{pc} / \mathrm{mi} / \mathrm{ln}\) )

\subsection*{7.12 2040 Build Alternative D Intersection Operations Analysis}

Based on the Synchro \({ }^{\text {TM }}\) signalized intersection analysis results, four signalized intersections (Intersections \#5, \#6, \#7, and \#8) would operate at unacceptable conditions (LOS E or LOS F) during the AM or PM peak hours. The remaining signalized intersections in the traffic study area would operate at acceptable overall conditions (LOS D or better is considered an operating level) during the peak hours analyzed (weekday AM and PM peak hours).
Based on the Synchro \({ }^{\mathrm{TM}}\) signalized intersection analysis results, six of the study area signalized intersections have overall approaches that would operate at unacceptable conditions (LOS E or LOS F) during one or two evaluated periods. The following are the individual signalized
intersection approaches in the traffic study area that would operate under unacceptable conditions during peak hours:
- NH 28 at I-93 Northbound on and off-ramp (Exit 5) (Intersection \#3)
o I-93 Northbound off-ramp during the AM peak hour
- NH 102 at Gilcreast Road (Intersection \#5)
o Eastbound NH 102 during the AM and PM peak hours
o Westbound NH 102 during the AM and PM peak hours
o Northbound Gilcreast Road during the AM and PM peak hours
o Southbound NH 102 during the AM and PM peak hours
- NH 102 at Hampton Drive/Garden Lane (Intersection \#6)
o Northbound Hampton Drive during the AM and PM peak hours
o Southbound Garden Lane during the AM and PM peak hours
- NH 102 at I-93 Southbound off-ramp (Exit 4) (Intersection \#7)
o I-93 Southbound off-ramp during the PM peak hour
- NH 102 at I-93 Northbound on and off-ramp (Exit 4) (Intersection \#8)
o Eastbound NH 102 during the PM peak hour
o Westbound NH 102 during the AM peak hour
o I-93 Northbound off-ramp during the AM and PM peak hours
- NH 102 at Fordway/Madden Hill Road (Intersection \#10)
o Northbound Fordway during the PM peak hour
The overall Alternative D intersection LOS grades are depicted in Figure 7-12 for AM and PM peak hours. Table 7-13 shows the comparison between Alternative D and No Build condition LOS capacity analysis and the intersection vehicle delay results during the AM and PM peak hours. Appendices G, H, and I contain the Synchro \({ }^{\mathrm{TM}}\) Build condition intersection analysis reports.

\subsection*{7.13 2040 Build Alternative D Queuing Analysis}

Based on the Synchro \({ }^{\mathrm{TM}}\) signalized intersection analysis results, seven signalized intersections within the study area would experience queuing lengths that would exceed the available storage capacity. Intersections \#2, \#4, \#8, \#9, and \#11 would provide sufficient storage for the anticipated demand. The lane group in the approach that would operate under unacceptable conditions is noted in parentheses. Table 7-13 contains the queuing results. Appendices \(\mathrm{J}, \mathrm{K}\), and L contain the Synchro \({ }^{\mathrm{TM}}\) Build condition intersection queuing reports.
- NH 28 at Symmes Drive/Vista Ridge Drive (Intersection \#1)
o Northbound Vista Ridge Drive (right turns) during the AM and the PM peak hours
o Southbound Symmes Drive (left turns, right turns, and through movements) during the PM peak hour
- NH 28 at I-93 Northbound on and off-ramp (Exit 5) (Intersection \#3)
o Eastbound NH 28 (left turns) during the AM peak hour
- NH 102 at Gilcreast Road (Intersection \#5)
o Eastbound NH 102 (left turns) during the PM peak hour
o Northbound Gilcreast Road (all movements) during the AM and PM peak hours
o Southbound Gilcreast Road (all movements) during the AM and PM peak hours
- NH 102 at Hampton Drive/Garden Lane (Intersection \#6)
o Eastbound NH 102 (right turns and through movements) during the AM peak hour
o Westbound NH 102 (right turns) during the PM peak hour
o Northbound Hampton Drive (right turns) during the AM and PM peak hours
o Southbound Garden Lane (all movements) during the AM and PM peak hours
- NH 102 at I-93 Southbound off-ramp (Exit 4) (Intersection \#7)
o I-93 Southbound off-ramp (right turns) during the AM ad PM peak hours
- NH 102 at Fordway/Madden Hill Road (Intersection \#10)
o Eastbound NH 102 (all movements) during the PM peak hour
o Westbound NH 102 (all movements) during the AM and PM peak hours
- Connector Roadway and I-93 Northbound on and off-ramp (Exit 4A) (Intersection \#12)
o Westbound Connector Roadway (right turns) during the AM and PM peak hours The remaining signalized intersections in the traffic study area would provide sufficient storage for the anticipated demand. The lane group in the approach that would operate under unacceptable conditions is highlighted in red in Table 7-13, which contains a comparison between Alternative D and No Build condition queuing results.


2 Figure 7-12. 2040 Build Alternative D AM and PM peak hour LOS by intersection

Table 7-13. Comparison between Alternative D and No Build condition intersection capacity and queuing analyses
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Intersection \(\quad \begin{array}{r}\text { Lane } \\ \text { Groups }\end{array}\)} & \multicolumn{9}{|c|}{No Build Condition} & \multicolumn{9}{|c|}{Alternative D} \\
\hline & \begin{tabular}{|l}
\hline Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & \begin{tabular}{|c} 
\\
\begin{tabular}{c} 
A \\
\(95 \%\) \\
queue \\
(ft)
\end{tabular} \\
\hline
\end{tabular} & AM Pe

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS & 95\% queue (ft) & PM Pe

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{|c|}
\hline Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & \[
\begin{gathered}
\begin{array}{c}
95 \% \\
\text { queue } \\
(\mathrm{ft})
\end{array} \\
\hline
\end{gathered}
\] & \begin{tabular}{c} 
AM Pe \\
\\
v/c \\
ratio \\
\hline
\end{tabular} & \begin{tabular}{l}
eak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS & 95\% queue (ft) & PM Pe

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS \\
\hline \#1 NH28 \& EBL & 408 & 353 & 0.97 & 85.5 & F & 50 & 0.76 & 111.3 & F & 408 & 326 & 0.95 & 75.0 & E & 48 & 0.76 & 102.1 & F \\
\hline Symmes Dr/ EB TR & 729 & 414 & 0.51 & 13.0 & B & 458 & 0.81 & 31.9 & C & 408 & 217 & 0.49 & 12.3 & B & 266 & 0.74 & 23.7 & C \\
\hline Vista Ridge Dr EB Overall & & & & 30.8 & C & & & 33.9 & C & & & & 27.6 & C & & & 25.8 & C \\
\hline WB L & 450 & 40 & 0.55 & 71.3 & E & 154 & 0.81 & 74.0 & E & 450 & 33 & 0.88 & 203.0 & F & 144 & 0.90 & 83.8 & F \\
\hline WB Thru & 1,537 & 409 & 0.84 & 33.8 & C & 298 & 0.61 & 20.4 & C & 755 & 330 & 0.80 & 27.7 & C & 209 & 0.60 & 17.6 & B \\
\hline WBR & 500 & 137 & 0.08 & 19.5 & B & 31 & 0.04 & 14.0 & B & 500 & 98 & 0.07 & 17.4 & B & 39 & 0.03 & 12.5 & B \\
\hline WB Overall & & & & 32.9 & C & & & 26.2 & C & & & & 29.1 & C & & & 24.9 & C \\
\hline NB LT & 1,660 & 330 & 0.43 & 48.5 & D & 120 & 0.55 & 55.5 & E & 1,660 & 134 & 0.43 & 40.1 & D & 82 & 0.44 & 39.3 & D \\
\hline NB R & 10 & \#101 & 0.08 & 45.4 & D & \#79 & 0.02 & 49.0 & D & 10 & \#88 & 0.07 & 37.2 & D & \#56 & 0.02 & 35.9 & D \\
\hline NB Overall & & & & 46.5 & D & & & 53.3 & D & & & & 38.3 & D & & & 38.2 & D \\
\hline SB L & 270 & 181 & 0.93 & 110.8 & F & 267 & 0.84 & 63.6 & E & 270 & 109 & 0.77 & 62.3 & E & 184 & 0.85 & 57.7 & E \\
\hline SB LTR & 270 & 191 & 0.07 & 47.1 & D & \#368 & 0.39 & 42.0 & D & 270 & 116 & 0.06 & 37.4 & D & 263 & 0.30 & 32.9 & C \\
\hline SB Overall & & & & 79.0 & E & & & 51.9 & D & & & & 49.9 & D & & & 43.8 & D \\
\hline Intersection Overall & & & 0.84 & 36.4 & D & & 0.79 & 34.7 & C & & & 0.79 & 30.7 & C & & 0.74 & 29.0 & C \\
\hline
\end{tabular}

Table 7-13. Comparison between Alternative D and No Build condition intersection capacity and queuing analyses (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Intersection \(\quad \begin{array}{r}\text { Lane } \\ \text { Groups }\end{array}\)} & \multicolumn{9}{|c|}{No Build Condition} & \multicolumn{9}{|c|}{Alternative D} \\
\hline & \begin{tabular}{l}
Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & 95\% queue (ft) & AM P

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{l}
95\% \\
queue \\
(ft)
\end{tabular} & PM Pe

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{l}
Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & 95\% queue (ft) & AM Pe

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & 95\% queue (ft) & PM Pe

v/c
ratio & \begin{tabular}{l}
ak Hour \\
Average \\
Delay \\
(sec/veh)
\end{tabular} & LOS \\
\hline \multirow[t]{10}{*}{\begin{tabular}{|rr} 
\#2 NH 28 \& I-93 & EB Thru \\
SB On and Off- & EB R \\
Ramp (Exit 5) & EB Overall \\
(Signalized) \(^{\text {a }}\) & WB L \\
& WB Thru \\
& WB Overall \\
& SB L \\
& SB R \\
& SB Overall \\
& \\
& \\
&
\end{tabular}} & 1,537 & \#1904 & 0.97 & 73.6 & E & 1243 & 0.88 & 39.4 & D & 1,537 & 349 & 0.69 & 38.7 & D & 233 & 0.52 & 21.1 & C \\
\hline & 350 & \#546 & 0.28 & 0.5 & A & \#463 & 0.29 & 0.5 & A & 350 & 123 & 0.35 & 0.7 & A & - & 0.34 & 0.6 & A \\
\hline & & & & 51.1 & D & & & 27.9 & C & & & & 22.0 & C & & & 12.6 & B \\
\hline & 592 & \#632 & 1.17 & 111.5 & F & 280 & 0.92 & 20.7 & C & 592 & 270 & 0.88 & 31.4 & C & 185 & 0.70 & 18.0 & B \\
\hline & 592 & 101 & 0.44 & 1.8 & A & 59 & 0.32 & 0.2 & A & 592 & 73 & 0.46 & 1.3 & A & 97 & 0.31 & 0.4 & A \\
\hline & & & & 42.9 & D & & & 6.4 & A & & & & 10.1 & B & & & 4.3 & A \\
\hline & 502 & 492 & 0.72 & 44.8 & D & 406 & 0.92 & 48.2 & D & 502 & 70 & 0.16 & 29.7 & C & 93 & 0.27 & 28.8 & C \\
\hline & 502 & \#526 & 1.35 & 217.5 & F & 109 & 0.89 & 52.5 & D & 502 & 166 & 0.91 & 60.4 & E & - & 0.71 & 38.7 & D \\
\hline & & & & 131.6 & F & & & 49.9 & D & & & & 53.2 & D & & & 35.5 & D \\
\hline & & & 1.17 & 77.0 & E & & 0.90 & 31.2 & C & & & 0.82 & 23.3 & C & & 0.61 & 15.2 & B \\
\hline \#3 NH28 \& I-93 EB L & 592 & \#729 & 1.11 & 67.9 & E & \#706 & 1.07 & 53.5 & D & 592 & \#637 & 1.04 & 53.5 & D & 495 & 1.00 & 47.5 & D \\
\hline NB On and Off- & 592 & \#789 & 0.39 & 0.6 & A & 316 & 0.62 & 6.1 & A & 592 & 301 & 0.13 & 2.1 & A & 118 & 0.22 & 3.9 & A \\
\hline \begin{tabular}{l}
Ramp (Exit 5) \\
EB Overall
\end{tabular} & & & & 32.0 & C & & & 22.5 & C & & & & 38.0 & D & & & 27.1 & C \\
\hline (Signalized) \({ }^{\text {a }}\) ( WB Thru & 481 & \#580 & 1.05 & 104.5 & F & 217 & 0.91 & 61.7 & E & 481 & 315 & 0.97 & 76.5 & E & 115 & 0.62 & 37.3 & D \\
\hline WB R & 481 & 171 & 0.56 & 1.5 & A & - & 0.38 & 0.7 & A & - & - & 0.25 & 0.4 & A & - & 0.16 & 0.2 & A \\
\hline WB Overall & & & & 48.5 & D & & & 29.7 & C & & & & 45.9 & D & & & 23.2 & C \\
\hline NB L & 798 & 685 & 1.11 & 128.2 & F & 337 & 0.86 & 47.1 & D & 798 & 692 & 1.04 & 84.2 & F & 365 & 0.97 & 59.2 & E \\
\hline NB R & 798 & 349 & 0.23 & 39.9 & D & 213 & 1.08 & 98.8 & F & 798 & 387 & 0.15 & 25.7 & C & 0 & 0.60 & 27.4 & C \\
\hline NB Overall & & & & 101.9 & F & & & 76.0 & E & & & & 68.9 & E & & & 42.9 & D \\
\hline Intersection Overall & & & 1.10 & 51.7 & D & & 1.04 & 37.7 & D & & & 1.02 & 50.5 & D & & 0.89 & 32.6 & C \\
\hline
\end{tabular}

Table 7-13. Comparison between Alternative D and No Build condition intersection capacity and queuing analyses (continued)


Table 7-13. Comparison between Alternative D and No Build condition intersection capacity and queuing analyses (continued)


Table 7-13. Comparison between Alternative D and No Build condition intersection capacity and queuing analyses (continued)


Table 7-13. Comparison between Alternative D and No Build condition intersection capacity and queuing analyses (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Intersection \(\quad \begin{array}{r}\text { Lane } \\ \text { Groups }\end{array}\)} & \multicolumn{9}{|c|}{No Build Condition} & \multicolumn{9}{|c|}{Alternative D} \\
\hline & \begin{tabular}{|l}
\hline Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} &  & AM Pe

v/c
ratio & \begin{tabular}{l}
ak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & 95\% queue (ft) & PM P

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{|c|}
\hline Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & \[
\begin{gathered}
95 \% \\
\text { queue } \\
(\mathrm{ft})
\end{gathered}
\] & AM Pe

v/c
ratio & \begin{tabular}{l}
ak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & \[
\begin{gathered}
95 \% \\
\text { queue } \\
(\mathrm{ft})
\end{gathered}
\] & \begin{tabular}{l}
PM P \\
v/c \\
ratio
\end{tabular} & \begin{tabular}{l}
eak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS \\
\hline \#7 NH102 \& EB Thru & 895 & 540 & 1.06 & 53.2 & D & 565 & 1.12 & 87.4 & F & 895 & 734 & 0.99 & 34.6 & C & 783 & 0.93 & 35.8 & D \\
\hline \begin{tabular}{l}
I-93 SB Off- \\
EB Overall
\end{tabular} & & & & 53.2 & D & & & 87.4 & F & & & & 34.6 & C & & & 35.8 & D \\
\hline \begin{tabular}{l}
Ramp (Exit 4) \\
WB Thru
\end{tabular} & 1,057 & 193 & 0.58 & 13.4 & B & 420 & 1.26 & 146.7 & F & 1,057 & 221 & 0.63 & 22.4 & C & 383 & 1.09 & 47.1 & D \\
\hline (Signalized) \({ }^{\text {a }}\) WB Overall & & & & 13.4 & B & & & 146.7 & F & & & & 22.4 & C & & & 47.1 & D \\
\hline SB L & 138 & \#203 & 1.10 & 81.8 & F & \#205 & 1.20 & 116.3 & F & 138 & 113 & 0.16 & 13.9 & B & 103 & 0.15 & 20.0 & C \\
\hline SB R & 138 & \#167 & 0.84 & 21.4 & C & \#192 & 1.09 & 72.2 & E & 138 & \#240 & 1.00 & 48.6 & D & \#214 & 1.12 & 99.8 & F \\
\hline SB Overall & & & & 50.8 & D & & & 91.7 & F & & & & 45.0 & D & & & 92.8 & F \\
\hline Intersection Overall & & & 1.08 & 44.5 & D & & 1.22 & 106.4 & F & & & 0.99 & 35.1 & D & & 1.11 & 59.6 & E \\
\hline \#8 NH102 \& EBL & 550 & 529 & 1.11 & 85.6 & F & 475 & 1.20 & 127.6 & F & 550 & 391 & 1.04 & 56.0 & E & 299 & 1.12 & 81.8 & F \\
\hline I-93 NB On EB Thru & 1,057 & 238 & 0.37 & 5.7 & A & 357 & 0.69 & 21.2 & C & 1,057 & 49 & 0.07 & 7.5 & A & 91 & 0.21 & 3.9 & A \\
\hline and Off-Ramp EB Overall & & & & 50.9 & D & & & 69.9 & E & & & & 50.5 & D & & & 61.9 & E \\
\hline WB Thru & 1,462 & 767 & 1.07 & 82.8 & F & 266 & 0.77 & 51.8 & D & 1,462 & 956 & 1.03 & 84.0 & F & 319 & 0.87 & 71.1 & E \\
\hline WBR & 786 & \#1006 & 0.78 & 3.9 & A & 230 & 0.54 & 1.3 & A & 786 & 401 & 0.25 & 0.4 & A & - & 0.16 & 0.2 & A \\
\hline WB Overall & & & & 45.6 & D & & & 22.0 & C & & & & 63.1 & E & & & 48.4 & D \\
\hline NB L & 1,440 & 496 & 1.14 & 137.6 & F & 897 & 1.21 & 140.7 & F & 1,440 & 364 & 1.04 & 114.7 & F & 948 & 1.11 & 104.2 & F \\
\hline NB R & 1,440 & 231 & 1.08 & 122.3 & F & 937 & 1.26 & 163.5 & F & 1,440 & 253 & 0.93 & 90.7 & F & 902 & 1.10 & 103.7 & F \\
\hline NB Overall & & & & 130.9 & F & & & 151.2 & F & & & & 104.6 & F & & & 103.9 & F \\
\hline Intersection Overall & & & 1.10 & 61.4 & E & & 1.12 & 92.8 & F & & & 1.04 & 67.3 & E & & 1.06 & 81.8 & F \\
\hline
\end{tabular}

Table 7-13. Comparison between Alternative D and No Build condition intersection capacity and queuing analyses (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Intersection Groups} & \multicolumn{9}{|c|}{No Build Condition} & \multicolumn{9}{|c|}{Alternative D} \\
\hline & \begin{tabular}{l}
Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & \[
\begin{gathered}
95 \% \\
\text { queue } \\
\text { (ft) }
\end{gathered}
\] & AM Pe

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & & \[
\begin{gathered}
95 \% \\
\text { queue } \\
(\mathrm{ft})
\end{gathered}
\] & PM Pe
v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & \[
\begin{array}{|l}
\hline \text { Turning } \\
\text { Bay/ } \\
\text { Link } \\
\text { Length } \\
\text { (feet) } \\
\hline
\end{array}
\] & \[
\begin{gathered}
95 \% \\
\text { queue } \\
(\mathrm{ft})
\end{gathered}
\] & AM Pe

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & \[
\begin{gathered}
95 \% \\
\text { queue } \\
\text { (ft) }
\end{gathered}
\] & PM P

v/c
ratio & \begin{tabular}{l}
ak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS \\
\hline \#9 NH102 \& St EBL & 350 & 202 & 0.85 & 58.1 & E & \#422 & 1.31 & 176.0 & F & 350 & 105 & 0.57 & 34.2 & C & 274 & 0.82 & 34.5 & C \\
\hline Charles St/ EB TR & 1,462 & 63 & 0.27 & 2.7 & A & 853 & 0.49 & 3.5 & A & 1,462 & 66 & 0.21 & 3.3 & A & 145 & 0.46 & 5.5 & A \\
\hline Londonderry Rd EB Overall & & & & 17.4 & B & & & 77.9 & E & & & & 8.5 & A & & & 13.8 & B \\
\hline (Signalized) \(^{\text {a }}\) WBL & 100 & 44 & 0.31 & 59.1 & E & 25 & 0.31 & 59.4 & E & 100 & 24 & 0.26 & 42.5 & D & 21 & 0.25 & 44.2 & D \\
\hline WB TR & 410 & 320 & 0.87 & 19.0 & B & 324 & 1.01 & 59.5 & E & 410 & 197 & 0.56 & 8.2 & A & 235 & 0.60 & 19.2 & B \\
\hline WB Overall & & & & 19.1 & B & & & 59.5 & E & & & & 8.3 & A & & & 19.3 & B \\
\hline NB LTR & - & - & - & - & - & - & - & - & - & 400 & 8 & 0.00 & 34.7 & C & 53 & 0.05 & 34.1 & C \\
\hline NB Overall & & & & 0.0 & A & & & 0.0 & A & & & & 34.7 & C & & & 34.1 & C \\
\hline SB LT & 780 & 70 & 0.23 & 53.2 & D & 22 & 0.21 & 52.4 & D & 780 & 32 & 0.35 & 41.8 & D & 38 & 0.15 & 34.8 & C \\
\hline SB R & 225 & 194 & 0.17 & 7.8 & A & 141 & 0.20 & 22.2 & C & 225 & 94 & 0.11 & 5.5 & A & 83 & 0.14 & 15.0 & B \\
\hline SB Overall & & & & 8.7 & A & & & 22.6 & C & & & & 7.7 & A & & & 16.3 & B \\
\hline Intersection Overall & & & 0.85 & 17.7 & B & & 1.16 & 67.5 & E & & & 0.56 & 8.3 & A & & 0.65 & 16.3 & B \\
\hline \#10 NH102 \& EB TR & 455 & 332 & 0.73 & 17.0 & B & \#734 & 1.05 & 55.2 & E & 455 & 350 & 0.69 & 17.6 & B & \#561 & 0.94 & 29.1 & C \\
\hline Fordway/ EB Overall & & & & 17.0 & B & & & 55.2 & E & & & & 17.6 & B & & & 29.1 & C \\
\hline Madden Hill Rd WB LT & 165 & \#519 & 0.91 & 29.2 & C & \#535 & 0.71 & 12.2 & B & 165 & \#401 & 0.79 & 21.4 & C & \#428 & 0.55 & 9.6 & A \\
\hline (Signalized) \(^{\text {a }}\) WB Overall & & & & 29.2 & C & & & 12.2 & B & & & & 21.4 & C & & & 9.6 & A \\
\hline NB LR & 375 & 298 & 0.94 & 60.4 & E & 277 & 1.02 & 96.3 & F & 375 & 261 & 0.84 & 36.1 & D & 315 & 0.94 & 67.9 & E \\
\hline NB Overall & & & & 60.4 & E & & & 96.3 & F & & & & 36.1 & D & & & 67.9 & E \\
\hline SB LTR & 120 & 40 & 0.05 & 21.8 & C & 61 & 0.16 & 30.2 & C & 120 & 56 & 0.10 & 17.0 & B & 80 & 0.24 & 28.0 & C \\
\hline SB Overall & & & & 21.8 & C & & & 30.2 & C & & & & 17.0 & B & & & 28.0 & C \\
\hline Intersection Overall & & & & 30.8 & C & & & 47.3 & D & & & 0.81 & 23.2 & C & & 0.94 & 30.2 & C \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{9}{|c|}{No Build Condition} & \multicolumn{9}{|c|}{Alternative D} \\
\hline Intersection \(\quad \begin{array}{r}\text { Lane } \\ \text { Groups }\end{array}\) & \begin{tabular}{|l}
\hline Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & \[
\begin{array}{|c|}
\hline 95 \% \\
\text { queue }
\end{array}
\]
(ft) & \begin{tabular}{l}
AM P \\
v/c ratio
\end{tabular} & \begin{tabular}{l}
eak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{l}
95\% queue \\
(ft)
\end{tabular} & \begin{tabular}{l}
PM P \\
v/c ratio
\end{tabular} & \begin{tabular}{l}
ak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{l}
Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & \[
\begin{array}{|c|}
\hline \text { A } \\
95 \% \\
\text { queue } \\
\text { (ft) }
\end{array}
\] & \begin{tabular}{l}
AM P \\
v/c ratio
\end{tabular} & \begin{tabular}{l}
ak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{l}
\(95 \%\)
queue \\
(ft)
\end{tabular} & \begin{tabular}{l}
PM P \\
v/c ratio
\end{tabular} & \begin{tabular}{l}
ak Hour \\
Average \\
Delay \\
(sec/veh)
\end{tabular} & LOS \\
\hline \begin{tabular}{||lr|}
\hline \#11 Connector Rd \& & WBL \\
I-93 SB On & WB Overall \\
and Off-Ramp & SB L \\
(Exit 4A) & SB Overall \\
(Signalized) \(^{\text {a }}\) & \begin{tabular}{l} 
Intersection \\
Overall
\end{tabular} \\
& \\
\hline
\end{tabular} & - & -
- &  & -
-
-
-
- &  &  &  & - &  & \[
\begin{aligned}
& 585 \\
& 520
\end{aligned}
\] & \[
\begin{aligned}
& 174 \\
& 317
\end{aligned}
\] & \[
\begin{aligned}
& \hline 0.59 \\
& 0.75 \\
& \\
& \mathbf{0 . 7 0}
\end{aligned}
\] & \[
\begin{gathered}
\hline 40.9 \\
40.9 \\
13.3 \\
13.3 \\
\mathbf{1 9 . 2}
\end{gathered}
\] & \[
\begin{aligned}
& \hline \mathrm{D} \\
& \mathrm{D} \\
& \mathrm{~B} \\
& \mathrm{~B} \\
& \mathrm{~B}
\end{aligned}
\] & 152
297 & \[
\begin{aligned}
& \hline 0.48 \\
& 0.69 \\
& \\
& \mathbf{0 . 6 3}
\end{aligned}
\] & \[
\begin{gathered}
\hline 37.2 \\
37.2 \\
13.0 \\
13.0 \\
\mathbf{1 8 . 2}
\end{gathered}
\] & D
D
B
B
B \\
\hline \begin{tabular}{||rr|}
\hline \#12 Connector Rd & EB L \\
\& I-93 NB On & EB T \\
and Off-Ramp & EB Overall \\
(Exit 4A) & WB T \\
(Signalized) \(^{\text {a }}\) & WB R \\
& WB Overall \\
& NB LR \\
& NB R \\
& \\
& NB Overall \\
& \\
& Intersection Overall
\end{tabular} & \begin{tabular}{|r}
- \\
- \\
- \\
- \\
- \\
-
\end{tabular} & -
-
-
-
-
- & -
-
-
-
-
-
-
- & - &  & -
-
-
-
-
-
- &  &  & . & \[
\begin{gathered}
100 \\
585 \\
1,588 \\
200 \\
\hline 470 \\
470
\end{gathered}
\] & \begin{tabular}{l}
183 \\
335 \\
\#290 \\
127 \\
52
\end{tabular} & \begin{tabular}{l}
\[
0.62
\] \\
0.17 \\
0.54 \\
0.38 \\
0.40 \\
0.59
\end{tabular} & \begin{tabular}{l}
3.4 \\
3.4 \\
3.4 \\
5.8 \\
5.2 \\
37.9 \\
38.2 \\
38.1 \\
5.7
\end{tabular} & \[
\begin{aligned}
& \mathrm{A} \\
& \mathrm{~A} \\
& \mathrm{~A} \\
& \mathrm{~A} \\
& \mathrm{~A} \\
& \mathrm{D} \\
& \mathrm{D} \\
& \mathrm{D} \\
& \mathrm{~A}
\end{aligned}
\] & 142
280
\(\# 313\)
109
48 & \[
\begin{aligned}
& 0.55 \\
& \\
& 0.15 \\
& 0.46 \\
& \\
& 0.36 \\
& 0.38 \\
& \\
& \mathbf{0 . 5 3}
\end{aligned}
\] & \[
\begin{gathered}
2.9 \\
2.9 \\
3.2 \\
4.9 \\
4.5 \\
38.1 \\
38.4 \\
38.2 \\
\mathbf{5 . 1}
\end{gathered}
\] & A
A
A
A
A
D
D
D
D \\
\hline
\end{tabular}

Notes:
\# 95th percentile volume exceeds capacity, queue may be longer.
\(\mathrm{EB}=\) Eastbound, \(\mathrm{WB}=\) Westbound, \(\mathrm{NB}=\) Northbound, \(\mathrm{SB}=\) Southbound
LOS = Level of Service
LTR \(=\) left / through / right lanes
V/C = Volume-to-Capacity ratio
Delay is Measured in Seconds Per Vehicle.
Red cells denote intersections or approaches operating at unacceptable conditions or denote approaches and lane groups whose queuing length exceeds capacity
\({ }^{\text {a }}\) Highwav Cadacitv Manual 2000 results (Signalized intersections)

\subsection*{7.14 2040 Build Alternative D Freeway Operations Analysis}

Based on the analysis performed using HCS, all freeway facilities would operate below capacity and result in LOS C or better. The one failing freeway facility under the No Build condition would improve to LOS C. This includes the I-93 SB off-ramp to NH 102. Table 7-14 contains the Exit 4 Alternative D freeway analysis compared to the No Build condition and Table 7-15 contains the Exit 5 Alternative D freeway analysis compared to the No Build condition. Table 716 contains the Exit 4A Alternative D freeway analysis. Appendix M contains the Build condition HCS freeway operation reports.

Table 7-14. I-93 Exit 42040 Build Alternative D freeway analysis compared to the No Build condition
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Freeway Analysis} & \multirow[b]{2}{*}{Facility Type} & \multirow[b]{2}{*}{Time Period} & \multicolumn{2}{|l|}{Demand to Capacity Ratio} & \multirow[b]{2}{*}{Density (pc/mi/ln)} & \multirow[b]{2}{*}{Alt D LOS} & \multirow[t]{2}{*}{No Build LOS} \\
\hline & & & Freeway & Ramp & & & \\
\hline \multirow{2}{*}{I-93 Northbound to NH 102} & \multirow{2}{*}{Diverge} & AM & 0.37 & 0.25 & 0.0 & A & A \\
\hline & & PM & 0.64 & 0.59 & 11.6 & B & B \\
\hline \multirow{2}{*}{NH 102 to I-93 Northbound} & \multirow{2}{*}{Merge} & AM & 0.48 & 0.90 & 19.0 & B & C \\
\hline & & PM & 0.54 & 0.71 & 19.1 & B & C \\
\hline \multirow{2}{*}{I-93 Southbound to NH 102} & \multirow{2}{*}{Diverge} & AM & 0.53 & 0.63 & 22.3 & C & C \\
\hline & & PM & 0.50 & 0.75 & 23.4 & C & F \\
\hline \multirow[t]{2}{*}{NH 102 Westbound to I-93 Southbound} & \multirow[b]{2}{*}{Merge} & AM & 0.49 & 0.48 & 15.5 & B & B \\
\hline & & PM & 0.39 & 0.22 & 10.3 & B & B \\
\hline \multirow[t]{2}{*}{NH 102 Eastbound to I-93 Southbound} & \multirow[b]{2}{*}{Merge} & AM & 0.67 & 0.85 & 24.2 & C & C \\
\hline & & PM & 0.47 & 0.40 & 14.3 & B & B \\
\hline
\end{tabular}

Notes: LOS = Level of Service; Density = Passenger cars per mile per lane (pc/mi/ln)
Red denotes interstate facilities that would result in failing operations and would produce a queue extending to the I-93 mainline.

Table 7-15. I-93 Exit 52040 Build Alternative D freeway analysis compared to the No Build condition
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Freeway Analysis} & \multirow[b]{2}{*}{Facility Type} & \multirow[b]{2}{*}{Time Period} & \multicolumn{2}{|l|}{Demand to Capacity Ratio} & \multirow[b]{2}{*}{Density (pc/mi/ln)} & \multirow[b]{2}{*}{Alt D LOS} & \multirow[t]{2}{*}{No Build LOS} \\
\hline & & & Freeway & Ramp & & & \\
\hline \multirow[b]{2}{*}{I-93 Northbound to NH 28} & \multirow[b]{2}{*}{Diverge} & AM & 0.60 & 0.41 & 25.8 & C & C \\
\hline & & PM & 0.64 & 0.55 & 28.4 & D & C \\
\hline \multirow{2}{*}{NH 28 to I-93 Northbound} & \multirow[b]{2}{*}{Merge} & AM & 0.64 & 0.49 & 24.4 & C & C \\
\hline & & PM & 0.64 & 0.39 & 23.4 & C & C \\
\hline \multirow[b]{2}{*}{I-93 Southbound to NH 28} & \multirow[b]{2}{*}{Diverge} & AM & 0.62 & 0.31 & 25.2 & C & D \\
\hline & & PM & 0.61 & 0.32 & 24.8 & C & D \\
\hline \multirow[t]{2}{*}{NH 28 to I-93 Southbound} & \multirow[b]{2}{*}{Merge} & AM & 0.67 & 0.44 & 23.9 & C & C \\
\hline & & PM & 0.63 & 0.38 & 22.1 & C & C \\
\hline
\end{tabular}

Notes: LOS = Level of Service; Density = Passenger cars per mile per lane (pc/mi/ln)
Table 7-16. I-93 Exit 4A 2040 Build Alternative D freeway analysis
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Freeway Analysis} & \multirow[t]{2}{*}{Facility Type} & \multirow[t]{2}{*}{Time Period} & \multicolumn{2}{|l|}{Demand to Capacity Ratio} & \multirow[t]{2}{*}{Density (pc/mi/ln)} & \multirow[t]{2}{*}{LOS} \\
\hline & & & Freeway & Ramp & & \\
\hline \multirow[t]{2}{*}{I-93 Northbound to Connector Roadway} & \multirow[b]{2}{*}{Diverge} & AM & 0.48 & 0.08 & 17.9 & B \\
\hline & & PM & 0.52 & 0.07 & 19.5 & B \\
\hline \multirow[t]{2}{*}{Connector Roadway to I93 Northbound} & \multirow[b]{2}{*}{Merge} & AM & 0.63 & 0.76 & 22.2 & C \\
\hline & & PM & 0.65 & 0.64 & 21.9 & C \\
\hline \multirow[t]{2}{*}{I-93 Southbound to Connector Roadway} & \multirow[b]{2}{*}{Diverge} & AM & 0.66 & 0.91 & 32.7 & D \\
\hline & & PM & 0.62 & 0.78 & 30.0 & D \\
\hline \multirow[t]{2}{*}{Connector Roadway to I93 Southbound} & \multirow[t]{2}{*}{Merge} & AM & 0.52 & 0.25 & 14.4 & B \\
\hline & & PM & 0.51 & 0.21 & 13.8 & B \\
\hline
\end{tabular}

Notes: LOS = Level of Service; Density = Passenger cars per mile per lane (pc/mi/ln)

\subsection*{7.15 2040 Build Alternative F Intersection Operations Analysis}

Based on the Synchro \({ }^{\mathrm{TM}}\) signalized intersection analysis results, four signalized intersections (Intersections \#2, \#5, \#7, and \#8) would operate at unacceptable conditions (LOS E or LOS F) during the AM or PM peak hours. The remaining signalized intersections in the traffic study area would operate at acceptable overall conditions (LOS D or better is considered an operating level) during the peak hours analyzed (weekday AM and PM peak hours).
Based on the Synchro \({ }^{\mathrm{TM}}\) signalized intersection analysis results, all the study area signalized intersections, with the exception of Intersection \#4, have overall approaches that would operate at unacceptable conditions (LOS E or LOS F) during one or two evaluated periods. The following are the individual signalized intersection approaches in the traffic study area that would operate under unacceptable conditions during peak hours:
- NH 28 at Symmes Drive/Vista Ridge Drive (Intersection \#1)
o Southbound Symmes Drive during the AM peak hour
- NH 28 at I-93 Southbound on and off-ramp (Exit 5) (Intersection \#2)
o Eastbound NH 28 during the AM peak hour
o I-93 Southbound off-ramp during the AM peak hour
- NH 28 at I-93 Northbound on and off-ramp (Exit 5) (Intersection \#3)
o I-93 Northbound off-ramp during the AM and PM peak hours
- NH 102 at Gilcreast Road (Intersection \#5)
o Eastbound NH 102 during the AM and PM peak hours
o Westbound NH 102 during the PM peak hour
o Northbound Gilcreast Road during the AM and PM peak hours
o Southbound NH 102 during the AM and PM peak hours
- NH 102 at Hampton Drive/Garden Lane (Intersection \#6)
o Northbound Hampton Drive during the AM and PM peak hours
o Southbound Garden Lane during the AM and PM peak hours
- NH 102 at I-93 Southbound off-ramp (Exit 4) (Intersection \#7)
o Eastbound and Westbound NH 102 during the AM peak hour
o I-93 Southbound off-ramp during the PM peak hour
- NH 102 at I-93 Northbound on and off-ramp (Exit 4) (Intersection \#8)
o Eastbound NH 102 during the PM peak hour
o I-93 Northbound off-ramp during the AM and PM peak hours
- NH 102 at St Charles Street/Londonderry Road (Intersection \#9)
o Northbound St Charles Street during the PM peak hour
- NH 102 at Fordway/Madden Hill Road (Intersection \#10)
o Northbound Fordway during the AM and PM peak hours
The overall Alternative F intersection LOS grades are depicted in Figure 7-13 for AM and PM peak hours. Table 7-17 shows the comparison between Alternative F and No Build condition LOS capacity analysis and the intersection vehicle delay results during the AM and PM peak hours. Appendices G, H, and I contain the Synchro \({ }^{\mathrm{TM}}\) Build condition intersection analysis reports.

\subsection*{7.16 2040 Build Alternative F Queuing Analysis}

Based on the Synchro \({ }^{\mathrm{TM}}\) signalized intersection analysis results, all the signalized intersections within the study area with the exception of NH 28 at liberty Drive (Intersection \#4), would experience queuing lengths that would exceed the available storage capacity. Intersection \#4 would provide sufficient storage for the anticipated demand. The lane group in the approach that
would operate under unacceptable conditions is noted in parentheses. Table 7-17 contains the queuing results. Appendices J, K, and L contain the Synchro \({ }^{\mathrm{TM}}\) Build condition intersection queuing reports.
- NH 28 at Symmes Drive/Vista Ridge Drive (Intersection \#1)
o Northbound Vista Ridge Drive (right turns) during the AM and the PM peak hours
o Southbound Symmes Drive (left turns, right turns, and through movements) during the PM peak hour
- NH 28 at I-93 Southbound on and off-ramp (Exit 5) (Intersection \#2)
o Eastbound NH 28 (all movements) during the AM peak hour
- NH 28 at I-93 Northbound on and off-ramp (Exit 5) (Intersection \#3)

0 Eastbound NH 28 (left turns) during the AM and PM peak hours
o Eastbound NH 28 (through movements) during the AM peak hour
o Westbound NH 28 (through movements) during the AM peak hour
- NH 102 at Gilcreast Road (Intersection \#5)
o Eastbound NH 102 (left turns) during the PM peak hour
o Northbound Gilcreast Road (all movements) during the AM and PM peak hours
o Southbound Gilcreast Road (left turns) during the AM peak hour
o Southbound Gilcreast Road (right turns and through movements) during the AM and PM peak hours
- NH 102 at Hampton Drive/Garden Lane (Intersection \#6)
o Westbound NH 102 (right turns) during the PM peak hour
o Northbound Hampton Drive (right turns) during the AM and PM peak hours
o Southbound Garden Lane (all movements) during the AM and PM peak hours
- NH 102 at I-93 Southbound off-ramp (Exit 4) (Intersection \#7)
o I-93 Southbound off-ramp (all movements) during the AM ad PM peak hours
- NH 102 at I-93 Northbound on and off-ramp (Exit 4) (Intersection \#8)
o Westbound NH 102 (right turns) during the AM peak hour
- NH 102 at St Charles Street/Londonderry Road (Intersection \#9)
o Eastbound NH 102 (left turns) during the PM peak hour
- NH 102 at Fordway/Madden Hill Road (Intersection \#10)
o Eastbound NH 102 (through movements) during the PM peak hour
o Eastbound NH 102 (right turns) during the AM and PM peak hours
o Westbound NH 102 (all movements) during the AM and PM peak hours

Intersection \#4 is the only signalized intersection in the traffic study area that would provide sufficient storage for the anticipated demand. The lane group in the approach that would operate under unacceptable conditions is highlighted in red in Table 7-17, which contains a comparison between Alternative F and No Build condition queuing results.


2 Figure 7-13. 2040 Build Alternative F AM and PM peak hour LOS by intersection

Table 7-17. Comparison between Alternative F and No Build condition intersection capacity and queuing analyses
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Intersection \(\begin{array}{r}\text { Lane } \\ \text { Groups }\end{array}\)} & \multicolumn{9}{|c|}{No Build Condition} & \multicolumn{9}{|c|}{Alternative F} \\
\hline & \begin{tabular}{|c} 
Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & \[
\begin{gathered}
\text { A } \\
95 \% \\
\text { queue } \\
\text { (ft) }
\end{gathered}
\] & AM Pe

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & & \begin{tabular}{l}
95\% \\
queue \\
(ft)
\end{tabular} & \begin{tabular}{c} 
M Pe \\
v/c \\
ratio \\
\hline
\end{tabular} & \begin{tabular}{l}
eak Hour \\
Average \\
Delay \\
(sec/veh)
\end{tabular} & LOS & \begin{tabular}{|c|}
\hline Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & 95\% queue (ft) & AM P

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & \[
\begin{gathered}
95 \% \\
\text { queue } \\
\text { (ft) }
\end{gathered}
\] & PM Pe

v/c
ratio & \begin{tabular}{l}
ak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS \\
\hline \#1 NH28 \& EBL & 408 & 353 & 0.97 & 85.5 & F & 50 & 0.76 & 111.3 & F & 408 & 369 & 1.07 & 107.5 & F & 55 & 0.51 & 47.2 & D \\
\hline Symmes Dr/ EB TR & 729 & 414 & 0.51 & 13.0 & B & 458 & 0.81 & 31.9 & C & 729 & 364 & 0.58 & 14.9 & B & 380 & 0.90 & 32.9 & C \\
\hline Vista Ridge Dr & & & & 30.8 & & & & 33.9 & C & & & & 37.5 & D & & & 33.2 & C \\
\hline WBL & 450 & 40 & 0.55 & 71.3 & E & 154 & 0.81 & 74.0 & E & 450 & 37 & 0.44 & 51.0 & D & 130 & 0.94 & 97.3 & F \\
\hline WB Thru & 1,537 & 409 & 0.84 & 33.8 & C & 298 & 0.61 & 20.4 & C & 1,537 & 405 & 0.89 & 35.0 & D & 251 & 0.66 & 20.2 & C \\
\hline WB R & 500 & 137 & 0.08 & 19.5 & B & 31 & 0.04 & 14.0 & B & 500 & 87 & 0.07 & 18.5 & B & 44 & 0.03 & 13.9 & B \\
\hline WB Overall & & & & 32.9 & C & & & 26.2 & C & & & & 33.7 & C & & & 28.7 & C \\
\hline NB LT & 1,660 & 330 & 0.43 & 48.5 & D & 120 & 0.55 & 55.5 & E & 1,660 & 200 & 0.38 & 38.0 & D & 93 & 0.44 & 39.2 & D \\
\hline NB R & 10 & \#101 & 0.08 & 45.4 & D & \#79 & 0.02 & 49.0 & D & 10 & \#96 & 0.07 & 35.7 & D & \#69 & 0.02 & 35.8 & D \\
\hline NB Overall & & & & 46.5 & D & & & 53.3 & D & & & & 36.6 & D & & & 38.0 & D \\
\hline SBL & 270 & 181 & 0.93 & 110.8 & F & 267 & 0.84 & 63.6 & E & 270 & 129 & 0.86 & 78.5 & E & 214 & 0.91 & 67.1 & E \\
\hline SB LTR & 270 & 191 & 0.07 & 47.1 & D & \#368 & 0.39 & 42.0 & D & 270 & 139 & 0.07 & 37.7 & D & \#316 & 0.31 & 32.0 & C \\
\hline SB Overall & & & & 79.0 & E & & & 51.9 & D & & & & 58.1 & E & & & 48.5 & D \\
\hline Intersection Overall & & & 0.84 & 36.4 & D & & 0.79 & 34.7 & C & & & 0.86 & 37.5 & D & & 0.86 & 34.3 & C \\
\hline
\end{tabular}

Table 7-17. Comparison between Alternative F and No Build condition intersection capacity and queuing analyses (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Intersection Groups} & \multicolumn{9}{|c|}{No Build Condition} & \multicolumn{9}{|c|}{Alternative F} \\
\hline & \begin{tabular}{l}
Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} &  & AM P

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{l}
95\% queue \\
(ft)
\end{tabular} & PM Pe

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{l}
Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & 95\% queue (ft) & AM P

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{l}
95\% queue \\
(ft)
\end{tabular} & PM Pe

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS \\
\hline \#2 NH 28 \& I-93 SB EB Thru & 1,537 & \#1904 & 0.97 & 73.6 & E & 1243 & 0.88 & 39.4 & D & 1,537 & \#1764 & 1.01 & 81.9 & F & 492 & 0.84 & 35.6 & D \\
\hline On and Off-Ramp EB R & 350 & \#546 & 0.28 & 0.5 & A & \#463 & 0.29 & 0.5 & A & 350 & \#536 & 0.28 & 0.5 & A & 239 & 0.29 & 0.5 & A \\
\hline (Exit 5) EB Overall & & & & 51.1 & D & & & 27.9 & C & & & & 56.5 & E & & & 25.3 & C \\
\hline (Signalized) \({ }^{\text {a }}\) & 592 & \#632 & 1.17 & 111.5 & F & 280 & 0.92 & 20.7 & C & 592 & 535 & 1.08 & 74.8 & E & 304 & 0.88 & 24.2 & C \\
\hline WB Thru & 592 & 101 & 0.44 & 1.8 & A & 59 & 0.32 & 0.2 & A & 592 & 58 & 0.41 & 1.3 & A & 52 & 0.29 & 0.2 & A \\
\hline WB Overall & & & & 42.9 & D & & & 6.4 & A & & & & 29.8 & C & & & 7.7 & A \\
\hline SB L & 502 & 492 & 0.72 & 44.8 & D & 406 & 0.92 & 48.2 & D & 502 & 445 & 0.68 & 41.8 & D & 325 & 0.89 & 46.3 & D \\
\hline SB R & 502 & \#526 & 1.35 & 217.5 & F & 109 & 0.89 & 52.5 & D & 502 & 450 & 1.21 & 158.2 & F & 81 & 0.74 & 40.0 & D \\
\hline SB Overall & & & & 131.6 & F & & & 49.9 & D & & & & 100.3 & F & & & 43.8 & D \\
\hline Intersection Overall & & & 1.17 & 77.0 & E & & 0.90 & 31.2 & C & & & 1.10 & 62.1 & E & & 0.87 & 27.8 & C \\
\hline \#3 NH 28 \& I-93 NB EB L & 592 & \#729 & 1.11 & 67.9 & E & \#706 & 1.07 & 53.5 & D & 592 & \#724 & 1.08 & 52.6 & D & \#687 & 1.03 & 40.2 & D \\
\hline On and Off-Ramp EB Thru & 592 & \#789 & 0.39 & 0.6 & A & 316 & 0.62 & 6.1 & A & 592 & \#693 & 0.38 & 0.3 & A & 301 & 0.56 & 3.2 & A \\
\hline (Exit 5) & & & & & C & & & 22.5 & C & & & & 24.9 & C & & & 16.1 & B \\
\hline (Signalized) \({ }^{\text {a }}\) WB Thru & 481 & \#580 & 1.05 & 104.5 & F & 217 & 0.91 & 61.7 & E & 481 & \#504 & 1.01 & 88.9 & F & 168 & 0.78 & 47.1 & D \\
\hline WB R & 481 & 171 & 0.56 & 1.5 & A & - & 0.38 & 0.7 & A & 481 & 98 & 0.57 & 1.5 & A & - & 0.39 & 0.7 & A \\
\hline WB Overall & & & & 48.5 & & & & 29.7 & C & & & & 40.1 & D & & & 21.9 & C \\
\hline NB L & 798 & 685 & 1.11 & 128.2 & F & 337 & 0.86 & 47.1 & D & 798 & 592 & 1.09 & 118.2 & F & 432 & 0.92 & 58.7 & E \\
\hline NB R & 798 & 349 & 0.23 & 39.9 & D & 213 & 1.08 & 98.8 & F & 798 & 275 & 0.19 & 36.9 & D & 258 & 1.09 & 107.7 & F \\
\hline NB Overall & & & & 101.9 & & & & 76.0 & E & & & & 94.1 & F & & & 85.7 & F \\
\hline Intersection Overall & & & 1.10 & 51.7 & D & & 1.04 & 37.7 & D & & & 1.07 & 44.0 & D & & 0.99 & 35.1 & D \\
\hline
\end{tabular}

Table 7-17. Comparison between Alternative F and No Build condition intersection capacity and queuing analyses (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Intersection \(\begin{array}{r}\text { Lane } \\ \text { Groups }\end{array}\)} & \multicolumn{9}{|c|}{No Build Condition} & \multicolumn{9}{|c|}{Alternative F} \\
\hline & \begin{tabular}{l}
Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & 95\% queue (ft) & AM P

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS & 95\% queue
\[
(\mathrm{ft})
\] & PM Pe

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS & Turning Bay/ Link Length (feet) & 95\% queue (ft) & AM P

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{l}
95\% queue \\
(ft)
\end{tabular} & PM Pe

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS \\
\hline \#4 NH28 \& Liberty EB L & 225 & 79 & 0.51 & 42.4 & D & 50 & 0.49 & 30.6 & C & 225 & 74 & 0.49 & 38.7 & D & 51 & 0.47 & 29.4 & C \\
\hline Dr (Signalized) \({ }^{\text {a }}\) EB TR & 841 & 46 & 0.13 & 3.9 & A & 116 & 0.47 & 8.8 & A & 841 & 32 & 0.13 & 4.0 & A & 106 & 0.45 & 8.9 & A \\
\hline EB Overall & & & & 10.7 & B & & & 9.9 & A & & & & 10.2 & B & & & 9.9 & A \\
\hline WBL & 250 & 19 & 0.29 & 51.2 & D & 17 & 0.22 & 31.7 & C & 250 & 13 & 0.32 & 49.5 & D & 17 & 0.21 & 30.5 & C \\
\hline WB TR & 332 & 178 & 0.52 & 8.5 & A & 88 & 0.27 & 8.7 & A & 332 & 171 & 0.55 & 8.7 & A & 101 & 0.28 & 8.9 & A \\
\hline WB Overall & & & & 8.7 & A & & & 9.0 & A & & & & 8.9 & A & & & 9.2 & A \\
\hline NB L & 154 & 51 & 0.29 & 41.6 & D & 52 & 0.14 & 21.4 & C & 154 & 25 & 0.05 & 36.1 & D & 44 & 0.13 & 20.6 & C \\
\hline NB Overall & & & & 41.6 & D & & & 21.4 & C & & & & 36.1 & D & & & 20.6 & C \\
\hline SB LT & 100 & 29 & 0.15 & 40.6 & D & 38 & 0.17 & 21.6 & C & 100 & 31 & 0.15 & 37.1 & D & 34 & 0.16 & 20.8 & C \\
\hline SB R & 502 & 96 & 0.07 & 39.7 & D & 97 & 0.10 & 21.1 & C & 502 & 90 & 0.07 & 36.3 & D & 92 & 0.10 & 20.4 & C \\
\hline SB Overall & & & & 39.8 & D & & & 21.2 & C & & & & 36.4 & D & & & 20.4 & C \\
\hline Intersection Overall & & & 0.50 & 11.3 & B & & 0.43 & 11.2 & B & & & 0.50 & 10.7 & B & & 0.41 & 11.1 & B \\
\hline
\end{tabular}

Table 7-17. Comparison between Alternative F and No Build condition intersection capacity and queuing analyses (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{9}{|c|}{No Build Condition} & \multicolumn{9}{|c|}{Alternative F} \\
\hline Intersection \(\quad \begin{array}{r}\text { Lane } \\ \text { Groups }\end{array}\) & \begin{tabular}{l}
Turning \\
Bay/ Link Length (feet)
\end{tabular} & \begin{tabular}{l}
95\% \\
queue \\
(ft)
\end{tabular} & AM P

\(\mathrm{v} / \mathrm{c}\)
ratio & \begin{tabular}{l}
eak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS &  & \begin{tabular}{l}
PM Pe \\
v/c \\
ratio
\end{tabular} & \begin{tabular}{l}
ak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{|c|}
\hline Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & \begin{tabular}{|c} 
\\
A \\
\(95 \%\) \\
queue \\
(ft)
\end{tabular} & AM Pe

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS & 95\% queue (ft) & \begin{tabular}{c} 
PM Pe \\
\\
v/c \\
ratio \\
\hline 1.2
\end{tabular} & \begin{tabular}{l}
eak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS \\
\hline \#5 NH102 \& EB L & 275 & 255 & 1.00 & 117.3 & F & \#345 & 1.24 & 193.4 & F & 275 & 264 & 1.02 & 134.8 & F & \#329 & 1.23 & 187.2 & F \\
\hline Gilcreast Rd EB RT & 852 & 373 & 1.10 & 88.9 & F & 386 & 0.81 & 35.9 & D & 852 & 376 & 1.08 & 90.2 & F & 383 & 0.82 & 36.3 & D \\
\hline (Signalized) \({ }^{\text {a }}\) EB Overall & & & & 91.5 & F & & & 60.6 & E & & & & 94.4 & F & & & 59.5 & E \\
\hline WBL & 275 & 86 & 0.78 & 53.7 & D & 135 & 0.79 & 32.0 & C & 275 & 95 & 0.72 & 57.6 & E & 122 & 0.78 & 32.3 & C \\
\hline WB Thru & 669 & 150 & 0.97 & 33.7 & C & 266 & 1.27 & 134.1 & F & 669 & 155 & 0.92 & 28.4 & C & 218 & 1.26 & 127.5 & F \\
\hline WB R & 225 & 40 & 0.06 & 24.2 & C & 117 & 0.14 & 0.2 & A & 225 & 44 & 0.06 & 4.1 & A & 87 & 0.13 & 0.3 & A \\
\hline WB Overall & & & & 34.9 & C & & & 111.7 & F & & & & 29.4 & C & & & 106.4 & F \\
\hline NB LT & 488 & \#610 & 1.16 & 155.1 & F & \#567 & 1.29 & 200.5 & F & 488 & \#569 & 1.07 & 134.1 & F & \#587 & 1.27 & 195.3 & F \\
\hline NB R & 488 & \#598 & 0.63 & 47.0 & D & \#682 & 0.19 & 32.8 & C & 488 & \#526 & 0.66 & 57.4 & E & \#681 & 0.20 & 32.8 & C \\
\hline NB Overall & & & & 100.5 & F & & & 144.8 & F & & & & 95.5 & F & & & 140.6 & F \\
\hline SB L & 356 & \#442 & 1.13 & 142.9 & F & 314 & 0.95 & 114.4 & F & 356 & \#440 & 1.06 & 129.6 & F & 354 & 0.97 & 118.2 & F \\
\hline SBT & 356 & \#483 & 0.53 & 47.3 & D & \#433 & 0.97 & 116.8 & F & 356 & \#485 & 0.49 & 56.5 & E & \#477 & 0.95 & 113.1 & F \\
\hline SB R & 225 & \#291 & 0.35 & 45.0 & D & \#303 & 0.55 & 49.0 & D & 225 & \#294 & 0.47 & 56.4 & E & \#307 & 0.54 & 48.6 & D \\
\hline SB Overall & & & & 87.6 & F & & & 83.2 & F & & & & 87.8 & F & & & 83.2 & F \\
\hline Intersection Overall & & & 1.14 & 76.3 & E & & 1.24 & 94.0 & F & & & 1.08 & 75.7 & E & & 1.23 & 90.7 & F \\
\hline
\end{tabular}

Table 7-17. Comparison between Alternative F and No Build condition intersection capacity and queuing analyses (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Intersection \(\quad \begin{array}{r}\text { Lane } \\ \text { Groups }\end{array}\)} & \multicolumn{9}{|c|}{No Build Condition} & \multicolumn{9}{|c|}{Alternative F} \\
\hline & \begin{tabular}{|c|}
\hline Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & A
\(95 \%\)
queue
\((\mathrm{ft})\) & AM Pe

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{l}
95\% \\
queue \\
(ft)
\end{tabular} & \begin{tabular}{l}
PM Pe \\
v/c ratio
\end{tabular} & \begin{tabular}{l}
ak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{l}
Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & \[
\begin{array}{|c|}
\hline \\
95 \% \\
\text { queue } \\
(\mathrm{ft})
\end{array}
\] & AM Pe

v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & \[
\begin{array}{|c}
95 \% \\
\text { queue } \\
\text { (ft) }
\end{array}
\] & PM Pe

v/c
ratio & \begin{tabular}{l}
ak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS \\
\hline \#6 NH102 \& EBL & 275 & 179 & 0.58 & 61.3 & E & 242 & 1.08 & 125.2 & F & 275 & 175 & 0.62 & 75.9 & E & 266 & 1.07 & 120.3 & F \\
\hline Hampton EB TR & 669 & 615 & 1.00 & 14.9 & B & 239 & 0.76 & 18.9 & B & 669 & 480 & 0.93 & 10.5 & B & 258 & 0.77 & 18.1 & B \\
\hline Dr/Garden Ln EB Overall & & & & 17.6 & B & & & 42.7 & D & & & & 14.3 & B & & & 40.4 & D \\
\hline (ignalized) \({ }^{\text {a }}\) WB L & 275 & 62 & 0.47 & 62.2 & E & 182 & 0.61 & 51.4 & D & 275 & 54 & 0.55 & 86.4 & F & 201 & 0.64 & 51.8 & D \\
\hline WB Thru & 715 & 221 & 0.55 & 16.9 & B & 367 & 0.99 & 44.7 & D & 715 & 226 & 0.50 & 20.6 & C & 388 & 0.98 & 47.0 & D \\
\hline WBR & 275 & 133 & 0.22 & 20.4 & C & \#329 & 0.81 & 26.1 & C & 275 & 102 & 0.22 & 11.6 & B & \#342 & 0.80 & 27.0 & C \\
\hline WB Overall & & & & 19.3 & B & & & 39.9 & D & & & & 21.3 & C & & & 41.7 & D \\
\hline NB LT & 630 & 78 & 0.28 & 56.2 & E & 175 & 0.77 & 84.4 & F & 630 & 116 & 0.35 & 74.8 & E & 213 & 0.76 & 83.6 & F \\
\hline NB R & 100 & \#110 & 0.11 & 47.0 & D & \#137 & 0.06 & 51.5 & D & 100 & \#121 & 0.24 & 63.1 & E & \#143 & 0.06 & 51.5 & D \\
\hline NB Overall & & & & 49.5 & D & & & 70.1 & E & & & & 66.3 & E & & & 69.5 & E \\
\hline SBL & 175 & \#258 & 0.91 & 92.2 & F & \#242 & 1.02 & 104.3 & F & 175 & \#237 & 0.78 & 79.2 & E & \#240 & 1.03 & 106.0 & F \\
\hline SB LT & 291 & \#374 & 0.93 & 96.9 & F & \#323 & 1.00 & 99.1 & F & 291 & \#351 & 0.79 & 80.2 & F & \#322 & 1.04 & 108.2 & F \\
\hline SB R & 175 & \#266 & 0.10 & 34.2 & C & \#210 & 0.79 & 59.4 & E & 175 & \#252 & 0.15 & 42.8 & D & \#205 & 0.80 & 61.2 & E \\
\hline SB Overall & & & & 77.5 & E & & & 84.5 & F & & & & 69.2 & E & & & 88.8 & F \\
\hline Intersection Overall & & & 0.92 & 24.9 & C & & 0.99 & 49.9 & D & & & 0.87 & 23.6 & C & & 0.98 & 50.9 & D \\
\hline
\end{tabular}

Table 7-17. Comparison between Alternative \(F\) and No Build condition intersection capacity and queuing analyses (continued)


Table 7-17. Comparison between Alternative F and No Build condition intersection capacity and queuing analyses (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Intersection \(\quad \begin{array}{r}\text { Lane } \\ \text { Groups }\end{array}\)} & \multicolumn{9}{|c|}{No Build Condition} & \multicolumn{9}{|c|}{Alternative F} \\
\hline & \begin{tabular}{|c} 
Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & \[
\begin{gathered}
\text { A } \\
95 \% \\
\text { queue } \\
\text { (ft) }
\end{gathered}
\] & AM Pe
v/c
ratio & \begin{tabular}{l}
eak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{l}
95\% \\
queue \\
(ft)
\end{tabular} & PM Pe

v/c
ratio & \begin{tabular}{l}
ak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS & \begin{tabular}{|c|}
\hline Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & \[
\begin{array}{|c} 
\\
95 \% \\
\text { queue } \\
\text { (ft) }
\end{array}
\] & AM Pe

\(\mathrm{v} / \mathrm{c}\)
ratio & \begin{tabular}{l}
ak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & 95\% queue (ft) & PM Pe

v/c
ratio & \begin{tabular}{l}
ak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS \\
\hline \#9 NH102 \& St EBL & 350 & 202 & 0.85 & 58.1 & E & \#422 & 1.31 & 176.0 & F & 360 & 147 & 0.67 & 41.5 & D & \#410 & 0.96 & 58.7 & E \\
\hline Charles St/ EB TR & 1,462 & 63 & 0.27 & 2.7 & A & 853 & 0.49 & 3.5 & A & 1,462 & 71 & 0.31 & 3.2 & A & 437 & 0.61 & 5.2 & A \\
\hline Londonderry Rd EB Overall & & & & 17.4 & B & & & 77.9 & E & & & & 9.7 & A & & & 20.9 & C \\
\hline (Signalized) \({ }^{\text {a }}\) WB L & 100 & 44 & 0.31 & 59.1 & E & 25 & 0.31 & 59.4 & E & 65 & 45 & 0.69 & 122.6 & F & 38 & 0.79 & 191.4 & F \\
\hline WB TR & 410 & 320 & 0.87 & 19.0 & B & 324 & 1.01 & 59.5 & E & 410 & 210 & 0.78 & 13.4 & B & 201 & 0.85 & 39.0 & D \\
\hline WB Overall & & & & 19.1 & B & & & 59.5 & E & & & & 14.1 & B & & & 40.4 & D \\
\hline NB LTR & - & - & - & - & - & - & - & - & - & 400 & 13 & 0.1 & 44.2 & D & 67 & 0.05 & 56.3 & E \\
\hline NB Overall & & & & 0.0 & A & & & 0.0 & A & & & & 44.2 & D & & & 56.3 & E \\
\hline SB LT & 780 & 70 & 0.23 & 53.2 & D & 22 & 0.21 & 52.4 & D & 780 & 30 & 0.39 & 50.9 & D & 45 & 0.25 & 58.6 & E \\
\hline SB R & 225 & 194 & 0.17 & 7.8 & A & 141 & 0.20 & 22.2 & C & 180 & 92 & 0.08 & 6.3 & A & 99 & 0.11 & 23.9 & C \\
\hline SB Overall & & & & 8.7 & A & & & 22.6 & C & & & & 9.7 & A & & & 26.8 & C \\
\hline Intersection Overall & & & 0.85 & 17.7 & B & & 1.16 & 67.5 & E & & & 0.75 & 12.3 & B & & 0.87 & 27.9 & C \\
\hline
\end{tabular}

Table 7-17. Comparison between Alternative \(F\) and No Build condition intersection capacity and queuing analyses (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Intersection \(\quad \begin{array}{r}\text { Lane } \\ \text { Groups }\end{array}\)} & \multicolumn{9}{|c|}{No Build Condition} & \multicolumn{9}{|c|}{Alternative F} \\
\hline & \begin{tabular}{l}
Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & \[
\begin{aligned}
& \text { A } \\
& 95 \% \\
& \text { queue } \\
& \text { que } \\
& \text { (ft) }
\end{aligned}
\] & \begin{tabular}{l}
AM Pe \\
v/c \\
ratio
\end{tabular} & \begin{tabular}{l}
ak Hour \\
Average \\
Delay \\
(sec/veh)
\end{tabular} & LOS & 95\% queue (ft) & PM Pea

v/c
ratio & \begin{tabular}{l}
ak Hour \\
Average \\
Delay \\
(sec/veh)
\end{tabular} & LOS & \begin{tabular}{l}
Turning \\
Bay/ \\
Link \\
Length \\
(feet)
\end{tabular} & \begin{tabular}{l}
95\% queue \\
(ft)
\end{tabular} & AM P

v/c
ratio & \begin{tabular}{l}
ak Hour \\
Average Delay (sec/veh)
\end{tabular} & LOS & 95\% queue (ft) & PM Pe

\(\mathrm{v} / \mathrm{c}\)
ratio & \begin{tabular}{l}
ak Hour \\
Average \\
Delay (sec/veh)
\end{tabular} & LOS \\
\hline \#10 NH102 \& EB TR/T & 455 & 332 & 0.73 & 17.0 & B & \#734 & 1.05 & 55.2 & E & 455 & 384 & 0.60 & 13.3 & B & \#1545 & 0.98 & 34.8 & C \\
\hline Fordway/ EB R & - & - & - & - & - & - & - & - & - & 100 & \#143 & 0.16 & 8.9 & B & \#155 & 0.20 & 5.9 & A \\
\hline Madden Hill Rd EB Overall & & & & 17.0 & B & & & 55.2 & E & & & & 12.2 & B & & & 29.7 & C \\
\hline (Signalized) \(^{\text {a }}\) WB LT & 165 & \#519 & 0.91 & 29.2 & C & \#535 & 0.71 & 12.2 & B & 165 & \#627 & 0.92 & 29.3 & C & \#725 & 0.77 & 14.3 & B \\
\hline WB Overall & & & & 29.2 & C & & & 12.2 & B & & & & 29.3 & C & & & 14.3 & B \\
\hline NB LR/L & 375 & 298 & 0.94 & 60.4 & E & 277 & 1.02 & 96.3 & F & 375 & 311 & 0.95 & 64.2 & E & \#523 & 0.93 & 69.3 & E \\
\hline NB R & - & - & - & - & - & - & - & - & - & 100 & 100 & 0.02 & 21.3 & C & \#139 & 0.04 & 28.0 & C \\
\hline NB Overall & & & & 60.4 & E & & & 96.3 & F & & & & 60.9 & E & & & 62.7 & E \\
\hline SB LTR & 120 & 40 & 0.05 & 21.8 & C & 61 & 0.16 & 30.2 & C & 120 & 40 & 0.05 & 22.6 & C & 66 & 0.19 & 30.3 & C \\
\hline SB Overall & & & & 21.8 & C & & & 30.2 & C & & & & 22.6 & C & & & 30.3 & C \\
\hline Intersection Overall & & & 0.92 & 30.8 & C & & & 47.3 & D & & & 0.93 & 28.7 & C & & 0.96 & 29.9 & C \\
\hline
\end{tabular}

Notes:
\# 95th percentile volume exceeds capacity, queue may be longer.
\(\mathrm{EB}=\) Eastbound, \(\mathrm{WB}=\) Westbound, \(\mathrm{NB}=\) Northbound, \(\mathrm{SB}=\) Southbound
LOS = Level of Service
LTR = left / through / right lanes
V/C = Volume-to-Capacity ratio
Delay is Measured in Seconds Per Vehicle.
Red cells denote intersections or approaches operating at unacceptable conditions or denote approaches and lane groups whose queuing length exceeds capacity
\({ }^{\text {a }}\) Highway Capacity Manual 2000 results (Signalized intersections)

\subsection*{7.17 2040 Build 2040 Alternative F Freeway Operations Analysis}

Based on the analysis performed using HCS, one freeway facility would operate above capacity. This includes the I-93 SB off-ramp to NH 102. This facility would fail due to the off-ramp operating over capacity, thus queueing onto the I-93 mainline. The NH 102 on-ramp to I-93 NB would continue to operate above capacity potentially creating a queue into the NH 102 mainline. Table 7-18 contains the Exit 4 Alternative F freeway analysis compared to the No Build condition and Table 7-19 contains the Exit 5 Alternative F freeway analysis compared to the No Build condition. Appendix M contains the Build condition HCS freeway operation reports.

\section*{Table 7-18. I-93 Exit 42040 Build Alternative F freeway analysis compared to the} No Build condition
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Freeway Analysis} & \multirow[b]{2}{*}{Facility Type} & \multirow[b]{2}{*}{Time Period} & \multicolumn{2}{|l|}{Demand to Capacity Ratio} & \multirow[b]{2}{*}{Density (pc/mi/ln)} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Alt F } \\
& \text { LOS }
\end{aligned}
\]} & \multirow[t]{2}{*}{No Build LOS} \\
\hline & & & Freeway & Ramp & & & \\
\hline \multirow[t]{2}{*}{I-93 Northbound to NH 102} & \multirow{2}{*}{Diverge} & AM & 0.37 & 0.26 & 0.0 & A & A \\
\hline & & PM & 0.64 & 0.62 & 12.5 & B & B \\
\hline \multirow[t]{2}{*}{NH 102 to I-93 Northbound} & \multirow[b]{2}{*}{Merge} & AM & 0.55 & \(1.25{ }^{\text {a }}\) & 21.9 & C & D \\
\hline & & PM & 0.58 & 0.99 & 23.0 & C & C \\
\hline \multirow[t]{2}{*}{I-93 Southbound to NH 102} & \multirow[b]{2}{*}{Diverge} & AM & 0.55 & 0.85 & 26.2 & C & C \\
\hline & & PM & 0.57 & 1.12 & 29.6 & F & F \\
\hline \multirow[t]{2}{*}{NH 102 Westbound to I93 Southbound} & \multirow[b]{2}{*}{Merge} & AM & 0.50 & 0.70 & 17.5 & B & B \\
\hline & & PM & 0.41 & 0.32 & 11.1 & B & B \\
\hline \multirow[t]{2}{*}{NH 102 Eastbound to I-93 Southbound} & \multirow[b]{2}{*}{Merge} & AM & 0.67 & 0.89 & 24.2 & C & C \\
\hline & & PM & 0.47 & 0.39 & 14.5 & B & B \\
\hline
\end{tabular}

Notes: LOS = Level of Service; Density = Passenger cars per mile per lane (pc/mi/ln)
Red denotes interstate facilities that would result in failing operations and would produce a queue extending to the I-93 mainline.
a The capacity of the on-ramp exceeds the demand; therefore, the ramp would produce a queue extending to NH 102.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Freeway Analysis} & \multirow[b]{2}{*}{Facility Type} & \multirow[b]{2}{*}{Time Period} & \multicolumn{2}{|l|}{Demand to Capacity Ratio} & \multirow[b]{2}{*}{Density (pc/mi/ln)} & \multirow[b]{2}{*}{\begin{tabular}{l}
Alt \(F\) \\
LOS
\end{tabular}} & \multirow[t]{2}{*}{No Build LOS} \\
\hline & & & Freeway & Ramp & & & \\
\hline \multirow{2}{*}{I-93 Northbound to NH 28} & \multirow[b]{2}{*}{Diverge} & AM & 0.55 & 0.36 & 20.6 & C & B \\
\hline & & PM & 0.57 & 0.48 & 25.3 & C & C \\
\hline \multirow{2}{*}{NH 28 to I-93 Northbound} & \multirow[b]{2}{*}{Merge} & AM & 0.67 & 0.82 & 25.3 & C & C \\
\hline & & PM & 0.63 & 0.62 & 24.1 & C & C \\
\hline \multirow[t]{2}{*}{I-93 Southbound to NH 28} & \multirow{2}{*}{Diverge} & AM & 0.58 & 0.66 & 25.1 & C & C \\
\hline & & PM & 0.64 & 0.67 & 27.2 & C & C \\
\hline \multirow[t]{2}{*}{NH 28 to l-93 Southbound} & \multirow[b]{2}{*}{Merge} & AM & 0.57 & 0.45 & 17.5 & B & C \\
\hline & & PM & 0.58 & 0.38 & 17.0 & B & C \\
\hline
\end{tabular}

Notes: LOS = Level of Service; Density = Passenger cars per mile per lane ( \(\mathrm{pc} / \mathrm{mi} / \mathrm{ln}\) )
Table 7-19. I-93 Exit 52040 Build Alternative \(F\) freeway analysis compared to the No Build condition

\subsection*{8.0 POLICY ANALYSIS}

\subsection*{8.1 Introduction}

The need for new access from the Interstate stems from overcrowded traffic conditions through downtown Derry, New Hampshire, as well as traffic diverting to local roads to avoid NH 102 through downtown Derry. These conditions are caused by limited east-west routing options for traffic destined to the NH 28 Bypass and points east along NH 102 from origins along I-93 and points west along NH 102. I-93 Exit 4 along NH 102 provides the straightest path but passes through downtown Derry along an urban-designed roadway with on-street parking, frequent intersections, pedestrian accommodations, and dense development. A new connection from the Interstate would support the study goals to remove the pass-through traffic from downtown Derry, creating a safer and more pedestrian friendly downtown while providing a new direct connection to the Londonderry Turnpike and points east.

The following subsections assess the two FHWA policy requirements. The Project study area is defined in Section 2.3, and the purpose and need is defined in Section 1.2.

\subsection*{8.2 Policy Requirement 1: Operational and Collision Analysis}

An operational and safety analysis has concluded that the proposed change in access does not have a significant adverse impact on the safety and operation of the Interstate facility (which includes mainline lanes, existing, new, or modified ramps, and ramp intersections with crossroad) or on the local street network based on both the current and the planned future traffic projections. The analysis should, particularly in urbanized areas, include at least the first adjacent existing or proposed interchange on either side of the proposed change in access (Title 23, Code of Federal Regulations (CFR), paragraphs 625.2(a), 655.603(d) and 771.111(f)). The crossroads and the local street network, to at least the first major intersection on either side of the proposed change in access, should be included in this analysis to the extent necessary to fully evaluate the safety and operational impacts that the proposed change in access and other transportation improvements may have on the local street network (23 CFR 625.2(a) and 655.603(d)). Requests for a proposed change in access should include a description and assessment of the impacts and ability of the proposed changes to safely and efficiently collect, distribute, and accommodate traffic on the Interstate facility, ramps, intersection of ramps with crossroad, and local street network (23 CFR 625.2(a) and 655.603(d)). Each request should also include a conceptual plan of the type and location of the signs proposed to support each design alternative (23 U.S.C. 109(d) and 23 CFR 655.603(d)).

\subsection*{8.2.1 Introduction}

The following subsections describe the future traffic and safety conditions based on five alternatives to demonstrate that alternatives that include a new Exit 4A along I-93 would provide equal or more efficient and safe access to the Londonderry/Derry area than the present condition.

\subsection*{8.2.2 Traffic Volume Summary}

Traffic volumes were compared between the No Build condition and each alternative at five key locations. These include the following locations:
1. NH 102 eastbound and westbound through movements at Fordway/Madden Hill Road (Intersection \#10)
2. NH 28 eastbound through/ northbound right turns and westbound through and right turns at I-93 NB on and off-ramp (Intersection \#3)
3. I-93 northbound and southbound between Exit 4 and Exit 4A
4. I-93 northbound and southbound between Exit 5 and Exit 4A
5. Connector Roadway east of I-93 Exit 4A interchange

\section*{NH 102 Future Travel Patterns}

Based on the comparison of 2040 traffic volume forecasts produced by the SNHPC regional travel demand model, Alternatives A, B, C, and D would reduce traffic along NH 102 and all include a new I-93 Exit 4A interchange. Alternatives A and B would reduce volume by 28 percent along NH 102 when compared to the No Build condition. Alternatives A and B would provide the highest reduction in traffic of the alternatives and would meet the project goal to create a safer pedestrian environment in downtown Derry and reduce diverted traffic off local streets. Alternatives C and D would reduce traffic volume by 24 and 16 percent, respectively, when compared to the No Build condition. These reductions also help reduce traffic along NH 102 through downtown Derry, but not as much as Alternatives A and B. Alternative F would not include a new interchange, but would improvement intersections along NH 102 between I-93 Exit 4 and downtown Derry. These improvements would result in an increase in the vehicle volume by 10 percent which would worsen the traffic levels in downtown Derry.
Table 8-1 presents the NH 102 vehicle volume summary based on the volume of forecasted at location \#1.

Table 8-1. NH 102 vehicle volume summary at Location \#1
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Vehicle Direction & Time Period & No Build & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline \multirow[t]{2}{*}{NH 102 Eastbound Volumes} & AM & 453 & 370 & 360 & 380 & 420 & 540 \\
\hline & PM & 860 & 710 & 680 & 730 & 790 & 1,020 \\
\hline \multirow[t]{2}{*}{NH 102 Westbound Volumes} & AM & 790 & 495 & 545 & 525 & 585 & 810 \\
\hline & PM & 555 & 345 & 345 & 380 & 420 & 555 \\
\hline \multirow[t]{2}{*}{NH 102 Eastbound Average Difference} & AM & & -18\% & -21\% & -16\% & -7\% & 19\% \\
\hline & PM & & -17\% & -21\% & -15\% & -8\% & 19\% \\
\hline \multirow[t]{2}{*}{NH 102 Westbound Average Difference} & AM & & -37\% & -31\% & -34\% & -26\% & 3\% \\
\hline & PM & & -38\% & -38\% & -32\% & -24\% & 0\% \\
\hline \multicolumn{3}{|l|}{Overall Average Difference} & -28\% & -28\% & -24\% & -16\% & 10\% \\
\hline
\end{tabular}

\section*{NH 28 Future Travel Patterns}

Based on the comparison of 2040 traffic volume forecasts produced by the SNHPC regional travel demand model, Alternatives A, B, C, and D would reduce traffic along NH 28.
Alternatives C and D would reduce the volume by more than 44 percent along NH 28 compared to the No Build condition. Of the five alternatives, Alternatives C and D would have the greatest effect on volume, most likely because of the proximity of northern location of the proposed Exit 4A to Exit 5 providing a faster travel time to the same destinations in Londonderry and Derry. Alternatives A and B would reduce traffic volume by 21 and 35 percent, respectively, when compared to the No Build condition. While not as much of a reduction as Alternatives C and D, these reductions would represent a reduction in traffic along NH 28 east of I-93 Exit 5. Alternative F would result in a decrease in the vehicle volume by 3 percent, as a result of improved conditions along NH 102 to access downtown Derry and could represent vehicles shifting to NH 102 rather than remaining on NH 28, which would not achieve the project's goal.
Table 8-2 presents the NH 28 vehicle volume summary forecasted at location \#2.
Table 8-2. NH 28 vehicle volume summary at Location \#2
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c} 
Vehicle Direction
\end{tabular}} & \begin{tabular}{c} 
Time \\
Period
\end{tabular} & \begin{tabular}{c} 
No \\
Build
\end{tabular} & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
NH 28 Eastbound \\
Volumes
\end{tabular}} & AM & 890 & 515 & 435 & 360 & 370 & 845 \\
\cline { 2 - 9 } & PM & 1,525 & 990 & 855 & 750 & 770 & 1,445 \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
NH 28 Westbound \\
Volumes
\end{tabular}} & AM & 1,425 & 1,370 & 1,115 & 1,050 & 870 & 1,415 \\
\cline { 2 - 9 } & PM & 1,040 & 1,000 & 810 & 570 & 620 & 1,030 \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
NH 28 Eastbound \\
Average Difference
\end{tabular}} & AM & & \(-42 \%\) & \(-51 \%\) & \(-60 \%\) & \(-58 \%\) & \(-5 \%\) \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
NH 28 Westbound \\
Average Difference
\end{tabular}} & PM & & \(-35 \%\) & \(-44 \%\) & \(-51 \%\) & \(-50 \%\) & \(-5 \%\) \\
\hline \multicolumn{1}{|c|}{ Overall Average Difference } & & \(-4 \%\) & \(-22 \%\) & \(-26 \%\) & \(-39 \%\) & \(-1 \%\) \\
\cline { 2 - 9 }
\end{tabular}

\section*{I-93 between Exit 4 and 5 Future Travel Patterns}

Based on the comparison of 2040 traffic volume forecasts produced by the SNHPC regional travel demand model, when compared to the No Build condition, Alternatives A, C, and D would reduce traffic along I-93 between Exit 4 and Exit 4A (southern stretch); however, Alternatives A, B, C, and D would increase traffic along I-93 between Exit 5 and Exit 4A (northern stretch). There would be sufficient capacity along this northern stretch of I-93, resulting in no congestion issue with the completion of the I-93 widening to four lanes in each direction. Alternatives C and D would reduce the volume by more than 7 percent along the southern stretch, but increase the volume by 13 percent along the northern stretch. This would represent a shift of vehicles from Exit 4 to Exit 4A from origins from north of Londonderry. Alternatives A and B would result in a similar volume change, a 3 percent decrease and 1 percent increase, respectively for the southern stretch and 10 percent increase for both alternatives along the northern stretch. Alternative A would result in a similar shift from Exit 4 to Exit 4A in vehicle volume from
origins from north of Londonderry. Alternative B would create a new travel pattern by shifting north-south vehicle trips from the NH 28 Bypass to I-93, thereby increasing traffic volumes along I-93 from Exit 4A to points south of Londonderry. Both Alternatives A and B would not shift as many vehicle from Exit 5 to Exit 4A because of the more southern interchange location.
Alternatives A through D resulted in the reduction of vehicle trips forecasted between I-93 Exit 4A and Exit 4 during the PM peak hour. This reduction in vehicle volume eliminates the No Build condition failing I-93 southbound diverge facility serving NH 102. Alternative F does not address this failing facility.
Table 8-3 presents the vehicle summary volume for I-93 between Exit 5 and Exit 4A, and Table 8-4 presents the vehicle volume summary for I-93 between Exit 4 and Exit 4A.

Table 8-3. I-93 between Exit 4 and Exit 4A volume summary at Location \#3
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Vehicle Direction & Time Period & No Build & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline \multirow{2}{*}{I-93 Northbound Volumes} & AM & 4,755 & 4,290 & 4,565 & 4,235 & 4,150 & 4,760 \\
\hline & PM & 5,045 & 4,980 & 5,195 & 4,790 & 4,660 & 5,040 \\
\hline \multirow{2}{*}{I-93 Southbound Volumes} & AM & 4,805 & 4,965 & 5,065 & 4,635 & 4,610 & 4,845 \\
\hline & PM & 4,985 & 4,775 & 4,895 & 4,490 & 4,465 & 5,035 \\
\hline \multirow[t]{2}{*}{I-93 Northbound Average Difference} & AM & & -10\% & -4\% & -11\% & -13\% & 0\% \\
\hline & PM & & -1\% & 3\% & -5\% & -8\% & 0\% \\
\hline \multirow[t]{2}{*}{I-93 Southbound Average Difference} & AM & & 3\% & 5\% & -4\% & -4\% & 1\% \\
\hline & PM & & -4\% & -2\% & -10\% & -10\% & 1\% \\
\hline \multicolumn{3}{|l|}{Overall Average Difference} & -3\% & 1\% & -7\% & -9\% & 0\% \\
\hline
\end{tabular}

Table 8-4. I-93 between Exit 5 and Exit 4A volume summary at Location \#4
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Vehicle Direction & Time Period & No Build & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline \multirow{2}{*}{I-93 Northbound Volumes} & AM & 4,755 & 4,885 & 4,905 & 5,205 & 5,260 & 4,760 \\
\hline & PM & 5,045 & 5,510 & 5,500 & 5,650 & 5,650 & 5,040 \\
\hline \multirow{2}{*}{I-93 Southbound Volumes} & AM & 4,805 & 5,715 & 5,700 & 5,750 & 5,740 & 4,845 \\
\hline & PM & 4,985 & 5,445 & 5,460 & 5,485 & 5,470 & 5,035 \\
\hline \multirow[t]{2}{*}{I-93 Northbound Average Difference} & AM & & 3\% & 3\% & 9\% & 11\% & 0\% \\
\hline & PM & & 9\% & 9\% & 12\% & 12\% & 0\% \\
\hline \multirow[t]{2}{*}{I-93 Southbound Average Difference} & AM & & 19\% & 19\% & 20\% & 19\% & 1\% \\
\hline & PM & & 9\% & 10\% & 10\% & 10\% & 1\% \\
\hline \multicolumn{3}{|l|}{Overall Average Difference} & 10\% & 10\% & 13\% & 13\% & 0\% \\
\hline
\end{tabular}

\section*{I-93 Exit 4A Connector Roadway Future Travel Patterns}

Based on the comparison of 2040 traffic volume forecasts produced by the SNHPC regional travel demand model, Alternatives A and B would generate the most volume along the new roadway serving the I-93 Exit 4A interchange. Alternative D would generate the lowest volume of the four alternatives that include the Exit 4A concept. Compared to Alternative D, Alternatives A and B would generate over 46 percent more vehicle trips. The demographic assumptions supporting Alternatives A and B include a full built-out of Woodmont Commons, thus a number of these vehicle trips generated represent Woodmont Commons-destined traffic that would use Exit 4A to access the development through a new planned connection from the Connector Roadway serving Exit 4A.
Table 8-5 contains the I-93 Exit 4A Connector Road vehicle volume summary.
Table 8-5. I-93 Exit 4A Connector Roadway volume summary at Location \#5
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Vehicle Direction } & \begin{tabular}{c} 
Time \\
Period
\end{tabular} & Alt. A & Alt. B & Alt. C & Alt. D \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
Connector Rd. Eastbound \\
Volumes
\end{tabular}} & AM & 2,525 & 2,635 & 1,800 & 1,685 \\
\cline { 2 - 6 } & PM & 2,255 & 2,345 & 1,635 & 1,500 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Connector Rd. \\
Westbound Volumes
\end{tabular}} & AM & 2,370 & 2,340 & 1,685 & 1,665 \\
\cline { 2 - 6 } & PM & 2,115 & 2,085 & 1,500 & 1,485 \\
\hline \begin{tabular}{l} 
Connector Rd. Eastbound \\
Average Difference
\end{tabular} & AM & \(50 \%\) & \(56 \%\) & \(7 \%\) & \(0 \%\) \\
\cline { 2 - 6 } & PM & \(50 \%\) & \(56 \%\) & \(9 \%\) & \(0 \%\) \\
\hline \begin{tabular}{l} 
Connector Rd. \\
\begin{tabular}{l} 
Westbound Average \\
Difference
\end{tabular}
\end{tabular} & AM & \(19 \%\) & \(19 \%\) & \(20 \%\) & \(19 \%\) \\
\cline { 2 - 6 } & PM & \(9 \%\) & \(10 \%\) & \(10 \%\) & \(10 \%\) \\
\hline \begin{tabular}{l} 
Overall Average Difference \\
Compared to Alternative D
\end{tabular} & \(\mathbf{4 6 \%}\) & \(\mathbf{4 8 \%}\) & \(5 \%\) & \(\mathbf{0 \%}\) \\
\hline
\end{tabular}

\section*{Alternative A Future Traffic Patterns through Downtown Derry}

Select link analysis from the travel demand model was conducted along NH 102 east of Griffin Road (a location at the western end of downtown Derry). The intention of the analysis was to determine how many vehicle trips would be shifted from NH 102 to the new proposed interchange and proposed route to bypass downtown Derry (Table 8-6). Based on the model, under Alternative A there would be a 29 percent decrease in the No Build condition forecasted vehicle volume ( 2,306 vehicles) that would travel through downtown Derry using NH 102. This decrease represents a shift in travel from NH 102 through downtown Derry to the new parallel route serviced by I-93 Exit 4A. At the same time, there would also be a 15 percent increase in the No Build condition forecasted volume (1,205 vehicles) that would travel through downtown Derry using NH 102. This increase represents a shift in travel from another route to NH 102 through downtown Derry because there would be available capacity through downtown Derry. Combining the two changes in travel patterns, there would be a 14 percent decrease in volume ( 1,100 vehicles) that would travel through downtown Derry if Alternative A was implemented.

Table 8-6. Downtown Derry travel pattern shifted from Alternative A
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Alternative & North Derry & \begin{tabular}{l}
East \\
Derry
\end{tabular} & Chester & Points north of Derry & Other Destinations & Shifted from NH 102 & \[
\begin{gathered}
\text { Shifted } \\
\text { To NH } \\
102
\end{gathered}
\] & TOTAL \\
\hline & \multicolumn{8}{|c|}{Daily Vehicle Trips} \\
\hline No Build & 2,995 & 2,521 & 194 & 115 & 2,055 & & & 7.880 \\
\hline Build Alternative A & 878 & 2,332 & 392 & 259 & 2,918 & & & 6,779 \\
\hline & \multicolumn{8}{|c|}{Change in Volume (Percent/Actual)} \\
\hline Change in Vehicle Trips & -2,117 & -189 & 198 & 144 & 863 & 2,306 & 1,205 & 1,101 \\
\hline Percent Change & -71\% & -7.5\% & 102\% & 125\% & 42\% & 29\% & 15\% & -14\% \\
\hline
\end{tabular}

Source: CLD (2017)

\subsection*{8.2.3 Traffic Operational and Queuing Analysis-Base Conditions}

The existing traffic operations and queuing conditions are presented in Sections 3.7.4 and 3.7.5. The critical existing areas that experience operation and queueing issues include the following locations (isolated issues would only affect the specific intersections and would not affect adjacent intersections):
- NH 102 at Gilcreast Road (Intersection \#5): operational and queueing issues affecting NH 102 through and turning movements
- NH 102 at Hampton Drive/Garden Lane (Intersection \#6): operational issues affecting NH 102 through and turning movements
- NH 102 at I-93 SB off-Ramp (Intersection \#7): operational issues affecting I-93 SB off-ramp
- NH 102 at I-93 NB On and Off-Ramps (Intersection \#8): operational issues affecting conflicting NH 102 movements (westbound through and eastbound left-turn)
- NH 102 at St. Charles Street/Londonderry Road (Intersection \#9): isolated queuing issues affecting NH 102 eastbound left
- NH 102 at Fordway/Madden Hill Road (Intersection \#10): isolated queuing issues affecting NH 102
In summary, the majority of issues occur along NH 102 at Gilcreast Road (Intersection \#5) where queuing affects Intersection \#6. The Exit 4 intersections have some minor issues, but overall operate well. The two NH 102 intersections east of Exit 4 have minor and isolated issues. There were no issues regarding the NH 28 intersections surrounding Exit 5.

\subsection*{8.2.4 Freeway Analysis-Base Conditions}

The existing freeway facilities all operate at LOS D or better during the AM and PM peak hours; results are presented in Section 3.7.6.

\subsection*{8.2.5 Forecasting Travel Demand for No Build and Build Alternatives}

The future forecasted traffic volumes rely on the SNHPC travel demand model. The development of the No Build condition traffic forecasts is presented in Section 5.3, and the Build alternatives are presented in Section 6.0. Both sets of forecasts rely on changes to the model network at 30 locations and reflect roadway improvements and different demographic forecasts. The demographic forecasts used for the No Build condition were also used for Alternative F. Alternatives C and D have similar projections reflecting some growth beyond the No Build level based on a proposed, more northern location of the I-93 Exit 4 interchange. Alternatives A and B also have similar projections reflecting the maximum induced growth potential based on the location of the proposed, more southern location of the I-93 Exit 4A interchange and its relation to the proposed Woodmont Commons PUD. Section 3.1 provides the detailed demographic descriptions assigned to each future alternative and No Build condition.

\subsection*{8.2.6 Traffic Operational and Queuing Analysis - Future Base Conditions for 2040 (Future Year)}

The future No Build condition operations and queuing conditions are presented in Sections 5.4 and 5.5. The critical areas that would experience operation and queueing issues include the following locations (isolated issues would only affect the specific intersections and would not affect adjacent intersections):
- NH 28 at Symmes Drive/Vista Ridge Drive (Intersection \#1): isolated operational issues affecting NH 28 turning movements
- NH 28 at I-93 SB On and Off-Ramps (Intersection \#2): operational and queueing issues affecting NH 28 through and turning movements and I-93 SB off-ramp
- NH 28 at I-93 NB On and Off-Ramps (Intersection \#3): operational and queueing issues affecting NH 28 through and turning movements and I-93 NB off-ramp
- NH 102 at Gilcreast Road (Intersection \#5): operational and queueing issues affecting NH 102 through and turning movements
- NH 102 at Hampton Drive/Garden Lane (Intersection \#6): operational issues affecting NH 102 through movements
- NH 102 at I-93 SB off-Ramp (Intersection \#7): operational issues affecting NH 102 through and turning movements and I-93 SB off-ramp
- NH 102 at I-93 NB On and Off-Ramps (Intersection \#8): operational issues affecting NH 102 through and turning movements and I-93 NB off-ramp
- NH 102 at St. Charles Street/Londonderry Road (Intersection \#9): isolated operational issues affecting NH 102 through and turning movements
- NH 102 at Fordway/Madden Hill Road (Intersection \#10): isolated operational and queuing issues affecting NH 102
In summary, the majority of issues would occur along NH 28 at Exit 5 (Intersections \#2 and \#3) and NH 102 between Gilcreast Road (Intersection \#5) and I-93 NB on- and off-ramps
(Intersection \#8) affecting the Exit 4 intersections along NH 102. The two NH 102 intersections east of Exit 4 would have minor, isolated issues.

\subsection*{8.2.7 Freeway Analysis - Future Base Conditions for 2040 (Future Year)}

The future No Build condition freeway facilities all operate at LOS D or better during the AM and PM peak hours except for the I-93 SB diverge at Exit 4, which operates at LOS F. In addition, the I-93 NB on-ramp from NH 102 at Exit 4 would operate above its capacity. This would create a queue that might extend back into NH 102 at Intersection \#8. These results are presented in Section 5.6.

\subsection*{8.2.8 Traffic Operational and Queuing Analysis - 2040 Build Alternatives}

\section*{Future Build Traffic Operations}

The study analyzed 12 intersections under each alternative covering the study area. For each alternative, including the No Build condition, the traffic signal timings were optimized and the offsets were also optimized to process vehicle platoons as best as possible and reduce queuing as much as possible. Based on the analysis when compared to the No Build condition, the following would occur:
- Intersections east and west of Exit 5 along NH 28 (Intersections \#1 and \#4) would remain the same or improve for all alternatives.
- Intersections serving Exit 5 along NH 28 (Intersections \#2 and \#3) for the most part improve; however, Intersection \#3 worsens operationally under Alternative A and Intersection \#2 remains the same under Alternative F.
- Intersections west of Exit 4 along NH 102 (Intersections \#5 and \#6) would maintain the same LOS or worse because of the projected increase in vehicle volume attracted to the Woodmont Commons development, accessible from Garden Lane and Gilcreast Road.
- Intersections serving Exit 4 along NH 102 (Intersections \#7 and \#8) would improve for Alternatives B and F, but remain the same or worsen for the other alternatives. The worsening conditions at these locations result from the generation of vehicle trips from Woodmont Commons to access the I-93 NB on-ramp and from the I-93 NB offramp to access Woodmont Commons.
- Intersections east of Exit 4 along Exit 102 (Intersections \#9 and \#10) would improve because the proposed improvements at Intersections \#9 for all alternatives and projected decrease in volumes along NH 102 east of Exit 4 for Alternatives A, B, C, and D .
- Intersections serving the I-93 Exit 4A interchange would operate at LOS D or better for all alternatives that include that component (Alternatives A, B, C, and D).
Table 8-7 provides an operational summary. The cells shown in red highlight LOS E or F operation, and cells shown in orange highlight worsening conditions when compared to the No

Table 8-7. Future intersection operations summary
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Intersection} & Time Period & No Build & Alt. A & \begin{tabular}{l}
Alt. \\
B
\end{tabular} & Alt. C & Alt. D & Alt. F \\
\hline \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{NH 28 \& Symmes Drive/Vista Ridge Dr.} & AM & D & D & C & C & C & D \\
\hline & & PM & C & C & C & C & C & C \\
\hline \multirow[t]{2}{*}{2} & \multirow[t]{2}{*}{NH 28 \& I-93 SB Off and On-Ramp} & AM & E & D & C & C & C & E \\
\hline & & PM & C & C & B & B & B & C \\
\hline \multirow[t]{2}{*}{3} & \multirow[t]{2}{*}{NH 28 \& I-93 NB Off and On-Ramp} & AM & D & E & D & D & D & D \\
\hline & & PM & D & D & C & C & C & D \\
\hline \multirow[t]{2}{*}{4} & \multirow[b]{2}{*}{NH 28 \& Liberty Drive} & AM & B & A & A & A & A & B \\
\hline & & PM & B & B & B & B & B & B \\
\hline \multirow[t]{2}{*}{5} & \multirow[t]{2}{*}{NH 102 \& Gilcreast Road} & AM & E & E & E & F & F & E \\
\hline & & PM & F/94.0 & F & E & F/102 & F/107 & F \\
\hline \multirow[t]{2}{*}{6} & \multirow[t]{2}{*}{NH 102 \& Hampton Dr./Garden Ln.} & AM & C & C & C & C & C & C \\
\hline & & PM & D & F & E & D & E & D \\
\hline \multirow[t]{2}{*}{7} & \multirow[t]{2}{*}{NH 102 \& I-93 SB Off and On-Ramp} & AM & D & C & C & D & D & D \\
\hline & & PM & F & D & D & E & E & E \\
\hline \multirow[t]{2}{*}{8} & \multirow[t]{2}{*}{NH 102 \& I-93 NB Off and On-Ramp} & AM & E/61.4 & E/71.2 & D & E/62.1 & E/67/3 & E \\
\hline & & PM & F/92/8 & F/115 & F & F & F & F \\
\hline \multirow[t]{2}{*}{9} & \multirow[t]{2}{*}{NH 102 \& St Charles St/Londonderry Rd.} & AM & B & B & A & A & A & B \\
\hline & & PM & E & B & B & B & B & C \\
\hline \multirow[t]{2}{*}{10} & \multirow[t]{2}{*}{NH 102 \& Fordwayl Madden Hill Rd.} & AM & C & C & C & C & C & C \\
\hline & & PM & D & D & C & C & C & C \\
\hline \multirow[b]{2}{*}{11} & \multirow[t]{2}{*}{Connector Rd. \& I-93 SB Off and OnRamps} & AM & & D & D & C & B & \\
\hline & & PM & & C & C & B & B & \\
\hline \multirow{2}{*}{12} & \multirow[t]{2}{*}{\begin{tabular}{l}
Connector Rd. \& I-93 \\
NB Off and On- \\
Ramps
\end{tabular}} & AM & & C & C & A & A & \\
\hline & & PM & & B & B & A & A & \\
\hline
\end{tabular}

Red denotes overall failing operations (LOS E or F).
7 Orange denotes cases where the alternative operation would be worse than the No Build condition.

\section*{Future Build Traffic and Queuing Assessment}

The future Build condition operations and queuing conditions are presented in Sections 7.3 through 7.16. Based on a comparison between the No Build condition and the alternatives, the following can be deduced:
- Alternatives B and C impacted one intersection (Intersection \#6 only)
- Alternative D impacted two intersections (Intersections \#5 and \#6)
- Alternative A impacted two intersections (Intersections \#6 and \#8)
- Alternative F impacted four intersections (Intersections \#2, \#3, \#7, and \#10)
- Alternative A benefited five intersections (Intersections \#2, \#5, \#7, \#9, and \#10)
- Alternative B benefited seven intersections (Intersections \#2, \#3, \#5, \#7, \#8, \#9, and \#10)
- Alternatives C and D benefited six intersections (Intersections \#2, \#3, \#7, \#8, \#9, and \#10)
- Alternative F benefited one intersection (Intersection \#9)

Table 8-8 contains a comparison of intersection analysis between Build alternatives.
Based on the Woodmont Commons Memorandum of Understanding, to "unlock" parcels within the PUD Master Plan for the developer to continue construction, the developer must submit a traffic study to the Londonderry Planning Board to ascertain the level of roadway mitigation necessary to handle the new vehicle trips generated (Pillsbury, 2018). The assessment in this study does not include the future mitigation because the future mitigation is not known until the next set of Woodmont Commons traffic studies are completed. Because it is assumed that Alternatives A and B would induce a fully built out Woodmont Commons PUD, two traffic issues occurred as follows:
- The number of vehicle trips generated through the study area was based on a fully builtout Woodmont Commons PUD.
- The appropriate level of traffic mitigation was not in place to address the forecasted vehicle trips generated by the Woodmont Commons PUD.

The resulting issue was traffic impacts along NH 102 at Exit 4 (Intersections \#7 and \#8), NH 102 at Garden Lane/Hampton Drive (Intersection \#6), and NH 102 at Gilcreast Road (Intersection \#5). These traffic issues should be assumed to be addressed by the future traffic studies prepared to "unlock" Woodmont Commons PUD parcels.

1 Table 8-8. Comparison of intersections analysis between Build Alternatives
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Intersection}} & \multirow[t]{2}{*}{Time Period} & \multicolumn{2}{|r|}{No Build} & \multicolumn{2}{|c|}{Alt. A} & \multicolumn{2}{|c|}{Alt. B} & \multicolumn{2}{|r|}{Alt. C} & \multicolumn{2}{|r|}{Alt. D} & \multicolumn{2}{|r|}{Alt. F} \\
\hline & & & Oper. & Queue & Oper. & Queue & Oper. & Queue & Oper. & Queue & Oper. & Queue & Oper. & Queue \\
\hline \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{NH 28 \& Symmes Drive/Vista Ridge Dr.} & AM & & & & & & & & & & & & \\
\hline & & PM & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{2} & \multirow[t]{2}{*}{NH 28 \& I-93 SB Off and On-Ramp} & AM & & & & & & & & & & & & \\
\hline & & PM & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{3} & \multirow[t]{2}{*}{NH 28 \& I-93 NB Off and On-Ramp} & AM & & & & & & & & & & & & \\
\hline & & PM & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{4} & \multirow[b]{2}{*}{NH 28 \& Liberty Drive} & AM & & & & & & & & & & & & \\
\hline & & PM & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{5} & \multirow[t]{2}{*}{NH 102 \& Gilcreast Road} & AM & & & & & & & & & & & & \\
\hline & & PM & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{6} & \multirow[t]{2}{*}{NH 102 \& Hampton Dr./Garden Ln.} & AM & & & & & & & & & & & & \\
\hline & & PM & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{7} & \multirow[t]{2}{*}{NH 102 \& I-93 SB Off and On-Ramp} & AM & & & & & & & & & & & & \\
\hline & & PM & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{8} & \multirow[t]{2}{*}{NH 102 \& I-93 NB Off and On-Ramp} & AM & & & & & & & & & & & & \\
\hline & & PM & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{9} & \multirow[t]{2}{*}{NH 102 \& St Charles St/Londonderry Rd.} & AM & & & & & & & & & & & & \\
\hline & & PM & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{10} & \multirow[t]{2}{*}{NH 102 \& Fordway/ Madden Hill Rd.} & AM & & & & & & & & & & & & \\
\hline & & PM & & & & & & & & & & & & \\
\hline
\end{tabular}

Oper. = Operations
Red under No Build denotes overall failing operations (LOS E or F) or the vehicle queue is projected to extend beyond available storage space.
4 Red under all other alternatives denotes worse conditions than the No Build Condition.
5 Green under No Build denotes overall acceptable conditions.
6 Green under all other alternatives denotes better condition than the No Build Condition.

The proposed new intersections to serve the I-93 Exit 4A interchange ramp termini would both operate at LOS D or better for all alternatives that include the Exit 4A component. Alternatives A, C, and D would result in minor queuing; however, Alternative B would create the longest queues mainly because this alternative would attract the most vehicle trips.

\subsection*{8.2.9 Freeway Analysis - 2040 Build Alternatives}

The study analyzed 13 freeway facilities under each alternative covering the study area (Table \(8-9\) ). Based on the analysis, the I-93 southbound off-ramp to NH 102 would continue to operate at LOS F under Alternative F. All other freeway facilities under all alternatives would operate at LOS D or better. The future Build condition freeway facilities including the I-93 Exit 4A interchange would operate as follows:
- All facilities would operate at LOS D or better for Alternative A.
- All facilities would operate at LOS D or better for Alternative B; however, the I-93 NB on-ramp would operate above its capacity, thus creating a queue that might extend back into NH 102 at Intersection \#8.
- All facilities would operate at LOS D or better for Alternative C.
- All facilities would operate at LOS D or better for Alternative D.
- The I-93 SB diverge at Exit 4 would continue to operate at LOS F and the I-93 NB on-ramp would operate above its capacity, thus creating a queue that might extend back into NH 102 at Intersection \#8.

These results are presented in Sections 7.5, 7.8, 7.11, 7.14, and 7.17.

1 Table 8-9. Future freeway operations summary
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Intersection & & Time Period & No Build & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline \multicolumn{9}{|c|}{I-93 Exit 5} \\
\hline \multirow{2}{*}{I-93 Northbound to NH 102} & \multirow[b]{2}{*}{Diverge} & AM & A & A & A & A & A & A \\
\hline & & PM & B & B & B & B & B & B \\
\hline \multirow[b]{2}{*}{NH 102 to I-93 Northbound} & \multirow[b]{2}{*}{Merge} & AM & C & B & C & B & B & C \\
\hline & & PM & C & C & C & B & B & C \\
\hline \multirow[t]{2}{*}{I-93 Southbound to NH 102} & \multirow[b]{2}{*}{Diverge} & AM & C & C & C & C & C & C \\
\hline & & PM & F & A & C & C & C & F \\
\hline \multirow[t]{2}{*}{NH 102 Westbound to I-93 Southbound} & \multirow[b]{2}{*}{Merge} & AM & B & B & B & B & B & B \\
\hline & & PM & B & A & A & B & B & B \\
\hline \multirow[t]{2}{*}{NH 102 Eastbound to I-93 Southbound} & \multirow[b]{2}{*}{Merge} & AM & C & C & C & C & C & C \\
\hline & & PM & B & B & B & B & B & B \\
\hline \multicolumn{9}{|c|}{I-93 Exit 4} \\
\hline \multirow{2}{*}{I-93 Northbound to NH 28} & \multirow[b]{2}{*}{Diverge} & AM & C & C & C & C & C & C \\
\hline & & PM & C & D & D & C & D & C \\
\hline \multirow[b]{2}{*}{NH 28 to I-93 Northbound} & \multirow[b]{2}{*}{Merge} & AM & C & C & C & C & C & C \\
\hline & & PM & C & C & C & C & C & C \\
\hline \multirow[b]{2}{*}{I-93 Southbound to NH 28} & \multirow[b]{2}{*}{Diverge} & AM & D & C & C & C & C & C \\
\hline & & PM & D & C & C & C & C & C \\
\hline \multirow[b]{2}{*}{NH 28 to I-93 Southbound} & \multirow[b]{2}{*}{Merge} & AM & C & C & B & C & C & B \\
\hline & & PM & C & B & B & C & C & B \\
\hline \multicolumn{9}{|c|}{1-93 Exit 4A} \\
\hline \multirow[t]{2}{*}{I-93 Northbound to Connector Roadway} & \multirow[b]{2}{*}{Diverge} & AM & & C & C & B & B & \\
\hline & & PM & & C & C & C & B & \\
\hline \multirow[t]{2}{*}{Connector Roadway to I-93 Northbound} & \multirow[b]{2}{*}{Merge} & AM & & C & C & C & C & \\
\hline & & PM & & C & C & C & C & \\
\hline \multirow[t]{2}{*}{I-93 Southbound to Connector Roadway} & \multirow[b]{2}{*}{Diverge} & AM & & B & B & D & D & \\
\hline & & PM & & B & B & D & D & \\
\hline \multirow[t]{2}{*}{Connector Roadway to I-93 Southbound} & \multirow[b]{2}{*}{Merge} & AM & & C & C & B & B & \\
\hline & & PM & & C & C & B & B & \\
\hline
\end{tabular}

2 Red denotes overall failing operations (LOS E or F).

\subsection*{8.2.10 Collision Analysis - Base Conditions}

A crash analysis was performed covering the study area and included the intersections along NH 28 and NH 102 as well as I-93 between Exits 4 and 5 (see Section 3.8). This section discusses the crash types, speculates regarding the reasons for the crashes, and reviews the crash severity.

\section*{Types of Collision Occurring}

At the intersections, crash types included rear end, angle, side swipes, head-on, fixed objects in the road, fixed object off the road, pedestrian, and other. The rear end collisions represent one vehicle hitting another directly in front. These are usually caused by a vehicle stopping abruptly and the vehicle directly behind unable to stop fast enough to avoid a collision. These can also occur when both vehicles are traveling above the speed limit and trailing vehicle is driving too close, thus reducing the amount of space necessary to avoid the collision. These types of crashes can also be caused by the driver in the trailer vehicle using their mobile phone and not paying attention to the road.

Angle collisions can be caused by one vehicle not yielding to another when entering a lane on a roadway. In most cases, the vehicle already in the lane has the ROW and another vehicle aggressively enters the lane at an intersection.

Side swipe crashes are similar to angle collisions except these crashes occur when one vehicle changes lanes on the same roadway and does not yield to a vehicle already in that lane. These crashes occur often due to blind spots in a vehicle where the drive cannot see if the adjacent lane is clear.

Head-on crashes can occur in a number of instances such as, if a driver enters a roadway headed in the wrong direction and does not realize their mistake until another vehicle appears. They can also occur when a vehicle enters a reversible lane that is closed.

The other crash types are similar in that they can occur at any time based on the weather, not paying attention to the road, speeding, or failure of the vehicle to operate correctly. These crash types do not involve another vehicle.

Based on the crash data provided by NHDOT, the most prevalent crash type along NH 28 and NH 102 were rear end, followed by angle collisions. There were also a number of side swipes. The intersections with the highest crash rates (all exceeded 1.0 MEV) and highest number of injuries were all along NH 102 and included Gilcreast (Intersection \#5), Garden Lane/Hampton Drive (Intersection \#6), and I-93 NB Ramps (Intersection \#8). Tables 3-14 and 3-15 summarize the intersection crash analysis.

Along the freeway, there were slightly different crash types reported. These included fixed object, other motor vehicle, parked vehicle, overturns, jackknife, other object, and other. A fixed object crash involved a vehicle hitting a sign, guard rail, lamp post, tree, or barrier. Other motor vehicle refers to one moving vehicle crashing into another moving vehicle in a sideswipe manner. A parked vehicle refers to a moving vehicle hitting a vehicle parked along the shoulder. Overturns means a vehicle was traveling much faster than the speed limit and flipped over, which would involve some dangerous driving. Jackknife refers to trucks turning beyond the radius designed by the vehicle and the trailer separating from the cab.

Based on the crash data provided by NHDOT, crashes with other motor vehicles were the most common, followed by crashes with fixed objects. There were a number of overturned vehicles
mostly along the I-93 mainline between Exits 4 and 5. The freeway location with the highest crash rate and highest number of injuries was I-93 NB between Exits 4 and 5. The area with the second highest crash rates was the I-93 SB merge at Exit 4. Tables \(3-16\) and \(3-17\) summarize the freeway crash analysis.

\section*{Reasons for Collisions}

Crash data helps to point to possible causes for the crashes, but without reviewing each crash report prepared by the state police, the study can only infer what might be causing the crashes.

Based on the intersection data, most of the crashes occurred during the daylight hours, on clear weather days, and in dry pavement conditions. This would point to driver distraction and speeding and to a lesser extent driver error at NH 102 at Gilcreast, NH 102 at Garden Lane/Hampton Drive, and NH 102 at I-93 NB ramps (Intersections \#5, \#6, and \#8) mainly because the roadway is flat, the signing indicates the lane geometry ahead of intersections, there is a clear view of the intersection on approach, and the traffic signal is visible from all lanes. There are also a number of crashes that fell into the "other" category, which does not help to identify the reason for the crash.

Based on the freeway data, most of the crashes occurred during the daylight hours, on clear weather days, and in dry pavement conditions. There were some crashes (approximately 20 percent) that did occur at night and in winter weather conditions This would point to driver distraction, speeding, and to a lesser extent weather conditions along I-93 NB and SB between Exit 4 and 5 mainly because the road is flat, signing warns of upcoming interchange ramps, and the roadway either is straight or has large radius turns (gentle turns). I-93 SB at Exit 4 does have multiple on-ramps from NH 102, which results in a slightly higher crash rate along the stretch of I-93 between the two merges. Both of these facilities still result in low crash rates with 0.24 and 0.20 MEV, respectively. A few crashes along I-93 resulted in overturned vehicles. Based on the data, these crashes primarily occurred during the day in dry conditions, which further supports speeding as the cause of the crashes.

\section*{Severity of Collisions}

The severity of collisions can be assessed based on the collision type, number of injuries, and number of fatalities. Based on the intersection data, very few crashes were head-on or involved pedestrians. There was one fatality at NH 102 and I-93 NB ramps (Interchange \#8). Based on the freeway data, most crashes were not severe, but there were some overturned vehicles and one jackknifed tractor trailer. None of the crashes resulted in a fatality.

\subsection*{8.2.11 Collision Analysis - 2040 Build Alternatives}

The future conditions would include roadway improvements beside the construction of the I-93 Exit 4A interchange. These would include the following five improvements:
1. I-93 Mainline would be widening from two to four lanes in each direction through the study area (currently under construction).
2. The I-93 Exit 4 ramps and NH 102 alignment would be reconstructed to include more turning lanes at the intersections (Intersections \#7 and \#8) and more through lanes along NH 102 (currently under construction).
3. The intersection of NH 102 and Gilcreast (Intersection \#5) would be reconstructed to include more through lanes along NH 102 (proposed future Woodmont Commons mitigation).
4. The intersection of NH 102 and Garden Lane/Hampton Drive (Intersection \#6) would be reconstructed to include more through lanes along NH 102 (proposed future Woodmont Commons mitigation).
5. The intersection of NH 102 and Londonderry Road/St. Charles Street (Intersection \#9) would be reconstructed to include more turning lanes along NH 102 (Proposed future Woodmont Commons mitigation).
In addition to these five ongoing and future improvements, NHDOT recently improved the I-93 Exit 5 interchange and adjacent intersections along NH 28 at Symmes Drive/Vista Ridge and Liberty Drive (Intersections \#1 \#4). Together, these future and ongoing improvements would cover all IJR study area intersections with the exception of NH 102 and Fordway/Madden Hill Road (Intersection \#10).
These roadway improvement would be based on the latest designs and would follow all applicable American Association of State Highway Transportation Officials (AASHTO), NHDOT, and FHWA guidelines to ensure they address any safety issues and do not create any new ones. The design of I-93 Exit 4A would also follow the latest AASHTO, NHDOT, and FHWA guidelines to ensure the ramps merges and diverges provide adequate distances, the intersections serving the new connector roadway provide proper lane geometry, and traffic signals serving the new intersections can be seen by approaching vehicles.

Any past safety concerns evident from crash data would be assumed to be addressed through the improvement projects. In terms of driver speeding and distracted driver issues, two counter measures could be implemented. NHDOT could install automated speed enforcement cameras to reduce speeding (FHWA, n.d.a). Prior to investing in enforcement cameras, a speed study should be conducted to confirm that the 85th percentile speed is well over the speed limit. For distracted driving, New Hampshire has published is own Net Zero Plan that includes a number of strategies to address distracted drivers. These strategies include (FHWA, n.d.b):
- Education through action plans and local and national campaigns, and exposing young drivers to presentations on the topic
- Enforcement/adjudication through targeted enforcement times and places as well as asking officers to identify the distraction on the crash reports
- Engineering by installing rumble strips
- Legislative policy/programmatic measures to promote strong laws against distracted driving and developing and implementing action plans to focus drivers

\subsection*{8.2.12 Policy Requirement 1 Conclusion}

The proposed five alternatives in tandem with the planned roadway improvements each provide a different level of operation, queueing, and safety impacts and benefits. The overall impacts under Alternatives A and B assume Woodmont Commons follows its memorandum of understanding with the Town of Londonderry and implements traffic improvements along NH 102.

Five alternatives and the No Build condition were analyzed to assess if a new interchange is warranted to address the study goals. The No Build condition and Alternative F represent improvements to NH 102 that do not include a new I-93 Exit 4A interchange; therefore, assessment of these alternatives considers using the existing roadway system to address study goals. Based on the forecasted changes in vehicle trip patterns through downtown Derry (see Table 8-1), Alternative F and the No Build condition would not address the goal of reducing pass-through vehicle volumes.

Alternatives A, B, C, and D would each include a new I-93 Exit 4A interchange and a connector roadway to link the interchange to eastern Derry via either a new alignment or improvements to existing alignments. Alternatives A and B would create a new interchange and would serve adjacent developable lane, thus they also include the assumption that induced and background growth would occur in the area. Alternatives C and D would create a new interchange that does not serve adjacent developable land, thus would only include background growth. Therefore, the SNHPC travel demand model created additional vehicle trips in the study area destined to the specific growth areas depending on the alternative. For Alternatives A and B, these growth areas include Woodmont Commons (full build-out) and other smaller developments in Derry, Londonderry, Auburn, Chester, and Sandown. The Woodmont Commons and other background growth vehicle trips were added to freeway facilities and intersections along NH 102 and NH 28. Alternatives C and D only include growth in Chester and Sandown and maintain Woodmont Commons at the same growth level as the No Build condition.
Based on the analysis, the study area freeway facilities would all operate at acceptable levels for Alternatives A, B, C, and D (see Table 8-9). Each alternative would result in a different number of intersections that would operate at worse conditions (operations not queueing) when compared to No Build condition as follows:
- Under Alternative A, four intersections (one along NH 28 and three along NH 102)
- Under Alternative B, one intersection along NH 102
- Under Alternative C, three intersections along NH 102
- Under Alternative D, four intersections along NH 102
- Under Alternative F, none

The proposed trips generated by Woodmont Commons account for most of these intersection issues under Alternatives A and B because these alternatives include the maximum generation of trips under the full build-out scenario. These trips would be added to NH 102 and NH 28 as well as to Exit 4A and the I-93 mainline.

\section*{Alternative A Conclusions}

Based on the analysis of trip patterns from the SNHPC travel demand model, Alternative A would provide a more parallel route to bypass downtown Derry and connect I-93 and eastern Derry. Alternative A would result in more east-west regional trips using the new I-93 Exit 4A interchange, which would then disperse between Exits 4 and 5 to reach destinations to the west along NH 102 and NH 28. Alternative A would improve I-93 freeway operations at Exit 4, intersection operations at one location along NH 28 and four locations along NH 102, and queueing issues at two locations along NH 28 and three location along NH 102. Therefore, this alternative would resolve the intersection's operation, queuing, and freeway operation issues and
would not significantly affect the safety and operation of the interstate facility. This alternative would also properly collect, distribute, and accommodate traffic between the freeway and proposed new connector roadway as well as Exits 4 and 5 . The results do show adverse impacts to three IJR study area intersections, but these will be addressed by the Woodmont Commons traffic mitigation requirements imposed by Londonderry.

\section*{Alternative B Conclusions}

Alternative B would create a new direct connection to areas northeast of downtown Derry. Based on the travel patterns reported from the model, this new connection would attract more northsouth regional trips by shifting vehicles from the NH 28 Bypass to I-93 because the travel time to access I-93 would drop with the Alternative B alignment. The trips destined to locations south of Derry and Londonderry would use I-93 rather than the NH 28 Bypass starting from the new I-93 Exit 4A interchange. The model also indicates that Alternative B would have more downtown Derry pass-through trips than Alternative A. Alternative B would not improve I-93 freeway operations at Exit 4, but would improve intersection operations at one location along NH 28 and five locations along NH 102, and queueing issues at two locations along NH 28 and three location along NH 102. Therefore, this alternative would resolve the intersection operations and queuing issues along NH 102 and NH 28; however, it would also continue to significantly affect the safety and operation of the I-93 NB on-ramp from NH 102. This would cause safety issues with traffic trying to access the freeway from NH 102. Queuing issues at the ramp termini serving Exit 4A would also occur, but these issues could be addressed through the ramp designs. The freeway mainline would not be significantly affected under Alternative B as long as the offramps provide enough space to store the forecasted queuing lengths. The results do show an adverse impact to one IJR study area intersection, but this will be addressed by the Woodmont Commons traffic mitigation requirements imposed by Londonderry.

\section*{Alternatives C and D Conclusions}

Alternative C and D provide variations to Alternatives A and B in terms of the connection route between I-93 and eastern Derry. These alternatives would include a new proposed interchange in a more northern location; therefore they would not create the best parallel route to downtown Derry. They would create more of a bypass to NH 28 between I-93 Exit 5 and where NH 28 intersects the two alignments, would attract more vehicle trips from NH 28 than NH 102, and would attract far fewer trips to Exit 4A than Alternatives A and B. Alternatives C and D would improve I-93 freeway operations at Exit 4, intersection operations at one location along NH 28 and four locations along NH 102, and queueing issues at two locations along NH 28 and three location along NH 102. Therefore, these alternatives would resolve the intersection’s operation, queuing issues along NH 102 and NH 28, and freeway operation issues and would not significantly affect the safety and operation of the interstate facility. These alternatives would also properly collect, distribute, and accommodate traffic between the freeway and proposed new connector roadway as well as Exits 4 and 5.

\section*{Alternative F and No Build Conclusions}

Alternative F and the No Build would minimally change vehicle trip patterns. Under Alternative F, freeway impacts would continue to occur at the I-93 SB off-ramp to NH 102 and minimal improvement to IJR study area intersection operations and queueing would occur. Therefore, these alternatives would not resolve intersection operation, queuing, and freeway operation
issues and would continue to adversely affect the safety and operation of the freeway. Failing freeway facilities would cause queuing onto the I-93 mainline and NH 102 and failing intersections would exist at the ramp termini of Exits 4 and 5.

\section*{Overall Conclusions}

Based on the goal to reduce through trips traveling through downtown Derry, Alternatives A, B, C , and D would address the policy requirement and Alternatives F would not address the policy requirement. Alternative A would provide the best connection of the five alternatives because it would directly parallel downtown Derry and could handle the design year traffic demands, especially the freeway operations. Some intersections along NH 28 and NH 102 would be affected, but a number of those trips would be directly related to the forecasted trips generated by the Woodmont Commons development. Section 8.2.1 describes the Woodmont Commons PUD process to incrementally perform traffic studies to construct infrastructure improvements, if necessary, to mitigate any future proposed development following the Woodmont Commons PUD Master Plan.

\subsection*{8.2.13 Conceptual Sign Plan}

A conceptual sign plan has not been prepared for the proposed alternative designs. It is assumed that once a preferred alternative is identified through the NEPA process and the project moves forward into the design process, a sign plan would be created following the NHDOT and Manual Uniform Traffic Control Devices guidelines to properly alert drivers of the interchange connections, exit locations, entrance locations, ramp speeds, ramp direction (do not enter signs at the end of the ramp), and lane geometry at the ramp termini intersections.

\subsection*{8.3 Policy Requirement 2: Access Connections and Design}

The proposed access connects to a public road only and will provide for all traffic movements. Less than "full interchanges" may be considered on a case-by-case basis for applications requiring special access, such as managed lanes (e.g., transit or high occupancy vehicle and high occupancy toll lanes) or park and ride lots. The proposed access will be designed to meet or exceed current standards (23 CFR 625.2(a), 625.4(a)(2), and 655.603(d)). In rare instances where all basic movements are not provided by the proposed design, the report should include a full-interchange option with a comparison of the operational and safety analyses to the partial-interchange option. The report should also include the mitigation proposed to compensate for the missing movements, including wayfinding signage, impacts on local intersections, mitigation of driver expectation leading to wrong-way movements on ramps, etc. The report should describe whether future provision of a full interchange is precluded by the proposed design.

\subsection*{8.3.1 Introduction}

The four build alternatives that include a new I-93 Exit 4A interchange have similar designs. The designs follow a standard diamond interchange containing four ramps, two intersections, and a single bridge crossing the Interstate. The spacing for the proposed interchanges places the new interchange over a mile to Exit 4 or Exit 5.

\subsection*{8.3.2 Conceptual Layout}

Alternatives A and B include the design of the same interchange approximately 1.25 miles north of Exit 4. The interchange follows a typical diamond interchange design with four ramps, two off-ramps, and two on-ramps, each with adequate space for merging and diverging providing all connections between I-93 and the new connector road. The SB off-ramp would contain two lanes extended to the diverge with I-93 because of the forecasted volume, while the three other ramps would contain one lane. The proposed diamond interchange is the most common interchange configuration and would allow traffic to enter and leave at relatively high speeds (AASHTO, 2011). The ramps would not become new lanes along I-93 but would terminate after providing merging and diverging space. The new connector roadway would contain two intersections, one serving I-93 NB ramps and one serving I-93 SB ramps. A new bridge would be constructed to connect the intersections. The new connector roadway would provide a connection to the Londonderry local roadway network and NH 28 to the east. Figure 8-1 shows the Alternative A and B current interchange design.
Alternatives C and D include a similar diamond interchange design as Alternatives A and B , approximately 1.5 miles south of Exit 5. Figure 8-2 shows the Alternative C and D current interchange design.
These designs both exclude a connection to the west. Alternatives A and B would, therefore, directly connect to the future planned Woodmont Commons PUD development on the eastern side of I-93. Alternatives C and D would not provide a direct connection and instead would connect directly to NH 28. The Woodmont Commons PUD development planned for the western side of I-93 would be accessible from Exit 4A via Ash Street and Pillsbury Road.


Figure 8-1. Alternatives \(A\) and \(B\) interchange designs


1

Figure 8-2. Alternatives \(\mathbf{C}\) and D interchange designs

\subsection*{8.3.3 Present and Future Interchange Spacing}

The existing spacing between Exit 4 and Exit 5 is 3.55 miles. Under Alternatives \(A\) and \(B\), the proposed interchange spacing between Exit 4 and Exit 4A would be 1.25 miles and between Exit 4A and Exit 5 would be 2.3 miles. Under Alternatives C and D, the proposed interchange spacing between Exit 4 and Exit 4A would be 2.05 miles and between Exit 4A and Exit 5 would be 1.5 miles.

According to the Policy on Geometric Design of Highways and Streets, the typical rule of thumb to follow is 1 mile between interchanges in urban areas and 3 miles in rural areas (AASHTO, 2011). In this case, the location is currently suburban in nature and will continue to become more urbanized in the future with additional population and employment growth projected for 2040; therefore, the proposed spacing for either interchange location would exceed the 1-mile minimum threshold.

\subsection*{8.3.4 Policy Requirement 2 Conclusion}

The proposed design meets the most common interchange design, and interchange spacing would meet minimum thresholds. The interchange would provide access to parcels to the east of the interchange with connections to NH 28 and points east. Therefore, the proper access would be provided and the interchange design would follow the latest design standards. Before the design is finalized, FHWA would have an opportunity to review.

\section*{1}

2

\subsection*{9.0 SUMMARY}

The proposed I-93 Exit 4A interchange would provide an overall benefit to the Londonderry/ Derry area and addresses FHWA's two requirements. Alternative A addresses a number of evaluation factors introduced in Section 4.0, including traffic and accessibility. Table 9-1 summarizes the evaluation criteria presented in Section 4.0 with the preliminary results.

\section*{Table 9-1. Preliminary evaluation criteria assessment summary}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Criteria } & No Build & \multicolumn{1}{c|}{ Alternative A } & \multicolumn{1}{c|}{ Alternative B } & \multicolumn{1}{c|}{ Alternative C } & \multicolumn{1}{c|}{ Alternative D } & Alternative F \\
\hline Traffic & & \(\begin{array}{l}\text { No } \\
\text { Improves all freeway } \\
\text { and most } \\
\text { intersection } \\
\text { operations/queuing } \\
\text { issues }\end{array}\) & \(\begin{array}{l}\text { Improves all freeway } \\
\text { and most } \\
\text { intersection } \\
\text { operations/queuing } \\
\text { issues; does not } \\
\text { address one on- } \\
\text { ramp capacity issue }\end{array}\) & \(\begin{array}{l}\text { Improves all freeway } \\
\text { and intersection } \\
\text { queuing; improves } \\
\text { most intersection } \\
\text { queuing issues }\end{array}\) & \(\begin{array}{l}\text { Improves all freeway } \\
\text { and most } \\
\text { intersection } \\
\text { operations/queuing } \\
\text { issues }\end{array}\) & Minimal Change
\end{tabular}\(\}\)

The IJR study provided an assessment of the existing conditions, future baseline conditions (No Build condition), and future Build based on five alternatives. The future conditions (No Build and Build) were evaluated based on a quantitative traffic operations, queueing, and volume shift assessment as well as a crash data analysis covering the freeway and NH 28/NH 102. The IJR study integrated the various assessments to answer each of the FHWA policy requirements. The following is a summary of the findings for each policy requirement:
1. Operational and Collision Analysis: Alternatives A, B, C and D would not adversely impact the traffic and safety issues along the I-93 freeway as well as NH 102 and NH 28. This includes queuing issues along the ramps serving I-93, the ramp termini intersections at NH 102 and NH 28, and other intersections within the IJR study area. Traffic would also be properly distributed between the different roadway classifications (freeway to ramps to principal arterials to collectors to local roadways).
2. Access Connections and Design: Alternatives A, B, C, and D would all meet minimum interchange spacing thresholds and follow typical interchange design standards established in the AASHTO design manual.

Table 9-2 contains the FHWA policy requirement assessment summary and provides a rating to indicate if the alternative would address the policy requirement. Green indicates the alternative would fully address the policy rating, orange means the alternative would partially address the policy rating, and red means the alternative would minimally address the policy requirements.

\section*{Table 9-2. FHWA policy requirement assessment summary}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Policy Number } & \multicolumn{1}{c|}{ Alternative A } & \multicolumn{1}{c|}{ Alternative B } & \multicolumn{1}{c|}{ Alternative C } & \multicolumn{1}{c|}{ Alternative D } & Alternative F \\
\hline 1 & \begin{tabular}{l} 
Operational and \\
Collision Analysis
\end{tabular} & \begin{tabular}{l} 
Does not adversely \\
impact intersection \\
traffic and safety \\
issues and properly \\
distributes traffic \\
between roadway \\
classes
\end{tabular} & \begin{tabular}{l} 
Does not adversely \\
impact intersection \\
traffic and safety \\
issues and properly \\
distributes traffic \\
between roadway \\
classes
\end{tabular} & \begin{tabular}{l} 
Does not adversely \\
impact intersection \\
traffic and safety \\
issues and properly \\
distributes traffic \\
between roadway \\
classes
\end{tabular} & \begin{tabular}{l} 
Does not adversely \\
impact intersection \\
traffic and safety \\
issues and properly \\
distributes traffic \\
between roadway \\
classes
\end{tabular} & \begin{tabular}{l} 
Adverse impact to traffic \\
operation and safety \\
issues
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
Access Connections \\
and Design
\end{tabular} & \begin{tabular}{l} 
Designs meet \\
minimum thresholds
\end{tabular} & \begin{tabular}{l} 
Designs meet \\
minimum thresholds
\end{tabular} & \begin{tabular}{l} 
Designs meet \\
minimum thresholds
\end{tabular} & \begin{tabular}{l} 
Designs meet \\
minimum thresholds
\end{tabular} & \begin{tabular}{l} 
No Change in freeway \\
network
\end{tabular} \\
\hline
\end{tabular}

\subsection*{10.0 REFERENCES}

AASHTO (American Association of State Highway Transportation Officials). 2011. Policy on Geometric Design of Highways and Streets. American Association of State Highway Transportation Officials. Washington DC, 2011.

Boston Express. 2016. Boston Express Schedules. Available at: http://www.bostonexpressbus.com/index.php/schedules. Accessed February 21, 2018.

CART (Cooperative Alliance for Transportation). n.d. Services. Available at: http://www.cartrides.org/html/services.htm. Accessed August 24, 2017.

CLD (CLD Consulting Engineers, Inc.). 2000. Rationale Report, EIS Study: NH Route 102 Improvements, Derry-Londonderry, NH. Prepared for Towns of Derry and Londonderry, New Hampshire. July 2000.

CLD. 2001. Scoping and Rationale Report, EIS Study: NH Route 102 Bypass Study, DerryLondonderry, NH. Prepared for Towns of Derry and Londonderry, New Hampshire. March 2001.

CLD. 2017. Exit 4a Traffic Technical Memorandum No. 2. May 4, 2017.
Concord Coach Lines. 2017. Schedule. Available at: https://3b28o63pmly8yngc7351s3zs-wpengine.netdna-ssl.com/wp-content/uploads/2017/05/CCL_NH_MAY_2017_FINALforWeb.pdf. Accessed August 24, 2017.

Derry Rail Trail Alliance. 2017. Derry Rail Trail. Available at: http://derryrailtrail.org/. Accessed February, 21, 2018.

FHWA (Federal Highway Administration). n.d.a. Crash modification Factors Clearinghouse. Available at: http://www.cmfclearinghouse.org/results.cfm. Accessed April 10, 2018.

FHWA. n.d.b. Roadway Safety Professional Capacity Building. Available at:
https://rspcb.safety.fhwa.dot.gov/shspsearch/statesearch.aspx. Accessed April 10, 2018.
FHWA. 2007. I-93 Exit 4A Interchange Study Derry-Londonderry Draft Environmental Impact Statement. July 2007.

FHWA, 2011. Highway Safety Improvement Program Manual. Chapter 3.0. Available at: https://safety.fhwa.dot.gov/hsip/resources/fhwasa09029/sec3.cfm. Accessed April 6, 2018.

FHWA. 2017a. Interstate System Access Information Guide. Dated August 2017. Available at: https://www.fhwa.dot.gov/design/interstate/pubs/access/access.pdf. Accessed August 22, 2017.

FHWA. 2012b. Interchange Design. Available at:
https://www.fhwa.dot.gov/modiv/programs/intersta/idp.cfm Accessed April 18, 2018.

Londonderry Trails. 2016. Granite State Rail Trail Connections. Available at: https://londonderrytrails.files.wordpress.com/2015/08/recreation-corridor-region-reduced-3-2016.pdf. Accessed August 25, 2016.

Londonderry Trailways. 2016. Granite State Rail Trail, Londonderry, New Hampshire. Updated March 2016. Prepared by Londonderry Planning and Economic Development Department. Available at: https://londonderrytrails.org/about-the-rail-trail/.

Louis Berger. 2017. Land Use Scenarios Technical Report.
MassDOT (Massachusetts Department of Transportation). 2018. Crash Rates by Roadway Functional Classification. Available at: http://www.massdot.state.ma.us/highway/Departments/TrafficandSafetyEngineering/Cras hData/CrashRates/RoadwayFunctionalClassification.aspx. Accessed April 9, 2018.

NHDOT. (New Hampshire Department of Transportation). 2009. Draft Supplemental Environmental Impact Statement and Reevaluation/ Section 4(f) Evaluation, Interstate 93 Improvements Salem to Manchester IM-IR-93-I(174)0, 10418-C. Available at: http://www.rebuildingi93.com/content/environmental/seis/. Accessed April 24, 2018.

NHDOT. 2010-2014. New Hampshire Department of Transportation Crash Data. Available at: ftp://pubftp.nh.gov/DOT/Planning and Community Assistance/Road Data/Public/Crash/. Accessed April, 27, 2018.

NHDOT. 2013-2015. New Hampshire Department of Transportation GIS Planning. Available at: http://gis.dot.nh.gov/nh-roads/. Accessed April, 27, 2018.

NHDOT. 2016a. Bureau of Traffic, Traffic Reports. Available at: https://www.nh.gov/dot/org/operations/traffic/tvr/routes/documents/i-93.pdf. Accessed August 24, 2017.

NHDOT. 2016b. Bureau of Traffic, Traffic Reports. Available at: https://www.nh.gov/dot/org/operations/traffic/tvr/routes/documents/nh-28.pdf. Accessed August 24, 2017.

NHDOT. 2016c. Bureau of Traffic, Traffic Reports. Available at: https://www.nh.gov/dot/org/operations/traffic/tvr/routes/documents/nh-102.pdf. Accessed August 24, 2017.

NHDOT. 2017a. New Hampshire Functional Classification map. Available at: https://www.nh.gov/dot/org/projectdevelopment/planning/gis-datacatalog/documents/FunctionSystem.pdf. Accessed August 24, 2017.

NHDOT. 2017b. Rebuilding I-93 Salem to Manchester. Available at:
http://www.rebuildingi93.com/documents/factsheets/June2017/14633B-June-2017.pdf. Accessed August 28, 2017.

NHGov. 2017a. Londonderry Exeter 4 Park and Ride. NH Rideshare Program. Available at: https://www.nh.gov/dot/programs/rideshare/lots/londonderry.htm. Accessed August 24, 2017.

NHGov. 2017b. North Londonderry Park and Ride. NH Rideshare Program. Available at: https://www.nh.gov/dot/programs/rideshare/lots/north-londonderry.htm. Accessed August 24, 2017.

Pillsbury. 2018. Memorandum of Understanding between Woodmont Commons Developer and Town of Londonderry, NH. Available at: http://www.londonderrynh.org/Pages/LondonderryNH_BComm/Planning/commondocs/ DevelopmentAgreement82813-FINAL\%20DRAFT.pdf. Accessed February 12, 2018.

Rockingham Planning Commission. 2015. 2015 Regional Master Plan: Transportation Chapter. Adopted April 10, 2015. Available at: http://www.rpcnh.org/application/files/3114/6100/8444/5_RMPTransportation.pdf.

SNHPC (Southern New Hampshire Planning Commission). 2014. Moving Southern NH Forward Regional Comprehensive Plan 2015. Available at: http://www.snhpc.org/pdf/SNHPCRegionCompPlan2015.pdf. Accessed April 18, 2018.

Town of Derry. 2010. Town of Derry New Hampshire Master Plan. March 2010. Available at: https://www.derrynh.org/sites/derrynh/files/uploads/derrymasterplan2010_finaldraft_0.pd f. Accessed February 16, 2018.

Town of Derry. 2016. Zoning Ordinance. Available at: http://www.derrynh.org/sites/derrynh/files/uploads/zo_07.07.2016.pdf. Accessed February 21, 2018.

Town of Londonderry. 2013. Town of Londonderry, New Hampshire Comprehensive Master Plan. Available at:
http://londonderrynh.org/Pages/LondonderryNH_BComm/Planning/MPSCResources/Lo ndonderryMasterPlan_FINAL_010413-ISSUU.pdf. Accessed February 16, 2018.

Town of Londonderry. 2016. NH Zoning Ordinance. As amended through August 15, 2016. Available at: http://online.encodeplus.com/regs/londonderry-nh/doclibrary.aspx?id=ada5cd93-15cf-4aca-9273-2a8dc2a7503d. Accessed February 21, 2018.

TEC. 2016. Woodmont Commons Planned Unit Development- Phases I and II, Traffic Impact and Access Study, July 14, 2016.

TRB (Transportation Research Board). 2000. Highway Capacity Manual (HCM). Transportation Research Board for the National Academies of Science, Washington, DC.

TRB. 2010. Highway Capacity Manual (HCM). Transportation Research Board for the National Academies of Science, Washington, DC.

USACE (U.S. Army Corps of Engineers), 1993. The Highway Methodology Workbook: Integrating Corps Section 404 Permit Requirements with Highway Planning and Engineering and the NEPA EIS Process.

Woodmont Planning Team, 2011. Woodmont Commons Master Plan. Available at: http://londonderrynh.org/Pages/LondonderryNH_BComm/Planning/commondocs/Master plan10.14.FINAL(1)10-14-11.pdf. Accessed April 27, 2018.

\section*{Appendix D: Farmland Conversion Impact Rating Form AD 1006}

February 27, 2006

Amanda Farris
Woodlot Alternatives
30 Park Drive
Topsham, ME 04086

Re: Farmland Conversion Impact Rating for the l-93 Exit Aa Interchange Study in Derry and Londonderry, NH

Dear Ms. Paris,
The Farmland Conversion Impact rating has been completed based on your correspondence of February 17, 2006. I am forwarding a completed Form NRCS-CPA-106, Farmland Conversion Impact Rating for Corridor Type Projects. All areas impacted by the project are either designated as urbanized areas by the U.S. Census Bureau or soils that are not prime, statewide or locally important. Therefore, this project is not subject to FPPA and no further action is required.

If you have any questions, please do not hesitate to contact me.


Katherine Swain
MLRA Soil Survey Leader
USDA, NRC
10 Ferry St., Box 312
Concord, NH 03301
Ph: (603)223-6025
Enc.

\section*{FARMLAND CONVERSION IMPACT RATING FOR CORRIDOR TYPE PROJECTS}

5. Reason For Selection:
\begin{tabular}{ll} 
From: & Laurin, Marc \\
To: & "Whitcomb, Peter - NRCS, Concord, NH" \\
Cc: & Lamie Sikora; Cota, Keith; Christopher Bean (CBean@fando.com); Snyder, Kerri; Tidd, Leo \\
Subject: & RE: Derry-Londonderry, 13065-Farmland Conversion Impact Rating Form \\
Date: & Wednesday, July 18, 2018 2:59:10 PM \\
Attachments: & AD 1006 Exit 4A 2018 Alts A-F Siqned.pdf
\end{tabular}

\section*{External}

Peter,
Attached is the completed and signed Farmland Conversion Impact Rating Form for the project. The total point score for the Selected Corridor (Alternative A) is less than 160, as such the project is in full compliance with the FPPA.

Thank you for your assistance.

If you have any questions or comments, please contact me.

Marc

From: Whitcomb, Peter - NRCS, Concord, NH [mailto:peter.whitcomb@nh.usda.gov]
Sent: Thursday, July 05, 2018 11:26 AM
To: Laurin, Marc
Subject: RE: Derry-Londonderry, 13065 - Farmland Conversion Impact Rating Form
Marc,
Parts II, IV, and V of form CPA-106, the Farmland Conversion Impact Rating For Corridor Type Projects (attached) have been completed. The Relative Value of each alternative corridor is 34 or less. Please note that Alternative A does not include any land that is Prime, Statewide or Locally Important Farmland, and therefore is not subject to the Farmland Protection Policy Act. Also attached is the soil map of the area and a Farmland Classification map.

Please fill out Parts VI and VII. If the total point score is 160 or less, then the project is in full compliance with FPPA and no further action is required. If the total point score is above 160 points, then alternative design or location should be considered that might reduce the total point score. If this is not possible, then an explanation should be provided in Block 5 at the bottom of the form. Additional information about completing the form and the Farmland Protection Policy Act can be found at the following web site: http://www.nrcs.usda.gov/wps/portal/nrcs/main/national/landuse/fppa/.

Please provide a final copy of the completed CPA-106 to me for NRCS records and retain a copy for your records, regardless of the total point score.

If you have any questions, please feel free to contact me.

From: Laurin, Marc [mailto:Marc.Laurin@dot.nh.gov]
Sent: Friday, June 22, 2018 1:15 PM
To: Whitcomb, Peter - NRCS, Concord, NH <peter.whitcomb@nh.usda.gov>
Cc: Jamie Sikora <jamie.sikora@dot.gov>; Cota, Keith <Keith.Cota@dot.nh.gov>; Butler, John (DOT)
<John.Butler@dot.nh.gov>; Chris Bean <ChrisB@cldengineers.com>; Leo Tidd
<ltidd@louisberger.com>; Snyder, Kerri <KSnyder@louisberger.com>
Subject: Derry-Londonderry, 13065 - Farmland Conversion Impact Rating Form

Mr. Whitcomb,

Enclosed for your evaluation are Farmland Conversion Forms for the Alternatives being evaluated for the I-93 Exit 4A Project SDEIS.

Please contact me if you have any questions.

Thank you.

Marc Laurin
Senior Environmental Manager
Bureau of Environment
NH Department of Transportation
(603) 271-4044

This electronic message contains information generated by the USDA solely for the intended recipients. Any unauthorized interception of this message or the use or disclosure of the information it contains may violate the law and subject the violator to civil or criminal penalties. If you believe you have received this message in error, please notify the sender and delete the email immediately.

\section*{FARMLAND CONVERSION IMPACT RATING FOR CORRIDOR TYPE PROJECTS}


\section*{5. Reason For Selection:}

Alternative A was selected as the Preferred Alternative based on the results of engineering, environmental, and socioeconomic studies (see SDEIS). Advantages of Alternative A compared to the other Build Alternatives include lowest cost, including utilities; least acreage for ROW acquisitions; least area of stream impacts; lowest wetland impacts of the alternatives that meet the purpose and need;and no impact on Wildlife Action Plan (WAP) highest ranked habitat.

\section*{Signature of Person Completing this \(p\) prt:}

DATE

\section*{FARMLAND CONVERSION IMPACT RATING FOR CORRIDOR TYPE PROJECTS}


\section*{5. Reason For Selection:}

Alternative A was selected as the Preferred Alternative based on the results of engineering, environmental, and socioeconomic studies (see SDEIS). Advantages of Alternative A compared to the other Build Alternatives include lowest cost, including utilities; least acreage for ROW acquisitions; least area of stream impacts; lowest wetland impacts of the alternatives that meet the pup pose and need; and-no impact on Wildlife Action Plan (WAP) highest ranked habitat.

\section*{Signature of Person Completing this fart:}

\section*{Appendix E: Noise Technical Report}

\title{
Noise Technical Report
}

\author{
I-93 Exit 4A \\ Technical Report
}

Prepared for:
Town of Derry
Town of Londonderry
New Hampshire Department of Transportation
Prepared by:
CLD / Fuss \& O'Neill and Louis Berger
Version: 3
September 7, 2018

NHDOT Project Number: 13065
Federal Project Number: IM-0931(201)
CLD/Towns Project Number 05-0244

This page intentionally left blank.

\section*{TABLE OF CONTENTS}
1.0 INTRODUCTION ..... 1
1.1 Project Alternatives ..... 1
2.0 BACKGROUND ..... 4
2.1 Characteristics of Noise ..... 4
2.2 Regulatory Framework ..... 6
2.2.1 FHWA Regulations and NHDOT Policy ..... 6
2.2.2 Local Noise Regulations ..... 8
3.0 EXISTING CONDITIONS NOISE MONITORING ..... 8
3.1 2007 DEIS Noise Monitoring ..... 8
3.22016 Noise Monitoring Update ..... 9
4.0 IMPACTS AND MITIGATION ..... 12
4.1 Traffic Noise Modeling Methodology ..... 12
4.1.1 Noise Sensitive Areas and Receptors ..... 12
4.1.2 Roadways and Traffic Data ..... 12
4.1.3 Elevation Data Sources ..... 13
4.1.4 Terrain Lines ..... 13
4.1.5 Building Rows ..... 13
4.1.6 Tree Zones and Ground Zones ..... 13
4.1.7 I-93 Widening Noise Barriers ..... 13
4.1.8 Noise Model Validation ..... 16
4.2 Impacts ..... 16
4.2.1 Noise Impact Summary ..... 16
4.2.2 NSA Receptor Locations and Modeling Results ..... 21
4.3 Mitigation ..... 73
4.3.1 NSA 4 Trolley Car Lane ..... 73
4.3.2 NSA 5 Seasons Lane ..... 87
4.3.3 Folsom Rd./ Tsienneto Rd. Barrier Analyses ..... 99
4.4 Undeveloped Lands Noise Analysis for Future Land Use Planning ..... 111
4.5 Construction Noise Impacts and Mitigation ..... 113
5.0 REFERENCES ..... 114

\section*{LIST OF FIGURES}
Figure 1-1. Project Location. ..... 3
Figure 2-1. Comparative Noise Levels (Source: Cowan, 1994) ..... 5
Figure 3-1. 2007 and 2016 Noise Monitoring Locations ..... 11
Figure 4-1. Noise Sensitive Areas Overview ..... 14
Figure 4-2. I-93 Widening Final Design Noise Barriers in NSA 4 and 5 ..... 15
Figure 4-3. NSA 1 Receptors ..... 23
Figure 4-4. NSA 2 Receptors ..... 26
Figure 4-5. NSA 3 Receptors ..... 29
Figure 4-6. NSA 4 and NSA 5 Receptors ..... 33
Figure 4-7. NSA 6 Receptors ..... 38
Figure 4-8. NSA 7 Receptors South ..... 44
Figure 4-9. NSA 7 Receptors North ..... 45
Figure 4-10. NSA 8 South ..... 51
Figure 4-11. NSA 8 Receptors North ..... 52
Figure 4-12. NSA 9 Receptors South ..... 58
Figure 4-13. NSA 9 Receptors North ..... 59
Figure 4-14. NSA 10 Receptors ..... 63
Figure 4-15. NSA 11 Receptors-South ..... 70
Figure 4-16. NSA 11 Receptors-Central ..... 71
Figure 4-17. NSA 11 Receptors-North ..... 72
Figure 4-18. Trolley Car Lane North- Option 1 Barrier ..... 82
Figure 4-19. Trolley Car Lane North- Option 2 Barrier ..... 83
Figure 4-20. Trolley Car Lane South- Option 1 Barrier ..... 84
Figure 4-21. Trolley Car Lane South- Option 2 Barrier ..... 85
Figure 4-22. Trolley Car Lane South- Option 3 Barrier ..... 86
Figure 4-23. Seasons Lane- Option 1 Barrier ..... 95
Figure 4-24. Seasons Lane- Option 2 Barrier ..... 96
Figure 4-25. Seasons Lane- Option 3 Barrier ..... 97
Figure 4-26. Seasons Lane- Option 4 Barrier ..... 98
Figure 4-27. Potential Barriers 1, 2 and 3 ..... 103
Figure 4-28. Potential Barrier 4 ..... 104
Figure 4-29. Potential Barrier 5 ..... 105
Figure 4-30. Potential Barrier 6. ..... 106
Figure 4-31. Potential Barrier 7 ..... 107
Figure 4-32. Potential Barriers 8 and 9 ..... 108
Figure 4-33. Potential Barriers 10 and 11 ..... 109
Figure 4-34. Potential Barriers 12 and 13 ..... 110
Figure 4-35. Undeveloped Lands Noise Contours ..... 112
LIST OF TABLES
Table 2-1. FHWA Noise Abatement Criteria: Hourly A-weighted Sound Level in Decibels (dBA) ..... 7
Table 3-1. 2007 DEIS Monitoring Locations and Noise Levels ..... 8
Table 4-1. Traffic Noise Model Validation Summary ..... 16
Table 4-2. Traffic Noise Impacts Summary ..... 18
Table 4-3. Noise Modeling Results for NSA 1 (Worst-Case Peak Hour, Leq, dBA) ..... 22
Table 4-4. Noise Modeling Results for NSA 2 (Worst-Case Peak Hour, Leq, dBA) ..... 24
Table 4-5. Noise Modeling Results for NSA 3 (Worst-Case Peak Hour, Leq, dBA) ..... 27
Table 4-6. Noise Modeling Results for NSA 4 (Worst-Case Peak Hour, Leq, dBA) ..... 30
Table 4-7. Noise Modeling Results for NSA 5 (Worst-Case Peak Hour, Leq, dBA) ..... 31
Table 4-8. Noise Modeling Results for NSA 6 (Worst-Case Peak Hour, Leq, dBA) ..... 34
Table 4-9. Noise Modeling Results for NSA 7 (Worst-Case Peak Hour, Leq, dBA) ..... 39
Table 4-10. Noise Modeling Results for NSA 8 (Worst-Case Peak Hour, Leq, dBA) ..... 46
Table 4-11. Noise Modeling Results for NSA 9 (Worst-Case Peak Hour, Leq, dBA) ..... 53
Table 4-12. Noise Modeling Results for NSA 10 (Worst-Case Peak Hour, Leq, dBA) ..... 60
Table 4-13. Noise Modeling Results for NSA 3 (Worst-Case Peak Hour, Leq, dBA) ..... 64
Table 4-14. Trolley Car Lane: I-93 Widening Barrier Benefits, 2040 No Build. ..... 73
Table 4-15. NSA 4 Barrier Analysis, Trolley Car Lane North, 2040 PM Peak Hour Traffic ..... 77
Table 4-16. NSA 4 Barrier Analysis, Trolley Car Lane South, 2040 PM Peak Hour Traffic ..... 79
Table 4-17. NSA 4 Barrier Analysis Summary ..... 81
Table 4-18. Seasons Lane: I-93 Widening Barrier Benefits, 2040 No Build ..... 87
Table 4-19. NSA 5 Barrier Analysis, Seasons Lane, 2040 PM Peak Hour Traffic ..... 91
Table 4-20. NSA 5 Barrier Analysis Summary ..... 94

Table 4-21. Folosom Rd./ Tsienneto Rd. Barrier Analysis- Initial Evaluation of Acoustic Performance and Effectiveness Criterion.

\section*{LIST OF APPENDICES}

\section*{Appendix A: Noise Measurement Field Data Sheets, Photos, and Noise Meter Calibration Certificates}

Appendix B: TNM Files (Electronic Only)

\section*{ABBREVIATIONS AND ACRONYMS}
\begin{tabular}{ll} 
CFR & Code of Federal Regulations \\
dBA & Adjusted Decibels \\
DEIS & Draft Environmental Impact Statement \\
EIS & Environmental Impact Statement \\
FHWA & Federal Highway Administration \\
FEIS & Final Environmental Impact Statement \\
Leq & Equivalent Sound Level \\
NAC & Noise Abatement Criteria \\
NEPA & New Hampshire Department of Environmental Services \\
NHDES & Noise Sensitive Area \\
NHDOT & Exit 4A Project \\
NSA & Supplemental Draft Environmental Impact Statement \\
Project &
\end{tabular}

This page intentionally left blank.

\subsection*{1.0 INTRODUCTION}

The I-93 Exit 4A Project (Project) is proposed by the Towns of Derry and Londonderry and the New Hampshire Department of Transportation (NHDOT), in cooperation with the Federal Highway Administration (FHWA). A Supplemental Draft Environmental Impact Statement (SDEIS) is being prepared for the project. The proposed project meets the definition of a Type I project under FHWA's noise regulation (23 CFR 772) because it involves a new interchange and connector roadway. Therefore, a traffic noise study is required to identify noise-sensitive land uses, model traffic noise impacts, and evaluate noise abatement measures for impacted receptors.
As part of this study, the need for and design of noise barriers along the I-93 mainline within the project area has been reevaluated in light of the Exit 4A, specifically for receptors along Trolley Car Lane on the west side of I-93, and along Seasons Lane on the east side of I-93. Noise barriers were designed for these locations as part of the I-93 widening, but these barrier designs do not take into account the location of the Exit 4A ramps and associated fill.

\subsection*{1.1 Project Alternatives}

The purpose of the Project is to reduce congestion and improve safety along NH 102, from I-93 east through downtown Derry and to promote economic vitality in the Derry/Londonderry area. Five build alternatives are under consideration as summarized below. Alternative A is the preferred alternative identified in the SDEIS. As shown in Figure 1-1, Alternatives A and B share a common new interchange location approximately 1.5 miles north of Exit 4 (referred to as the southern interchange location), as do Alternatives C and D approximately 2 miles north of Exit 4 (northern interchange location). All the new interchange alternatives (A, B, C and D) involve construction the new connector roadway on a bridge over I-93. For detailed mapping of the alternatives, refer to Chapter 3 of the SDEIS.

\section*{Alternative A}

Alternative A (the preferred alternative) includes a corridor that is approximately 3.2 miles in length between the new proposed I-93 Exit 4A interchange and eastern Derry. There would be approximately 1 mile of roadway construction on a new alignment, 1.6 miles of existing roadway reconstruction, and 0.6 miles of roadway with no improvements. It would originate from the southern I-93 Exit 4A interchange location and travel northeast along new alignment through a wooded area to Folsom Road, near its intersection with North High Street and Madden Road. This alternative would continue to follow Folsom Road past Ross' Corner (Manchester Road/NH 28) and continue on Tsienneto Road across NH 28 Bypass to its end at NH 102, adjacent to Beaver Lake.

\section*{Alternative B}

The Alternative B corridor is approximately 3.4 miles in length between the new proposed I-93 Exit 4A interchange and eastern Derry. The entire 3.4-mile corridor would consist of roadway construction on new alignment. It would originate from a new southern I-93 Exit 4A interchange and travel northeast along a new alignment through a wooded area to the intersection of Ashleigh Drive and NH 28. From this intersection, this alternative would extend northeast towards the intersection of London Road and NH 28 Bypass and then continue on new alignment to the intersection of Tsienneto Road and NH 102.

\section*{Alternative C}

The Alternative C corridor is approximately 3.7 miles in length between the new proposed I-93 Exit 4A interchange and eastern Derry. Approximately 2.9 miles of corridor would be on new alignment, while approximately 0.8 miles would reconstruct existing roadways. The alternative would start from a new northern I-93 Exit 4A interchange and travel east approximately 0.7 miles along a powerline ROW to NH 28. Following NH 28 south to the intersection of Ashleigh Drive, it would follow the same alignment as Alternative B to the intersection of Tsienneto Road and NH 102.

\section*{Alternative D}

The Alternative D corridor is approximately 3.9 miles in length between the new proposed I-93 Exit 4A interchange and eastern Derry. Within this corridor, approximately 0.8 miles would be on new alignment, 2.5 miles on existing roadways would be reconstructed, and 0.6 miles would have no improvements. The alternative would commence from a new northern I-93 Exit 4A interchange and travel east approximately 0.7 miles along a powerline ROW to NH 28. Following NH 28 south to Ross' Corner, the corridor would then follow the same path as Alternative A to the intersection of Tsienneto Road and NH 102.

\section*{Alternative F}

Alternative F focuses all improvements along the existing NH 102 corridor between Exit 4 at I93 and downtown Derry. A two-way, center, left-turn lane would be constructed from Londonderry Road to NH Route 28, and improvements would be made to existing intersections. The majority of existing on-street parking spaces would be lost to accommodate the center turn lane. The corridor would be 1.7 miles long, with the entire corridor consisting of roadway reconstruction (i.e., there is no portion on new alignment).


Figure 1-1. Project Location

\subsection*{2.0 BACKGROUND}

\subsection*{2.1 Characteristics of Noise}

Noise is defined as undesired and disruptive sound. It can be emitted from many sources, including airplanes, factories, railroads, power generation plants, and highway vehicles. Highway noise, or traffic noise, is usually a composite of noises from engine exhaust and tireroadway interaction.
The magnitude of noise is usually described by its sound pressure. Because the range of sound pressure varies greatly, a logarithmic scale is used to relate sound pressures to some common reference level, usually the decibel.

The A-weighted decibel scale is used almost exclusively in vehicular noise measurements because it reflects the frequency range to which the human ear is most sensitive (1,000-6,000 Hertz). Sound levels measured using an A-weighted decibel scale is generally expressed as adjusted decibels (dBA). For this report, all noise levels are expressed in dBAs. Several examples of noise pressure levels in dBA scale are listed in Figure 2-1, Comparative Noise Levels.

Figure 2-1 indicates that most individuals in urbanized areas are exposed to fairly high noise levels from many sources as they go about their daily activities. The degree of disturbance from undesired sound depends essentially on three factors:
- The amount and nature of the intruding noise;
- The relationship between background noise and the intruding noise; and
- The type of activity occurring where the noise is heard.

In considering the first of these factors (i.e., amount and nature of the intruding noise), it is important to note that individuals have different sensitivity to noise. Loud noises bother some individuals more than others, and some patterns of noise also enter into an individual's judgment of whether or not a noise is offensive. For example, noises occurring during sleeping hours are usually considered to be more of a nuisance than the same noises in the daytime.
With regard to the second factor (i.e., the relationship between background noise and the intruding noise), individuals tend to judge the annoyance of an unwanted noise in terms of its relationship to noise from other sources (background noise). For instance, the blowing of a car horn at night when background noise levels are typically about 45 dBA would generally be more objectionable than the blowing of a car horn in the afternoon when background noises are likely to be 60 dBA or higher.


Figure 2-1. Comparative Noise Levels (Source: Cowan, 1994)

The third factor (i.e., the type of activity occurring where the noise is heard) is related to the interference of noises with activities of individuals. In a \(60-\mathrm{dBA}\) environment, normal work activities requiring high levels of concentration may be interrupted by loud noises, while activities requiring manual effort may not be interrupted to the same degree.
Since sound is described in logarithmic scale (i.e., dBA), sound levels cannot be added by ordinary arithmetic means. In fact, a doubling of the noise source produces only a 3 dBA increase in the sound pressure (noise) level. Studies have shown that this increase is barely perceptible to the human ear, whereas a change of 5 dBA is readily perceptible. As a general rule, an increase or decrease of 10 dBA in noise level is perceived by an observer to be a doubling or halving of the sound, respectively.

Because the sound pressure level unit of dBA describes a noise level at just one moment and very few noises are constant, other ways of describing noise over more extended periods have been developed. One way of describing fluctuating sound is to describe the fluctuating noise heard over specific periods as if it had been a steady, unchanging sound. For this condition, a descriptor called the equivalent sound level ( \(\mathrm{L}_{\mathrm{eq}}\) ) can be computed. Leq is the constant sound level that, in a given situation and period (e.g., 1 hour, denoted by \(\mathrm{Leq}_{\text {(1) }}\), or 24 hours, denoted as \(\left.\mathrm{L}_{\mathrm{eq}(24)}\right)\), conveys the same sound energy as the actual time-varying sound.

\subsection*{2.2 Regulatory Framework}

\subsection*{2.2.1 FHWA Regulations and NHDOT Policy}

Traffic noise impact and abatement analyses were conducted in accordance with the procedures as set forth in the following regulations and policies: FHWA's Procedures for Abatement of Highway Traffic Noise and Construction Noise, 23 Code of Federal Regulations (CFR) Part 772; FHWA Highway Traffic Noise: Analysis and Abatement Guidance document issued December 2011; and NHDOT's Policy and Procedural Guidelines for the Assessment and Abatement of Highway Traffic Noise for Type I \& II Highway Projects, as approved by FHWA on November 30, 2016. The FHWA Noise Abatement Criteria (NAC) in 23 CFR Part 772 and the Noise Abatement Guidelines in the NHDOT policy were used to identify and evaluate noise impacts. The traffic noise level predictions and noise mitigation analyses were performed using FHWA's Highway Traffic Noise Model 2.5. The FHWA NAC are presented in Table 2-1.
A traffic noise impact is identified, and consideration of noise abatement is required, when:
- Leq (h) noise levels approach or exceed the FHWA NAC given in Table 2-1, where "approach" means within 1 dBA of the NAC.
- There is a substantial increase in the predicted noise levels over the existing noise levels, regardless of whether or not the NAC level is exceeded. NHDOT's policy defines a substantial increase as future build noise level 15 dBA Leq or higher than existing conditions.
Noise abatement measures must meet the criteria for feasibility and reasonableness, as presented in NHDOT's Policy.

The feasibility of noise abatement primarily relates to engineering and safety considerations for providing mitigation. A minimum of a 5-dBA noise reduction for at least one impacted receiver is required for a proposed noise barrier to be feasible, the design goal is to obtain a \(10-\mathrm{dBA}\) or greater insertion loss at the first row receptors. Safety considerations in designing noise barriers could include such factors as maintaining a clear recovery zone, redirection of errant vehicles, adequate sight distance, and fire/emergency vehicle access.
The factors considered when evaluating the reasonableness of a noise barrier are as follows:
- Effectiveness. The NHDOT's base effectiveness criterion is 1,500 square feet per benefited receptor (defined as all receptors receiving 5 dBA or greater insertion loss from the proposed barrier). For Type I projects, the effectiveness criterion is reduced depending on the percentage of benefited properties permitted for development after November 30, 2017. The effectiveness criterion is increased by 200 square feet (e.g., to a total of 1,700 square feet) for municipalities that have enacted noise compatible
planning requirements to mitigate noise impacts associated with new development near state highways.
- Noise Reduction Design Goal. The design goal is to provide 10-dBA insertion loss to the first row of benefited receptors. At a minimum, it must provide 7-dBA noise reduction for one benefited receptor.
- Views of the Benefited Receptors. Viewpoints of the affected community are considered through the NEPA public outreach process. If there are objections to a proposed barrier, a voting process is used to make the final reasonableness determination.

Table 2-1. FHWA Noise Abatement Criteria: Hourly A-weighted Sound Level in Decibels (dBA)
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Activity Category } & \multicolumn{1}{|c|}{ NAC Leq (h) } & \multicolumn{1}{c|}{ Activity Description } \\
\hline A (Exterior) & 57 & \(\begin{array}{l}\text { Lands on which serenity and quiet are of } \\
\text { extraordinary significance and serve an important } \\
\text { public need, and where the preservation of those } \\
\text { qualities is essential if the area is to continue to } \\
\text { serve its intended purpose. }\end{array}\) \\
\hline B (Exterior) & 67 & Residential. \\
\hline C (Exterior) & 72 & \(\begin{array}{l}\text { Active sport areas, amphitheaters, auditoriums, } \\
\text { campgrounds, cemeteries, day care centers, } \\
\text { hospitals, libraries, medical facilities, parks, picnic } \\
\text { areas, places of worship, playgrounds, public } \\
\text { meeting rooms, public or nonprofit institutional } \\
\text { structures, radio studios, recording studios, } \\
\text { recreation areas, Section 4(f) sites, schools, } \\
\text { television studios, trails, and trail crossings. }\end{array}\) \\
\hline D (Interior) & 52 & \(\begin{array}{l}\text { Auditoriums, day care centers, hospitals, libraries, } \\
\text { medical facilities, places of worship, public meeting } \\
\text { rooms, public or nonprofit institutional structures, }\end{array}\) \\
radio studios, recording studios, schools, and \\
television studios.
\end{tabular}\(\left.| \begin{array}{l}\text { Hotels, motels, offices, restaurants/bars, and other } \\
\text { developed lands, properties or activities not included } \\
\text { in A-D or F. }\end{array}\right\}\)

Source: Title 23 Code of Federal Regulations, Part 772.

\subsection*{2.2.2 Local Noise Regulations}

The Town of Londonderry adopted a local noise control ordinance on June 7, 2016, as an amendment to their municipal code, Title IV, Chapter XIV, Noise Regulations. Ordinance \#2016-03 is intended to control unnecessary and excessively loud noises between the hours of 10 p.m. and 7 a.m. in order to protect the public's health, safety, and comfort. During these specific hours, noises which are prolonged, unusual, and unnatural in their time and place are prohibited unless an exemption has been obtained. Ordinance \#2002-12, relative to municipal code, Title III, Land Use Codes, states that devices to muffle equipment noise, landscape earth berms, screen planting, decorative screen walls, or other barriers or devices shall be installed as necessary to achieve compliance with the Town of Londonderry noise control standards. Noise is expected to not exceed a maximum level of 75 decibels at property lines. Ordinance 97-6, An Amendment to the Zoning Ordinance related to Section VII-Commercial Performance Standards, also states that noise should not exceed 75 decibels at property lines and that all noise, except that generated by normal automobile, truck, or railroad service shall be muffled so as not to be objectionable due to intermittence, beat frequency, or shrillness.

The Town of Derry does not currently possess any local ordinances or regulations specifically pertaining to noise/construction noise.

\subsection*{3.0 EXISTING CONDITIONS NOISE MONITORING}

\subsection*{3.1 2007 DEIS Noise Monitoring}

Noise monitoring was conducted for the 2007 DEIS at 10 receptor locations in May and July 2006. The 10 monitoring sites are shown on Figure 3-1 as Sites 1 through 10. Table 3-1 presents noise levels from the 2007 DEIS monitoring effort.

Table 3-1. 2007 DEIS Monitoring Locations and Noise Levels
\begin{tabular}{|c|c|c|}
\hline Site Number & Address & Leq (dBA) \\
\hline 1 & 1 Tsienneto Road & 61 \\
\hline 2 & 75 Tsienneto Road & 69 \\
\hline 3 & 4 Seasons Lane & 63 \\
\hline 4 & 12 Trolley Car Lane & 64 \\
\hline 5 & 5 Coteville Road & 63 \\
\hline 6 & 1 London Road & 61 \\
\hline 7 & 29 Scenic Drive & 51 \\
\hline 8 & 112 Franklin Ext & 57 \\
\hline 9 & 120 East Broadway \({ }^{\text {a }}\) & 65 \\
\hline 10 & 70 West Broadway \({ }^{\text {a }}\) & 66 \\
\hline
\end{tabular}

In the 2007 DEIS, 120 East Broadway was incorrectly identified as 70 East Broadway, and 70 West Broadway was incorrectly identified as 120 West Broadway.

\subsection*{3.2 2016 Noise Monitoring Update}

Given the passage of time since the 2007 DEIS, updated noise monitoring was conducted in five locations along the Alternative A corridor in September 2016. The monitoring sites are:
- Site A: 25 Trolley Car Ln
- Site B: 52 Trolley Car Ln
- Site C: 60 Seasons Ln
- Site D: 4 Folsom Rd
- Site E: 71 Tsienneto Rd

Two of these sites, A and D, were chosen because they were monitored in the 2007 DEIS and determined to be impacted receptors. The other three sites, B, C, and E, were selected because they were shown as impacted receptors under Alternative A and were not monitored in the 2007 DEIS. Sites A, B, and C are located in an area where barriers are proposed as part of the I-93 widening, but would need to be modified as a result of the Exit 4A Project.

Figure 3-1 shows the monitoring locations, and monitoring results are summarized in Table 3-2. Short-term noise levels were measured during the AM peak hours (7:00-8:00 AM) and PM peak hours (5:00-6:00 PM) at each location. Traffic counts with vehicle classification were conducted simultaneously with the noise monitoring locations.

A Rion NL-42 Sound Level Meter (SLM) was utilized for field measurements. The SLM meets the requirements set forth in the ANSI S1.4-1983 Standards for Type 2 quality and accuracy. An acoustical calibrator (Norsonic 1251) was used to calibrate the SLM for each measurement interval. Calibration certificates for the equipment are provided in Appendix A.

The SLMs were operated on the A-weighting network and slow-meter response, as FHWA recommends. Measurements were not collected if roadway pavement was wet, or if wind speed exceeded 12 miles per hour. A porous windscreen was used on each SLM during all measurement periods, and measurements were taken by mounting the SLMs about 5 feet above the ground surface at each receptor. This height represents ear level of an average person. Wherever possible, measurement sites were located in open areas away from buildings or other potentially reflective surfaces, but which represented the outdoor use area of a given receptor.

During measurements, important events and site conditions were noted and a sketch was drawn for each receptor location. If an extraneous noise source interrupted the monitoring session, the measurement was then temporarily paused until the noise source was out of range. Noises of this nature, occurring at the time of measurement, included a swimming pool water pump and a lawn mower. No other unusual noises occurred during the morning or evening study hours. Appendix A provides photos of each monitoring location, field monitoring diagrams and traffic counts.

Table 3-2. 2016 Existing Conditions Noise Monitoring Results
\begin{tabular}{|c|c|c|c|c|}
\hline Site & Address & Date & Time & \(L_{\text {eq }}(\mathrm{dBA})\) \\
\hline \multirow{4}{*}{A} & \multirow{4}{*}{25 Trolley Car Lane} & \multirow[b]{2}{*}{9/20/2016} & 7:00 AM & 63.8 \\
\hline & & & 5:30 PM & 63.0 \\
\hline & & \multirow{2}{*}{9/21/2016} & 7:00 AM & 66.0 \\
\hline & & & 5:08 PM & 64.2 \\
\hline \multirow{4}{*}{B} & \multirow{4}{*}{52 Trolley Car Lane} & \multirow{2}{*}{9/20/2016} & 7:03 AM & 70.5 \\
\hline & & & 5:35 PM & 69.1 \\
\hline & & \multirow{2}{*}{9/21/2016} & 7:00 AM & 70.9 \\
\hline & & & 5:08 PM & 70.3 \\
\hline \multirow{4}{*}{C} & \multirow{4}{*}{60 Seasons Lane} & \multirow{2}{*}{9/20/2016} & 7:45 AM & 60.5 \\
\hline & & & 5:00 PM & 60.8 \\
\hline & & \multirow{2}{*}{9/22/2016} & 7:15 AM & 62.2 \\
\hline & & & 4:30 PM & 60.7 \\
\hline \multirow{4}{*}{D} & \multirow{4}{*}{4 Folsom Road} & \multirow{2}{*}{9/20/2016} & 7:43 AM & 74.2 \\
\hline & & & 5:03 PM & 74.4 \\
\hline & & \multirow{2}{*}{9/21/2016} & 7:36 AM & 73.5 \\
\hline & & & 4:30 PM & 75.2 \\
\hline \multirow{4}{*}{E} & \multirow{4}{*}{71 Tsienneto Road} & \multirow[b]{2}{*}{9/21/2016} & 7:33 AM & 65.1 \\
\hline & & & 4:30 PM & 63.5 \\
\hline & & \multirow[b]{2}{*}{9/22/2016} & 7:16 AM & 63.9 \\
\hline & & & 4:30 PM & 64.1 \\
\hline
\end{tabular}


Figure 3-1. 2007 and 2016 Noise Monitoring Locations

\subsection*{4.0 IMPACTS AND MITIGATION}

\subsection*{4.1 Traffic Noise Modeling Methodology}

Design year 2040 predicted noise levels were determined using Version 2.5 of the FHWA Traffic Noise Model (FHWA TNM). All FHWA TNM computer files are included electronically with this report (Appendix B).

\subsection*{4.1.1 Noise Sensitive Areas and Receptors}

The alternatives were divided into 11 noise sensitive areas (NSAs) for traffic noise modeling purposes as shown in Figure 4-1. Within each NSA, sensitive receptors were delineated within approximately 500 feet of the alternative corridors based on detailed land use and building data provided by Derry and Londonderry, with actual building use and location confirmed by aerial imagery.
For multifamily homes, apartments and townhomes, one receptor location was used to represent the multiple units in each building or building section. Multiple receivers were placed for nonresidential uses such as parks, cemeteries and schools based on the typical frontage length of nearby residential lots. The placement of residential and community facility receptors was based on a visual assessment of where outdoor use usually takes place on the side of the building closest to the roadway, for example the backyard of a house adjacent to I-93. If no outdoor use on that side of the building was reasonable (no back yard, for example), than the nearest possible outdoor activity area on the property to the roadway was used. Commercial business with outdoor uses received receptors based on the location of the outdoor use, for example, an outdoor seating area at a restaurant. Receiver height was set at the default height of 4.92 feet, to represent a person at ground level.

\subsection*{4.1.2 Roadways and Traffic Data}

The No Build Alternative and each Build alternative noise models include the widening of I-93 to four lanes in each direction. The I-93 final design plans were used to reflect the future edge of pavement of this roadway. The updated preliminary engineering plans for each Exit 4A project alternative were used for the proposed roadways. For major roadways (arterials, interstate and select major collectors), each individual traffic lane was modeled as a separate TNM roadway. For minor roadways, a single TNM roadway was used to represent both directions of traffic.
Traffic data for existing conditions (2015) and 2040 was obtained from the Exit 4A Traffic Technical Report. Separate methods to determine the appropriate percentage of traffic in each TNM vehicle class (auto, medium truck, heavy truck, motorcycle and bus) were used for the I-93 mainline vs other roadways. The I-93 vehicle class percentages were based on data from the permanent traffic recorder south of Exit 4, taken in May of 2015. The recorder provided a breakdown of traffic into 13 vehicle classes and included data on lane use of heavy vehicles, allowing the noise model traffic to reflect the actual lane usage by heavy trucks. For arterials and major collectors, the vehicle class percentages were based on a combination of field traffic counts taken during the 2016 noise monitoring along Folsom Rd and Tsienneto Rd, NH DOT vehicle counts, and Synchro data used to create the Exit 4A Traffic Technical Report. The noise monitoring traffic counts were used to determine the breakdown of vehicles into the six TNM
model categories for a typical road type, while the Synchro data was used to modify vehicles within those categories to reflect heavy vehicle percentages for each roadway segment.

\subsection*{4.1.3 Elevation Data Sources}

Within the footprint of the Exit 4A project, roadway vertical profiles and proposed contours were available from the SDEIS preliminary engineering effort. Outside the Exit 4A alternatives footprint, the I-93 widening final design plans were used to define elevations near the I-93 corridor. Existing ground elevation data beyond the immediate roadway construction area was obtained from high resolution LIDAR data, which was part of the LiDAR for the North East Project, 2011 Coastal LiDAR Acquisition by the USGS.

\subsection*{4.1.4 Terrain Lines}

Terrain lines were placed to define topographic features not already covered by another TNM feature that potentially block line of sight or influence ground cover noise attenuation.

\subsection*{4.1.5 Building Rows}

Rather than using the TNM building row function (which assumes a simplified percent building cover to estimate shielding rather than considering the actual geometry of specific buildings and gaps between buildings), buildings providing shielding to other receivers were modeled in greater detail as fixed height barriers. The location and dimensions of each building were based on detailed building GIS data provided by Derry and Londonderry. The height of each building was estimated using Google Street View and classified as either 15 or 25 feet.

\subsection*{4.1.6 Tree Zones and Ground Zones}

No tree zones were used given that thick year-round vegetation is required to appreciably reduce noise levels (areas of deciduous trees would not block line of sight in the winter). The default ground zone of lawn was used, no additional special ground zones were used.

\subsection*{4.1.7 I-93 Widening Noise Barriers}

Consistent with the inclusion of the I-93 widening in the 2040 No Build condition for the Exit 4A project, the I-93 widening noise barriers were digitized in TNM based on the I-93 final design plans. CAD files were used to determine the location of each barrier post and the height and finished grade elevation were taken from the soundwall post location tables.

Construction of the I-93 noise barriers was assumed as part of the modeling of noise impacts under the No Build Alternative. The barriers were also included in the Build Alternatives, with the exception of the areas where the barriers would conflict with the new interchange ramps. In these cases, the conflicting portion of the barrier was removed from the noise model, but the remaining portions were assumed to be left in place. Figure 4-2 illustrates the location of the I-93 widening barriers for NSA 4 and NSA 5, and the portions of the barriers assumed to be removed under the initial modeling of Alternatives A and B. The purpose of this initial modeling was to determine the total number of noise impacts in each NSA for comparing between alternatives. Determination of potential barrier modifications to account for the new interchange was conducted separately as part of the noise barrier evaluation.


Figure 4-1. Noise Sensitive Areas Overview


Figure 4-2. I-93 Widening Final Design Noise Barriers in NSA 4 and 5

\subsection*{4.1.8 Noise Model Validation}

Noise model validation refers to the FHWA requirement that traffic noise analyses demonstrate that the model is capable of predicting the field measured noise levels within 3 dBA . This is accomplished by modeling the same traffic volumes and vehicle mix counted simultaneously with the noise monitoring. Table 4-1 summarizes noise model validation results, showing that the modeled noise levels differ from the measured values by less than the required 3 dBA threshold.

Table 4-1. Traffic Noise Model Validation Summary
\begin{tabular}{|c|c|c|c|c|}
\hline Monitoring Location & Date/Time Period & Measured Leq, dBA & Modeled Leq, dBA & Difference \\
\hline \multirow{4}{*}{A} & Sept. 20- AM & 63.8 & 66.2 & 2.4 \\
\hline & Sept. 20- PM & 63.0 & 64.9 & 1.9 \\
\hline & Sept. 21- AM & 66.0 & 66.0 & 0.0 \\
\hline & Sept. 21- PM & 64.2 & 65.6 & 1.4 \\
\hline \multirow{4}{*}{B} & Sept. 20- AM & 70.5 & 68.8 & -1.7 \\
\hline & Sept. 20-PM & 69.1 & 67.5 & -1.6 \\
\hline & Sept. 21- AM & 70.9 & 68.5 & -2.4 \\
\hline & Sept. 21- PM & 70.3 & 68.2 & -2.1 \\
\hline \multirow{4}{*}{C} & Sept. 20- AM & 60.5 & 62.3 & 1.8 \\
\hline & Sept. 20- PM & 60.8 & 61.8 & 1.0 \\
\hline & Sept. 22- AM & 62.2 & 63.1 & 0.9 \\
\hline & Sept. 22-PM & 60.7 & 62.0 & 1.3 \\
\hline \multirow{3}{*}{D} & Sept. 20- AM & 74.2 & 71.8 & -2.4 \\
\hline & Sept. 20-PM & 74.4 & 73.8 & -0.6 \\
\hline & Sept. 21- PM \({ }^{\text {a }}\) & 75.2 & 73.3 & -1.9 \\
\hline \multirow{3}{*}{E} & Sept. 21- PM \({ }^{\text {a }}\) & 63.5 & 62.9 & -0.6 \\
\hline & Sept. 22-AM & 63.9 & 61.5 & -2.4 \\
\hline & Sept. 22-PM & 64.1 & 63.7 & -0.4 \\
\hline
\end{tabular}
a AM Time period not validated due to lack of traffic count data during the noise monitoring for that particular location/time period. Additional monitoring was not necessary since AM peak bi-directional traffic counts with classification were available from the second day of monitoring at each site

\subsection*{4.2 Impacts}

\subsection*{4.2.1 Noise Impact Summary}

Table 4-2 summarizes the initial noise modeling results for existing conditions, the No Build Alternative, and Build Alternatives A, B, C, D, and F in terms of impacted receptor points. The approximate boundaries of the NSAs shown in the table are mapped in Figure 4-1. Noise impacts were identified considering both the absolute predicted hourly Leq in comparison to the NAC. The incremental increase in noise relative to existing conditions was also evaluated to identify
receptors potentially experiencing a substantial increase (defined by NHDOT policy as an increase of 15 dBA or greater over existing conditions). AM and PM peak hour traffic was modeled separately for each Alternative, and the worst result for each receptor was used for purposes of the impact summary shown in Table 4-2.
It is important to note that the results in Table 4-2 include construction of noise barriers as part of the I-93 widening project under the No Build Alternative (and the Build alternatives, where the barrier is not in conflict with the particular alternative). As a result, the number of impacted receptors in each NSA is different from the detailed noise barrier evaluations presented in Section 4.3 where a true "no barrier" condition is evaluated for purposes of determining cost reasonableness of modified barrier configurations.
The single family residential and multi-family residential receptors correspond to FHWA Noise Abatement Criteria Activity Category B. The community facility and parkland receptors identified in the study area are all considered Activity Category C for purposes of the corridorwide comparison of alternatives (further detailed investigation of receptors impacted by Alternative A was conducted as part of the mitigation analysis). The Commercial with outdoor use land use type corresponds to Activity Category E. Category G (undeveloped lands that are not permitted) is addressed in Section 4.4.

Table 4-2. Traffic Noise Impacts Summary
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Noise Sensitive Area & Land Use & Existing & No Build Alt. (2040) & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline \multirow{4}{*}{1 (NH 28 Corridor, I-93 to Scobie Pond Rd.)} & Single-Family & 3 & 5 & 4 & 3 & 7 & 7 & 6 \\
\hline & Multi-Family/Apartment & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\
\hline & Community Facility/Park & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\hline & NSA Subtotal & 4 & 6 & 5 & 3 & 9 & 8 & 7 \\
\hline \multirow[t]{2}{*}{2 (Alts. B and C connector near Olde Coach Rd, and Bypass 28)} & Single-Family & 9 & 5 & 5 & \begin{tabular}{l}
2 exceed NAC \\
+1 substantial increase
\end{tabular} & 2 & 5 & 4 \\
\hline & NSA Subtotal & 9 & 5 & 5 & 3 & 2 & 5 & 4 \\
\hline \multirow[t]{2}{*}{3 (Alts. B and C connector near Barkland Dr., and Scenic Dr.)} & Single-Family & 0 & 0 & 0 & \begin{tabular}{l}
2 exceed NAC \\
+8 substantial \\
increase
\end{tabular} & \begin{tabular}{l}
2 exceed
\[
\text { NAC + } 7
\] \\
substantial increase
\end{tabular} & 0 & 0 \\
\hline & NSA Subtotal & 0 & 0 & 0 & 10 & 9 & 0 & 0 \\
\hline \multirow[t]{2}{*}{4 (I-93 at Alts. A and \(B\) interchange, Trolley Car Lane)} & Single-Family & 14 & 1 & 10 & 11 & 1 & 1 & 2 \\
\hline & NSA Subtotal & 14 & 1 & 10 & 11 & 1 & 1 & 2 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
\(5 \mathrm{I}-93\) at Alts. A and \\
\(B\) interchange, \\
Seasons Lane
\end{tabular}} & Single-Family & 8 & 1 & 3 & 3 & 1 & 1 & 1 \\
\hline & NSA Subtotal & 8 & 1 & 3 & 3 & 1 & 1 & 1 \\
\hline \multirow[t]{3}{*}{6 (Alts. A and B Connector from Derry Town Line to NH 28, Folsom Rd.)} & Single-Family & 11 & 11 & 13 (includes one recep. impacted due to both NAC and substantial increase) & 6 & 12 & 11 & 11 \\
\hline & Multi-Family/Apartment & 0 & 2 & 2 & 0 & 0 & 0 & 2 \\
\hline & NSA Subtotal & 12 & 13 & 15 & 6 & 12 & 11 & 13 \\
\hline \multirow[t]{2}{*}{7 (Tsienneto Rd from NH 28 to Bypass 28)} & Single-Family & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & \begin{tabular}{l}
Multi-Family/ \\
Apartment
\end{tabular} & 3 & 4 & 4 & 0 & 1 & 2 & 4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Noise Sensitive Area & Land Use & Existing & No Build Alt. (2040) & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline & Community Facility/Park & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\hline & NSA Subtotal & 3 & 4 & 5 & 0 & 1 & 2 & 4 \\
\hline \multirow[b]{3}{*}{8 (Tsienneto Rd. from Bypass 28 to NH 102)} & Single-Family & 5 & 9 & 13 & 4 & 4 & 13 & 9 \\
\hline & Multi-Family/Apartment & 0 & 2 & 1 & 1 & 0 & 0 & 0 \\
\hline & NSA Subtotal & 5 & 11 & 14 & 5 & 4 & 13 & 9 \\
\hline \multirow{5}{*}{9 (NH 102, Exit 4 to Griffin St.)} & Single-Family & 20 & 20 & 19 & 15 & 13 & 15 & 17 \\
\hline & Multi-Family/Apartment & 12 & 12 & 12 & 11 & 11 & 11 & 12 \\
\hline & Community Facility/Park & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline & Commercial w/outdoor use & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline & NSA Subtotal & 33 & 33 & 32 & 27 & 25 & 27 & 31 \\
\hline \multirow{4}{*}{10 (NH 102, Griffin St. to NH 28)} & Single-Family & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline & Multi-Family/Apartment & 11 & 9 & 11 & 11 & 11 & 11 & 11 \\
\hline & Community Facility/Park & 5 & 5 & 5 & 5 & 5 & 5 & 6 \\
\hline & NSA Subtotal & 17 & 15 & 17 & 17 & 17 & 17 & 18 \\
\hline \multirow{4}{*}{11 (NH 102, NH 28 to Bypass 28)} & Single-Family & 12 & 13 & 15 & 4 & 6 & 13 & 15 \\
\hline & Multi-Family/Apartment & 13 & 11 & 13 & 10 & 10 & 13 & 12 \\
\hline & Community Facility/Park & 4 & 4 & 4 & 2 & 2 & 4 & 4 \\
\hline & NSA Subtotal & 29 & 28 & 32 & 16 & 18 & 30 & 31 \\
\hline \multirow{4}{*}{Total Impacts} & Single-Family & 83 & 66 & 83 & 60 & 56 & 67 & 66 \\
\hline & Multi-Family/Apartment & 40 & 41 & 44 & 33 & 34 & 38 & 42 \\
\hline & Community Facility/Park & 10 & 10 & 11 & 8 & 9 & 10 & 11 \\
\hline & Commercial w/outdoor use & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline & Grand Total & 133 & 117 & 138 & 101 & 99 & 115 & 120 \\
\hline
\end{tabular}

Note: Results account for I-93 widening barriers, except sections of barriers in conflict with the alternatives (see Figure 4-2)

\section*{No Build}

In the majority of NSAs, noise impacts under the No Build Alternative would be similar to those predicted under existing conditions. In some cases, the number of No Build impacts would increase relative to existing conditions as a result of future growth in traffic volumes, such as along Tsienneto Road where the No Build Alternative would result in five additional impacted single-family homes and three additional multi-family/apartment receptor impacts (NSAs 7 and 8). The No Build Alternative noise levels at these Tsienneto Road receptors would be in the 6668 dBA range.
In the vicinity of the proposed Exit 4A under Alternative A and B interchange (Trolley Car Lane and Seasons Lane, NSA 4 and 5), the number of impacted receptors would decrease substantially relative to existing conditions because the No Build Alternative model includes the noise barriers proposed as part of the I-93 widening project. Overall, the total study area noise impacts under the No Build Alternative would decrease to 117, compared to 133 under existing conditions.

\section*{Alternative A}

Alternative A would conflict with portions of the I-93 widening noise walls in the new interchange area, resulting in 10 single family receptors impacted at NSA 4 and three impacted in NSA 5. The conflicting noise walls were assumed to be not constructed for the initial impact analysis. I-93 improvements proposed noise walls not in conflict with the new ramps were assumed to be in place. The majority of the impacted receptors at the interchange area would be in the 66 to 69 Leq, dBA range. Alternative A would also increase noise impacts on portions of Folsom Road (NSA 6) and Tsienneto Road (NSA 8) due to increased traffic volumes on these roadways. Overall, the number of impacted receptors would increase from 117 under the No Build Alternative to 138 under Alternative A (before considering mitigation).

\section*{Alternative B}

Similar to Alternative A, Alternative B would conflict with portions of noise walls planned for the I-93 widening project, increasing the number of impacted receptors at NSA 4 and 5 (Trolley Car Lane and Seasons Lane). Alternative B would cause traffic diversions that would reduce the number of noise impacts on portions of Tsienneto Road relative to the No Build Alternative (see for example NSA 8). Alternative B related traffic reductions on NH 102 in Derry would reduce the number of impacted receptors in NSA 11 (NH 28 to Bypass 28) relative to the No Build Alternative. However, Alternative B would impact residential areas along the new connector road alignment through Derry, including neighborhoods at Old Coach Road and Bypass 28 (NSA 2) and Barkland Drive and Scenic Drive (NSA 3). Overall, the total number of impacted receptors in the study area (101) would be less than the No Build Alternative. This result is consistent with Alternative B being located more on new alignment (in areas with fewer sensitive receptors) relative to the existing roadway corridor used by much of Alternative A (e.g., Folsom Rd. and Tsienneto Rd).

\section*{Alternative \(C\)}

Alternative C would result in nine impacted receptors in the vicinity of the new interchange location and along NH 28 (NSA 1). Impacts along the new alignment portion of the connector road through Derry would be similar to Alternative B (NSA 2 and 3). Also similar to Alternative

B, noise impacts would be reduced on portions of Tsienneto Road (NSA 8 and 11 most notably). Overall, the total number of impacted receptors in the study area would decrease relative to the No Build Alternative to 99.

\section*{Alternative \(D\)}

Alternative D would result in eight impacted receptors in the vicinity the new interchange location and along NH 28 (NSA 1). Impacts along Tsienneto Road from increased traffic volumes would similar to Alternative A (NSA 8 and 9). Overall, the total number of impacted receptors in the study area (115) would be similar to the No Build Alternative.

Alternative \(F\)
Noise impacts under Alternative F (120) would be similar to the No Build Alternative. Although traffic in downtown Derry would increase, it would not increase to an extent that would result in a substantial increase in newly impacted receptors. Noise levels would increase at receptors already considered affected in the No Build Alternative.

\subsection*{4.2.2 NSA Receptor Locations and Modeling Results}

The following section presents the figures and tables for each NSA receptor. The tables with the modeling results (Tables 4-3 through 4-12) are presented first followed by the figures for each NSA (Figures 4-3 through 4-17). Shading on the tables is used to indicate the receptors considered impacted under each alternative (whether due to approach or exceedance of the NAC or a substantial increase over existing conditions). Both the AM and PM peak hour traffic were modeled and the maximum hourly Leq for each receptor based on this data is reported in the tables.

Table 4-3. Noise Modeling Results for NSA 1 (Worst-Case Peak Hour, Leq, dBA)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Receiver ID & Land Use Type & Existing & \[
\begin{aligned}
& 2040 \text { No } \\
& \text { Build }
\end{aligned}
\] & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline Rockingham 2812 CF & Community Facility & 62.6 & 61.7 & 59.3 & 58 & 66.1 & 65.3 & 62.3 \\
\hline Rockingham 2811 MF & Multi-Family & 69.2 & 68.2 & 65.7 & 64.5 & 71.8 & 71.7 & 68.8 \\
\hline Rockingham 289 & SFR & 68.1 & 67.6 & 64.6 & 63.6 & 71.3 & 71.2 & 67.9 \\
\hline Rockingham 289 CF & Community Facility & 59.9 & 59 & 56.6 & 55.4 & 64 & 63.4 & 59.4 \\
\hline Coteville 1 & SFR & 64.2 & 63.3 & 60.9 & 59.6 & 67.6 & 67.2 & 63.9 \\
\hline Coteville 2 & SFR & 56.2 & 55.2 & 53 & 51.7 & 59.3 & 59 & 55.7 \\
\hline Seasons 18 & SFR & 56.8 & 55.8 & 53.7 & 52.5 & 59.7 & 59.7 & 56.3 \\
\hline Seasons 13 & SFR & 66.4 & 65.5 & 63.1 & 61.8 & 68.7 & 69.3 & 66 \\
\hline Seasons 14 & SFR & 55.2 & 54 & 52.5 & 51.1 & 57.6 & 57.9 & 54.4 \\
\hline Seasons 15 & SFR & 51.5 & 50.6 & 49.6 & 48.7 & 54 & 54.6 & 51 \\
\hline Seasons 16 & SFR & 48.6 & 47.8 & 45.6 & 44.8 & 50.7 & 51.2 & 48.1 \\
\hline Seasons 17 & SFR & 51.6 & 50.7 & 49.5 & 48.6 & 54.1 & 54.2 & 51.2 \\
\hline Rockingham 28 8A COD & Commercial w/Outdoor Use & 58 & 56.9 & 54.8 & 53.5 & 61.7 & 61.1 & 57.4 \\
\hline Rockingham 288 & SFR & 65.3 & 64.7 & 61.9 & 60.7 & 68.6 & 68.2 & 65 \\
\hline Rockingham 287 & SFR & 53.5 & 54 & 53.8 & 53.5 & 63 & 63.3 & 54.5 \\
\hline Rockingham 286 & SFR & 64.3 & 66.3 & 66.8 & 66.7 & 66.6 & 66.6 & 66.6 \\
\hline Rockingham 284 & SFR & 61.1 & 62.1 & 62.1 & 61.9 & 61.8 & 61.7 & 62.4 \\
\hline Rockingham 283 & SFR & 63 & 63.9 & 64.1 & 63.9 & 63.9 & 63.8 & 64.1 \\
\hline Rockingham 285 & SFR & 63.6 & 65.3 & 65.6 & 65.4 & 65.3 & 65.3 & 65.6 \\
\hline Rockingham 281 & SFR & 64.4 & 65.8 & 66.1 & 65.9 & 65.8 & 65.8 & 66.1 \\
\hline Rockingham 282 & SFR & 66.1 & 67.8 & 68.3 & 68.3 & 68.4 & 68.3 & 68.1 \\
\hline Rockingham 2813 CF & Community Facility & 52.2 & 51.3 & 49.6 & 49.3 & 55.7 & 54.8 & 51.8 \\
\hline
\end{tabular}

Note: Shading indicates impacted receptors based on NAC or substantial increase over existing conditions. For purposes of determining impacts, results were rounded to the nearest whole number (e.g., 65.6 dBA rounds to 66 and is considered an impact for a residential land use)
SFR - Single-Family Residence


Figure 4-3. NSA 1 Receptors

Table 4-4. Noise Modeling Results for NSA 2 (Worst-Case Peak Hour, Leq, dBA)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Receiver ID & Land Use Type & Existing & \[
\begin{aligned}
& 2040 \text { No } \\
& \text { Build } \\
& \hline
\end{aligned}
\] & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline By Pass 281 & SFR & 66.5 & 63.6 & 63.8 & 60.8 & 60.1 & 62.5 & 63.1 \\
\hline By Pass 28 10" & SFR & 68.6 & 66.1 & 65.9 & 64.2 & 64.2 & 65.5 & 65.3 \\
\hline By Pass 28 11" & SFR & 70.6 & 68 & 67.9 & 66.5 & 66.5 & 67.3 & 67.3 \\
\hline By Pass 28 12" & SFR & 67.2 & 64.6 & 64.5 & 63 & 63 & 64 & 63.9 \\
\hline By Pass 28 13" & SFR & 57.9 & 55 & 55.1 & 55.3 & 55.3 & 53.9 & 54.5 \\
\hline By Pass 28 14" & SFR & 58 & 55.1 & 55.3 & 55.5 & 55.5 & 54.1 & 54.6 \\
\hline By Pass 28 15" & SFR & 56 & 53.1 & 53.2 & 53.4 & 53.4 & 52.1 & 52.6 \\
\hline By Pass 28 16" & SFR & 57.4 & 54.5 & 54.6 & 54.5 & 54.8 & 53.5 & 54 \\
\hline By Pass 28 17" & SFR & 58.5 & 55.7 & 55.7 & 56.9 & 56.9 & 54.7 & 55.1 \\
\hline By Pass \(282^{\prime \prime}\) & SFR & 71.2 & 68.3 & 68.4 & 64.1 & 63.3 & 67.2 & 67.8 \\
\hline By Pass 283 " & SFR & 51.9 & 48.8 & 49 & 46.8 & 46 & 48.1 & 48.4 \\
\hline By Pass \(284^{\prime \prime}\) & SFR & 57.1 & 54.3 & 54.3 & 50.9 & 50.2 & 53.7 & 53.7 \\
\hline By Pass 28 6" & SFR & 66 & 63.4 & 63.3 & 61 & 60.1 & 62.7 & 62.7 \\
\hline By Pass \(287^{\prime \prime}\) & SFR & 66.3 & 63.7 & 63.5 & 61.4 & 60.5 & 63 & 63 \\
\hline By Pass \(288{ }^{\prime \prime}\) & SFR & 69.1 & 66.5 & 66.4 & 65.8 & 66.6 & 65.8 & 65.8 \\
\hline By Pass \(289 "\) & SFR & 69.1 & 66.5 & 66.3 & 65.1 & 65.3 & 65.8 & 65.7 \\
\hline Driftwood 1" & SFR & 52.1 & 49.4 & 49.3 & 48.7 & 48.8 & 48.6 & 48.7 \\
\hline Driftwood 2" & SFR & 51.3 & 48.5 & 48.5 & 48.5 & 48.6 & 47.8 & 47.9 \\
\hline Driftwood 3" & SFR & 48.2 & 45.3 & 45.3 & 46.4 & 46.2 & 44.5 & 44.7 \\
\hline Driftwood 4" & SFR & 47 & 44.3 & 44 & 47.9 & 47.3 & 43.8 & 43.5 \\
\hline London Rd 1" & SFR & 60.8 & 58.3 & 58 & N/A & N/A & 57.7 & 57.5 \\
\hline London Rd 2" & SFR & 52.9 & 50.4 & 50.1 & N/A & N/A & 49.8 & 49.5 \\
\hline London Rd 3" & SFR & 47.7 & 45 & 44.7 & N/A & N/A & 44.5 & 44.2 \\
\hline London Rd 4" & SFR & 46.7 & 43.8 & 43.6 & N/A & N/A & 43.4 & 43.1 \\
\hline London Rd 5" & SFR & 43.7 & 40.4 & 40.1 & N/A & N/A & 40.2 & 39.7 \\
\hline London Rd 6" & SFR & 60.5 & 57.8 & 57.7 & 62.8 & 62.2 & 57.2 & 57.1 \\
\hline London Rd7" & SFR & 49.8 & 47 & 46.9 & 62.1 & 61.6 & 46.3 & 46.4 \\
\hline London Rd 8" & SFR & 45.7 & 42.7 & 42.5 & 60.7 & 59.9 & 42.3 & 42 \\
\hline Olde Coach 1" & SFR & 45.7 & 42.9 & 42.6 & 50.9 & 50.2 & 42.4 & 42.1 \\
\hline Olde Coach 10" & SFR & 39.6 & 33.3 & 32.4 & 49.6 & 49 & 35.7 & 33 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Receiver ID & Land Use Type & Existing & \[
\begin{aligned}
& 2040 \text { No } \\
& \text { Build }
\end{aligned}
\] & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline Olde Coach 11" & SFR & 40.8 & 37.2 & 37 & 46.3 & 45.9 & 37 & 36.7 \\
\hline Olde Coach 12" & SFR & 54 & 51.6 & 51.3 & 51.2 & 50.9 & 51 & 50.7 \\
\hline Olde Coach 2" & SFR & 45.2 & 42.2 & 42 & 50.8 & 50.1 & 41.8 & 41.5 \\
\hline Olde Coach 3" & SFR & 44.9 & 41.7 & 41.5 & 51.6 & 51 & 41.5 & 41.1 \\
\hline Olde Coach 4" & SFR & 43.5 & 40.1 & 39.8 & 51.3 & 50.7 & 40.1 & 39.5 \\
\hline Olde Coach 5" & SFR & 42.8 & 39.2 & 38.8 & 51.7 & 51.1 & 39.2 & 38.6 \\
\hline Olde Coach 6" & SFR & 41 & 36.6 & 36.1 & 52 & 51.5 & 37.1 & 36.1 \\
\hline Olde Coach 7" & SFR & 40.3 & 35.4 & 34.8 & 51.3 & 50.7 & 36.3 & 34.9 \\
\hline Olde Coach 8" & SFR & 40.1 & 34.8 & 34.2 & 52.4 & 51.8 & 35.9 & 34.4 \\
\hline Olde Coach 9" & SFR & 39.7 & 33.3 & 32.5 & 50.4 & 49.8 & 36.6 & 32.9 \\
\hline Oxford 1" & SFR & 49.1 & 44.9 & 45.3 & 45.7 & 45.9 & 46.3 & 45.5 \\
\hline Oxford 2" & SFR & 51.1 & 47.6 & 47.7 & 47 & 46.8 & 48.1 & 47.7 \\
\hline Oxford 3" & SFR & 57.9 & 55.2 & 55.1 & 53.5 & 52.7 & 54.5 & 54.5 \\
\hline Oxford 4" & SFR & 57.9 & 55.3 & 55.1 & 54.3 & 53.4 & 54.7 & 54.6 \\
\hline Oxford 5" & SFR & 49.2 & 46.3 & 46.2 & 48.5 & 48.1 & 45.8 & 45.7 \\
\hline Rider 1" & SFR & 47.8 & 44.6 & 44.7 & 52.7 & 52.2 & 43.7 & 44.2 \\
\hline Rider 2" & SFR & 44.1 & 40.8 & 40.7 & 54.5 & 54.1 & 41.2 & 40.3 \\
\hline Thames 1" & SFR & 43.7 & 39.6 & 39.4 & 48 & 47.6 & 40.6 & 39.2 \\
\hline Thames 2" & SFR & 42.7 & 39.5 & 39.2 & 50.8 & 50.2 & 39.1 & 38.8 \\
\hline Thames 3" & SFR & 45.5 & 42.7 & 42.3 & 59.5 & 58.7 & 42.1 & 41.9 \\
\hline Thames 4" & SFR & 47.4 & 44.6 & 44.5 & 52.2 & 51.7 & 44.2 & 44 \\
\hline Thames 5" & SFR & 47.7 & 44.6 & 44.6 & 49.8 & 49.2 & 44.3 & 44.1 \\
\hline
\end{tabular}

Note: Shading indicates impacted receptors based on NAC or substantial increase over existing conditions. For purposes of determining impacts, results were rounded to the nearest whole number (e.g., 65.6 dBA rounds to 66 and is considered an impact for a residential land use)
N/A - Not applicable, property is full acquisition
SFR - Single-Family Residence


Figure 4-4. NSA 2 Receptors

Table 4-5. Noise Modeling Results for NSA 3 (Worst-Case Peak Hour, Leq, dBA)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Receiver ID & Land Use Type & Existing & \[
\begin{aligned}
& 2040 \text { No } \\
& \text { Build }
\end{aligned}
\] & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline Barka Elementary School 1 CF & Community Facility & 34 & 33.4 & 33.6 & 46.9 & 46.5 & 33.1 & 33 \\
\hline Barka Elementary School 2 CF & Community Facility & 34.1 & 34.1 & 34.4 & 48.3 & 47.9 & 33.9 & 33.8 \\
\hline Barka Elementary School 3 CF & Community Facility & 35 & 34.7 & 35 & 48.9 & 48.5 & 34.5 & 34.4 \\
\hline Barka Elementary School 4 CF & Community Facility & 33.7 & 32.7 & 32.8 & 47.4 & 47 & 32.3 & 32.4 \\
\hline Barka Elementary School 5 CF & Community Facility & 37.9 & 37.7 & 37.7 & 51.6 & 51.2 & 37.5 & 37.5 \\
\hline Barka Elementary School 6 CF & Community Facility & 36.5 & 36.7 & 36.8 & 48.1 & 47.7 & 36.6 & 36.6 \\
\hline Barka Elementary School 7 CF & Community Facility & 37.5 & 37.8 & 37.9 & 46.7 & 46.4 & 37.8 & 37.7 \\
\hline Barkland 1 & SFR & 35.6 & 35.8 & 35.9 & 52.9** & 52.5** & 35.8 & 35.7 \\
\hline Barkland 10 & SFR & 36.9 & 37.7 & 38.1 & 46.2 & 45.9 & 37.7 & 37.5 \\
\hline Barkland 11 & SFR & 36.8 & 37.6 & 38.1 & 45.7 & 45.4 & 37.6 & 37.4 \\
\hline Barkland 12 & SFR & 34.2 & 33.9 & 34 & 49.4** & 49** & 33.9 & 33.9 \\
\hline Barkland 2 & SFR & 34.8 & 35.6 & 35.9 & 51.9** & 51.5** & 35.6 & 35.4 \\
\hline Barkland 3 & SFR & 32 & 31.5 & 31.5 & 52.1** & 51.7** & 31.4 & 31.3 \\
\hline Barkland 4 & SFR & 30.5 & 30.1 & 30.2 & 51.3** & 50.9** & 30 & 30 \\
\hline Barkland 5 & SFR & 33.9 & 34.2 & 34.4 & 51.5** & 51.1** & 33.9 & 34 \\
\hline Barkland 6 & SFR & 34.2 & 34.5 & 34.8 & 52.8** & 52.4** & 34.4 & 34.2 \\
\hline Barkland 7 & SFR & 35.4 & 36 & 36.4 & 49.5 & 49.1 & 35.9 & 35.7 \\
\hline Barkland 8 & SFR & 36.1 & 36.7 & 37 & 43 & 42.8 & 36.5 & 36.4 \\
\hline Barkland 9 & SFR & 36.2 & 37.1 & 37.6 & 46.8 & 46.4 & 37.1 & 36.9 \\
\hline Birchwood 1 & SFR & 40.7 & 41.3 & 41.5 & 46.2 & 45.8 & 41.4 & 41.2 \\
\hline Birchwood 2 & SFR & 39.5 & 39.7 & 39.8 & 46.9 & 46.5 & 39.6 & 39.6 \\
\hline Birchwood 3 & SFR & 39.9 & 40.3 & 40.5 & 51.1 & 50.7 & 40.4 & 40.2 \\
\hline Birchwood 4 & SFR & 38.8 & 39.8 & 40.2 & 47 & 46.7 & 39.9 & 39.6 \\
\hline Brookview 1 & SFR & 37 & 37.8 & 38.3 & 46 & 45.7 & 37.8 & 37.6 \\
\hline Eastgate 1 & SFR & 35.8 & 35.1 & 35.2 & 47.4 & 47 & 34.8 & 34.7 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Receiver ID & Land Use Type & Existing & \[
\begin{aligned}
& 2040 \text { No } \\
& \text { Build }
\end{aligned}
\] & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline Eastgate 2 & SFR & 33.1 & 33.2 & 33.6 & 47.6** & 47.2 & 33.2 & 32.9 \\
\hline Hummingbird 1 & SFR & 39.3 & 39.7 & 39.9 & N/A & N/A & 39.7 & 39.6 \\
\hline Hummingbird 2 & SFR & 37.4 & 38 & 38.4 & N/A & N/A & 38.1 & 37.9 \\
\hline Hummingbird 3 & SFR & 36.1 & 36.9 & 37.4 & N/A & N/A & 37 & 36.7 \\
\hline Hummingbird 4 & SFR & 36 & 36.4 & 36.8 & N/A & N/A & 36.4 & 36.2 \\
\hline Hummingbird 5 & SFR & 35.6 & 35.5 & 35.7 & N/A & N/A & 35.2 & 35.2 \\
\hline Jeff 1 MF & Multi-Family & 40.5 & 40.9 & 41.1 & 47.8 & 47.5 & 41 & 40.9 \\
\hline Jeff 2 & SFR & 37.3 & 38.3 & 38.7 & 48.6 & 48.2 & 38.4 & 38.2 \\
\hline Jeff 3 & SFR & 37.6 & 38.9 & 39.4 & 46.7 & 46.4 & 39 & 38.7 \\
\hline Scenic 1 & SFR & 51.7 & 51.8 & 51.8 & N/A & N/A & 51.8 & 51.8 \\
\hline Scenic 10 & SFR & 57 & 57 & 57 & 57.2 & 57.2 & 57 & 57 \\
\hline Scenic 11 & SFR & 58.3 & 58.3 & 58.4 & 58.4 & 58.4 & 58.3 & 58.3 \\
\hline Scenic 12 & SFR & 57 & 57 & 57 & 57.2 & 57.2 & 57 & 57 \\
\hline Scenic 13 & SFR & 44.9 & 45.1 & 45.2 & 48 & 47.8 & 45.1 & 45.1 \\
\hline Scenic 14 & SFR & 48.5 & 48.6 & 48.7 & 51.6 & 51.4 & 48.6 & 48.6 \\
\hline Scenic 15 & SFR & 43.6 & 43.6 & 43.7 & 52.7 & 52.3 & 43.6 & 43.6 \\
\hline Scenic 2 & SFR & 52.3 & 52.3 & 52.4 & 56.3 & 56 & 52.3 & 52.3 \\
\hline Scenic 3 & SFR & 39.3 & 39.5 & 39.6 & 48.9 & 48.6 & 39.5 & 39.4 \\
\hline Scenic 4 & SFR & 46.9 & 46.9 & 46.9 & 48.9 & 48.8 & 46.9 & 46.9 \\
\hline Scenic 5 & SFR & 57.9 & 57.9 & 57.9 & 58.1 & 58 & 57.9 & 57.9 \\
\hline Scenic 6 & SFR & 54.8 & 54.8 & 54.8 & 55.6 & 55.5 & 54.8 & 54.8 \\
\hline Scenic 7 & SFR & 56.9 & 56.9 & 56.9 & 60.6 & 60.3 & 56.9 & 56.9 \\
\hline Scenic 8 & SFR & 41.8 & 41.9 & 41.9 & N/A & N/A & 41.9 & 41.9 \\
\hline Scenic 9 & SFR & 56.2 & 56.2 & 56.2 & 56.8 & 56.7 & 56.2 & 56.2 \\
\hline
\end{tabular}

Note: Shading indicates impacted receptors based on NAC or substantial increase over existing conditions. For purposes of determining impacts, results were
rounded to the nearest whole number (e.g., 65.6 dBA rounds to 66 and is considered an impact for a residential land use)
N/A: Not applicable, property is full acquisition
* Substantial increase over existing conditions

SFR: Single-family residence


Figure 4-5. NSA 3 Receptors

Table 4-6. Noise Modeling Results for NSA 4 (Worst-Case Peak Hour, Leq, dBA)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Receiver ID & Land Use Type & Existing & 2040 No Build & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline Hovey 1 & SFR & 66.9 & 66.2 & 67.1 & 67.3 & 65.9 & 65.8 & 66.5 \\
\hline Trolley Car 1 & SFR & 65.7 & 65.3 & 65.4 & 65.6 & 64.8 & 64.7 & 65.5 \\
\hline Trolley Car 10 & SFR & 64.5 & 60.4 & 62.6 & 62.7 & 60.3 & 60.2 & 60.8 \\
\hline Trolley Car 11 & SFR & 66.6 & 60.8 & 61.9 & 62 & 60.7 & 60.6 & 61.2 \\
\hline Trolley Car 12 & SFR & 67.2 & 60.4 & N/A & N/A & 60.3 & 60.2 & 60.7 \\
\hline Trolley Car 13 & SFR & 67.8 & 60.4 & N/A & N/A & 60.4 & 60.2 & 60.8 \\
\hline Trolley Car 14 & SFR & 69 & 59.6 & N/A & N/A & 59.5 & 59.5 & 60 \\
\hline Trolley Car 15 & SFR & 60.1 & 56.2 & 61.5 & 61.6 & 56.3 & 56.2 & 56.7 \\
\hline Trolley Car 16 & SFR & 61.3 & 58.1 & 62.7 & 62.7 & 58 & 58 & 58.5 \\
\hline Trolley Car 17 & SFR & 69.6 & 60.2 & 68.2 & 68.2 & 60.1 & 60 & 60.6 \\
\hline Trolley Car 18 & SFR & 73.1 & 63.2 & 74.1 & 74 & 63 & 63 & 63.5 \\
\hline Trolley Car 19 & SFR & 62.5 & 58.5 & 62.5 & 62.4 & 58.5 & 58.4 & 58.9 \\
\hline Trolley Car 2 & SFR & 63.5 & 61.7 & 65.5 & 65.6 & 61.5 & 61.4 & 62 \\
\hline Trolley Car 3 & SFR & 69.7 & 64.6 & 67.8 & 68 & 64.3 & 64.2 & 64.8 \\
\hline Trolley Car 4 & SFR & 69.4 & 64 & 69.2 & 69.3 & 63.7 & 63.8 & 64.3 \\
\hline Trolley Car 5 & SFR & 67.7 & 62.7 & 68.3 & 68.4 & 62.5 & 62.5 & 63 \\
\hline Trolley Car 6 & SFR & 67.9 & 62.4 & 68.1 & 68.2 & 62.2 & 62.2 & 62.7 \\
\hline Trolley Car 7 & SFR & 66.3 & 61.1 & 66.5 & 66.6 & 61 & 60.9 & 61.5 \\
\hline Trolley Car 8 & SFR & 66.8 & 61.6 & 66.7 & 66.8 & 61.5 & 61.4 & 61.9 \\
\hline Trolley Car 9 & SFR & 64.9 & 60.6 & 64.1 & 64.1 & 60.5 & 60.4 & 61 \\
\hline
\end{tabular}

Note: Shading indicates impacted receptors based on NAC or substantial increase over existing conditions. For purposes of determining impacts, results were
rounded to the nearest whole number (e.g., 65.6 dBA rounds to 66 and is considered an impact for a residential land use).
N/A: Not applicable, property is full acquisition
** Substantial increase over existing conditions
SFR: Single-family residence

Table 4-7. Noise Modeling Results for NSA 5 (Worst-Case Peak Hour, Leq, dBA)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Receiver ID & Land Use Type & Existing & 2040 No Build & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline Seasons 1 & SFR & 58.3 & 62.3 & 62.3 & 62.3 & 62.3 & 62.1 & 62.5 \\
\hline Seasons 10 & SFR & 65.8 & 60.6 & 61.2 & 61.2 & 61.1 & 61 & 60.9 \\
\hline Seasons 11 & SFR & 66.1 & 61.1 & 61.7 & 61.7 & 61.8 & 61.7 & 61.4 \\
\hline Seasons 12 & SFR & 64.7 & 59.7 & 60.3 & 60.3 & 61.3 & 61.3 & 60.1 \\
\hline Seasons 2 & SFR & 67.7 & 63.6 & 74.1 & 74.1 & 63.6 & 63.5 & 63.9 \\
\hline Seasons 3 & SFR & 59.4 & 60 & 62.8 & 62.8 & 60 & 59.8 & 60.2 \\
\hline Seasons 4 & SFR & 68.1 & 59.6 & 67.2 & 67.3 & 59.7 & 59.6 & 60 \\
\hline Seasons 5 & SFR & 58.8 & 57.2 & 59.3 & 59.3 & 57.1 & 57.1 & 57.5 \\
\hline Seasons 6 & SFR & 67.1 & 60 & 63.2 & 63.2 & 60 & 59.9 & 60.3 \\
\hline Seasons 7 & SFR & 66.9 & 60.7 & 62.4 & 62.4 & 60.7 & 60.7 & 61.1 \\
\hline Seasons 8 & SFR & 66.7 & 60.8 & 61.5 & 61.5 & 60.9 & 60.9 & 61.1 \\
\hline Seasons 9 & SFR & 66.5 & 60.9 & 61.5 & 61.5 & 61.1 & 61.1 & 61.2 \\
\hline Buyck 1 & SFR & 64.9 & 68.4 & 68.4 & 68.6 & 68.2 & 68.1 & 68.6 \\
\hline \multicolumn{2}{|l|}{Seasons_E" (SFR)} & 58.2 & 58.4 & 58.8 & 58.9 & \multicolumn{3}{|l|}{\multirow[t]{11}{*}{Not analyzed- receptors included for purposes of evaluating benefits of the Seasons Lane barrier only.}} \\
\hline Seasons_D" (SFR) & & 58.7 & 58.8 & 59.2 & 59.4 & & & \\
\hline Seasons_C" (SFR) & & 55.8 & 57 & 57.4 & 57.6 & & & \\
\hline Seasons_B" (SFR) & & 54 & 55.2 & 55.6 & 55.8 & & & \\
\hline Seasons_F" (SFR) & & 62.3 & 60.8 & 61.2 & 61.2 & & & \\
\hline Seasons_G" (SFR) & & 61.8 & 60.7 & 61.1 & 61.1 & & & \\
\hline Seaons_H" (SFR) & & 61.2 & 60.1 & 60.5 & 60.5 & & & \\
\hline Seasons_I" (SFR) & & 61.1 & 59.4 & 59.9 & 59.9 & & & \\
\hline Seasons_J" (SFR) & & 60.3 & 58.5 & 59.2 & 59.2 & & & \\
\hline Seasons_K" (SFR) & & 62 & 59.6 & 60.8 & 60.9 & & & \\
\hline Seasons_L" (SFR) & & 57.9 & 57.3 & 59.7 & 59.7 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Receiver ID & Land Use Type & Existing & 2040 No Build & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline Seasons_N" (SFR) & & 55.3 & 58.8 & 59 & 59.1 & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{}} \\
\hline Seaons_M" (SFR) & & 54.6 & 56.9 & 57.5 & 57.6 & & & \\
\hline Seasons_A" (SFR) & & 52.8 & 55.5 & 56.6 & 56.7 & & & \\
\hline
\end{tabular}

Note: Shading indicates impacted receptors based on NAC or substantial increase over existing conditions. For purposes of determining impacts, results were
rounded to the nearest whole number (e.g., 65.6 dBA rounds to 66 and is considered an impact for a residential land use)
N/A: Not applicable, property is full acquisition
** Substantial increase over existing conditions
SFR: Single-family residence


Figure 4-6. NSA 4 and NSA 5 Receptors

Table 4-8. Noise Modeling Results for NSA 6 (Worst-Case Peak Hour, Leq, dBA)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Receiver ID & Land Use Type & Existing & \begin{tabular}{l}
\[
2040 \text { No }
\] \\
Build
\end{tabular} & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline Claremont 1 & SFR & 66.5 & 66.1 & 68.3 & 64.7 & 67.3 & 67.3 & 66.6 \\
\hline Claremont 2" & SFR & 55.2 & 54.8 & 58.8 & 53.3 & 55.5 & 54.2 & 55.2 \\
\hline Claremont 3" & SFR & 48.8 & 48.7 & 53.4 & 48.6 & 50.3 & 49.7 & 49.2 \\
\hline Claremont 4" & SFR & 48.5 & 48.3 & 52.2 & 48.7 & 49.7 & 50.2 & 48.9 \\
\hline Claremont 5" & SFR & 47.9 & 47.8 & 51.5 & 48.7 & 49.4 & 50.8 & 48.7 \\
\hline Claremont 6" & SFR & 50.9 & 50.7 & 53.2 & 51.4 & 53.5 & 53.1 & 51.6 \\
\hline Claremont 7" & SFR & 49.8 & 49.7 & 53.4 & 49.5 & 51.4 & 51.2 & 50.2 \\
\hline Claremont 8" & SFR & 52 & 51.7 & 56.5 & 50.7 & 52.7 & 52.6 & 52.1 \\
\hline Concord 1" & SFR & 49.1 & 48.7 & 55.2 & 50 & 50.4 & 50.1 & 49.4 \\
\hline Concord 2" & SFR & 53.2 & 53 & 57.9 & 51.3 & 53.5 & 52.9 & 53.3 \\
\hline Concord 4" & SFR & 48 & 48.1 & 52.2 & 47.2 & 47.5 & 46.8 & 48.4 \\
\hline Concord 3" & SFR & 49.5 & 49.4 & 54.5 & 48.4 & 49.4 & 49.3 & 49.7 \\
\hline \[
\begin{aligned}
& \text { Covey Run } 1 \text { APT } \\
& \text { TH"" }
\end{aligned}
\]
TH" & Apartment/Townhome & 54.2 & 56.2 & 55.9 & 53.8 & 54.8 & 54.7 & 55.3 \\
\hline Covey Run 10 APT TH" & Apartment/Townhome & 44.4 & 45.8 & 49.7 & 44.6 & 44.9 & 45 & 45.1 \\
\hline Covey Run 11 APT TH" & Apartment/Townhome & 44.7 & 46.4 & 49.9 & 44.9 & 45.2 & 45.4 & 45.6 \\
\hline \[
\text { Covey Run } 12 \text { APT }
\]
TH" & Apartment/Townhome & 46.1 & 47.8 & 51.9 & 46.4 & 46.6 & 46.8 & 47 \\
\hline \[
\text { Covey Run } 2 \text { APT }
\]
TH" & Apartment/Townhome & 57.7 & 59.7 & 59.3 & 57.2 & 58.2 & 58.2 & 58.7 \\
\hline Covey Run 3 APT TH" & Apartment/Townhome & 62.6 & 64.8 & 64.7 & 61.8 & 62.7 & 63.4 & 63.6 \\
\hline Covey Run 4 APT TH" & Apartment/Townhome & 62.8 & 65.1 & 65 & 62.1 & 63 & 63.7 & 63.9 \\
\hline Covey Run 5 APT TH" & Apartment/Townhome & 63.1 & 65.4 & 65.2 & 62.3 & 63.2 & 63.9 & 64.1 \\
\hline \[
\begin{aligned}
& \text { Covey Run } 6 \text { APT } \\
& \text { TH" }
\end{aligned}
\] & Apartment/Townhome & 42.5 & 43.7 & 48.2 & 42.7 & 43.1 & 43.2 & 43.1 \\
\hline Covey Run 7 APT TH" & Apartment/Townhome & 43 & 44.4 & 48.6 & 43.1 & 43.7 & 43.8 & 43.8 \\
\hline Covey Run 8 APT
TH" & Apartment/Townhome & 49.7 & 51.5 & 54.3 & 49.4 & 50.1 & 50.2 & 50.6 \\
\hline Covey Run 9 APT TH" & Apartment/Townhome & 42.5 & 43.8 & 48.1 & 42.6 & 43 & 43.2 & 43.2 \\
\hline Exeter 1" & SFR & 51.1 & 50.1 & 58.1 & 53.5 & 53.9 & 51.3 & 51.5 \\
\hline Exeter 2" & SFR & 47.7 & 47.6 & 54.4 & 48.9 & 48.9 & 47.8 & 48.1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Receiver ID & Land Use Type & Existing & \begin{tabular}{l}
2040 No \\
Build
\end{tabular} & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline Exeter 3" & SFR & 47.3 & 47.3 & 53 & 48 & 48.2 & 47.1 & 47.7 \\
\hline Exeter 4" & SFR & 47.8 & 47.8 & 52.2 & 47.1 & 48 & 47.7 & 48.1 \\
\hline Exeter 5" & SFR & 47.4 & 47.4 & 52.5 & 47.7 & 48.4 & 48.5 & 47.8 \\
\hline Exeter 6" & SFR & 47.2 & 47.3 & 51.6 & 47.2 & 47.6 & 47.5 & 47.7 \\
\hline Ferland 1" & SFR & 58.5 & 60.2 & 0 & 57.9 & 58.8 & 59.2 & 59.5 \\
\hline Ferland 2" & SFR & 50.9 & 52.6 & 58.2 & 50.7 & 51.5 & 51.6 & 51.9 \\
\hline Ferland 3 MF" & Multi-Family & 47.3 & 48.9 & 54.1 & 47.4 & 48 & 47.9 & 48.2 \\
\hline Ferland 4" & SFR & 49.3 & 51.3 & 54 & 49.1 & 49.8 & 50 & 50.3 \\
\hline Ferland 5 MF" & Multi-Family & 47.5 & 49.2 & 52.9 & 47.4 & 47.9 & 48.1 & 48.4 \\
\hline Ferland 6 MF" & Multi-Family & 47.4 & 48.7 & 54.4 & 47 & 48.2 & 48.1 & 48.2 \\
\hline Folsom 1" & SFR & 68 & 67.8 & 68.5 & 66.4 & 68.9 & 68.6 & 68.1 \\
\hline Folsom 10" & SFR & 67.2 & 66.7 & N/A & 65.1 & 67.7 & 67.5 & 67.2 \\
\hline Folsom 11 CF" & Community Facility & 59.4 & 59 & N/A & 57.4 & 60 & 60.1 & 59.4 \\
\hline Folsom 2" & SFR & 67.6 & 67.4 & 67 & 65.9 & 68.6 & 68.3 & 67.8 \\
\hline Folsom 3" & SFR & 62.5 & 63.2 & N/A & 62.5 & 63.6 & 63.2 & 63.2 \\
\hline Folsom 4" & SFR & 62.1 & 62.1 & N/A & 60.4 & 62.7 & 62.4 & 62.3 \\
\hline Folsom 5" & SFR & 68.5 & 68.2 & 67.1 & 66.8 & 69.5 & 69.2 & 68.6 \\
\hline Folsom 5A" & SFR & 52.9 & 53.2 & N/A & 52.1 & 53.8 & 53.5 & 53.3 \\
\hline Folsom 6" & SFR & 66.7 & 66.3 & N/A & 64.7 & 67.2 & 66.9 & 66.7 \\
\hline Folsom 7" & SFR & 67.8 & 67.4 & N/A & 65.7 & 68.3 & 68.1 & 67.8 \\
\hline Folsom 8" & SFR & 66.1 & 65.7 & N/A & 64.1 & 66.6 & 66.1 & 66.1 \\
\hline Folsom 9" & SFR & 66.5 & 66.2 & 70.4 & 64.7 & 67.4 & 67.9 & 66.6 \\
\hline Franklin 1" & SFR & 62.3 & 62.8 & 67.3 & 62.3 & 64.1 & 62.8 & 62.9 \\
\hline Franklin 10 APT TH" & Apartment/Townhome & 46.3 & 46.1 & 53.4 & 48.5 & 48.5 & 46.4 & 46.8 \\
\hline Franklin 11 APT TH" & Apartment/Townhome & 46.1 & 45.9 & 53.1 & 48.2 & 48.2 & 46.2 & 46.6 \\
\hline Franklin 12" & SFR & 67.9 & 67.9 & 70.4 & 66.6 & 68.9 & 68.6 & 68.2 \\
\hline Franklin \(13 \mathrm{MF}{ }^{\text {" }}\) & Multi-Family & 51.2 & 50.8 & 57.1 & 50.8 & 52.3 & 51.3 & 51.4 \\
\hline Franklin 14" & SFR & 50.6 & 48.9 & 57.5 & 53.5 & 53.5 & 50.4 & 50.9 \\
\hline Franklin 15" & SFR & 47.3 & 46.5 & 54.1 & 49.9 & 50.3 & 47.4 & 47.8 \\
\hline Franklin 2 APT TH" & Apartment/Townhome & 64.5 & 66.3 & 69.6 & 63.8 & 64.7 & 65.3 & 65.5 \\
\hline Franklin 3 APT TH" & Apartment/Townhome & 64.6 & 66.3 & 70 & 63.9 & 64.8 & 65.4 & 65.5 \\
\hline Franklin 4 APT TH" & Apartment/Townhome & 55 & 54.7 & 61.4 & 56.3 & 57.5 & 55 & 55.4 \\
\hline Franklin Ext 4 CF" & Community Facility & 43.2 & 43.5 & 48.1 & 48.4 & 42.7 & 44.5 & 44 \\
\hline Franklin 5 APT TH" & Apartment/Townhome & 52.9 & 51.9 & 59.5 & 54.9 & 55.8 & 52.9 & 53.3 \\
\hline Franklin 6 APT TH" & Apartment/Townhome & 50.8 & 49.6 & 57.9 & 53.3 & 53.7 & 50.6 & 51.2 \\
\hline Franklin 7 APT TH" & Apartment/Townhome & 49.5 & 48.4 & 56.7 & 51.9 & 52.2 & 49.3 & 49.8 \\
\hline Franklin 8 APT TH" & Apartment/Townhome & 47.4 & 47.4 & 54.7 & 49.3 & 49.4 & 47.6 & 48 \\
\hline Franklin 9 APT TH" & Apartment/Townhome & 47 & 47.3 & 54 & 48.4 & 48.6 & 47.3 & 47.6 \\
\hline Franklin Ext 1" & SFR & 57.5 & 57.9 & 59 & 62.8 & 40.7 & 59.8 & 59.5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Receiver ID & Land Use Type & Existing & \[
\begin{aligned}
& 2040 \text { No } \\
& \text { Build } \\
& \hline
\end{aligned}
\] & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline Franklin Ext 10 APT TH" & Apartment/Townhome & 48 & 49 & 57.3 & 48.8 & 49.4 & 49.2 & 49 \\
\hline \[
\begin{aligned}
& \text { Franklin Ext } 11 \text { APT } \\
& \text { TH" }
\end{aligned}
\] & Apartment/Townhome & 48 & 48.9 & 57.1 & 48.5 & 49.2 & 49.1 & 48.8 \\
\hline Franklin Ext 12 APT TH" & Apartment/Townhome & 47.9 & 48.8 & 57.1 & 48.3 & 49.1 & 48.9 & 48.7 \\
\hline \[
\begin{aligned}
& \text { Franklin Ext } 13 \text { APT } \\
& \text { TH" }
\end{aligned}
\] & Apartment/Townhome & 45.8 & 46.1 & 55.1 & 47.2 & 46.7 & 46.5 & 46.1 \\
\hline Franklin Ext 14 APT TH" & Apartment/Townhome & 45.5 & 45.8 & 54.8 & 47.9 & 46.7 & 46.4 & 45.9 \\
\hline \[
\begin{aligned}
& \text { Franklin Ext } 15 \text { APT } \\
& \text { TH" }
\end{aligned}
\] & Apartment/Townhome & 45 & 45 & 54.3 & 47.5 & 46.2 & 46 & 45.3 \\
\hline Franklin Ext 17" & SFR & 59.9 & 60.9 & 66.6 & 61.5 & 61.7 & 61.2 & 61.1 \\
\hline Franklin Ext 2" & SFR & 57.6 & 58.1 & 59.3 & 62.9 & 43.2 & 59.9 & 59.7 \\
\hline Franklin Ext 3 MF" & Multi-Family & 50.8 & 51.2 & 53.3 & 55.9 & 39.6 & 53.1 & 52.8 \\
\hline Franklin Ext 4 APT TH" & Apartment/Townhome & 58.4 & 58.9 & 60.8 & 62.7 & 61.9 & 60.5 & 60.3 \\
\hline \begin{tabular}{l} 
Franklin Ext 5 APT \\
TH" \\
\hline Fr
\end{tabular} & Apartment/Townhome & 57.9 & 58.4 & 61 & 62.1 & 61.4 & 60 & 59.8 \\
\hline Franklin Ext 6 APT TH" & Apartment/Townhome & 50.8 & 51.8 & 58.8 & 53.3 & 53.1 & 52.5 & 52.3 \\
\hline Franklin Ext 7 APT
TH"
TH & Apartment/Townhome & 49.7 & 50.7 & 58.3 & 51.9 & 51.8 & 51.4 & 51.1 \\
\hline Franklin Ext 8 APT TH" & Apartment/Townhome & 48.9 & 49.9 & 57.9 & 50.6 & 50.7 & 50.4 & 50.1 \\
\hline \[
\begin{aligned}
& \hline \text { Franklin Ext } 9 \text { APT } \\
& \text { TH" }
\end{aligned}
\] & Apartment/Townhome & 48.4 & 49.4 & 57.5 & 49.6 & 50 & 49.7 & 49.5 \\
\hline Franklin Ext 16" & SFR & 57.1 & 57.9 & 62.7 & 60.4 & 59.9 & 58.8 & 58.7 \\
\hline Laconia 1" & SFR & 51.2 & 50.9 & 54.4 & 51.1 & 52.7 & 53.2 & 51.5 \\
\hline Laconia 1A COD" & Commercial w/Outdoor Use & 65.4 & 64.9 & 66.1 & 65.4 & 66.6 & 66.8 & 65.8 \\
\hline Laconia 2" & SFR & 51.2 & 50.9 & 56.6 & 50.1 & 52.2 & 52 & 51.4 \\
\hline Laconia 3" & SFR & 60.8 & 60.4 & 65.9 & 59 & 61.6 & 62 & 60.9 \\
\hline Madden 1" & SFR & 44.1 & 45.4 & 67.9 & 48 & 44.7 & 45 & 44.7 \\
\hline Madden 2 MF" & Multi-Family & 44.6 & 49.5 & 57 & 47.3 & 47.2 & 47.3 & 47.1 \\
\hline Madden 3" & SFR & 49.3 & 57.2 & 61 & 50.3 & 54.1 & 54.4 & 54.2 \\
\hline Madden 4" & SFR & 56.1 & 58.3 & 65.8 & 55.6 & 56.6 & 57.1 & 57.3 \\
\hline Manchester 1" & SFR & 64.8 & 64.5 & 65.4 & 63 & 65.7 & 65.2 & 64.9 \\
\hline Manchester 10" & SFR & 48.1 & 48 & 51.8 & 48.7 & 49.4 & 49.4 & 48.7 \\
\hline Manchester 2" & SFR & 52.4 & 52.1 & 57.3 & 50.9 & 52.9 & 52.5 & 52.4 \\
\hline Manchester 3" & SFR & 47.6 & 47.5 & 53.9 & 47.2 & 48.5 & 48.2 & 47.9 \\
\hline Manchester 4" & SFR & 47.1 & 47 & 51.3 & 47.6 & 48.4 & 48.1 & 47.5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Receiver ID & Land Use Type & Existing & \begin{tabular}{l}
2040 No \\
Build
\end{tabular} & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline Manchester 5" & SFR & 63.9 & 63.6 & 66.8 & 62.1 & 64.7 & 64.3 & 64 \\
\hline Manchester 6" & SFR & 53.5 & 53.1 & 57.3 & 51.7 & 53.9 & 53.1 & 53.5 \\
\hline Manchester 7" & SFR & 48.6 & 48.3 & 53.3 & 47.8 & 49.4 & 49.1 & 48.8 \\
\hline Manchester 8 MF" & Multi-Family & 48.1 & 48 & 53.6 & 47.9 & 49.1 & 49.1 & 48.5 \\
\hline Manchester 9 MF" & Multi-Family & 47.6 & 47.5 & 52.4 & 48 & 48.8 & 49 & 48 \\
\hline North High 1" & SFR & 54.5 & 56.8 & 58 & 53.8 & 54.6 & 55.4 & 55.5 \\
\hline North High 2" & SFR & 55.8 & 58.1 & 57.9 & 55.1 & 55.9 & 56.7 & 56.9 \\
\hline North High 3" & SFR & 62.2 & 64.3 & 64.2 & 61.5 & 62.6 & 62.9 & 63.3 \\
\hline North High 4" & SFR & 57.6 & 59.6 & 60.3 & 57.2 & 58.2 & 58.2 & 58.7 \\
\hline North High 5" & SFR & 60.3 & 62.2 & 62.2 & 59.8 & 60.8 & 61 & 61.4 \\
\hline North High 6" & SFR & 68.2 & 70 & 71.7 & 67.4 & 68.3 & 68.9 & 69.2 \\
\hline Laraway_1" & SFR & 50.5 & 51 & 53.4 & 55.3 & 52.1 & 53 & 52.5 \\
\hline Laraway_2" & SFR & 45.4 & 46.4 & 53.1 & 48.2 & 47.4 & 47 & 46.8 \\
\hline Laraway_3" & SFR & 42.3 & 42.3 & 46.7 & 46.9 & 43.1 & 43.7 & 42.4 \\
\hline Laraway_4" & SFR & 43.5 & 44 & 49.5 & 46.9 & 44.9 & 45.3 & 44.7 \\
\hline Laraway_4" & SFR & 53.6 & 54.1 & 56.6 & 58 & 54.6 & 55.8 & 55.6 \\
\hline
\end{tabular}

Note: Shading indicates impacted receptors based on NAC or substantial increase over existing conditions. For purposes of determining impacts, results were
rounded to the nearest whole number (e.g., 65.6 dBA rounds to 66 and is considered an impact for a residential land use).
N/A: Not applicable, property is full acquisition
** Substantial increase over existing conditions
SFR: Single-family residence


Figure 4-7. NSA 6 Receptors

Table 4-9. Noise Modeling Results for NSA 7 (Worst-Case Peak Hour, Leq, dBA)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Receiver ID & Land Use Type & Existing & 2040 No Build & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline Bittersweet 1 APT TH & Apartment/Townhome & 45.5 & 45.7 & 46.2 & 43.3 & 44.4 & 45.8 & 45.2 \\
\hline Bittersweet 10 APT TH & Apartment/Townhome & 45.2 & 45.1 & 45.7 & 43.4 & 44.1 & 45.2 & 44.6 \\
\hline Bittersweet 11 APT TH & Apartment/Townhome & 45 & 44.9 & 45.8 & 43.2 & 44.1 & 45.3 & 44.4 \\
\hline Bittersweet 12 APT TH & Apartment/Townhome & 44.9 & 44.8 & 45.9 & 43.1 & 44 & 45.3 & 44.4 \\
\hline Bittersweet 2 APT TH & Apartment/Townhome & 44.3 & 44.3 & 45.1 & 42.2 & 43 & 44.8 & 43.8 \\
\hline Bittersweet 3 APT TH & Apartment/Townhome & 42.9 & 42.7 & 43.4 & 40.9 & 41.8 & 43 & 42.2 \\
\hline Bittersweet 4 APT TH & Apartment/Townhome & 41.3 & 40.8 & 41.6 & 39.6 & 40.3 & 41.1 & 40.4 \\
\hline Bittersweet 5 APT TH & Apartment/Townhome & 41.9 & 41.6 & 42 & 40 & 40.9 & 41.4 & 41.1 \\
\hline Bittersweet 6 APT TH & Apartment/Townhome & 41.2 & 40.6 & 41.5 & 39.4 & 40.2 & 41 & 40.2 \\
\hline Bittersweet 7 APT TH & Apartment/Townhome & 40.8 & 40.1 & 41 & 39 & 39.8 & 40.5 & 39.7 \\
\hline Bittersweet 8 APT TH & Apartment/Townhome & 42.9 & 43 & 42.8 & 41 & 41.9 & 42.3 & 42.5 \\
\hline Bittersweet 9 APT TH & Apartment/Townhome & 43.6 & 43.5 & 43.5 & 41.6 & 42.3 & 43.1 & 43.1 \\
\hline Energy 1 APT TH & Apartment/Townhome & 56.6 & 55.9 & 57.8 & 56.9 & 57.5 & 57.7 & 55.6 \\
\hline Energy 10 APT TH & Apartment/Townhome & 45.4 & 45.1 & 46.2 & 44.8 & 45.5 & 46.2 & 44.7 \\
\hline Energy 11 APT TH & Apartment/Townhome & 45.5 & 45.2 & 46.2 & 44.9 & 45.6 & 46.2 & 44.7 \\
\hline Energy 12 APT TH & Apartment/Townhome & 45.4 & 45.1 & 46.1 & 44.9 & 45.5 & 46.2 & 44.7 \\
\hline Energy 13 APT TH & Apartment/Townhome & 45.8 & 45.5 & 46.6 & 45 & 45.6 & 46.2 & 45.1 \\
\hline Energy 14 APT TH & Apartment/Townhome & 46.2 & 46 & 47 & 45.5 & 46.1 & 46.7 & 45.6 \\
\hline Energy 15 APT TH & Apartment/Townhome & 49.6 & 49.3 & 50.5 & 48.9 & 49.4 & 50.5 & 48.8 \\
\hline Energy 16 APT TH & Apartment/Townhome & 50 & 49.4 & 51 & 49.6 & 50.2 & 50.8 & 49 \\
\hline Energy 17 APT TH & Apartment/Townhome & 50.2 & 49.6 & 51.4 & 50 & 50.6 & 51.2 & 49.2 \\
\hline Energy 18 APT TH & Apartment/Townhome & 50.6 & 50 & 51.9 & 50.7 & 51.3 & 51.7 & 49.7 \\
\hline Energy 19 APT TH & Apartment/Townhome & 51 & 50.4 & 52.3 & 51.1 & 51.7 & 52.1 & 50.1 \\
\hline Energy 2 APT TH & Apartment/Townhome & 51.4 & 50.7 & 52.8 & 51.6 & 52.2 & 52.5 & 50.5 \\
\hline Energy 20 APT TH & Apartment/Townhome & 51.7 & 51.1 & 53.1 & 51.9 & 52.5 & 52.9 & 50.8 \\
\hline Energy 3 APT TH & Apartment/Townhome & 48.5 & 47.8 & 49.1 & 48.1 & 48.6 & 49 & 47.4 \\
\hline Energy 4 APT TH & Apartment/Townhome & 48.6 & 47.8 & 49.3 & 48.2 & 48.8 & 49.2 & 47.4 \\
\hline Energy 5 APT TH & Apartment/Townhome & 48.2 & 47.7 & 49.2 & 48 & 48.6 & 49.1 & 47.3 \\
\hline Energy 6 APT TH & Apartment/Townhome & 46.7 & 46.7 & 47.5 & 45.6 & 46.3 & 47.5 & 46.2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Receiver ID & Land Use Type & Existing & \begin{tabular}{l}
\[
2040 \text { No }
\] \\
Build
\end{tabular} & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline Energy 7 APT TH & Apartment/Townhome & 46.3 & 46.2 & 46.9 & 45.3 & 46.1 & 47 & 45.8 \\
\hline Energy 8 APT TH & Apartment/Townhome & 46 & 45.9 & 46.8 & 45.2 & 45.9 & 46.8 & 45.4 \\
\hline Energy 9 APT TH & Apartment/Townhome & 45.6 & 45.3 & 46.4 & 45 & 45.6 & 46.4 & 44.9 \\
\hline Linlew 1 APT TH & Apartment/Townhome & 49.5 & 49.6 & 49.8 & 48.4 & 48.5 & 50.4 & 48.4 \\
\hline Linlew 2 APT TH & Apartment/Townhome & 47.7 & 46.3 & 46.3 & 44.6 & 44.8 & 45.8 & 45.8 \\
\hline Linlew 3 APT TH & Apartment/Townhome & 53.9 & 51.5 & 52.2 & 47.9 & 47.5 & 50.6 & 51 \\
\hline Linlew 4 APT TH & Apartment/Townhome & 63 & 60.2 & 61.4 & 53.7 & 53.1 & 59 & 59.7 \\
\hline Linlew 5 APT TH & Apartment/Townhome & 54 & 51.5 & 52.5 & 47.4 & 47 & 50.5 & 51 \\
\hline Pinkerton 1 APT TH & Apartment/Townhome & 57.8 & 57.4 & 60 & 58.5 & 59.2 & 59.8 & 57 \\
\hline Pinkerton 2 APT TH & Apartment/Townhome & 56.6 & 56.4 & 58.9 & 57 & 57.5 & 58.4 & 56.1 \\
\hline Pinkerton 3 APT TH & Apartment/Townhome & 55.9 & 55.8 & 58.2 & 55.7 & 56.5 & 57.4 & 55.6 \\
\hline Solar 1 APT TH & Apartment/Townhome & 66.9 & 67.7 & 67.8 & 64.5 & 65.9 & 67.2 & 67.1 \\
\hline Solar 10 APT TH & Apartment/Townhome & 51.8 & 52.2 & 52.2 & 49.3 & 50.2 & 51.8 & 51.6 \\
\hline Solar 11 APT TH & Apartment/Townhome & 51.6 & 51.9 & 52 & 49.3 & 50 & 51.6 & 51.4 \\
\hline Solar 12 APT TH & Apartment/Townhome & 51.1 & 51.4 & 51.2 & 49.1 & 49.4 & 50.9 & 50.8 \\
\hline Solar 13 APT TH & Apartment/Townhome & 53.2 & 53.5 & 54.5 & 51.4 & 51.4 & 54.7 & 52.9 \\
\hline Solar 14 APT TH & Apartment/Townhome & 51.7 & 51.9 & 53.2 & 49.7 & 49.9 & 53.5 & 51.3 \\
\hline Solar 15 APT TH & Apartment/Townhome & 50.1 & 50.3 & 51.5 & 48.1 & 48.2 & 51.7 & 49.7 \\
\hline Solar 16 APT TH & Apartment/Townhome & 49.3 & 49.4 & 50.4 & 47.2 & 47.3 & 50.5 & 48.8 \\
\hline Solar 17 APT TH & Apartment/Townhome & 48.3 & 48.4 & 49.3 & 46.3 & 46.5 & 49.4 & 47.9 \\
\hline Solar 18 APT TH & Apartment/Townhome & 47.6 & 47.6 & 48.4 & 45.5 & 45.7 & 48.4 & 47.1 \\
\hline Solar 2 APT TH & Apartment/Townhome & 65.7 & 66.5 & 66.2 & 63.4 & 64.7 & 65.6 & 65.9 \\
\hline Solar 3 APT TH & Apartment/Townhome & 64.5 & 65.2 & 64.8 & 62.2 & 63.4 & 64.3 & 64.7 \\
\hline Solar 4 APT TH & Apartment/Townhome & 63.1 & 63.8 & 63.4 & 60.8 & 61.9 & 63 & 63.2 \\
\hline Solar 5 APT TH & Apartment/Townhome & 61.4 & 62 & 61.8 & 59.2 & 60 & 61.5 & 61.4 \\
\hline Solar 6 APT TH & Apartment/Townhome & 59.9 & 60.4 & 60.4 & 57.9 & 58.4 & 60.2 & 59.9 \\
\hline Solar 7 APT TH & Apartment/Townhome & 55.7 & 56.2 & 56.2 & 53.7 & 54.2 & 55.9 & 55.6 \\
\hline Solar 8 APT TH & Apartment/Townhome & 54 & 54.5 & 54.5 & 51.7 & 52.4 & 54.2 & 53.9 \\
\hline Solar 9 APT TH & Apartment/Townhome & 52.9 & 53.4 & 53.5 & 50.6 & 51.4 & 53.2 & 52.8 \\
\hline Squire 1 APT TH & Apartment/Townhome & 44.9 & 45 & 44.8 & 43.1 & 43.2 & 44.3 & 44.4 \\
\hline Squire 10 APT TH & Apartment/Townhome & 45.7 & 45.7 & 45.9 & 43.6 & 43.7 & 45.7 & 45.1 \\
\hline Squire 11 APT TH & Apartment/Townhome & 46.7 & 47.1 & 47.3 & 44.3 & 45.3 & 46.9 & 46.5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Receiver ID & Land Use Type & Existing & \[
2040 \text { No }
\]
Build & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline Squire 12 APT TH & Apartment/Townhome & 46.1 & 46.5 & 46.6 & 43.7 & 44.8 & 46.2 & 46 \\
\hline Squire 13 APT TH & Apartment/Townhome & 49.2 & 49.7 & 49.5 & 46.8 & 47.8 & 49.2 & 49.1 \\
\hline Squire 14 APT TH & Apartment/Townhome & 51.2 & 51.7 & 51 & 48.4 & 49.7 & 50.6 & 51.1 \\
\hline Squire 15 APT TH & Apartment/Townhome & 53.1 & 53.6 & 52.4 & 51 & 51.5 & 52 & 53 \\
\hline Squire 16 APT TH & Apartment/Townhome & 56.1 & 56.5 & 55.2 & 53.4 & 54.5 & 54.9 & 56 \\
\hline Squire 17 APT TH & Apartment/Townhome & 58.6 & 59.2 & 57.9 & 56 & 57.2 & 57.4 & 58.6 \\
\hline Squire 18 APT TH & Apartment/Townhome & 62.9 & 63.6 & 62.1 & 60.4 & 61.7 & 61.3 & 63.1 \\
\hline Squire 19 APT TH & Apartment/Townhome & 65.7 & 66.5 & 65.3 & 63.4 & 64.7 & 64.7 & 65.9 \\
\hline Squire 2 APT TH & Apartment/Townhome & 42.4 & 42.6 & 43 & 40.1 & 40.9 & 42.7 & 42 \\
\hline Squire 20 APT TH & Apartment/Townhome & 64.5 & 65.3 & 63.7 & 62.3 & 63.5 & 63 & 64.7 \\
\hline Squire 21 APT TH & Apartment/Townhome & 63.5 & 64.3 & 62.7 & 61.2 & 62.5 & 62 & 63.7 \\
\hline Squire 22 APT TH & Apartment/Townhome & 62.3 & 63.1 & 61.8 & 60.1 & 61.3 & 61.1 & 62.5 \\
\hline Squire 23 APT TH & Apartment/Townhome & 60.8 & 61.6 & 60.7 & 58.6 & 59.9 & 60 & 61 \\
\hline Squire 24 APT TH & Apartment/Townhome & 52.6 & 53.2 & 52.9 & 50.3 & 51.3 & 52.4 & 52.6 \\
\hline Squire 25 APT TH & Apartment/Townhome & 49.1 & 49.6 & 49.6 & 46.7 & 47.7 & 49.2 & 49 \\
\hline Squire 26 APT TH & Apartment/Townhome & 46.6 & 47 & 47.2 & 44.2 & 45.2 & 46.9 & 46.4 \\
\hline Squire 27 APT TH & Apartment/Townhome & 47.4 & 47.9 & 47.8 & 44.8 & 46 & 47.4 & 47.3 \\
\hline Squire 28 APT TH & Apartment/Townhome & 48.8 & 49.3 & 49.5 & 46.2 & 47.5 & 49 & 48.8 \\
\hline Squire 29 APT TH & Apartment/Townhome & 51.9 & 52.5 & 52.4 & 49.2 & 50.6 & 51.9 & 51.9 \\
\hline Squire 3 APT TH & Apartment/Townhome & 41.6 & 41.7 & 42.1 & 39.3 & 40 & 41.8 & 41.1 \\
\hline Squire 30 APT TH & Apartment/Townhome & 54.7 & 55.3 & 55.1 & 52.1 & 53.5 & 54.5 & 54.8 \\
\hline Squire 31 APT TH & Apartment/Townhome & 58.6 & 59.2 & 58.7 & 56.1 & 57.3 & 58.1 & 58.6 \\
\hline Squire 32 APT TH & Apartment/Townhome & 61.7 & 62.4 & 61.6 & 59.3 & 60.5 & 61 & 61.8 \\
\hline Squire 33 APT TH & Apartment/Townhome & 62.1 & 62.8 & 62.4 & 59.9 & 60.9 & 62 & 62.2 \\
\hline Squire 34 APT TH & Apartment/Townhome & 58.9 & 59.5 & 59.5 & 56.7 & 57.5 & 59.2 & 58.9 \\
\hline Squire 35 APT TH & Apartment/Townhome & 56.9 & 57.3 & 57.3 & 54.9 & 55.3 & 57 & 56.8 \\
\hline Squire 36 APT TH & Apartment/Townhome & 53.2 & 53.7 & 54.4 & 50.7 & 51.8 & 54.1 & 53.1 \\
\hline Squire 37 APT TH & Apartment/Townhome & 51.5 & 51.9 & 52.6 & 48.9 & 50 & 52.4 & 51.4 \\
\hline Squire 38 APT TH & Apartment/Townhome & 49.6 & 50 & 50.7 & 47.1 & 48.1 & 50.4 & 49.4 \\
\hline Squire 4 APT TH & Apartment/Townhome & 40.5 & 40.5 & 41.8 & 38.1 & 39 & 41.5 & 39.9 \\
\hline Squire 5 APT TH & Apartment/Townhome & 43.1 & 43.3 & 43.3 & 40.8 & 41.5 & 43 & 42.7 \\
\hline Squire 6 APT TH & Apartment/Townhome & 42.6 & 42.7 & 42.7 & 40.2 & 40.9 & 42.3 & 42.1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Receiver ID & Land Use Type & Existing & \[
2040 \text { No }
\]
Build & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline Squire 7 APT TH & Apartment/Townhome & 43.1 & 43.3 & 43.1 & 40.6 & 41.4 & 42.8 & 42.7 \\
\hline Squire 8 APT TH & Apartment/Townhome & 44.4 & 44.3 & 43.8 & 41.8 & 42.3 & 43.5 & 43.8 \\
\hline Squire 9 APT TH & Apartment/Townhome & 45.1 & 45.1 & 45.1 & 42.8 & 43.2 & 44.8 & 44.5 \\
\hline Sunview 1 APT TH & Apartment/Townhome & 62.5 & 63.2 & 63.8 & 60.3 & 61.4 & 63.4 & 62.7 \\
\hline Sunview 10 APT TH & Apartment/Townhome & 48.6 & 48.7 & 49.6 & 47 & 47.5 & 49.1 & 48.1 \\
\hline Sunview 11 APT TH & Apartment/Townhome & 48.2 & 48.2 & 49.2 & 46.7 & 47.3 & 48.9 & 47.6 \\
\hline Sunview 12 APT TH & Apartment/Townhome & 45.8 & 45.6 & 46.6 & 45 & 45.6 & 46.2 & 45.2 \\
\hline Sunview 13 APT TH & Apartment/Townhome & 46 & 45.8 & 46.7 & 45.2 & 45.8 & 46.4 & 45.4 \\
\hline Sunview 14 APT TH & Apartment/Townhome & 44.1 & 43.8 & 45 & 42.8 & 43.6 & 44.6 & 43.4 \\
\hline Sunview 15 APT TH & Apartment/Townhome & 44.3 & 44.1 & 45.2 & 43 & 43.8 & 44.8 & 43.6 \\
\hline Sunview 16 APT TH & Apartment/Townhome & 44.7 & 44.5 & 45.6 & 43.5 & 44.3 & 45.1 & 44.1 \\
\hline Sunview 17 APT TH & Apartment/Townhome & 43.9 & 43.6 & 44.7 & 42.6 & 43.4 & 44.3 & 43.2 \\
\hline Sunview 18 APT TH & Apartment/Townhome & 44.4 & 44.1 & 45.2 & 43.1 & 43.9 & 44.7 & 43.7 \\
\hline Sunview 19 APT TH & Apartment/Townhome & 45.1 & 44.9 & 46 & 43.9 & 44.6 & 45.5 & 44.5 \\
\hline Sunview 2 APT TH & Apartment/Townhome & 62 & 62.8 & 63.5 & 59.8 & 60.9 & 63 & 62.2 \\
\hline Sunview 20 APT TH & Apartment/Townhome & 44.7 & 44.7 & 45 & 42.9 & 43.8 & 44.6 & 44.2 \\
\hline Sunview 21 APT TH & Apartment/Townhome & 44.6 & 44.5 & 45.2 & 42.8 & 43.6 & 44.8 & 44 \\
\hline Sunview 22 APT TH & Apartment/Townhome & 45 & 44.9 & 45.5 & 43.3 & 44.1 & 45.1 & 44.4 \\
\hline Sunview 23 APT TH & Apartment/Townhome & 44.9 & 44.8 & 45.5 & 43.2 & 44 & 45 & 44.3 \\
\hline Sunview 24 APT TH & Apartment/Townhome & 65.3 & 66.1 & 65.9 & 63.1 & 64.3 & 64.8 & 65.5 \\
\hline Sunview 25 APT TH & Apartment/Townhome & 64.2 & 64.9 & 63.5 & 61.9 & 63 & 62.7 & 64.3 \\
\hline Sunview 26 APT TH & Apartment/Townhome & 53.6 & 54.3 & 54.4 & 51.2 & 52.5 & 53.8 & 53.7 \\
\hline Sunview 27 APT TH & Apartment/Townhome & 52.8 & 53.1 & 53.6 & 51.3 & 51.4 & 53.1 & 52.6 \\
\hline Sunview 28 APT TH & Apartment/Townhome & 48.7 & 49 & 49.3 & 46.3 & 47.3 & 49.2 & 48.4 \\
\hline Sunview 29 CF & Community Facility & 44.7 & 45 & 45.1 & 42.4 & 43.3 & 44.6 & 44.4 \\
\hline Sunview 3 APT TH & Apartment/Townhome & 63.5 & 64.3 & 65.6 & 61.6 & 62.9 & 64.9 & 63.8 \\
\hline Sunview 4 APT TH & Apartment/Townhome & 50.9 & 51 & 52.5 & 49.7 & 50.2 & 51.4 & 50.6 \\
\hline Sunview 5 APT TH & Apartment/Townhome & 50.6 & 51 & 52 & 49.2 & 49.7 & 50.9 & 50.5 \\
\hline Sunview 6 APT TH & Apartment/Townhome & 50.9 & 51.2 & 52.3 & 49.5 & 49.9 & 51.4 & 50.7 \\
\hline Sunview 7 APT TH & Apartment/Townhome & 50.7 & 51 & 52.3 & 49.1 & 49.7 & 51.6 & 50.5 \\
\hline Sunview 8 APT TH & Apartment/Townhome & 49.8 & 50 & 51 & 48.3 & 48.8 & 50.4 & 49.5 \\
\hline Sunview 9 APT TH & Apartment/Townhome & 49.3 & 49.5 & 50.6 & 47.7 & 48.3 & 50 & 48.9 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline Receiver ID & Land Use Type & Existing & \begin{tabular}{l}
\(\mathbf{2 0 4 0} \mathbf{N o}\) \\
Build
\end{tabular} & Alt. A & Alt. B & Alt. C & Alt. D \\
\hline Alt. F \\
\hline Tsienneto 10 CF & Community Facility & 61.3 & 61.6 & 61.8 & 58.6 & 59.3 & 61.5 \\
\hline Tsienneto 11 CF & Community Facility & 60.1 & 60.5 & 61.1 & 57.1 & 58.3 & 60.7 \\
\hline Tsienneto 12 CF & Community Facility & 48.9 & 49.1 & 49.1 & 46.5 & 47.6 & 48.5 \\
\hline Tsienneto 8 CF & Community Facility & 62.2 & 62.9 & 62.7 & 59.9 & 61 & 62.5 \\
\hline Tsienneto 9 CF & Community Facility & 64.7 & 65 & 65.6 & 62.9 & 62.8 & 65.4 \\
\hline
\end{tabular}

Note: Shading indicates impacted receptors based on NAC or substantial increase over existing conditions. For purposes of determining impacts, results were rounded to the nearest whole number (e.g., 65.6 dBA rounds to 66 and is considered an impact for a residential land use)
N/A: Not applicable, property is full acquisition
** Substantial increase over existing conditions
SFR: Single-family residence


Figure 4-8. NSA 7 Receptors South


Figure 4-9. NSA 7 Receptors North

Table 4-10. Noise Modeling Results for NSA 8 (Worst-Case Peak Hour, Leq, dBA)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Receiver ID & Land Use Type & Existing & \[
\begin{aligned}
& 2040 \text { No } \\
& \text { Build }
\end{aligned}
\] & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline Barkland 1 & SFR & & 49.8 & 50 & 46.5 & 47 & 49.4 & 49.5 \\
\hline Barkland 2" & SFR & 45.5 & 48.1 & 48.6 & 45.3 & 45.7 & 48.1 & 47.8 \\
\hline Barkland 3" & SFR & 45.2 & 47.8 & 48.3 & 45 & 45.5 & 47.8 & 47.5 \\
\hline Barkland 4" & SFR & 45.8 & 48.4 & 48.9 & 45.4 & 45.9 & 48.3 & 48 \\
\hline Barkland 5" & SFR & 45.3 & 47.7 & 48 & 45 & 45.4 & 47.4 & 47.4 \\
\hline Barkland 6" & SFR & 44 & 46.3 & 47 & 43.9 & 44.4 & 46.4 & 45.9 \\
\hline Beaver 1" & SFR & 59.1 & 61.9 & 62.6 & 58.6 & 59 & 62.1 & 61.7 \\
\hline Beaver 2" & SFR & 49 & 51.2 & 51.8 & 49.2 & 49.4 & 51.3 & 51.1 \\
\hline Beaver 3" & SFR & 48.5 & 50.5 & 51 & 48.9 & 48.9 & 50.6 & 50.4 \\
\hline Beaver 4" & SFR & 45.1 & 46.8 & 47.2 & 45.1 & 45.2 & 46.7 & 46.6 \\
\hline Beaver 5" & SFR & 47.5 & 49.4 & 50 & 47.8 & 47.7 & 49.6 & 49.3 \\
\hline Beaver 6" & SFR & 55.1 & 57.4 & 57.5 & 55 & 55.1 & 57 & 57.5 \\
\hline Beaver 7" & SFR & 45.4 & 47.5 & 48.1 & 45.7 & 45.8 & 47.6 & 47.3 \\
\hline By Pass 28 5" & SFR & 61.9 & 59.3 & 59.2 & 56 & 54.7 & 58.6 & 58.6 \\
\hline Chester 1" & SFR & 67.6 & 68.5 & 68.2 & 68.5 & 69 & 68.3 & 68.5 \\
\hline Chester 10" & SFR & 67.8 & 66.9 & 66.3 & 64.5 & 65.1 & 66.5 & 66.8 \\
\hline Chester 2" & SFR & 50.6 & 52 & 52.6 & 52.9 & 52.9 & 52.2 & 51.5 \\
\hline Chester 3" & SFR & 54.3 & 55.5 & 57.1 & 56.8 & 56.8 & 56.2 & 55 \\
\hline Chester 4 MF" & Multi-Family & 63.2 & 63.7 & 66.1 & 65.8 & 65.4 & 65.2 & 64 \\
\hline Chester 5" & SFR & 66.8 & 67.5 & 68.3 & 67.9 & 68.3 & 67.5 & 67.3 \\
\hline Chester 6" & SFR & 59 & 60 & 62.3 & 62.3 & 62.7 & 61.8 & 59.9 \\
\hline Chester 7" & SFR & 58.5 & 57.6 & 58.4 & 56.5 & 57.8 & 58.3 & 57.5 \\
\hline Chester 8" & SFR & 57 & 56 & 55.7 & 53.8 & 54.8 & 55.8 & 55.9 \\
\hline Chester 9" & SFR & 66.2 & 65.3 & 57.6 & 55.6 & 56.8 & 57.4 & 65.3 \\
\hline Country 1" & SFR & 45.8 & 46.8 & 46.6 & 44.9 & 45.2 & 46.1 & 46.5 \\
\hline English Range 1" & SFR & 60 & 59.9 & 59.6 & 62.9 & 59.6 & 59.4 & 59.7 \\
\hline English Range 2" & SFR & 57.3 & 55.5 & 55.3 & 56.4 & 55.1 & 55.1 & 55.1 \\
\hline Fieldston 2 MF" & Multi-Family & 42.7 & 45 & 45.9 & 42.3 & 42.8 & 45.4 & 44.8 \\
\hline Fieldston 4" & SFR & 42.7 & 45 & 45.9 & 42.2 & 42.5 & 45.4 & 44.7 \\
\hline Fieldstone 1 MF" & Multi-Family & 45.4 & 47.8 & 48.5 & 45.1 & 45.5 & 48 & 47.6 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Receiver ID & Land Use Type & Existing & \[
\begin{aligned}
& 2040 \text { No } \\
& \text { Build }
\end{aligned}
\] & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline Fieldstone 3 MF" & Multi-Family & 42.8 & 45.2 & 46 & 42.4 & 42.9 & 45.5 & 44.9 \\
\hline Horseshoe 1" & SFR & 59.2 & 62 & 61.3 & 58.7 & 59 & 60.8 & 61.8 \\
\hline Horseshoe 2" & SFR & 46.7 & 49.7 & 49.7 & 46.2 & 46.7 & 49.1 & 49.3 \\
\hline Horseshoe 3" & SFR & 45.7 & 48.1 & 48.5 & 46 & 46.1 & 48 & 47.9 \\
\hline Horseshoe 4" & SFR & 47.5 & 50.1 & 50.3 & 47.4 & 47.8 & 49.7 & 49.8 \\
\hline Horseshoe 5" & SFR & 46.7 & 49.3 & 49.7 & 46.9 & 47.2 & 49.1 & 49 \\
\hline Horseshoe 6" & SFR & 47.5 & 49.9 & 50.9 & 47.8 & 48 & 50.4 & 49.6 \\
\hline Horseshoe 7" & SFR & 46.8 & 49.1 & 50.1 & 47.4 & 47.4 & 49.5 & 48.8 \\
\hline Lake Shore 1" & SFR & 43.4 & 44.1 & 45 & 45.5 & 45.8 & 44.5 & 43.8 \\
\hline Main 28B 1 CF" & Community Facility & 56.9 & 54.1 & 55.3 & 53.2 & 53.6 & 53.3 & 53.8 \\
\hline Main 28B 2 CF" & Community Facility & 51.6 & 49.5 & 50.3 & 48.3 & 48.3 & 48.6 & 48.6 \\
\hline Main 28B 3 CF" & Community Facility & 62.4 & 63.4 & 64.8 & 60 & 60.6 & 64.3 & 63 \\
\hline Main 28B 4 CF' & Community Facility & 54 & 52.2 & 53.2 & 50.8 & 51.2 & 52 & 51.8 \\
\hline Main 28B 5 CF" & Community Facility & 55.7 & 53.8 & 54.6 & 52.3 & 52.7 & 53.5 & 53.4 \\
\hline McKinley 1" & SFR & 50.4 & 51.8 & 52.9 & 53.1 & 53.3 & 52.6 & 51.2 \\
\hline McKinley 2" & SFR & 50 & 51.7 & 53.3 & 51.8 & 52.2 & 52.9 & 51.1 \\
\hline McKinley 3" & SFR & 46.7 & 47.7 & 49.2 & 50.4 & 50.9 & 48.9 & 47.2 \\
\hline McKinley 4" & SFR & 45.6 & 46.5 & 47.7 & 48.9 & 49.3 & 47.3 & 46.1 \\
\hline McKinley 5" & SFR & 46 & 46.9 & 48.3 & 49.6 & 50 & 47.8 & 46.5 \\
\hline McKinley 6" & SFR & 44.7 & 45.4 & 46.4 & 47.2 & 47.6 & 45.9 & 45.1 \\
\hline McKinley 7" & SFR & 45.3 & 46 & 47.3 & 48.1 & 48.5 & 46.8 & 45.7 \\
\hline McKinley 8" & SFR & 44.8 & 45.7 & 45.9 & 47.4 & 47.9 & 45.5 & 45.4 \\
\hline Morningside 1 MF" & Multi-Family & 61 & 64 & 64.3 & 60.1 & 60.7 & 63.7 & 63.7 \\
\hline Morningside 2 MF" & Multi-Family & 47.3 & 50.1 & 50.8 & 46.9 & 47.5 & 50.2 & 49.8 \\
\hline Morningside 3 MF" & Multi-Family & 43.7 & 46.2 & 47.4 & 43.5 & 44.1 & 46.8 & 45.9 \\
\hline Morningside 4 MF" & Multi-Family & 44.5 & 47 & 47.7 & 44.3 & 44.7 & 47.2 & 46.8 \\
\hline N Shore 1" & SFR & 61.4 & 62.4 & 64.2 & 64.1 & 64 & 63.5 & 62 \\
\hline N Shore 2" & SFR & 51.9 & 53.5 & 53.4 & 53.5 & 53.3 & 53 & 52.3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Receiver ID & Land Use Type & Existing & \[
\begin{aligned}
& 2040 \text { No } \\
& \text { Build }
\end{aligned}
\] & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline N Shore 3" & SFR & 53 & 54.7 & 53.4 & 53.7 & 53.3 & 53.2 & 53.1 \\
\hline N Shore 4" & SFR & 51.9 & 53.5 & 52.6 & 53 & 52.6 & 52.3 & 52 \\
\hline N Shore 5" & SFR & 59.1 & 60.9 & 59.5 & 59.9 & 59.5 & 59.4 & 59.2 \\
\hline Private near Lake Shore 1" & SFR & 51.1 & 51.1 & 52.6 & 52.3 & 53.3 & 52.6 & 50.8 \\
\hline Private near Lake Shore 2" & SFR & 56.4 & 56.2 & 58.4 & 57.7 & 58.7 & 58 & 56.1 \\
\hline Scenic 17" & SFR & 50.2 & 52.3 & 53.1 & 50.8 & 50.2 & 52.7 & 52 \\
\hline Scenic 18" & SFR & 49.9 & 50.7 & 52.1 & 51.5 & 49.8 & 51.9 & 50.6 \\
\hline Scenic 19" & SFR & 53.8 & 54 & 55.8 & 55.6 & 53.5 & 55.8 & 54 \\
\hline Scenic 20" & SFR & 52 & 52.4 & 54.1 & 53.8 & 51.8 & 54 & 52.4 \\
\hline Scenic 21" & SFR & 50.4 & 51.5 & 52.7 & 51.8 & 50.1 & 52.5 & 51.3 \\
\hline Tsienneto 1" & SFR & 63.1 & 65.3 & 66.2 & 67.1 & 68.1 & 65.8 & 65.1 \\
\hline Tsienneto 12A" & SFR & 58.1 & 60.6 & 62.3 & 57.2 & 57.8 & 61.5 & 60.3 \\
\hline Tsienneto 13" & SFR & 50.4 & 50.6 & 51.8 & 48.1 & 48 & 51.1 & 50.4 \\
\hline Tsienneto 14" & SFR & 60.6 & 63.1 & 65.1 & 60.1 & 60.3 & 64.7 & 63 \\
\hline Tsienneto \(15 \mathrm{MF}{ }^{\prime \prime}\) & Multi-Family & 62.7 & 65.7 & 64.9 & 61.8 & 62.5 & 64.3 & 65.4 \\
\hline Tsienneto 16" & SFR & 62.5 & 65 & 65.9 & 62.2 & 62.3 & 65.7 & 64.9 \\
\hline Tsienneto 17" & SFR & 54.3 & 56.8 & 57.3 & 53.4 & 54.1 & 56.7 & 56.5 \\
\hline Tsienneto 18 MF" & Multi-Family & 61.4 & 64.4 & 63.6 & 60.5 & 61.3 & 63 & 64.1 \\
\hline Tsienneto 19" & SFR & 58.5 & 61.2 & 62.8 & 58 & 58.4 & 62.2 & 61 \\
\hline Tsienneto 2" & SFR & 60.9 & 63.5 & 64 & 0 & 0 & 63.5 & 63.4 \\
\hline Tsienneto \(20 \mathrm{MF}{ }^{\prime \prime}\) & Multi-Family & 62.6 & 65.6 & 65 & 61.6 & 62.4 & 64.3 & 65.3 \\
\hline Tsienneto 21 MF" & Multi-Family & 50.6 & 53.3 & 54 & 49.6 & 50.3 & 53.4 & 52.9 \\
\hline Tsienneto \(22 \mathrm{CF}{ }^{\text {" }}\) & Community Facility & 62 & 64.6 & 65.1 & 61.7 & 61.8 & 64.6 & 64.5 \\
\hline Tsienneto 23" & SFR & 59.6 & 62.3 & 63.4 & 59.1 & 59.9 & 62.9 & 62.1 \\
\hline Tsienneto 24" & SFR & 57.8 & 60.4 & 60 & 57.3 & 57.9 & 59.4 & 60.2 \\
\hline Tsienneto 25" & SFR & 56.1 & 58.1 & 58 & 55.8 & 56.2 & 57.6 & 58.5 \\
\hline Tsienneto 25A" & SFR & 45.2 & 46.2 & 46.8 & 43.7 & 44 & 46.3 & 45.9 \\
\hline Tsienneto 26" & SFR & 53.5 & 56.4 & 56.3 & 52.5 & 53.3 & 55.7 & 56.1 \\
\hline Tsienneto 27" & SFR & 50.9 & 53.7 & 53.7 & 50.1 & 50.9 & 53.2 & 53.4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Receiver ID & Land Use Type & Existing & \[
\begin{aligned}
& 2040 \text { No } \\
& \text { Build }
\end{aligned}
\] & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline Tsienneto 28 MF" & Multi-Family & 57 & 59.1 & 59.4 & 56.7 & 56.9 & 59.2 & 59.4 \\
\hline Tsienneto \(29 \mathrm{MF}{ }^{\prime \prime}\) & Multi-Family & 57.6 & 59.9 & 60.3 & 57.4 & 57.6 & 59.9 & 60 \\
\hline Tsienneto 3" & SFR & 63.4 & 66 & 66.6 & 63 & 63.1 & 66.1 & 65.9 \\
\hline Tsienneto 30" & SFR & 58.9 & 61.9 & 62.7 & 58 & 58.7 & 62.1 & 61.6 \\
\hline Tsienneto 31" & SFR & 62.8 & 65.3 & 66.6 & 62.5 & 62.6 & 66.1 & 65.2 \\
\hline Tsienneto 32" & SFR & 58 & 60.5 & 60.7 & 57.8 & 58 & 60.2 & 60.4 \\
\hline Tsienneto 33" & SFR & 64.3 & 67.3 & 67.9 & 63.4 & 64.1 & 67.3 & 67 \\
\hline Tsienneto \(34 \mathrm{MF}^{\prime \prime}\) & Multi-Family & 54.6 & 57.8 & 58 & 53.6 & 54.4 & 57.5 & 57.4 \\
\hline Tsienneto 35" & SFR & 59.4 & 62.3 & 63.2 & 58.8 & 59.1 & 62.6 & 62.1 \\
\hline Tsienneto 36" & SFR & 51.1 & 53.2 & 53.3 & 50.9 & 51 & 52.8 & 53.5 \\
\hline Tsienneto \(37 \mathrm{MF}{ }^{\prime \prime}\) & Multi-Family & 58.5 & 61.3 & 61.7 & 57.9 & 58.3 & 61.2 & 61.1 \\
\hline Tsienneto 38 CF" & Community Facility & 46 & 47.3 & 48.5 & 44.8 & 45.2 & 47.9 & 46.9 \\
\hline Tsienneto \(38 \mathrm{MF}{ }^{\prime \prime}\) & Multi-Family & 60.4 & 63.3 & 64 & 59.7 & 60.1 & 63.5 & 63.1 \\
\hline Tsienneto \(39 \mathrm{CF}{ }^{\text {" }}\) & Community Facility & 46.2 & 47.2 & 48.4 & 44.7 & 44.9 & 47.7 & 46.7 \\
\hline Tsienneto \(39 \mathrm{MF}{ }^{\prime \prime}\) & Multi-Family & 57 & 60.4 & 61.4 & 55.7 & 56.9 & 60.8 & 60 \\
\hline Tsienneto 4" & SFR & 49.1 & 52 & 51.7 & 49.7 & 50.1 & 51.2 & 51.6 \\
\hline Tsienneto \(40 \mathrm{CF}{ }^{\text {" }}\) & Community Facility & 46.8 & 47.6 & 48.9 & 45 & 45.2 & 48.2 & 47.1 \\
\hline Tsienneto \(40 \mathrm{MF}^{\prime \prime}\) & Multi-Family & 54.3 & 57.5 & 58.6 & 53.2 & 54.2 & 58.1 & 57.1 \\
\hline Tsienneto 41" & SFR & 62.7 & 65.3 & 66.5 & 62.4 & 62.4 & 66 & 65.2 \\
\hline Tsienneto \(42 \mathrm{MF}{ }^{\prime \prime}\) & Multi-Family & 53.6 & 56.7 & 58.3 & 52.6 & 53.6 & 57.8 & 56.3 \\
\hline Tsienneto \(43 \mathrm{MF}{ }^{\prime \prime}\) & Multi-Family & 54 & 57 & 58.7 & 53 & 53.9 & 58.1 & 56.7 \\
\hline Tsienneto 44" & SFR & 58.7 & 61.7 & 62.2 & 57.9 & 58.3 & 61.6 & 61.4 \\
\hline Tsienneto 45" & SFR & 59.4 & 62.4 & 63.5 & 58.7 & 59.2 & 63 & 62.1 \\
\hline Tsienneto 47" & SFR & 60 & 62.9 & 64 & 59.3 & 59.7 & 63.5 & 62.6 \\
\hline Tsienneto 48" & SFR & 61.3 & 64.2 & 64 & 60.6 & 61.2 & 63.4 & 64 \\
\hline Tsienneto 49" & SFR & 59.5 & 62.4 & 63.5 & 58.9 & 59.3 & 62.9 & 62.2 \\
\hline Tsienneto 5" & SFR & 59.9 & 62.8 & 63.1 & 59.4 & 59.8 & 62.6 & 62.5 \\
\hline Tsienneto 50" & SFR & 59.9 & 62.8 & 63 & 59.3 & 59.8 & 62.4 & 62.5 \\
\hline Tsienneto 51" & SFR & 61.2 & 63.8 & 64.4 & 60.9 & 60.9 & 63.9 & 63.6 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Receiver ID & Land Use Type & Existing & 2040 No Build & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline Tsienneto 52" & SFR & 64.9 & 67.5 & 68.2 & 64.6 & 64.9 & 67.7 & 67.4 \\
\hline Tsienneto 53" & SFR & 57.1 & 60 & 60.8 & 56.4 & 57.2 & 60.3 & 59.7 \\
\hline Tsienneto 54" & SFR & 65.8 & 68.3 & 69.5 & 65.5 & 65.8 & 69 & 68.2 \\
\hline Tsienneto \(55 \mathrm{MF}{ }^{\text {" }}\) & Multi-Family & 54.9 & 57.2 & 57.1 & 54.8 & 55.2 & 56.6 & 57.2 \\
\hline Tsienneto 6" & SFR & 64.3 & 67.4 & 68.4 & 64.3 & 64.9 & 67.9 & 67.1 \\
\hline Tsienneto 7" & SFR & 63.7 & 66.8 & 67.2 & 62 & 63 & 66.6 & 66.4 \\
\hline
\end{tabular}

Note: Shading indicates impacted receptors based on NAC or substantial increase over existing conditions. For purposes of determining impacts, results were rounded to the nearest whole number (e.g., 65.6 dBA rounds to 66 and is considered an impact for a residential land use)
N/A: Not applicable, property is full acquisition
** Substantial increase over existing conditions
SFR: Single-family residence


Figure 4-10. NSA 8 South


Figure 4-11. NSA 8 Receptors North

Table 4-11. Noise Modeling Results for NSA 9 (Worst-Case Peak Hour, Leq, dBA)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Receiver ID & Land Use Type & Existing & 2040 No Build & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline Aiken 1 & SFR & 59.6 & 56 & 61.1 & 60 & 60 & 60.1 & 60.8 \\
\hline Aiken 10 & SFR & 45.3 & 45.1 & 44.3 & 43.9 & 43.9 & 44.3 & 44.8 \\
\hline Aiken 11 & SFR & 46 & 45.8 & 45.2 & 44.8 & 44.7 & 45.1 & 45.2 \\
\hline Aiken 12 & SFR & 50.9 & 50.6 & 50.8 & 50.1 & 50 & 50.3 & 47.9 \\
\hline Aiken 13 & SFR & 55.3 & 55 & 55.3 & 54.6 & 54.5 & 54.7 & 53 \\
\hline Aiken 14 & SFR & 61.6 & 61.3 & 61.7 & 61.1 & 61 & 61.1 & 59.1 \\
\hline Aiken 15 & SFR & 42.6 & 42.5 & 41.9 & 41.2 & 41.5 & 41.9 & 42 \\
\hline Aiken 16 & SFR & 44.3 & 44.1 & 43.5 & 43 & 43 & 43.4 & 43.5 \\
\hline Aiken 17 & SFR & 45.2 & 45.1 & 44.7 & 44 & 44.2 & 44.6 & 44.1 \\
\hline Aiken 18 & SFR & 46.1 & 45.9 & 45.8 & 45.2 & 45.1 & 45.5 & 44.6 \\
\hline Aiken 19 & SFR & 46.9 & 46.7 & 46.9 & 46.1 & 46.1 & 46.4 & 44.7 \\
\hline Aiken 2 & SFR & 51.9 & 51.9 & 53 & 52.4 & 52.3 & 52.7 & 54.1 \\
\hline Aiken 20 & SFR & 52.7 & 52.4 & 52.6 & 52 & 51.9 & 52.1 & 51.4 \\
\hline Aiken 21 & SFR & 60.1 & 59.8 & 60.2 & 59.6 & 59.5 & 59.6 & 58.4 \\
\hline Aiken 3 & SFR & 51.6 & 51.9 & 50.4 & 50.3 & 50.1 & 50.5 & 52.6 \\
\hline Aiken 4 & SFR & 48.1 & 48.8 & 46.8 & 46.8 & 46.7 & 47.1 & 49.7 \\
\hline Aiken 5 & SFR & 49.2 & 49.7 & 48.2 & 48.1 & 47.8 & 48.3 & 48.5 \\
\hline Aiken 6 & SFR & 48.8 & 49.2 & 47.6 & 47.6 & 47.3 & 47.7 & 48.3 \\
\hline Aiken 7 & SFR & 48 & 48.3 & 46.4 & 46.3 & 46.3 & 46.7 & 48.2 \\
\hline Aiken 8 & SFR & 48.1 & 48.3 & 46.5 & 46.4 & 46.3 & 46.7 & 48.5 \\
\hline Aiken 9 MF & Multi-Family & 44.7 & 44.4 & 43.3 & 42.9 & 43 & 43.4 & 44.3 \\
\hline Broadway 1021 & SFR & 70.4 & 71.2 & 69.6 & 69.6 & 69.3 & 69.7 & 72.6 \\
\hline Broadway 10210 APT TH & Apartment/Townhome & 62.6 & 63.1 & 61.3 & 61.3 & 61 & 61.4 & 61.9 \\
\hline Broadway 10211 APT TH & Apartment/Townhome & 70 & 70.7 & 69.2 & 69.1 & 68.8 & 69.2 & 72 \\
\hline Broadway 10212 MF & Multi-Family & 71.3 & 72 & 70.5 & 70.5 & 70.1 & 70.6 & 74 \\
\hline Broadway 10213 APT TH & Apartment/Townhome & 66 & 66.7 & 65.2 & 65.1 & 64.8 & 65.3 & 67.2 \\
\hline Broadway 10214 & SFR & 68.4 & 68.7 & 69 & 67.6 & 67.4 & 67.8 & 69.1 \\
\hline Broadway 10215 MF & Multi-Family & 67.6 & 68.1 & 67.8 & 66.8 & 66.7 & 67.4 & 68.7 \\
\hline Broadway 10216 & SFR & 66.5 & 67 & 66.8 & 65.7 & 65.7 & 65.8 & 67.6 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Receiver ID & Land Use Type & Existing & \[
\begin{aligned}
& 2040 \text { No } \\
& \text { Build }
\end{aligned}
\] & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline Broadway 10217 & SFR & 68.2 & 68.5 & 68.8 & 67.4 & 67.2 & 67.6 & 68.7 \\
\hline Broadway 1022 COD & Commercial w/Outdoor Use & 69.4 & 70.3 & 68 & 68.1 & 68.1 & 68.5 & 70.5 \\
\hline Broadway 1023 & SFR & 69.9 & 70.8 & 68.4 & 68.5 & 68.6 & 69 & 70.8 \\
\hline Broadway 1024 MF & Multi-Family & 67.8 & 68.6 & 67 & 67 & 66.7 & 67.1 & 68.6 \\
\hline Broadway 1025 & SFR & 69.5 & 70.3 & 68.8 & 68.7 & 68.4 & 68.8 & 70.3 \\
\hline Broadway 1026 & SFR & 69.2 & 70.1 & 67.7 & 67.9 & 67.9 & 68.3 & 70.1 \\
\hline Broadway 1027 & SFR & 69.4 & 70.2 & 67.9 & 68 & 68.1 & 68.5 & 70.3 \\
\hline Broadway 1028 & SFR & 69.3 & 70.1 & 68.5 & 68.4 & 68.1 & 68.6 & 70.1 \\
\hline Broadway 1029 CF & Community Facility & 68.9 & 69.5 & 68 & 67.9 & 67.6 & 68 & 69.6 \\
\hline Clark 1 MF & Multi-Family & 68.1 & 69 & 67.4 & 67.3 & 67 & 67.5 & 68.7 \\
\hline Clark 2 MF & Multi-Family & 53.6 & 53.8 & 52.2 & 52.2 & 51.9 & 52.3 & 54 \\
\hline Clark 3 & SFR & 48.3 & 48.4 & 47 & 46.9 & 46.6 & 47.1 & 48.6 \\
\hline Clark 4 MF & Multi-Family & 52.1 & 52.4 & 50.4 & 50.4 & 50.4 & 50.8 & 52.3 \\
\hline Clark 5 & SFR & 51.8 & 51.8 & 49.8 & 49.8 & 49.9 & 50.3 & 51.2 \\
\hline Clark 6 & SFR & 47.2 & 46.7 & 45.2 & 45.1 & 45.1 & 45.5 & 46.7 \\
\hline Clark 7 & SFR & 49 & 49.1 & 47.7 & 47.6 & 47.3 & 47.7 & 49.3 \\
\hline Clark 8 & SFR & 46.5 & 46.8 & 45.4 & 45.3 & 45 & 45.5 & 46.3 \\
\hline Desmarais 1 & SFR & 47.4 & 47.3 & 47.7 & 46.6 & 46.9 & 47.5 & 47.8 \\
\hline Desmarais 2 & SFR & 48.6 & 48.8 & 49.1 & 47.9 & 47.9 & 48.8 & 49.4 \\
\hline Desmarais 3 & SFR & 46.2 & 46.6 & 47 & 45.5 & 45.9 & 46.6 & 47.4 \\
\hline Dickey 1 & SFR & 57 & 57.8 & 56.3 & 56.2 & 55.8 & 56.3 & 56.3 \\
\hline Dickey 2 & SFR & 51.3 & 51.4 & 49.2 & 49.4 & 49 & 49.7 & 51.5 \\
\hline Dickey 3 & SFR & 49.4 & 49.1 & 46.7 & 47 & 46.5 & 47.4 & 48.5 \\
\hline Dickey 4 & SFR & 48.4 & 48.3 & 46.2 & 46.3 & 45.9 & 46.7 & 48.3 \\
\hline Dickey 5 & SFR & 48.9 & 48.9 & 46.8 & 46.9 & 46.5 & 47.2 & 49.3 \\
\hline Dickey 6 & SFR & 51 & 51.3 & 49.4 & 49.4 & 49.1 & 49.7 & 51.6 \\
\hline Ela 1 & SFR & 54.6 & 56.6 & 53.5 & 53.8 & 54 & 54.4 & 57.3 \\
\hline Ela 2 & SFR & 52 & 54 & 51.1 & 51.3 & 51.4 & 51.9 & 54.6 \\
\hline Ela 3 & SFR & 50.4 & 52.1 & 50.3 & 50.3 & 50.4 & 50.8 & 53.5 \\
\hline Ela 4 & SFR & 51.7 & 53.4 & 51.5 & 51.5 & 51.6 & 52.1 & 55.1 \\
\hline Ela 5 & SFR & 55.4 & 57.5 & 54.3 & 54.6 & 54.8 & 55.3 & 58.4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Receiver ID & Land Use Type & Existing & 2040 No
Build & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline Elm 1 & SFR & 67.7 & 68.2 & 67.9 & 66.9 & 66.8 & 67.4 & 68.9 \\
\hline Elm 10 MF & Multi-Family & 49.6 & 49.8 & 50.1 & 48.7 & 48.4 & 49.2 & 50.6 \\
\hline Elm 11 & SFR & 49.1 & 49.4 & 49.7 & 48.2 & 48.2 & 49.1 & 50.3 \\
\hline Elm 12 APT TH & Apartment/Townhome & 47.7 & 48.4 & 49.9 & 47.4 & 47.3 & 47.9 & 48.9 \\
\hline Elm 13 MF & Multi-Family & 43.7 & 44.7 & 46.3 & 43.5 & 43.6 & 44 & 45.1 \\
\hline Elm 2 MF & Multi-Family & 57 & 57.3 & 57.5 & 56.2 & 56.1 & 55.9 & 57 \\
\hline Elm 3 MF & Multi-Family & 48.2 & 49.5 & 52.6 & 49 & 48.7 & 48.7 & 49.1 \\
\hline Elm 4 MF & Multi-Family & 48.2 & 49.7 & 52.8 & 49.1 & 48.8 & 48.8 & 49.3 \\
\hline Elm 5 MF & Multi-Family & 47.1 & 48.7 & 51.8 & 48 & 47.9 & 47.9 & 48.3 \\
\hline Elm 6 MF & Multi-Family & 45.1 & 47.8 & 51.8 & 47.3 & 47.1 & 47 & 47.4 \\
\hline Elm 7 MF & Multi-Family & 44.6 & 46.8 & 50 & 45.9 & 45.9 & 46.1 & 46.7 \\
\hline Elm 8 & SFR & 56.6 & 56.8 & 57.1 & 55.7 & 54.7 & 55.7 & 56.1 \\
\hline Elm 9 MF & Multi-Family & 52.5 & 52.7 & 53.1 & 51.6 & 51.2 & 51.8 & 52.8 \\
\hline Fordway 1 MF & Multi-Family & 68.7 & 69.4 & 68.1 & 67.9 & 67.6 & 68 & 70 \\
\hline Fordway 2 MF & Multi-Family & 62.5 & 62.1 & 62.5 & 61.9 & 61.8 & 61.9 & 61.3 \\
\hline Fordway 3 & SFR & 66.2 & 65.9 & 66.2 & 65.7 & 65.6 & 65.7 & 67.1 \\
\hline Fordway 4 & SFR & 65.8 & 65.5 & 65.9 & 65.3 & 65.2 & 65.3 & 66.7 \\
\hline Fordway 5 & SFR & 66 & 65.7 & 66.1 & 65.5 & 65.4 & 65.5 & 67 \\
\hline Fordway 6 & SFR & 65.7 & 65.4 & 65.8 & 65.3 & 65.1 & 65.2 & 66.6 \\
\hline Fordway 7 & SFR & 60.1 & 59.8 & 60.2 & 59.6 & 59.5 & 59.6 & 59.1 \\
\hline Fordway 8 MF & Multi-Family & 63.8 & 63.5 & 64 & 63.4 & 63.3 & 63.3 & 61 \\
\hline Griffin 1 APT TH & Apartment/Townhome & 69.2 & 69.5 & 69.8 & 68.4 & 68.2 & 68.8 & 70.2 \\
\hline Griffin 10 & SFR & 49.9 & 50 & 50.1 & 49.1 & 49.2 & 50.2 & 50.7 \\
\hline Griffin 11 & SFR & 49.1 & 49.1 & 49.3 & 48.3 & 48.5 & 49.2 & 49.7 \\
\hline Griffin 12 & SFR & 48 & 47.9 & 48.3 & 47.3 & 47.5 & 48.1 & 48.6 \\
\hline Griffin 13 & SFR & 47.8 & 47.4 & 48 & 47.1 & 47.2 & 47.8 & 48.1 \\
\hline Griffin 2 & SFR & 56 & 56.5 & 56.3 & 55.2 & 54.6 & 56.2 & 55.6 \\
\hline Griffin 3 MF & Multi-Family & 52.5 & 52.6 & 52.5 & 51.7 & 51.2 & 52.3 & 52.8 \\
\hline Griffin 4 & SFR & 51 & 50.8 & 51.1 & 50.3 & 50 & 50.8 & 51.6 \\
\hline Griffin 5 MF & Multi-Family & 50.7 & 50.1 & 50.9 & 50 & 49.8 & 50.3 & 50.4 \\
\hline Griffin 6 & SFR & 50.1 & 49.5 & 50.3 & 49.4 & 49.2 & 49.8 & 49.9 \\
\hline Griffin 7 MF & Multi-Family & 49.1 & 48.6 & 49.2 & 48.4 & 48.3 & 48.9 & 49.1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Receiver ID & Land Use Type & Existing & 2040 No Build & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline Griffin 8 MF & Multi-Family & 48.5 & 48.1 & 48.6 & 47.7 & 47.7 & 48.3 & 48.5 \\
\hline Griffin 9 & SFR & 51.3 & 51.4 & 51.4 & 50.4 & 50.5 & 51.6 & 51.9 \\
\hline High 1 & SFR & 68.4 & 69.3 & 67.2 & 67.5 & 67.2 & 67.4 & 68.8 \\
\hline High 10 & SFR & 65.4 & 65.8 & 65 & 64.4 & 64.4 & 64.6 & 65.2 \\
\hline High 11 & SFR & 56.3 & 61.4 & 66.3 & 61.4 & 60.4 & 60.2 & 59.7 \\
\hline High 12 & SFR & 55.3 & 61.1 & 66.4 & 61.1 & 60.2 & 60 & 59.3 \\
\hline High 13 MF & Multi-Family & 55.2 & 61.6 & 66.9 & 61.5 & 60.6 & 60.4 & 59.6 \\
\hline High 14 & SFR & 54.5 & 60.9 & 66.2 & 60.9 & 59.9 & 59.7 & 58.9 \\
\hline High 15 & SFR & 52.4 & 58.8 & 64.1 & 58.8 & 57.8 & 57.7 & 56.8 \\
\hline High 16 & SFR & 59 & 59.1 & 59.7 & 58.2 & 58.1 & 58.1 & 58.4 \\
\hline High 17 & SFR & 55.4 & 57 & 60.1 & 56.5 & 56.1 & 55.8 & 55.9 \\
\hline High 18 MF & Multi-Family & 53.7 & 56.7 & 60.9 & 56.6 & 55.9 & 55.5 & 55.7 \\
\hline High 19 MF & Multi-Family & 51.5 & 53.9 & 57.7 & 53.6 & 53 & 52.8 & 53.2 \\
\hline High 2 & SFR & 60.5 & 61.7 & 60.6 & 61 & 59.7 & 59.7 & 60.8 \\
\hline High 20 & SFR & 50.5 & 55.1 & 59.9 & 55 & 54.2 & 54 & 53.7 \\
\hline High 21 & SFR & 49.6 & 54.7 & 59.8 & 54.7 & 53.8 & 53.6 & 53.1 \\
\hline High 22 & SFR & 49 & 54.3 & 59.4 & 54.3 & 53.4 & 53.2 & 52.7 \\
\hline High 23 MF & Multi-Family & 49.2 & 54.8 & 59.9 & 54.7 & 53.8 & 53.6 & 53 \\
\hline High 24 MF & Multi-Family & 45.4 & 50.1 & 55.1 & 49.9 & 49.4 & 49.2 & 48.9 \\
\hline High 3 MF & Multi-Family & 56.5 & 58.4 & 57.8 & 58.7 & 56.5 & 56.1 & 57.7 \\
\hline High 4 & SFR & 56.1 & 57.5 & 57.6 & 58.1 & 56.2 & 55.7 & 57.1 \\
\hline High 5 & SFR & 58.3 & 60.4 & 63.3 & 61.2 & 59.5 & 58.8 & 59.6 \\
\hline High 6 MF & Multi-Family & 72.1 & 72.9 & 70.6 & 70.8 & 70.8 & 71.1 & 72.9 \\
\hline High 7 MF & Multi-Family & 68.3 & 69.1 & 66.7 & 66.9 & 67 & 67.3 & 68.7 \\
\hline High 8 & SFR & 65.7 & 66.4 & 64.4 & 64.5 & 64.5 & 64.8 & 65.5 \\
\hline High 9 MF & Multi-Family & 69 & 69.8 & 67.7 & 67.7 & 67.8 & 68.2 & 69.6 \\
\hline Lawrence_10 & SFR & 50.4 & 51.4 & 53 & 50.7 & 50.2 & 50.2 & 51 \\
\hline Linden 1 & SFR & 47.9 & 48.1 & 47.1 & 46.4 & 46.2 & 46.7 & 48.5 \\
\hline Linden 2 & SFR & 49.5 & 50.1 & 49.5 & 48.4 & 48.3 & 48.7 & 49.9 \\
\hline Linden 3 & SFR & 49.3 & 49.9 & 49.9 & 48.4 & 48.4 & 48.6 & 49.9 \\
\hline Linwood 1 & SFR & 56.8 & 57.7 & 56.2 & 56.1 & 55.8 & 56.2 & 55.6 \\
\hline Linwood 2 & SFR & 47.9 & 47.9 & 46 & 45.9 & 45.6 & 46.2 & 48.1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Receiver ID & Land Use Type & Existing & 2040 No Build & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline Linwood 3 APT TH & Apartment/Townhome & 48.7 & 48.9 & 47.2 & 46.9 & 46.8 & 47.3 & 49.4 \\
\hline Linwood 4 & SFR & 50.7 & 50.9 & 49.4 & 49.3 & 48.9 & 49.4 & 50.9 \\
\hline Linwood 5 & SFR & 62.6 & 63.3 & 61.7 & 61.7 & 61.4 & 61.8 & 61.7 \\
\hline Londonderry 1 & SFR & 66.4 & 65.8 & 59.9 & 63.4 & 60.8 & 63.5 & 60.1 \\
\hline Londonderry 2 & SFR & 66.9 & 66.3 & 60.4 & 63.9 & 61.3 & 64 & 60.5 \\
\hline Londonderry 3 & SFR & 69.2 & 68.5 & 62.7 & 66.1 & 63.5 & 66.3 & 62.8 \\
\hline Londonderry 4 & SFR & 57.4 & 58.2 & 55.2 & 56 & 55.3 & 56.3 & 57.4 \\
\hline South 1 MF & Multi-Family & 54.3 & 53.9 & 54.4 & 53.7 & 53.6 & 53.8 & 52.7 \\
\hline St Charles 1 & SFR & 61.5 & 60.7 & 62.7 & 62 & 61.9 & 62.2 & 63.3 \\
\hline St Charles 2 & SFR & 57.9 & 55.9 & 59.3 & 58.2 & 58.2 & 58.4 & 59.5 \\
\hline St Charles 3 & SFR & 55.4 & 51.9 & 57 & 55.9 & 55.9 & 56 & 56.8 \\
\hline St Charles 4 & SFR & 57.4 & 50.4 & 59.2 & 57.9 & 57.9 & 57.9 & 58.3 \\
\hline St Charles 5 & SFR & 57.4 & 51.9 & 59.2 & 57.9 & 57.9 & 58 & 58.4 \\
\hline Valley 1 MF & Multi-Family & 70 & 70.9 & 69.3 & 69.3 & 69 & 69.4 & 72 \\
\hline Valley 2 & SFR & 52.4 & 52.5 & 50.6 & 50.7 & 50.4 & 50.8 & 52.3 \\
\hline Valley 3 & SFR & 51.9 & 52 & 50.3 & 50.3 & 50 & 50.4 & 51.9 \\
\hline Valley 4 & SFR & 47.6 & 48.4 & 46.7 & 46.6 & 46.5 & 47 & 49.4 \\
\hline Valley 5 & SFR & 47.6 & 48 & 46 & 46 & 45.9 & 46.3 & 48.5 \\
\hline West Everett 1 & SFR & 68.9 & 69.2 & 69.4 & 68.1 & 67.9 & 68.4 & 69.7 \\
\hline West Everett 2 & SFR & 53.6 & 54.1 & 53.9 & 52.8 & 52.7 & 53.1 & 53.2 \\
\hline West Everett 3 & SFR & 54 & 53.6 & 54.1 & 53.4 & 53.3 & 53.6 & 54.3 \\
\hline West Everett 4 & SFR & 56.1 & 55.8 & 56.2 & 55.6 & 55.5 & 55.7 & 56.2 \\
\hline Wyman 1 APT TH & Apartment/Townhome & 52.5 & 52.9 & 51.3 & 51.2 & 50.9 & 51.4 & 52.4 \\
\hline Wyman 2 & SFR & 47.8 & 48 & 46.4 & 46.1 & 45.9 & 46.4 & 48.1 \\
\hline Wyman 3 & SFR & 47.3 & 47.4 & 46.1 & 45.6 & 45.4 & 45.9 & 48 \\
\hline Wyman 4 MF & Multi-Family & 51.1 & 51.5 & 50 & 49.9 & 49.5 & 50 & 50.6 \\
\hline
\end{tabular}

Note: Shading indicates impacted receptors based on NAC or substantial increase over existing conditions. For purposes of determining impacts, results were rounded to the nearest whole number (e.g., 65.6 dBA rounds to 66 and is considered an impact for a residential land use)
N/A: Not applicable, property is full acquisition
** Substantial increase over existing conditions
SFR: Single-family residence


Figure 4-12. NSA 9 Receptors South


Figure 4-13. NSA 9 Receptors North

Table 4-12. Noise Modeling Results for NSA 10 (Worst-Case Peak Hour, Leq, dBA)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Receiver ID & Land Use Type & Existing & 2040 No Build & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline Birch 1 CF & Community Facility & 66 & 64.9 & 66.2 & 65.8 & 66.2 & 66.3 & 66.7 \\
\hline Birch 2 MF & Multi-Family & 66.1 & 65 & 66.2 & 65.8 & 66.2 & 66.4 & 66.4 \\
\hline Birch 3 MF & Multi-Family & 66.1 & 65.1 & 66.3 & 66 & 66.4 & 66.5 & 66.3 \\
\hline Birch 4 & SFR & 66.5 & 65.5 & 66.7 & 66.4 & 66.8 & 66.9 & 66.4 \\
\hline Broadway 10218 APT TH & Apartment/Townhome & 67.1 & 67.5 & 67.4 & 66.3 & 66.2 & 66.7 & 68.1 \\
\hline Broadway 10219 APT TH & Apartment/Townhome & 69.5 & 69.6 & 70.1 & 68.6 & 68.4 & 69 & 69.8 \\
\hline Broadway 10220 CF & Community Facility & 61.7 & 61.9 & 62.2 & 60.8 & 60.6 & 61.1 & 61.1 \\
\hline Broadway 10221 APT TH & Apartment/Townhome & 66.7 & 67.2 & 67 & 65.9 & 65.8 & 66.4 & 67.6 \\
\hline Broadway 10222 APT TH & Apartment/Townhome & 67.5 & 67.9 & 67.8 & 66.7 & 66.6 & 67.3 & 68.4 \\
\hline Broadway 10223 APT TH & Apartment/Townhome & 69.4 & 69.5 & 70 & 68.5 & 68.3 & 68.9 & 70.5 \\
\hline Broadway 10224 COD & Commercial w/Outdoor Use & 68.4 & 68.5 & 69 & 67.5 & 67.3 & 67.9 & 69.4 \\
\hline Broadway 10225 COD & Commercial w/Outdoor Use & 69.2 & 69.3 & 69.8 & 68.3 & 68.1 & 69 & 70.3 \\
\hline Broadway 10226 CF & Community Facility & 66.4 & 66.8 & 66.6 & 65.6 & 65.5 & 66.2 & 67 \\
\hline Broadway 10227 COD & Commercial w/Outdoor Use & 62.9 & 63.1 & 63.5 & 62 & 61.9 & 62.4 & 61.7 \\
\hline Broadway 10228 APT TH & Apartment/Townhome & 69.7 & 70.3 & 69.9 & 69 & 68.9 & 69.7 & 71.1 \\
\hline Broadway 10229 APT TH & Apartment/Townhome & 68 & 68.1 & 68.5 & 67.1 & 66.9 & 67.5 & 68.6 \\
\hline Broadway 10230 APT TH & Apartment/Townhome & 69.6 & 70.1 & 69.8 & 68.8 & 68.7 & 69.7 & 71.4 \\
\hline Broadway 10231 APT TH & Apartment/Townhome & 68.3 & 68.4 & 68.8 & 67.4 & 67.2 & 67.9 & 68.9 \\
\hline Broadway 10234 CF & Community Facility & 67.6 & 67.5 & 68.2 & 66.7 & 66.5 & 66.9 & 68.6 \\
\hline Broadway 10235 CF & Community Facility & 68.2 & 67.6 & 68.3 & 67.2 & 67.3 & 68 & 70.3 \\
\hline Broadway 32 PARK & Park & 65.3 & 65.8 & 65.4 & 64.5 & 64.4 & 64.2 & 66 \\
\hline Broadway 33 COD & Commercial w/Outdoor Use & 63.9 & 64.1 & 64.5 & 63 & 62.8 & 62.9 & 63.5 \\
\hline Central 1 APT TH & Apartment/Townhome & 54.6 & 54.8 & 55 & 53.7 & 53.5 & 54.4 & 52.1 \\
\hline Central 2 CF & Community Facility & 47.5 & 47.6 & 47.8 & 46.5 & 46.4 & 47.4 & 47.5 \\
\hline Central 3 APT TH & Apartment/Townhome & 44.6 & 44.8 & 44.9 & 43.6 & 43.6 & 44.3 & 45.4 \\
\hline Central 4 MF & Multi-Family & 51.8 & 52.2 & 52 & 51 & 50.9 & 51.6 & 51.3 \\
\hline Central 5 APT TH & Apartment/Townhome & 45.4 & 45.7 & 45.6 & 44.5 & 44.5 & 44.9 & 45.6 \\
\hline Crystal 1 CF & Community Facility & 66.7 & 65.7 & 65.9 & 66 & 67.3 & 67.3 & 66.7 \\
\hline Franklin 1 MF & Multi-Family & 50.9 & 49.8 & 51.5 & 49.9 & 50.4 & 50.7 & 50.6 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Receiver ID & Land Use Type & Existing & 2040 No Build & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline Franklin 2 MF & Multi-Family & 51.4 & 50.4 & 52.1 & 50.6 & 51.2 & 51.5 & 51.1 \\
\hline Franklin 3 & SFR & 48.9 & 47.9 & 49 & 48.1 & 48.8 & 49 & 48.6 \\
\hline Franklin 4 APT TH & Apartment/Townhome & 54.7 & 53.6 & 55.3 & 53.7 & 54 & 54.3 & 53.7 \\
\hline Franklin 5 & SFR & 55.4 & 54.3 & 56.1 & 54.7 & 55.1 & 55.4 & 54.8 \\
\hline Franklin 6 MF & Multi-Family & 52.6 & 51.6 & 53.3 & 51.8 & 52.3 & 52.7 & 52.5 \\
\hline Manning 1 APT TH & Apartment/Townhome & 54.1 & 54.2 & 54.7 & 53.2 & 53 & 52.9 & 53.6 \\
\hline Maple 1 APT TH & Apartment/Townhome & 52 & 52.3 & 52.4 & 51.1 & 51 & 51.2 & 51.4 \\
\hline Maple 2 & SFR & 47.4 & 47.7 & 47.7 & 46.3 & 46.4 & 46.9 & 48.1 \\
\hline Maple 3 & SFR & 45.7 & 45.9 & 46.3 & 44.7 & 44.8 & 45.3 & 46.4 \\
\hline Maple 4 APT TH & Apartment/Townhome & 51.5 & 51.8 & 51.9 & 50.6 & 50.5 & 50.8 & 50.7 \\
\hline Maple 5 MF & Multi-Family & 51.1 & 51.4 & 51.5 & 50.2 & 50.1 & 50.5 & 50.8 \\
\hline Maple 6 MF & Multi-Family & 49.7 & 49.8 & 50.3 & 48.8 & 48.7 & 49.1 & 49.4 \\
\hline Maple 7 APT TH & Apartment/Townhome & 48.6 & 48.8 & 49.2 & 47.7 & 47.6 & 48 & 48.2 \\
\hline Maple 8 & SFR & 45 & 45.1 & 45.5 & 43.9 & 44 & 44.4 & 45.3 \\
\hline Merchants 1 PARK & Park & 48.3 & 48.4 & 48.3 & 47.4 & 47.3 & 47.8 & 48.6 \\
\hline Pearl 1 & SFR & 52.5 & 51.5 & 53.1 & 51.7 & 52.3 & 52.6 & 52.3 \\
\hline Pearl 2 MF & Multi-Family & 51.3 & 50.4 & 51.8 & 50.5 & 51 & 51.3 & 51.1 \\
\hline Pillsbury 1 MF & Multi-Family & 49 & 49.2 & 49.4 & 48 & 47.9 & 48.2 & 48.6 \\
\hline Pillsbury 2 MF & Multi-Family & 48.4 & 48.6 & 48.8 & 47.4 & 47.3 & 47.8 & 48.1 \\
\hline Pillsbury 3 MF & Multi-Family & 48 & 48.1 & 48.5 & 47 & 47 & 47.6 & 48.3 \\
\hline Pillsbury 4 & SFR & 49 & 49.1 & 49.6 & 48.1 & 48 & 48.5 & 48.5 \\
\hline Pillsbury 5 & SFR & 49.7 & 49.8 & 50.2 & 48.8 & 48.6 & 49.1 & 49 \\
\hline Railroad 1 APT TH & Apartment/Townhome & 47.4 & 47.3 & 47.5 & 46.7 & 46.6 & 47.1 & 47.3 \\
\hline Railroad 2 CF & Community Facility & 50.9 & 51.1 & 51.1 & 49.9 & 49.8 & 50.4 & 51.3 \\
\hline Railroad 3 APT TH & Apartment/Townhome & 48.9 & 48.9 & 49.1 & 48.1 & 48 & 48.6 & 49.4 \\
\hline Railroad 4 CF & Community Facility & 46.5 & 46.3 & 46.5 & 45.7 & 45.6 & 46.1 & 46.8 \\
\hline Sawyer 1 MF & Multi-Family & 47 & 47 & 47.4 & 46.1 & 45.9 & 46.9 & 46.8 \\
\hline Sawyer 2 APT TH & Apartment/Townhome & 47.3 & 47.3 & 47.7 & 46.3 & 46.2 & 47.2 & 47.3 \\
\hline Storer 1 MF & Multi-Family & 50.4 & 50.6 & 50.8 & 49.5 & 49.4 & 50.3 & 49.6 \\
\hline Storer 2 MF & Multi-Family & 47.6 & 47.7 & 48.1 & 46.7 & 46.6 & 47.4 & 47.6 \\
\hline Storer 3 APT TH & Apartment/Townhome & 47.1 & 47.3 & 47.4 & 46.2 & 46.1 & 46.8 & 47.6 \\
\hline Walker 1 & SFR & 46.9 & 47.4 & 47.2 & 45.9 & 46 & 46.4 & 47.4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Receiver ID & Land Use Type & Existing & 2040 No Build & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline Walker 2 MF & Multi-Family & 46.2 & 46.6 & 46.8 & 45.2 & 45.4 & 45.7 & 47 \\
\hline Wall 1 MF & Multi-Family & 54.4 & 53.5 & 54.5 & 54.1 & 54.5 & 54.3 & 55.5 \\
\hline Wall 2 MF & Multi-Family & 51.6 & 50.6 & 51.7 & 51.1 & 51.3 & 51.4 & 52.8 \\
\hline Wall 3 MF & Multi-Family & 54.2 & 53.1 & 54.4 & 53.9 & 54.4 & 54.2 & 54.9 \\
\hline Wall 4 MF & Multi-Family & 51.5 & 50.4 & 51.7 & 51 & 51.3 & 51.4 & 52.2 \\
\hline
\end{tabular}

Note: Shading indicates impacted receptors based on NAC or substantial increase over existing conditions. For purposes of determining impacts, results were rounded to the nearest whole number (e.g., 65.6 dBA rounds to 66 and is considered an impact for a residential land use)
N/A: Not applicable, property is full acquisition
** Substantial increase over existing conditions
SFR: Single-family residence


Figure 4-14. NSA 10 Receptors

Table 4-13. Noise Modeling Results for NSA 3 (Worst-Case Peak Hour, Leq, dBA)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Receiver ID & Land Use Type & Existing & 2040 No Build & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline Abbott 1 APT TH & Apartment/Townhome & 43.6 & 43.3 & 43.8 & 41.8 & 41.9 & 43.5 & 43.8 \\
\hline Abbott 10 MF & Multi-Family & 45.3 & 44.9 & 45.4 & 43.5 & 43.6 & 45.1 & 45.5 \\
\hline Abbott 2 MF & Multi-Family & 54.4 & 54.7 & 54.9 & 53.1 & 52.9 & 54 & 55 \\
\hline Abbott 3 MF & Multi-Family & 49.2 & 49 & 49.6 & 47.6 & 47.6 & 49 & 49.6 \\
\hline Abbott 4 MF & Multi-Family & 47.9 & 47.5 & 48.1 & 46.3 & 46.3 & 47.7 & 48.1 \\
\hline Abbott 5 MF & Multi-Family & 47.2 & 46.8 & 47.3 & 45.6 & 45.6 & 47 & 47.4 \\
\hline Abbott 6 & SFR & 45.4 & 44.9 & 45.3 & 43.7 & 43.8 & 45.1 & 45.6 \\
\hline Abbott 7 APT TH & Apartment/Townhome & 55.6 & 55.8 & 56.1 & 54.2 & 54.1 & 55.3 & 56.2 \\
\hline Abbott 8 & SFR & 48.4 & 48.2 & 48.8 & 46.8 & 46.8 & 48.3 & 48.8 \\
\hline Abbott 9 MF & Multi-Family & 47.1 & 46.8 & 47.3 & 45.5 & 45.5 & 46.9 & 47.4 \\
\hline Birch 5 MF & Multi-Family & 66.4 & 65.4 & 66.6 & 66.4 & 66.7 & 66.8 & 66.4 \\
\hline Broadway 102 75G & Community Facility & 60.2 & 60.2 & 60.8 & 58.8 & 58.6 & 60.4 & 60.8 \\
\hline Boyd 1 CF & Community Facility & 51.8 & 51.6 & 52.1 & 50.2 & 50.1 & 51.6 & 52.2 \\
\hline Boyd 2 & SFR & 50.1 & 49.8 & 50.4 & 48.5 & 48.5 & 50 & 50.4 \\
\hline Boyd 3 & SFR & 48.9 & 48.4 & 48.8 & 47.2 & 47.6 & 48.7 & 48.9 \\
\hline Boyd 4 & SFR & 47.1 & 46.4 & 46.9 & 45.5 & 45.8 & 46.7 & 46.8 \\
\hline Brandywine 1 & SFR & 44.9 & 44.7 & 45.3 & 43 & 43.2 & 45.1 & 45.2 \\
\hline Brandywine 2 & SFR & 45.1 & 44.7 & 45.3 & 43.4 & 43.3 & 45 & 45.3 \\
\hline Brandywine 3 & SFR & 44.1 & 43.8 & 44.4 & 42.2 & 42.3 & 44.2 & 44.4 \\
\hline Broadway 10236 CF & Community Facility & 67.7 & 68 & 68.3 & 66.3 & 66.3 & 68 & 69.4 \\
\hline Broadway 10237 CF & Community Facility & 67.7 & 68 & 68.3 & 66.4 & 66.4 & 68.1 & 69.3 \\
\hline Broadway 10238 CF & Community Facility & 66.5 & 66.5 & 67.1 & 64.7 & 65.2 & 67.3 & 67.5 \\
\hline Broadway 10239 CF & Community Facility & 66.2 & 66.2 & 66.8 & 64.4 & 64.7 & 66.4 & 66.7 \\
\hline Broadway 10240 & SFR & 66.7 & 66.8 & 67.2 & 65.2 & 65.2 & 66.8 & 67.2 \\
\hline Broadway 10241 & SFR & 53.4 & 53.2 & 53.8 & 51.5 & 51.6 & 54 & 53.7 \\
\hline Broadway 10242 APT TH & Apartment/Townhome & 67.6 & 67.7 & 68.1 & 66.1 & 66 & 67.7 & 68.1 \\
\hline Broadway 10243 APT TH & Apartment/Townhome & 60.6 & 60.6 & 61.2 & 59 & 59 & 59.7 & 61.2 \\
\hline Broadway 10244 Park & Park & 63.9 & 63.8 & 64.4 & 62.1 & 62.2 & 63.9 & 64.3 \\
\hline Broadway 10245 Park & Park & 63.9 & 63.9 & 64.5 & 62.1 & 62.3 & 64 & 64.4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Receiver ID & Land Use Type & Existing & \[
\begin{aligned}
& 2040 \text { No } \\
& \text { Build }
\end{aligned}
\] & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline Broadway 10246 MF & Multi-Family & 68.5 & 68.8 & 69.1 & 67.2 & 67.1 & 68.6 & 69.1 \\
\hline Broadway 10247 & SFR & 64.8 & 64.8 & 65.4 & 63.1 & 63.2 & 64.8 & 65.4 \\
\hline Broadway 10248 & SFR & 67.6 & 67.9 & 68.3 & 66.3 & 66.2 & 67.7 & 68.3 \\
\hline Broadway 10249 MF & Multi-Family & 62.7 & 62.7 & 63.3 & 61.1 & 61.1 & 62.8 & 63.3 \\
\hline Broadway 10250 & SFR & 68.1 & 68.4 & 68.7 & 66.8 & 66.7 & 68.2 & 68.7 \\
\hline Broadway 10251 APT TH & Apartment/Townhome & 67.2 & 67.5 & 67.8 & 65.9 & 65.8 & 67.3 & 67.8 \\
\hline Broadway 10252 MF & Multi-Family & 65.8 & 66.1 & 66.4 & 64.5 & 64.4 & 65.5 & 66.4 \\
\hline Broadway 10253 APT TH & Apartment/Townhome & 67 & 67.3 & 67.6 & 65.7 & 65.6 & 67.1 & 67.6 \\
\hline Broadway 10254 & SFR & 67.3 & 67.6 & 67.9 & 65.9 & 65.9 & 67.4 & 67.9 \\
\hline Broadway 10255 MF & Multi-Family & 61.9 & 62 & 62.4 & 60.4 & 60.3 & 61.7 & 62.4 \\
\hline Broadway 10256 MF & Multi-Family & 62.2 & 62.1 & 62.7 & 60.5 & 60.5 & 62 & 62.7 \\
\hline Broadway 10257 MF & Multi-Family & 62.2 & 62.1 & 62.7 & 60.5 & 60.5 & 62.1 & 62.7 \\
\hline Broadway 10258 MF & Multi-Family & 63.8 & 63.9 & 64.4 & 62.2 & 62.2 & 63.1 & 64.4 \\
\hline Broadway 10259 MF & Multi-Family & 66.6 & 66.5 & 67.2 & 64.8 & 64.9 & 66.6 & 67.1 \\
\hline Broadway 10260 APT TH & Apartment/Townhome & 68.5 & 68.5 & 69.1 & 66.7 & 66.9 & 68.9 & 69.1 \\
\hline Broadway 10261 MF & Multi-Family & 64.8 & 64.8 & 65.5 & 63.2 & 63.3 & 64.8 & 65.4 \\
\hline Broadway 10262 & SFR & 65.8 & 65.8 & 66.4 & 64.1 & 64.2 & 65.8 & 66.4 \\
\hline Broadway 10263 & SFR & 66.7 & 66.7 & 67.4 & 65 & 65.1 & 66.9 & 67.3 \\
\hline Broadway 10264 & SFR & 62.7 & 62.8 & 63.4 & 61.2 & 61.2 & 62.7 & 63.3 \\
\hline Broadway 10265 & SFR & 64.7 & 64.8 & 65.4 & 63 & 63.1 & 64.8 & 65.3 \\
\hline Broadway 10266 & SFR & 68.3 & 68.3 & 68.9 & 66.5 & 66.7 & 68.6 & 68.9 \\
\hline Broadway 10267 & SFR & 66.1 & 66.1 & 66.8 & 64.4 & 64.5 & 66.1 & 66.7 \\
\hline Broadway 10268 & SFR & 64.6 & 64.6 & 65.2 & 62.9 & 63 & 64.7 & 65.2 \\
\hline Broadway 10269 & SFR & 62.2 & 62.3 & 62.9 & 60.6 & 60.7 & 62.4 & 62.8 \\
\hline Broadway 10270 MF & Multi-Family & 65.8 & 65.8 & 66.4 & 64.1 & 64.2 & 65.8 & 66.4 \\
\hline Broadway 10271 MF & Multi-Family & 49.3 & 49 & 49.7 & 47.6 & 47.6 & 49.7 & 49.7 \\
\hline Broadway 10272 MF & Multi-Family & 64.4 & 64.4 & 65 & 62.6 & 62.7 & 64.6 & 64.9 \\
\hline Broadway 10273 & SFR & 64.9 & 64.9 & 65.5 & 63.2 & 63.3 & 65 & 65.5 \\
\hline Broadway 10274 & SFR & 63.9 & 63.9 & 64.5 & 62.2 & 62.3 & 64 & 64.5 \\
\hline Broadway 10275 & SFR & 65.3 & 65.3 & 65.9 & 63.6 & 63.7 & 65.3 & 65.9 \\
\hline Broadway 10275 CF & Community Facility & 57 & 57 & 57.6 & 55.2 & 55.4 & 57.6 & 57.6 \\
\hline Broadway 102 75A & Community Facility & 60.3 & 60.6 & 60.8 & 59 & 58.8 & 60.2 & 60.9 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Receiver ID & Land Use Type & Existing & 2040 No Build & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline Broadway 102 75B & Community Facility & 60.9 & 61.3 & 61.4 & 59.7 & 59.4 & 60.8 & 61.5 \\
\hline Broadway 102 75C & Community Facility & 61.8 & 62.4 & 62.4 & 60.8 & 60.5 & 61.5 & 62.5 \\
\hline Broadway 102 75D & Community Facility & 62.9 & 63.1 & 63.6 & 61.4 & 61.4 & 62.7 & 63.5 \\
\hline Broadway 102 75E & Community Facility & 60.8 & 61.1 & 61.4 & 59.5 & 59.3 & 60.9 & 61.4 \\
\hline Broadway 102 75F & Community Facility & 60.6 & 60.7 & 61.1 & 59.1 & 59 & 60.6 & 61.2 \\
\hline Broadway 10276 & SFR & 65.9 & 65.9 & 66.5 & 64.1 & 64.2 & 65.8 & 66.4 \\
\hline Broadway 10277 & SFR & 66.3 & 66.3 & 66.9 & 64.6 & 64.7 & 66.3 & 66.9 \\
\hline Broadway 10278 & SFR & 63 & 62.9 & 63.4 & 61.3 & 61.4 & 62.8 & 63.4 \\
\hline Broadway 10279 CF & Community Facility & 64.2 & 64 & 64.5 & 62.5 & 62.7 & 63.9 & 64.5 \\
\hline Bypass 28 1A PARK & Park & 52.9 & 51.9 & 51.9 & 51.2 & 51.3 & 52 & 52 \\
\hline Bypass 28 1B PARK & Park & 55.9 & 54.9 & 54.9 & 54.5 & 54.7 & 55 & 55 \\
\hline Bypass 283 MF & Multi-Family & 68.9 & 67.7 & 67.7 & 67.8 & 67.9 & 68.2 & 67.8 \\
\hline Bypass 284 MF & Multi-Family & 58.4 & 57.3 & 57.3 & 57.3 & 57.3 & 57.6 & 57.1 \\
\hline Bypass 285 MF & Multi-Family & 68.6 & 67.4 & 67.4 & 67.5 & 67.6 & 67.9 & 67.4 \\
\hline Bypass 286 MF & Multi-Family & 66.6 & 65.3 & 65.3 & 65.5 & 65.6 & 65.9 & 65.4 \\
\hline Bypass 287 CF & Community Facility & 50 & 48.6 & 48.6 & 48.5 & 48.5 & 48.9 & 48.6 \\
\hline Bypass 288 COD & Commercial w/Outdoor Use & 61.2 & 59.4 & 59.9 & 59.7 & 59.8 & 59.7 & 59.7 \\
\hline Bypass 289 & SFR & 58.5 & 56.7 & 57.3 & 57.1 & 57.2 & 57.1 & 57.1 \\
\hline Chester 1 COD & Commercial w/Outdoor Use & 67.5 & 65.1 & 65.2 & 63.4 & 64.4 & 65.3 & 65 \\
\hline Crescent 1 & SFR & 48.6 & 48.5 & 48.9 & 47.1 & 47 & 48.3 & 49 \\
\hline Crescent 2 & SFR & 47.7 & 47.3 & 47.7 & 46.1 & 46 & 47.2 & 47.7 \\
\hline Crescent 3 & SFR & 48.7 & 47.7 & 47.9 & 46.8 & 46.9 & 47.8 & 47.9 \\
\hline Crescent 4 & SFR & 48.3 & 47.4 & 47.5 & 46.5 & 46.8 & 47.5 & 47.5 \\
\hline Crescent 5 APT TH & Apartment/Townhome & 46.9 & 45.9 & 46.1 & 45.2 & 45.5 & 46.1 & 46.1 \\
\hline Crescent 6 MF & Multi-Family & 52.4 & 51.7 & 51.8 & 50.6 & 50.5 & 51.6 & 51.9 \\
\hline Crescent 7 & SFR & 49.6 & 48.5 & 48.5 & 47.7 & 47.9 & 48.5 & 48.5 \\
\hline Crescent 8 & SFR & 49.2 & 48.8 & 48.8 & 48 & 48.5 & 48.6 & 48.9 \\
\hline Crescent 9 & SFR & 48.5 & 48 & 48 & 47.3 & 47.8 & 48 & 48.1 \\
\hline Fenway 1 MF & Multi-Family & 60 & 60 & 60.6 & 58.4 & 58.4 & 59.5 & 60.6 \\
\hline Fenway 10 & SFR & 44.8 & 44.4 & 45.1 & 43 & 43.1 & 44.7 & 45 \\
\hline Fenway 2 MF & Multi-Family & 52.4 & 52.3 & 52.9 & 50.5 & 50.7 & 52.2 & 52.9 \\
\hline Fenway 3 & SFR & 48.1 & 47.8 & 48.5 & 46.2 & 46.4 & 47.4 & 48.3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Receiver ID & Land Use Type & Existing & 2040 No Build & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline Fenway 4 & SFR & 47.5 & 47.1 & 47.7 & 45.7 & 45.7 & 47 & 47.7 \\
\hline Fenway 5 & SFR & 47.5 & 47.1 & 47.8 & 45.8 & 45.9 & 47.3 & 47.8 \\
\hline Fenway 6 & SFR & 46.4 & 46 & 46.6 & 44.7 & 44.9 & 46.2 & 46.6 \\
\hline Fenway 7 & SFR & 48.1 & 47.9 & 48.5 & 46.2 & 46.4 & 47.8 & 48.4 \\
\hline Fenway 8 & SFR & 46.7 & 46.4 & 47.1 & 44.8 & 45 & 46.4 & 46.9 \\
\hline Fenway 9 & SFR & 45.5 & 45.1 & 45.8 & 43.7 & 43.8 & 45.4 & 45.7 \\
\hline Hardy 1 MF & Multi-Family & 47.8 & 47.4 & 47.8 & 46.3 & 46.5 & 47.6 & 47.9 \\
\hline Hood 1 & SFR & 51.2 & 51.4 & 51.7 & 49.8 & 49.6 & 50.9 & 51.7 \\
\hline Hood 2 & SFR & 45.1 & 44.8 & 45.4 & 43.4 & 43.4 & 45 & 45.5 \\
\hline Hood 3CF & Community Facility & 47.7 & 47.5 & 48.1 & 46.2 & 46.1 & 47.6 & 48.2 \\
\hline Hood 4 CF & Community Facility & 44.8 & 44.5 & 45.1 & 43.2 & 43.1 & 44.6 & 45.2 \\
\hline Hoodcroft 1 MF & Multi-Family & 48.6 & 48.4 & 49 & 46.9 & 46.9 & 48.9 & 49 \\
\hline Hoodcroft 2 & SFR & 49.4 & 49.2 & 49.7 & 47.9 & 47.7 & 49.1 & 49.7 \\
\hline Hoodcroft 3 & SFR & 45.1 & 44.4 & 45 & 43.4 & 43.3 & 44.7 & 45 \\
\hline Hoodcroft 4 & SFR & 48.8 & 48.5 & 49 & 47.3 & 47.2 & 48.5 & 48.9 \\
\hline Hoodcroft 5 & SFR & 46.9 & 46.2 & 46.8 & 45.3 & 45.3 & 46.4 & 46.7 \\
\hline Lenox 1 & SFR & 43.8 & 43.5 & 44.1 & 42.1 & 42.1 & 43.6 & 44.1 \\
\hline Marlboro 1 MF & Multi-Family & 51.2 & 51 & 51.4 & 49.8 & 50.2 & 51.4 & 51.4 \\
\hline Marlboro 10 & SFR & 47.7 & 46.7 & 47.5 & 46.3 & 46.9 & 47.3 & 47.2 \\
\hline Marlboro 2 MF & Multi-Family & 50.7 & 50.1 & 50.6 & 49.2 & 49.6 & 50.7 & 51 \\
\hline Marlboro 3 MF & Multi-Family & 49.9 & 49.1 & 49.6 & 48.3 & 48.9 & 49.7 & 49.9 \\
\hline Marlboro 4 & SFR & 50.2 & 49.2 & 50.1 & 49.2 & 49.9 & 50.2 & 50.3 \\
\hline Marlboro 5 & SFR & 50.9 & 49.9 & 51 & 50.1 & 50.9 & 51.1 & 50.8 \\
\hline Marlboro 6 & SFR & 50.7 & 49.7 & 50.8 & 49.9 & 50.7 & 50.9 & 50.6 \\
\hline Marlboro 7 MF & Multi-Family & 49.2 & 48.6 & 49 & 47.6 & 48.1 & 48.7 & 48.9 \\
\hline Marlboro 8 & SFR & 49.2 & 48.5 & 49 & 47.7 & 48.3 & 48.7 & 48.9 \\
\hline Marlboro 9 MF & Multi-Family & 48.7 & 47.8 & 48.5 & 47.2 & 47.9 & 48.3 & 48.1 \\
\hline Mt Pleasant 1 & SFR & 54 & 53.8 & 54.4 & 52.3 & 52.3 & 54.2 & 54.4 \\
\hline Mt Pleasant 2 MF & Multi-Family & 45.5 & 45.2 & 45.8 & 43.8 & 43.8 & 45.7 & 45.8 \\
\hline Mt Pleasant 3 MF & Multi-Family & 45.4 & 45 & 45.6 & 43.5 & 43.6 & 45.4 & 45.6 \\
\hline Mt Pleasant 4 & SFR & 43.7 & 43.3 & 43.9 & 42 & 42 & 43.6 & 44 \\
\hline Mt Pleasant 5 & SFR & 39.8 & 39.3 & 39.9 & 38 & 38 & 39.6 & 40 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Receiver ID & Land Use Type & Existing & 2040 No Build & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline Mt Pleasant 6 & SFR & 42.6 & 42.3 & 42.9 & 41 & 40.9 & 42.6 & 43 \\
\hline Mt Pleasant 7 MF & Multi-Family & 44.3 & 43.9 & 44.5 & 42.6 & 42.5 & 44.1 & 44.6 \\
\hline Mt Pleasant 8 & SFR & 43.2 & 42.8 & 43.4 & 41.5 & 41.5 & 42.9 & 43.5 \\
\hline Mt Washington 1 & SFR & 65.9 & 65.9 & 66.6 & 64.2 & 64.3 & 65.9 & 66.5 \\
\hline Mt Washington 2 & SFR & 53.3 & 53.6 & 53.8 & 52 & 51.8 & 53 & 53.9 \\
\hline Mt Washington 3 & SFR & 49.8 & 49.6 & 50.2 & 48.3 & 48.2 & 49.7 & 50.3 \\
\hline Mt Washington 4 & SFR & 46.4 & 46.1 & 46.6 & 44.7 & 44.7 & 46.2 & 46.7 \\
\hline Mt Washington 5 & SFR & 44.1 & 43.7 & 44.2 & 42.4 & 42.4 & 43.9 & 44.3 \\
\hline Mt Washington 6 MF & Multi-Family & 62.5 & 62.6 & 63.1 & 61 & 61 & 62.4 & 63.1 \\
\hline Mt Washington 7 MF & Multi-Family & 51.4 & 51.6 & 51.9 & 50 & 49.8 & 51.2 & 51.9 \\
\hline Mt Washington 8 & SFR & 45.8 & 45.5 & 46.1 & 44.1 & 44.1 & 45.6 & 46.2 \\
\hline Mt Washington 9 & SFR & 44.2 & 43.9 & 44.4 & 42.4 & 42.5 & 44.2 & 44.5 \\
\hline Oak 1 MF & Multi-Family & 52 & 51.6 & 52.2 & 50.9 & 51 & 52.1 & 52.8 \\
\hline Oak 2 MF & Multi-Family & 50.7 & 50 & 50.6 & 49.9 & 50 & 50.6 & 52.5 \\
\hline Oak 3 APT TH & Apartment/Townhome & 53.2 & 52.2 & 53.3 & 52.8 & 53 & 53.1 & 55.4 \\
\hline Oak 4 MF & Multi-Family & 52.5 & 51.5 & 52.6 & 52.1 & 52.3 & 52.4 & 54 \\
\hline Oak 5 MF & Multi-Family & 48.4 & 48.1 & 48.7 & 46.6 & 45.8 & 48.6 & 47.3 \\
\hline Oak 6 MF & Multi-Family & 46.9 & 46.4 & 47.1 & 45.9 & 45.4 & 46.9 & 47.4 \\
\hline Oak 7 & SFR & 46.2 & 45.5 & 46.2 & 45.2 & 45.6 & 46 & 47.3 \\
\hline Oak 8 & SFR & 47 & 46.4 & 47 & 46.1 & 45.8 & 46.6 & 47.8 \\
\hline Park 1 CF & Community Facility & 50.4 & 50.2 & 50.8 & 48.5 & 48.9 & 50.8 & 50.4 \\
\hline Park 10 & SFR & 45 & 44.6 & 45.3 & 43.4 & 43.5 & 44.7 & 46 \\
\hline Park 2 MF & Multi-Family & 45.2 & 44.7 & 45.2 & 44 & 43.7 & 45 & 45.6 \\
\hline Park 3 MF & Multi-Family & 45.7 & 45.1 & 45.7 & 44.6 & 44.2 & 45.5 & 46.4 \\
\hline Park 4 & SFR & 44.8 & 44.2 & 44.9 & 43.7 & 43.6 & 44.9 & 46.2 \\
\hline Park 5 & SFR & 45.2 & 44.6 & 45.2 & 44 & 44 & 45.1 & 46.3 \\
\hline Park 6 MF & Multi-Family & 66.9 & 67.1 & 67.5 & 65.5 & 65.5 & 67.1 & 67.5 \\
\hline Park 7 & SFR & 49 & 48.8 & 49.4 & 47.1 & 47.2 & 49 & 49.1 \\
\hline Park 8 & SFR & 45.6 & 45.1 & 45.7 & 43.8 & 43.9 & 45.1 & 45.9 \\
\hline Park 9 & SFR & 45.3 & 44.9 & 45.5 & 43.6 & 43.7 & 44.8 & 46 \\
\hline Perley 1 & SFR & 44.2 & 43.8 & 44.4 & 42.5 & 42.4 & 44.2 & 44.4 \\
\hline Perley 2 & SFR & 45.2 & 44.8 & 45.4 & 43.5 & 43.5 & 45.3 & 45.4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Receiver ID & Land Use Type & Existing & 2040 No Build & Alt. A & Alt. B & Alt. C & Alt. D & Alt. F \\
\hline Perley 3 & SFR & 45.7 & 45.3 & 46 & 44 & 43.9 & 45.9 & 46 \\
\hline Perley 4 & SFR & 45.8 & 45.5 & 46.1 & 44.1 & 44.1 & 46.1 & 46.1 \\
\hline Perley 5 & SFR & 45.8 & 45.4 & 46 & 44.2 & 44.1 & 45.8 & 46 \\
\hline Thornton 1 MF & Multi-Family & 63 & 60.5 & 60.5 & 58.6 & 59.8 & 60.5 & 60.4 \\
\hline Thornton 2 & SFR & 69.6 & 67 & 67 & 65.1 & 66.1 & 67.1 & 66.8 \\
\hline Thornton 3 & SFR & 55 & 53.5 & 53.6 & 52.9 & 53.3 & 53.6 & 53.4 \\
\hline Thornton 4 & SFR & 54.7 & 53.4 & 53.4 & 52.9 & 53.2 & 53.5 & 53.2 \\
\hline Thornton 5 & SFR & 54.6 & 53.1 & 53.1 & 52.9 & 53.3 & 53.5 & 53 \\
\hline Thornton 6 & SFR & 58 & 56.8 & 56.8 & 55.6 & 56.8 & 56.9 & 56.8 \\
\hline Thornton 7 & SFR & 65.1 & 65.5 & 65.5 & 65 & 65.7 & 65.7 & 65.9 \\
\hline Thornton 8 MF & Multi-Family & 57.5 & 57.5 & 57.5 & 57.1 & 57.8 & 57.7 & 57.8 \\
\hline
\end{tabular}

Note: Shading indicates impacted receptors based on NAC or substantial increase over existing conditions. For purposes of determining impacts, results were
rounded to the nearest whole number (e.g., 65.6 dBA rounds to 66 and is considered an impact for a residential land use)
N/A: Not applicable, property is full acquisition
** Substantial increase over existing conditions
SFR: Single-family residence


Figure 4-15. NSA 11 Receptors-South


Figure 4-16. NSA 11 Receptors-Central


Figure 4-17. NSA 11 Receptors-North

\subsection*{4.3 Mitigation}

This section evaluates noise mitigation options for two locations where barriers were proposed as part of the I-93 widening project, as well as additional barriers along the proposed connector road where traffic noise impacts are predicted.

\subsection*{4.3.1 NSA 4 Trolley Car Lane}

\section*{Previous Analysis}

The 2004 I-93 widening FEIS presented the Trolley Car Lane neighborhood ("Location 23") as having 23 impacted receptors. A 12-foot barrier ( 6 -foot wall and 6 -foot berm) of 5,000 feet in length was proposed for an estimated cost of \(\$ 900,000\). The analysis estimated 28 receptors would be benefited, resulting in a cost of \(\$ 32,100\) per benefited receptor. Although the cost effectiveness criterion was slightly exceeded, the barrier was still recommended.
In 2008, the I-93 widening final design noise analysis recommended a 12-18 foot barrier (with 10 feet of the height on berm) 4,450 feet long. The barrier was estimated to benefit 28 receptors, cost \(\$ 1,068,000\), and have a cost per benefited receptor of \(\$ 38,000\). Although this exceeded the \(\$ 30,000\) threshold, the barrier continued to be recommended. The final barrier design did not anticipate the Exit 4A interchange ramps.
For purposes of comparing the benefit of new barrier options with the benefits provided by the I-93 widening barrier, the I-93 widening barriers were evaluated for the 2040 No Build condition. Table 4-14 summarizes the I-93 barrier performance results for each receptor based on the updated TNM models. This analysis excluded the I-93 widening barrier berms from the terrain data to evaluate the full benefit of the noise barriers.

Table 4-14. Trolley Car Lane: I-93 Widening Barrier Benefits, 2040 No Build
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Receptor Unit IDShading Indicates Impacted Receptor Units} & \multirow[t]{3}{*}{Number of Receptor Units} & \multirow[t]{3}{*}{\begin{tabular}{l}
2016 \\
Noise \\
Levels
\end{tabular}} & \multicolumn{2}{|l|}{2040 (No Barrier and no berm)- shading indicates impact} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{I-93 Southbound Widening Barrier}} \\
\hline & & & \multirow[t]{2}{*}{Noise Levels} & \multirow[t]{2}{*}{Increase Over Existing} & & \\
\hline & & & & & Noise Levels & I.L. \\
\hline Buyck 1 & 1 & 65 & 68 & 4 & 68 & 0 \\
\hline Hovey 1" & 1 & 67 & 69 & 2 & 66 & 3 \\
\hline Trolley Car 1" & 1 & 66 & 67 & 2 & 65 & 2 \\
\hline Trolley Car 10" & 1 & 64 & 65 & 0 & 61 & 4 \\
\hline Trolley Car 11" & 1 & 67 & 67 & 0 & 61 & 6 \\
\hline Trolley Car 12" & 2 & 67 & 67 & 0 & 61 & 7 \\
\hline Trolley Car 13" & 2 & 68 & 68 & 1 & 61 & 8 \\
\hline Trolley Car 14" & 2 & 69 & 68 & 0 & 60 & 8 \\
\hline Trolley Car 15" & 1 & 60 & 60 & 0 & 57 & 4 \\
\hline Trolley Car 16" & 1 & 61 & 63 & 2 & 59 & 5 \\
\hline Trolley Car 17" & 1 & 69 & 71 & 2 & 60 & 11 \\
\hline Trolley Car 18" & 1 & 73 & 75 & 2 & 63 & 12 \\
\hline Trolley Car 19" & 1 & 62 & 65 & 3 & 59 & 6 \\
\hline
\end{tabular}


Notes:

All values represent hourly Leq in dBA dBA = Decibels on the A-weighted scale
\(\square\) Impacted Receptor Units (Build noise levels > 66 dBA)

Impacted Receptor Units Receiving I.L. \(\geq 10 \mathrm{dBA}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Receptor Unit IDShading Indicates Impacted Receptor Units} & \multirow[t]{2}{*}{\[
\begin{array}{|l}
\hline \text { Number } \\
\text { of } \\
\text { Receptor } \\
\text { Units }
\end{array}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
2016 \\
Noise \\
Levels
\end{tabular}} & \multicolumn{2}{|l|}{2040 (No Barrier and no berm)- shading indicates impact} & \multicolumn{2}{|l|}{I-93 Southbound Widening
Barrier} \\
\hline & & & Noise Levels & Increase Over Existing & Noise Levels & I.L. \\
\hline \multicolumn{3}{|l|}{Leq = Equivalent noise level} & & \multicolumn{3}{|l|}{Impacted Receptor Units Receiving I.L. \(\geq 5\) dBA but \(<10\) dBA} \\
\hline \multicolumn{3}{|l|}{I.L. \(=\) Insertion} & & & & \\
\hline \multicolumn{3}{|l|}{Loss} & & \multicolumn{3}{|l|}{Non-Impacted Receptor Units Receiving \(\geq 5 \mathrm{dBA}\)} \\
\hline
\end{tabular}

\section*{Updated Analysis}

Trolley Car Lane was divided into two separate areas for purposes of the Exit 4A noise barrier evaluation (Trolley Car Lane and Trolley Car Lane south), separated by three single-family homes that would be total acquisitions under Alternative A (receptors Trolley Car 12, 13 and 14). As a result of these acquisitions and the placement of fill for the Exit 4A ramps shielding certain receivers in the center of the neighborhood from I-93 mainline traffic noise, a continuous noise barrier is no longer logical for this location.

\section*{Trolley Car Lane North}

Trolley Car Lane north consists of the remaining residences near the proposed southbound offramp. Based on the 2040 Build traffic projections, two receptors would experience traffic noise impacts with no barrier in place (Trolley Car 17 and Trolley Car 18).
Two barrier options were evaluated for Trolley Car Lane North as shown in Figures 4-18 and 4-19. The horizontal barrier alignment for the Trolley Car Lane north area was kept the same as the I-93 widening final design barrier alignment, from station \(3701+10\) at the northern end to station 3696. From station 3696 to 3685+50, the barrier alignment was modified to follow near the off-ramp edge of pavement, which allows the barrier to take advantage of being on fill required for the ramps.
The Trolley Car Lane North Barrier analysis (Table 4-15) shows there are insufficient receptors in the area for a barrier to be cost effective. The barrier design option closest to meeting the criterion (Option 2) would focus on protecting the two affected receptors only and would be about 10 feet high and 586 feet long. The square feet per receptor unit benefited would be 2,890, which exceeds NHDOT's criterion. A barrier option attempting to benefit more receptors would similarly not be cost reasonable.

\section*{Trolley Car Lane South}

Trolley Car Lane south consists of the residences near the proposed southbound on-ramp and south to Pillsbury Rd. Based on the 2040 Build traffic projections, nine receptors would experience traffic noise impacts with no barrier in place (Trolley Car 1, 2, 3, 4, 6, Hovey 1 , Hovey 2, and Hovey 3). Hovey 3 is a duplex that counts as two receptor units. It is important to note that the five northernmost receptors in this area are not considered impacted under Alternative A (Trolley Car 7, 8, 9, 10, 11). These receptors are below the elevation of the onramp, which serves to shield them from the full I-93 mainline traffic. This effect is illustrated by the "increase over existing" column in Table 4-16, which shows Alternative A would reduce noise at a majority of the receptors in this area by 3 to 5 dBA .

Figures 4-20 through 4-22 show the three Trolley Car Lane South barriers considered. The barrier was extended further south than the I-93 widening proposed barrier (to approx. station \(3656+50\) ), to study if this segment would provide any benefit to barrier performance. The horizontal barrier alignment for the Trolley Car Lane south area was kept the same as the I-93 widening final design barrier alignment from station \(3657+50\) to station 3661 . From station 3661 to \(3668+50\), the barrier alignment was shifted west by 5 feet or less to remain on the berm proposed in the I-93 final design plans. The northern end of the barrier near station 3671+75 would begin to follow the on ramp embankment. The barrier was not extended farther north because the receptors north of Trolley Car 6 are not impacted.
As shown in Table 4-16, the Trolley Car Lane South barrier analysis results demonstrate there are insufficient receptors in the area for a barrier to be cost effective. The option closest to meeting the criterion (Option 2) would focus on protecting the central portion of the NSA and would be have an average height of 11.6 feet and would be 1,080 feet in length. The square feet per receptor unit benefited would be 2,089 , which exceeds NHDOT's criterion.

\section*{Conclusion}

Table 4-17 provides an overall summary of the Trolley Car Lane barrier analyses in comparison to the I-93 widening barrier analyses, including cost information based on recent NHDOT bid prices (\$38 per square foot).
The selection of a preferred option by NHDOT and FHWA was based on consideration of which option would provide a benefit to impacted receptors comparable to the benefit that would be provided if the I-93 widening barriers were built without Exit 4A. NHDOT and FHWA are committed to providing noise barriers in these locations by the I-93 widening 2005 ROD and 2010 Supplemental ROD, regardless of whether the options meet the current noise policy effectiveness criterion. For both Trolley Car Lane North and South, the recommended barrier option for further evaluation during final design is Option 1.
Based on the studies so far completed, NHDOT is committed to the construction of feasible and reasonable noise abatement measures at Trolley Car Lane (North and South). These preliminary indications of likely abatement measures are based upon preliminary design for two discontinuous barriers with a combined length of approximately 2,700 feet and an average height of approximately 13.5 feet, that would reduce the noise level by at least \(5 \mathrm{~dB}(\mathrm{~A})\) for 13 residents. If it is subsequently found during final design that these conditions have substantially changed, the abatement measure(s) might not be provided. A final decision on the installation of the abatement measure(s) would be made during the final design process following the completion of public involvement.

Table 4-15. NSA 4 Barrier Analysis, Trolley Car Lane North, 2040 PM Peak Hour Traffic
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Receptor Unit IDShading Indicates Impacted Receptor Units} & \multirow[t]{3}{*}{Number of Receptor Units} & \multirow[t]{3}{*}{\begin{tabular}{l}
2016 \\
Noise \\
Levels
\end{tabular}} & \multicolumn{2}{|l|}{2040 (No Barrier)- shading indicates impact} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Barrier Option 1}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Barrier Option 2}} \\
\hline & & & \multirow[b]{2}{*}{Noise Levels} & \multirow[t]{2}{*}{Increase Over Existing} & & & & \\
\hline & & & & & \begin{tabular}{l}
Noise \\
Levels
\end{tabular} & I.L. & Noise Levels & I.L. \\
\hline Trolley Car 15 & 1 & 60 & 62 & 1 & 60 & 2 & 61 & 1 \\
\hline Trolley Car 16" & 1 & 61 & 63 & 2 & 60 & 3 & 61 & 2 \\
\hline Trolley Car 17" & 1 & 69 & 68 & -1 & 63 & 6 & 63 & 5 \\
\hline Trolley Car 18" & 1 & 73 & 74 & 1 & 65 & 9 & 67 & 8 \\
\hline Trolley Car 19" & 1 & 62 & 63 & 1 & 59 & 5 & 61 & 2 \\
\hline Trolley Car 26" & 1 & 60 & 62 & 2 & 61 & 2 & 62 & 1 \\
\hline Trolley Car 27" & 1 & 61 & 63 & 2 & 60 & 3 & 62 & 1 \\
\hline Trolley Car 28" & 1 & 58 & 61 & 3 & 59 & 2 & 59 & 1 \\
\hline \multicolumn{5}{|c|}{Noise Abatement Details and Evaluation Criteria} & & & & \\
\hline \multicolumn{5}{|c|}{Barrier Area (square feet)} & & & 5,77 & \\
\hline \multicolumn{5}{|c|}{Effectiveness Criterion} & & & 1,500 & \\
\hline \multicolumn{5}{|c|}{Total Number of Impacted Receptor Units} & & & 2 & \\
\hline \multicolumn{5}{|l|}{Number of Impacted Receptor Units Receiving \(\geq 10\) dBA I.L.} & & & 0 & \\
\hline \multicolumn{5}{|l|}{Percent of Impacted Receptor Units Receiving \(\geq 10\) dBA I.L.} & & & 0\% & \\
\hline \multicolumn{5}{|l|}{Number of Impacted Receptor Units Receiving I.L. \(\geq 5\) dBA but < 10 dBA} & & & 2 & \\
\hline \multicolumn{5}{|c|}{Total Number of Impacted Receptor Units Benefited} & & & 2 & \\
\hline \multicolumn{5}{|c|}{Percent of Impacted Receptor Units Benefited} & & & 100 & \\
\hline \multicolumn{5}{|l|}{Number of Non-Impacted Receptor Units Benefited (I.L. \(\geq 5 \mathrm{dBA}\) )} & & & 0 & \\
\hline \multicolumn{5}{|c|}{Total Number of Benefited Receptor Units} & & & 2 & \\
\hline \multicolumn{5}{|c|}{Square Feet per Receptor Unit Benefited} & & & 2,89 & \\
\hline \multicolumn{5}{|l|}{Barrier Reasonable from a Square Foot/Receptor Unit Standpoint?} & \multicolumn{2}{|c|}{No} & \multicolumn{2}{|l|}{No} \\
\hline \multicolumn{5}{|c|}{Total Barrier Length (feet)} & \multicolumn{2}{|c|}{1,161} & \multicolumn{2}{|l|}{586} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Barrier Height Range (feet) & 4 to 16 & 8 to 10 \\
\hline Average Barrier Height (feet) & 10.78 & 9.86 \\
\hline
\end{tabular}

Notes:
All values represent hourly Leq in dBA
dBA = Decibels on the A-weighted scale
Impacted Receptor Units (Build noise levels > 66 dBA)
Impacted Receptor Units Receiving I.L. \(\geq 10\) dBA
Impacted Receptor Units Receiving I.L. \(\geq 5 \mathrm{dBA}\) but \(<10 \mathrm{dBA}\)
I.L. = Insertion Loss

Non-Impacted Receptor Units Receiving \(\geq 5 \mathrm{dBA}\)

Note: The "2040 No Barrier" results include the Exit 4A project infrastructure and grading, and the constructed I-93 widening berms.

Table 4-16. NSA 4 Barrier Analysis, Trolley Car Lane South, 2040 PM Peak Hour Traffic
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Receptor Unit IDShading Indicates Impacted Receptor Units} & \multirow[t]{3}{*}{Number of Receptor Units} & \multirow{3}{*}{2016 Noise Levels} & \multicolumn{2}{|l|}{2040 (No Barrier)- shading indicates impact} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Barrier Option 1}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Barrier Option 2}} & \multicolumn{2}{|l|}{Barrier Option 3} \\
\hline & & & \multirow[b]{2}{*}{Noise Levels} & \multirow[t]{2}{*}{Increase Over Existing} & & & & & & \\
\hline & & & & & Noise Levels & I.L. & Noise Levels & I.L. & Noise Levels & I.L. \\
\hline Hovey 1 & 1 & 67 & 69 & 2 & 64 & 5 & 66 & 2 & 63.8 & 5 \\
\hline Trolley Car 1" & 1 & 66 & 66 & 1 & 62 & 5 & 65 & 2 & 61.8 & 5 \\
\hline Trolley Car 10" & 1 & 64 & 62 & -3 & 61 & 1 & 61 & 1 & 61.3 & 1 \\
\hline Trolley Car 11" & 1 & 67 & 61 & -5 & 61 & 1 & 61 & 0 & 61 & 0 \\
\hline Trolley Car 2" & 1 & 64 & 66 & 2 & 59 & 6 & 61 & 5 & 60 & 6 \\
\hline Trolley Car 3" & 1 & 70 & 68 & -2 & 62 & 6 & 63 & 5 & 61.5 & 7 \\
\hline Trolley Car 4" & 1 & 69 & 68 & -1 & 61 & 7 & 62 & 7 & 61.1 & 7 \\
\hline Trolley Car 5" & 1 & 68 & 65 & -3 & 60 & 5 & 61 & 5 & 60 & 5 \\
\hline Trolley Car 6" & 1 & 68 & 66 & -2 & 60 & 6 & 61 & 5 & 60.2 & 6 \\
\hline Trolley Car 7" & 1 & 66 & 64 & -2 & 59 & 5 & 61 & 3 & 59.8 & 4 \\
\hline Trolley Car 8" & 1 & 67 & 65 & -2 & 60 & 5 & 62 & 2 & 61.9 & 3 \\
\hline Trolley Car 9" & 2 & 65 & 63 & -2 & 61 & 2 & 62 & 1 & 61.7 & 1 \\
\hline Hovey 2" & 1 & 64 & 66 & 2 & 64 & 2 & 65 & 1 & 63.7 & 2 \\
\hline Hovey 3" & 2 & 65 & 67 & 2 & 64 & 3 & 65 & 2 & 63.8 & 3 \\
\hline Trolley Car 20" & 1 & 61 & 63 & 2 & 57 & 6 & 59 & 5 & 57.6 & 6 \\
\hline Trolley Car 21" & 1 & 62 & 65 & 2 & 61 & 4 & 63 & 2 & 61.9 & 3 \\
\hline Trolley Car 22" & 1 & 59 & 62 & 2 & 58 & 3 & 60 & 2 & 59.4 & 2 \\
\hline Trolley Car 23" & 2 & 58 & 59 & 2 & 57 & 2 & 58 & 1 & 58.2 & 1 \\
\hline Trolley Car 24" & 2 & 57 & 59 & 2 & 58 & 2 & 58 & 1 & 58.2 & 1 \\
\hline \multicolumn{5}{|c|}{Noise Abatement Details and Evaluation Criteria} & & & & & & \\
\hline \multicolumn{5}{|c|}{Barrier Area (square feet)} & \multicolumn{2}{|l|}{23,948} & \multicolumn{2}{|l|}{} & \multicolumn{2}{|c|}{19,680} \\
\hline \multicolumn{5}{|c|}{Effectiveness Criterion} & \multicolumn{2}{|l|}{1,500} & \multicolumn{2}{|c|}{12,536
1,500} & \multicolumn{2}{|c|}{1,500} \\
\hline \multicolumn{5}{|c|}{Total Number of Impacted Receptor Units} & \multicolumn{2}{|l|}{9} & \multicolumn{2}{|c|}{9} & \multicolumn{2}{|c|}{9} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Number of Impacted Receptor Units Receiving \(\geq 10\) dBA I.L. & 0 & 0 \\
\hline Percent of Impacted Receptor Units Receiving \(\geq 10\) dBA I.L. & \(0 \%\) & \(0 \%\) \\
\hline Number of Impacted Receptor Units Receiving I.L. \(\geq 5\) dBA but <10 dBA & 6 & 4 \\
\hline Total Number of Impacted Receptor Units Benefited & 6 & 4 \\
\hline Percent of Impacted Receptor Units Benefited & \(67 \%\) & \(44 \%\) \\
\hline Number of Non-Impacted Receptor Units Benefited (I.L. \(\geq 5 \mathrm{dBA})\) & 4 & 2 \\
\hline Total Number of Benefited Receptor Units & 10 & 6 \\
\hline Square Feet per Receptor Unit Benefited & 2,395 & 2,089 \\
\hline Narrier Reasonable from a Square Foot/Receptor Unit Standpoint? & 1,535 & No \\
\hline Total Barrier Length (feet) & 12 to 20 & 1,080 \\
\hline Barrier Height Range (feet) & 15.6 & 6 to 16 \\
\hline Average Barrier Height (feet) & 11.61 & 1,260 \\
\hline
\end{tabular}

Notes:
All values represent hourly Leq in dBA
\(d B A=\) Decibels on the A-weighted scale
Impacted Receptor Units (Build noise levels > 66
dBA)
Impacted Receptor Units Receiving I.L. \(\geq 10 \mathrm{dBA}\)
Impacted Receptor Units Receiving I.L. \(\geq 5 \mathrm{dBA}\) but \(<10 \mathrm{dBA}\)
Leq = Equivalent noise level
Non-Impacted Receptor Units Receiving \(\geq 5 \mathrm{dBA}\)

Note: The "2040 No Barrier" results include the Exit 4A project infrastructure and grading, and the constructed I-93 widening berms.

Table 4-17. NSA 4 Barrier Analysis Summary
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{I-93 Improvements Salem to Manchester} & \multicolumn{6}{|c|}{Exit 4A SDEIS} \\
\hline & 2004 FEIS & 2008 Final Design Noise Analysis & North Option 1 + South Option 1 Combined & Trolley Car North Option 1 & Trolley Car North Option 2 & Trolley Car South Option 1 & Trolley Car South Option 2 & Trolley Car South Option 3 \\
\hline Barrier Square Feet & 60,000 & 75,250 & 25,049 & 12,513 & 5,779 & 23,948 & 12,536 & 19,680 \\
\hline Barrier Height (feet) & 12 (6 feet wall, 6 feet berm) & \begin{tabular}{l}
12-18 (10 \\
feet as berm)
\end{tabular} & 4-20 & 4-16 (11 ave) & 8-10 (10 ave) & \[
\begin{gathered}
12-20(16 \\
\text { ave) } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { 6-16 (12 } \\
\text { ave) } \\
\hline
\end{gathered}
\] & 12-20 (16 ave) \\
\hline Length (feet) & 5,000 & 4,450 & 2,696 & 1,161 & 586 & 1,535 & 1,080 & 2,460 \\
\hline No. of Impacted Receptors & 23 & Not reported & 11 & 2 & 2 & 9 & 9 & 9 \\
\hline No. of Benefited Receptors & 28 & 28 & 13 & 3 & 2 & 10 & 6 & 8 \\
\hline Square Feet Per Benefited Receptor & 2,143 & 2,688 & 1,927 & 4,171 & 2,890 & 2,395 & 2,089 & 2,460 \\
\hline Cost (at time of original analysis) & \$900,000 & \$1,068,000 & NA & NA & NA & NA & NA & NA \\
\hline Cost Per Benefited Receptor (at time of original analysis) & \$32,143 & \$38,143 & NA & NA & NA & NA & NA & NA \\
\hline Implied Cost Per Square Foot (at time of original analysis) & \$15.00 & \$14.19 & NA & NA & NA & NA & NA & NA \\
\hline & & & & & & & & \\
\hline Current Cost Per SF & \$38.00 & \$38.00 & \$38.00 & \$38.00 & \$38.00 & \$38.00 & \$38.00 & \$38.00 \\
\hline Current Cost Barrier Cost (no berm discount) & \$2,280,000 & \$2,859,500 & \$951,862 & \$475,494 & \$219,602 & \$910,024 & \$476,368 & \$747,840 \\
\hline Current Cost Per Benefited Receptor & \$81,428.57 & \$102,125.00 & \$73,220.15 & \$158,498.00 & \$109,801.00 & \$91,002.40 & \$79,394.67 & \$93,480.00 \\
\hline
\end{tabular}


Figure 4-18. Trolley Car Lane North- Option 1 Barrier


Figure 4-19. Trolley Car Lane North- Option 2 Barrier


Figure 4-20. Trolley Car Lane South- Option 1 Barrier


Figure 4-21. Trolley Car Lane South- Option 2 Barrier


Figure 4-22. Trolley Car Lane South- Option 3 Barrier

\subsection*{4.3.2 NSA 5 Seasons Lane}

\section*{Previous Analysis}

The 2004 I-93 widening FEIS presented the Seasons Lane neighborhood ("Location 24") as having 10 impacted receptors. A 14-foot barrier (8-foot wall and 6-foot berm) of 2,500 feet in length was proposed for an estimated cost of \(\$ 550,000\). The analysis estimated 19 receptors would be benefited, resulting in a cost of \(\$ 29,000\) per benefited receptor. The cost criterion at that time (1996 policy) was \(\$ 30,000\) per benefited receptor, so based on this information a barrier was recommended.

In 2008, the I-93 widening final design noise analysis recommended a 14-18 foot barrier (with 10 feet of the height on berm) of 3,050 feet in length. The barrier was estimated to benefit 21 receptors, cost \(\$ 738,000\) and have a cost per benefited receptor of \(\$ 35,000\). Although this exceeded the \(\$ 30,000\) threshold, the barrier continued to be recommended.
For purposes of comparing the benefit of new barrier options with the benefits provided by the I-93 widening barrier, the I-93 widening barriers were evaluated for the No Build condition. Table 4-18 summarizes the I-93 barrier performance results for each receptor based on the updated TNM models. This analysis excluded the I-93 widening barrier berms from the terrain data to evaluate the full benefit of the noise barriers. The "barrier height" was calculated based on the top of barrier profile from the final design plans in comparison to pre-I-93 widening construction topography.

Table 4-18. Seasons Lane: I-93 Widening Barrier Benefits, 2040 No Build
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Receptor Unit IDShading Indicates Impacted Receptor Units} & \multirow[t]{3}{*}{Number of Receptor Units} & \multirow[t]{2}{*}{\begin{tabular}{l}
\[
2016
\] \\
Noise Levels
\end{tabular}} & \multicolumn{2}{|l|}{2040 (No Barrier and no berm)- shading indicates impact} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{I-93 Widening Barrier Northbound}} \\
\hline & & & Noise Levels & Increase Over Existing & & \\
\hline & & & & & \begin{tabular}{l}
Noise \\
Levels
\end{tabular} & I.L. \\
\hline Seasons 1" & 1 & 58 & 63 & 5 & 62 & 1 \\
\hline Seasons 10" & 1 & 66 & 71 & 5 & 61 & 10 \\
\hline Seasons 11" & 1 & 66 & 71 & 5 & 61 & 10 \\
\hline Seasons 12" & 1 & 65 & 69 & 4 & 60 & 9 \\
\hline Seasons 2" & 1 & 68 & 72 & 4 & 64 & 8 \\
\hline Seasons 3" & 1 & 59 & 64 & 4 & 60 & 4 \\
\hline Seasons 4" & 1 & 68 & 71 & 3 & 60 & 11 \\
\hline Seasons 5" & 1 & 59 & 63 & 5 & 57 & 6 \\
\hline Seasons 6" & 1 & 67 & 70 & 3 & 60 & 10 \\
\hline Seasons 7" & 1 & 67 & 71 & 4 & 61 & 10 \\
\hline Seasons 8" & 1 & 67 & 71 & 4 & 61 & 10 \\
\hline Seasons 9" & 1 & 67 & 71 & 4 & 61 & 10 \\
\hline Seasons_E" & 1 & 58 & 63 & 5 & 59 & 5 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Receptor Unit ID- \\
Shading Indicates \\
Impacted Receptor \\
Units
\end{tabular} & \begin{tabular}{c} 
Number \\
of \\
Receptor \\
Units
\end{tabular} & \begin{tabular}{c} 
2016 \\
Noise \\
Levels
\end{tabular} & \multicolumn{2}{c|}{\begin{tabular}{c} 
2040 (No Barrier and \\
no berm)- shading \\
indicates impact
\end{tabular}} & \multicolumn{3}{c}{\begin{tabular}{l} 
I-93 Widening Barrier \\
Northbound
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Receptor Unit ID- & Number \\
\begin{tabular}{c} 
Shading Indicates \\
Impacted Receptor \\
Units
\end{tabular} & \begin{tabular}{c} 
Neceptor \\
Units
\end{tabular} & \begin{tabular}{c} 
2016 \\
Noise \\
Levels
\end{tabular} & \multicolumn{2}{|c|}{\begin{tabular}{c} 
2040 (No Barrier and \\
no berm)- shading \\
indicates impact
\end{tabular}}
\end{tabular}

Notes:
All values represent hourly Leq in dBA
\(\mathrm{dBA}=\) Decibels on the A-weighted
scale
Leq = Equivalent noise level
I.L. = Insertion

Loss
Impacted Receptor Units (Build noise levels \(>\)
66 dBA )
Impacted Receptor Units Receiving I.L. \(\geq 10\)
dBA
Impacted Receptor Units Receiving I.L. \(\geq 5 \mathrm{dBA}\)
but \(<10 \mathrm{dBA}\)
Non-Impacted Receptor Units Receiving \(\geq 5\)
dBA

\section*{Updated Analysis}

The updated analysis for Exit 4A shows substantially fewer Seasons Lane receptors would be impacted than was predicted previously ( 12 receptors based on 2040 traffic and no barriers). The receptors are located on hill above the elevation of I-93.

Four barrier options were considered for Seasons Lane as shown in Figures 4-23 through 4-26. The horizontal barrier alignment for the Seasons Lane area was kept the same as the I-93 widening final design barrier alignment, from station \(1717+50\) at the northern end to station 1694. From station 1694 to \(1687+25\), the barrier alignment was shifted east to follow the right-of-way line in order to avoid conflict with the Alternative A northbound on-ramp and to take advantage of the terrain.

As shown in Table 4-19, Option 1 evaluated the barrier necessary to achieve 10 dB insertion loss at the majority of the first-row impacted receptors (the design goal per the November 2016 NHDOT Traffic Noise Policy). The option 1 barrier would be similar in total dimensions to the barrier recommended in the I-93 widening final design, totaling 2,983 feet in length and with an average height of 18 feet. In total, 16 receptor units would be benefited by the option 1 barrier, resulting in 3,367 square feet per receptor unit benefited, which exceeds the effectiveness criterion of 1,500 square feet per benefited receptor.

Barrier options that would provide less insertion loss or only protect a portion of the NSA were also considered, but similarly would not be able to meet the effectiveness criterion. Option 2 would be closest to meeting the criterion at 2,706 square feet per benefited receptor for a barrier with an average height 16.2 feet.

\section*{Conclusion}

Table 4-20 provides an overall summary of the Seasons Lane barrier analyses in comparison to the I-93 widening barrier analyses, including cost information based on recent NHDOT bid prices (\$38 per square foot).
The selection of a preferred option by NHDOT and FHWA was based on consideration of which option would provide a benefit to impacted receptors comparable to the benefit that would be provided if the I-93 widening barriers were built without Exit 4A. NHDOT and FHWA are committed to providing noise barriers in these locations by the I-93 widening 2005 ROD and 2010 Supplemental ROD, regardless of whether the options meet the current noise policy effectiveness criterion. The recommended barrier option for further evaluation during final design is Option 1.

Based on the studies so far completed, NHDOT is committed to the construction of feasible and reasonable noise abatement measures at Seasons Lane. These preliminary indications of likely abatement measures are based upon preliminary design for a barrier with a length of about 3,000 feet and an average height of approximately 18.1 feet, that will reduce the noise level by at least \(5 \mathrm{~dB}(\mathrm{~A})\) for 16 residents. If it is subsequently found during final design that these conditions have substantially changed, the abatement measure(s) might not be provided. A final decision on the installation of the abatement measure(s) will be made during the final design process following the completion of public involvement.

Table 4-19. NSA 5 Barrier Analysis, Seasons Lane, 2040 PM Peak Hour Traffic
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Receptor Unit IDShading Indicates Impacted Receptor Units} & \multirow[t]{2}{*}{Number of Receptor Units} & \multirow[t]{2}{*}{2016 Noise Levels} & \multicolumn{2}{|l|}{2040 (No Barrier)shading indicates impact} & \multicolumn{2}{|l|}{Barrier Option 1} & \multicolumn{2}{|l|}{Barrier Option 2} & \multicolumn{2}{|l|}{Barrier Option 3} & \multicolumn{2}{|l|}{Barrier Option 4} \\
\hline & & & Noise Levels & \begin{tabular}{l}
Increase \\
Over \\
Existing
\end{tabular} & \begin{tabular}{l}
Noise \\
Levels
\end{tabular} & I.L. & Noise Levels & I.L. & Noise Levels & I.L. & Noise Levels & I.L. \\
\hline Seasons 1" & 1 & 58 & 62.3 & 4 & 62 & 0 & 62.1 & 0 & 62.1 & 0 & 62.1 & 0 \\
\hline Seasons 10" (first row) & 1 & 66 & 70.6 & 5 & 60.5 & 10 & 61.2 & 9 & 63.5 & 7 & 61.8 & 9 \\
\hline Seasons 11 (first row) & 1 & 66 & 70.9 & 5 & 60.9 & 10 & 61.4 & 10 & 63.8 & 7 & 62.4 & 9 \\
\hline Seasons 12" (first row) & 1 & 65 & 67 & 2 & 59.7 & 7 & 59.9 & 7 & 62.5 & 5 & 61.8 & 5 \\
\hline Seasons 2" (first row) & 1 & 68 & 74.1 & 6 & 63.8 & 10 & 68.4 & 6 & 68.5 & 6 & 68.4 & 6 \\
\hline Seasons 3" & 1 & 59 & 63.8 & 4 & 60.6 & 3 & 61.6 & 2 & 62.1 & 2 & 61.6 & 2 \\
\hline Seasons 4" (first row) & 1 & 68 & 69.4 & 1 & 60.2 & 9 & 61.3 & 8 & 62.8 & 7 & 61.4 & 8 \\
\hline Seasons 5" & 1 & 59 & 63.3 & 5 & 57.5 & 6 & 58.4 & 5 & 59.8 & 4 & 58.5 & 5 \\
\hline Seasons 6" (first row) & 1 & 67 & 70.1 & 3 & 60.2 & 10 & 61.8 & 8 & 63.6 & 6 & 61.8 & 8 \\
\hline Seasons 7" (first row) & 1 & 67 & 70.5 & 4 & 61 & 10 & 62.6 & 8 & 65 & 6 & 62.7 & 8 \\
\hline Seasons 8" (first row) & 1 & 67 & 70.4 & 4 & 60.8 & 10 & 62.1 & 8 & 65 & 5 & 62.4 & 8 \\
\hline Seasons 9" (first row) & 1 & 67 & 70.8 & 4 & 60.8 & 10 & 61.7 & 9 & 64.3 & 7 & 62.1 & 9 \\
\hline Seasons_E" & 1 & 58 & 63.1 & 5 & 58.9 & 4 & 58.6 & 5 & 61.1 & 2 & 60.9 & 2 \\
\hline Seasons_D" & 1 & 59 & 61.7 & 3 & 59.5 & 2 & 59.3 & 2 & 60.4 & 1 & 60.3 & 1 \\
\hline Seasons_C" & 1 & 56 & 59.3 & 4 & 57.6 & 2 & 57.5 & 2 & 58.4 & 1 & 58.3 & 1 \\
\hline Seasons_B" & 1 & 54 & 57.8 & 4 & 55.8 & 2 & 55.8 & 2 & 56.4 & 1 & 56.3 & 2 \\
\hline Seasons_F' & 1 & 62 & 66.4 & 4 & 61.1 & 5 & 60.7 & 6 & 63 & 3 & 62.1 & 4 \\
\hline Seasons_G" & 1 & 62 & 65.8 & 4 & 60.7 & 5 & 60.8 & 5 & 62.9 & 3 & 61.6 & 4 \\
\hline Seaons_H" & 1 & 61 & 65.2 & 4 & 60 & 5 & 60.4 & 5 & 62.4 & 3 & 60.9 & 4 \\
\hline Seasons_I' & 1 & 61 & 65 & 4 & 59.5 & 6 & 60.3 & 5 & 62.5 & 3 & 60.8 & 4 \\
\hline Seasons_J" & 1 & 60 & 64.6 & 4 & 58.8 & 6 & 59.7 & 5 & 61.9 & 3 & 60 & 5 \\
\hline Seasons_K" & 1 & 62 & 65.7 & 4 & 59.8 & 6 & 61.1 & 5 & 63.5 & 2 & 61.3 & 4 \\
\hline Seasons_L" & 1 & 58 & 62.4 & 5 & 58 & 4 & 58.6 & 4 & 59.7 & 3 & 58.8 & 4 \\
\hline Seasons_N" & 1 & 55 & 59.2 & 4 & 59 & 0 & 59.1 & 0 & 59.1 & 0 & 59.1 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Receptor Unit IDShading Indicates Impacted Receptor Units} & \multirow[t]{2}{*}{Number of Receptor Units} & \multirow[b]{2}{*}{\begin{tabular}{l}
2016 \\
Noise \\
Levels
\end{tabular}} & \multicolumn{2}{|l|}{2040 (No Barrier)shading indicates impact} & \multicolumn{2}{|l|}{Barrier Option 1} & \multicolumn{2}{|l|}{Barrier Option 2} & \multicolumn{2}{|l|}{Barrier Option 3} & \multicolumn{2}{|l|}{Barrier Option 4} \\
\hline & & & Noise Levels & \begin{tabular}{l}
Increase \\
Over \\
Existing
\end{tabular} & Noise Levels & I.L. & Noise Levels & I.L. & Noise Levels & I.L. & Noise Levels & I.L. \\
\hline Seaons_M" & 1 & 55 & 58.1 & 4 & 57.3 & 1 & 57.6 & 1 & 57.8 & 0 & 57.6 & 1 \\
\hline Seasons_A" & 1 & 53 & 56.8 & 4 & 56.5 & 0 & 56.6 & 0 & 56.6 & 0 & 56.6 & 0 \\
\hline Seasons_back_1" & 1 & 52 & 55.8 & 4 & 55.5 & 0 & 55.5 & 0 & 55.6 & 0 & 55.6 & 0 \\
\hline Seasons_back_2" & 1 & 54 & 56.4 & 3 & 55.9 & 1 & 56.1 & 0 & 56.2 & 0 & 56.1 & 0 \\
\hline Summer_back_1" & 1 & 57 & 61.3 & 4 & 57.9 & 3 & 58.5 & 3 & 59.7 & 2 & 58.7 & 3 \\
\hline Autumn_back_1" & 1 & 59 & 62.7 & 4 & 58.9 & 4 & 59.6 & 3 & 61.2 & 2 & 60 & 3 \\
\hline Autumn_back_2" & 1 & 58 & 62.4 & 4 & 58.9 & 4 & 59.5 & 3 & 61.1 & 1 & 59.9 & 3 \\
\hline Autumn_back_3" & 1 & 59 & 62.3 & 4 & 59.1 & 3 & 59.5 & 3 & 60.8 & 2 & 60 & 2 \\
\hline Autumn_back_4" & 1 & 59 & 62.7 & 4 & 59.4 & 3 & 59.7 & 3 & 61.1 & 2 & 60.2 & 3 \\
\hline Autumn_back_5" & 1 & 59 & 63.3 & 4 & 59.9 & 3 & 59.9 & 3 & 61.5 & 2 & 60.7 & 3 \\
\hline Autumn_back_6" & 1 & 61 & 64.9 & 4 & 61.1 & 4 & 61 & 4 & 63 & 2 & 62.1 & 3 \\
\hline Autumn_back_7" & 1 & 61 & 64.4 & 4 & 61.1 & 3 & 60.6 & 4 & 62.7 & 2 & 62.1 & 2 \\
\hline Seasons_back_3" & 1 & 53 & 56.4 & 3 & 55 & 1 & 54.9 & 2 & 55.6 & 1 & 55.5 & 1 \\
\hline \multicolumn{5}{|c|}{Noise Abatement Details and Evaluation Criteria} & & & & & & & & \\
\hline \multicolumn{5}{|c|}{Barrier Area (square feet)} & 53,8 & & & & 27, & & & \\
\hline \multicolumn{5}{|c|}{Effectiveness Criterion} & 1,50 & & & & 1,5 & & 1,5 & \\
\hline \multicolumn{5}{|c|}{Total Number of Impacted Receptor Units} & 12 & & & & 12 & & 1 & \\
\hline \multicolumn{5}{|l|}{Number of Impacted Receptor Units Receiving \(\geq 10\) dBA I.L.} & 7 & & & & 0 & & 0 & \\
\hline \multicolumn{5}{|l|}{Percent of Impacted Receptor Units Receiving \(\geq 10\) dBA I.L.} & 58\% & & & & 0\% & & 0\% & \\
\hline \multicolumn{5}{|l|}{Number of Impacted Receptor Units Receiving I.L. \(\geq 5\) dBA but \(<10 \mathrm{dBA}\)} & 5 & & & & 9 & & 9 & \\
\hline \multicolumn{5}{|l|}{Total Number of Impacted Receptor Units Benefited} & 12 & & & & 9 & & 9 & \\
\hline \multicolumn{5}{|c|}{Percent of Impacted Receptor Units Benefited} & 100\% & & & & 75 & & 75 & \\
\hline \multicolumn{5}{|l|}{Number of Non-Impacted Receptor Units Benefited (I.L. \(\geq 5 \mathrm{dBA}\) )} & 4 & & & & 0 & & & \\
\hline \multicolumn{5}{|c|}{Total Number of Benefited Receptor Units} & 16 & & & & 9 & & 1 & \\
\hline \multicolumn{5}{|c|}{Square Feet per Receptor Unit Benefited} & \multicolumn{2}{|l|}{3,367} & \multicolumn{2}{|c|}{2,706} & \multicolumn{2}{|l|}{3,100} & \multicolumn{2}{|l|}{3,354} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Receptor Unit IDShading Indicates Impacted Receptor Units} & \multirow[t]{2}{*}{Number of Receptor Units} & \multirow{2}{*}{\begin{tabular}{l}
2016 \\
Noise Levels
\end{tabular}} & \multicolumn{2}{|l|}{2040 (No Barrier)shading indicates impact} & \multicolumn{2}{|l|}{Barrier Option 1} & \multicolumn{2}{|l|}{Barrier Option 2} & \multicolumn{2}{|l|}{Barrier Option 3} & \multicolumn{2}{|l|}{Barrier Option 4} \\
\hline & & & \begin{tabular}{l}
Noise \\
Levels
\end{tabular} & \begin{tabular}{l}
Increase \\
Over \\
Existing
\end{tabular} & Noise Levels & I.L. & \begin{tabular}{l}
Noise \\
Levels
\end{tabular} & I.L. & \begin{tabular}{l}
Noise \\
Levels
\end{tabular} & I.L. & \begin{tabular}{l}
Noise \\
Levels
\end{tabular} & I.L. \\
\hline \multicolumn{5}{|l|}{Barrier Reasonable from a Square Foot/Receptor Unit Standpoint?} & \multicolumn{2}{|c|}{No} & \multicolumn{2}{|c|}{No} & \multicolumn{2}{|c|}{No} & \multicolumn{2}{|c|}{No} \\
\hline \multicolumn{5}{|c|}{Total Barrier Length (feet)} & \multicolumn{2}{|c|}{2,983} & \multicolumn{2}{|c|}{2,833} & \multicolumn{2}{|c|}{2,221} & \multicolumn{2}{|c|}{2,221} \\
\hline \multicolumn{5}{|c|}{Barrier Height Range (feet)} & \multicolumn{2}{|c|}{10 to 22} & \multicolumn{2}{|c|}{12 to 18} & \multicolumn{2}{|c|}{10 to 14} & \multicolumn{2}{|r|}{12 to 18} \\
\hline \multicolumn{5}{|c|}{Average Barrier Height (feet)} & \multicolumn{2}{|c|}{18.06} & \multicolumn{2}{|c|}{16.23} & \multicolumn{2}{|c|}{12.56} & \multicolumn{2}{|c|}{16.61} \\
\hline
\end{tabular}

\section*{Notes:}

All values represent hourly Leq in dBA
\(\mathrm{dBA}=\) Decibels on the \(\mathrm{A}-\)
weighted scale
Leq = Equivalent
Impacted Receptor Units Receiving I.L. \(\geq 10 \mathrm{dBA}\)
Impacted Receptor Units Receiving I.L. \(\geq 5\) dBA but <10
noise level
dBA
I.L. = Insertion Loss

Non-Impacted Receptor Units Receiving \(\geq 5 \mathrm{dBA}\)
Note: The " 2040 No Barrier" results include the Exit 4A project infrastructure and grading, and the constructed I-93 widening berms.

Table 4-20. NSA 5 Barrier Analysis Summary
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{I-93 Improvements Salem to Manchester} & \multicolumn{4}{|c|}{Exit 4A SDEIS} \\
\hline & 2004 FEIS & 2008 Final Design Noise Analysis & Option 1 & Option 2 & Option 3 & Option 4 \\
\hline Barrier Square Feet & 35,000 & 52,100 & 53,871 & 45,994 & 27,903 & 36,890 \\
\hline Average Barrier Height (feet) & 14 (8 feet wall, 6 feet berm) & 14-18 (10 feet as berm) & \[
\begin{aligned}
& 10-22(18 \\
& \text { feet ave) }
\end{aligned}
\] & \[
\begin{aligned}
& 12-18(16 \\
& \text { feet ave.) }
\end{aligned}
\] & \[
\begin{aligned}
& 10-14(13 \\
& \text { feet ave.) }
\end{aligned}
\] & \[
\begin{gathered}
\text { 12-18 (17 } \\
\text { ave.) }
\end{gathered}
\] \\
\hline Length (feet) & 2,500 & 3,050 & 2,983 & 2,833 & 2,221 & 2,211 \\
\hline No. of Impacted Receptors & 10 & Not reported & 12 & 12 & 12 & 12 \\
\hline No. of Benefited Receptors & 19 & 21 & 16 & 17 & 9 & 11 \\
\hline Square Feet Per Benefited Receptor & 1,842 & 2,481 & 3,367 & 2,706 & 3,100 & 3,354 \\
\hline Cost (at time of original analysis) & \$550,000 & \$738,000 & NA & NA & NA & NA \\
\hline Cost Per Benefited Receptor (at time of original analysis) & \$28,947 & \$35,143 & NA & NA & NA & NA \\
\hline Implied Cost Per Square Foot (at time of original analysis) & \$15.71 & \$14.17 & NA & NA & NA & NA \\
\hline Current Cost Per SF & \$38.00 & \$38.00 & \$38.00 & \$38.00 & \$38.00 & \$38.00 \\
\hline Current Cost Barrier Cost (no berm discount) & \$1,330,000 & \$1,979,800 & \$2,047,098 & \$1,747,772 & \$1,060,314 & \$1,401,820 \\
\hline Current Cost Per Benefited Receptor & \$70,000.00 & \$94,276.19 & \$127,943.63 & \$102,810.12 & \$117,812.67 & \$127,438.18 \\
\hline
\end{tabular}


Figure 4-23. Seasons Lane- Option 1 Barrier


Figure 4-24. Seasons Lane- Option 2 Barrier


Figure 4-25. Seasons Lane- Option 3 Barrier


Figure 4-26. Seasons Lane- Option 4 Barrier

\subsection*{4.3.3 Folsom Rd./ Tsienneto Rd. Barrier Analyses}

Noise barriers were evaluated in 13 locations along Folsom/Tsienneto Road where noise impacts were predicted to occur under Alternative A. Each potential barrier was developed to include breaks as necessary to not directly conflict with driveways (see Figures 4-27 through 4-34). Multiple heights were modeled ( \(10,12,14\), and 16 feet) for each barrier and the best performing option identified as shown in Table 4-21. The barriers were compared to NHDOT's minimum acoustic criteria ( 7 dBA insertion loss for at least one benefited receptor, and 5 dBA insertion loss for at least one impacted receptor).
Barriers that met these acoustic criteria were then evaluated in comparison to the NHDOT effectiveness criterion of 1,500 square feet per benefited receptor. Three potential barriers met the effectiveness criterion:
- Barrier 3, located on the south side of the connector road between Ferland Drive and Franklin Street
- Barrier 5, located on the south side of Tsienneto Road east of Pinkerton Street
- Barrier 10, located on the north side of Tsienneto Road between Jeff Lane and Scenic Drive

The three barriers that were potentially reasonable and feasible based on acoustic performance and the effectiveness criterion were advanced for further evaluation of engineering, environmental, and safety issues. The engineering/environmental feasibility evaluations are as follows:
- Barrier 3: To provide adequate clear zones, the barrier would need to be located 6 feet offset from the sidewalk (or 4 feet behind a guardrail), which would result in an unacceptable slope limit encroachment into the entrance of the apartment building at 99 North High Street. In addition, this barrier could require extending the Shields Brook Bridge and additional costs of constructing the barrier on the structure.
- Barrier 5: There is insufficient space for construction of a sidewalk and barrier in several sections of this area without resulting in additional property acquisitions or construction of retaining walls that would make the barrier not feasible in terms of cost effectiveness. Existing retaining walls would also be impacted, as well as existing driveways. The eastern end of this proposed barrier would increase wetland impacts.
- Barrier 10: Construction of the noise barrier would necessitate the removal of mature trees in the front yard of two historic properties, which would likely constitute an adverse effect to the setting of these historic resources. There is also a sight distance issue at the intersection of Tsienneto Road and Scenic Drive that would necessitate locating the barrier almost to the front of the historic home at 72 Tsienneto Road to provide clear sight lines for the 35 mph design speed.
In conclusion, barriers 3, 5, and 10 would not be feasible from an engineering/environmental perspective and are not recommended for further consideration. The other 10 barriers evaluated for Tsienneto Road/Folsom Road are either not feasible based on acoustic considerations or not reasonable because they would not meet the NHDOT effectiveness criterion.

Table 4-21. Folosom Rd./ Tsienneto Rd. Barrier Analysis- Initial Evaluation of Acoustic Performance and Effectiveness Criterion
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Barrier No. & Approx. Location & Number of Noise Impacted Receptors in Vicinity & \begin{tabular}{l}
Total \\
Length (feet, accounting for breaks due to driveways)
\end{tabular} & 7 dBA I.L. for at least one benefited receptor? & 5 dBA I.L. for at least one impacted receptor? & Option with lowest SF/benefited receptor and meeting I.L. criteria & SF of option & \begin{tabular}{l}
No. \\
Benefited \\
Receptors
\end{tabular} & SF/benefited receptor & Conclusion \\
\hline 1 & Connector Road South Side, Madden Rd. & 2 & 571 & Yes & Yes & 16 feet & 9,138 & 1 & 9,138 & Barrier is not reasonable based on effectiveness criterion \\
\hline 2 & Connector Road South Side, North High St. to Ferland Dr. & 1 & 519 & No & Yes & N/A & N/A & N/A & N/A & Not feasible because no option can provide at least 7 dBA I.L. \\
\hline 3 & \begin{tabular}{l}
Connector Road \\
South Side, \\
Ferland Dr. to \\
Franklin St.
\end{tabular} & 5 & 247 & Yes & Yes & 10 feet & 2,473 & 4 & 618 & Barrier is feasible and reasonable based on acoustic and effectiveness criterion. Advanced for evaluation of engineering/ environmental issues \\
\hline 4 & Folsom Rd. South Side, Franklin St. to NH 28 & 9 & 911 & Yes & Yes & 14 feet & 12,759 & 6 & 2,127 & Barrier is not reasonable based on effectiveness criterion \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Barrier \\
No.
\end{tabular} & Approx. Location & Number of Noise Impacted Receptors in Vicinity & \begin{tabular}{l}
Total \\
Length (feet, accounting for breaks due to driveways)
\end{tabular} & \begin{tabular}{l}
7 dBA \\
I.L. for at least one benefited receptor?
\end{tabular} & \begin{tabular}{l}
5 dBA \\
I.L. for at least one impacted receptor?
\end{tabular} & Option with lowest SF/benefited receptor and meeting I.L. criteria & SF of option & \begin{tabular}{l}
No. \\
Benefited \\
Receptors
\end{tabular} & SF/benefited receptor & Conclusion \\
\hline 5 & Tsienneto Rd South Side, East of Pinkerton St. & 10 & 1,478 & Yes & Yes & 12 feet & 17,732 & 80 & 222 & Barrier is feasible and reasonable based on acoustic and effectiveness criterion. Advanced for evaluation of engineering/ environmental issues \\
\hline 6 & Bypass 28, East Side, Liniew Dr. to London Rd & 1 & 521 & No & No & N/A & N/A & N/A & N/A & Not feasible because no option can provide at least 7 dBA I.L, and impacted receiver does not receive at least 5 dBA I.L. \\
\hline 7 & Tsienneto Rd, North Side, East of Bypass 28 & 1 & 943 & Yes & Yes & 14 feet & 13,186 & 5 & 2,637 & Barrier is not reasonable based on effectiveness criterion \\
\hline 8 & Tsienneto Rd, north side, west of Barkland Dr. & 1 & 753 & Yes & Yes & 10 feet & 7,530 & 3 & 2,510 & Barrier is not reasonable based on effectiveness criterion \\
\hline 9 & Tsienneto Rd, South Side, west of Fieldstone Dr. & 2 & 970 & Yes & Yes & 16 feet & 15,518 & 6 & 2,586 & Barrier is not reasonable based on effectiveness criterion \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Barrier No. & \begin{tabular}{l}
Approx. \\
Location
\end{tabular} & Number of Noise Impacted Receptors in Vicinity & Total
Length
(feet,
accounting
for breaks
due to
driveways) & 7 dBA I.L. for at least one benefited receptor? & 5 dBA I.L. for at least one impacted receptor? & Option with lowest SF/benefited receptor and meeting I.L. criteria & SF of option & \begin{tabular}{l}
No. \\
Benefited \\
Receptors
\end{tabular} & SF/benefited receptor & Conclusion \\
\hline 10 & Tsienneto Rd, north side, Jeff Ln to Scenic Dr. & 2 & 384 & Yes & Yes & 10 feet & 3,841 & 3 & 1,280 & Barrier is feasible and reasonable based on acoustic and effectiveness criterion. Advan ced for evaluation of engineering/ environmental issues \\
\hline 11 & Tsienneto Rd, north side, East of Jeff Ln & 2 & 685 & Yes & Yes & 10 feet & 6,844 & 2 & 3,422 & Barrier is not reasonable based on effectiveness criterion \\
\hline 12 & \begin{tabular}{l}
NH 102, \\
Tsienneto Rd. \\
to English \\
Range Rd
\end{tabular} & 2 & 859 & No & Yes & N/A & N/A & N/A & N/A & Not feasible because no option can provide at least 7 dBA I.L. \\
\hline 13 & NH 102, north of North Shore Rd. & 3 & 468 & Yes & Yes & 10 feet & 4,682 & 3 & 1,561 & Barrier is not reasonable based on effectiveness criterion \\
\hline
\end{tabular}


Figure 4-27. Potential Barriers 1, 2 and 3


Figure 4-28. Potential Barrier 4


Figure 4-29. Potential Barrier 5


Figure 4-30. Potential Barrier 6


Figure 4-31. Potential Barrier 7


Figure 4-32. Potential Barriers 8 and 9


Figure 4-33. Potential Barriers 10 and 11


Figure 4-34. Potential Barriers 12 and 13

\subsection*{4.4 Undeveloped Lands Noise Analysis for Future Land Use Planning}

In addition to identifying impacts to existing land uses, FHWA's traffic noise regulations require consideration of "undeveloped lands for which development is planned, designed and programmed, which may be affected by noise from the highway." For this project, the primary undeveloped lands are the site of Woodmont Commons on the east and west side of I-93. Woodmont Commons is Planned Unit Development approved by the Town of Londonderry in 2013. Additional site plan review and local approvals are required for each portion of the plan to advance to construction-as of July 2018 no specific development proposal has been submitted for the portions of Woodmont Commons East and West closest to the interchange area (the areas of Woodmont East under construction are closer to Exit 4 and outside the study area). Although no building permit has been issued that would require detailed analysis of impacts and mitigation, noise contours were developed to aid the Town of Londonderry in future land use planning decisions in this area. The contours were developed by analyzing a dense receptor grid and TNM and interpolating contours using ArcGIS. The receptors were assigned elevations based on LIDAR data so that the noise contours accurately reflect existing terrain. Figure 4-27 shows the Alternative A 2040 PM peak hour noise contours for the immediate interchange area. The contours show the effects of terrain shielding provided by portions of the connector road ramps and that the size of the 66 dBA contour zone along the connector road is much smaller than the 66 dBA contour zone along the I-93 mainline, which is consistent with the I-93 volumes being substantially higher than the connector road.

Figure 4-35. Undeveloped Lands Noise Contours


\subsection*{4.5 Construction Noise Impacts and Mitigation}

Construction noise differs from traffic noise in length, type, and duration of noise events. Construction noise is of a fixed duration and ceases at the completion of the construction phase. Construction noise, usually limited to daylight hours, differs from normal vehicular traffic noise, which continues throughout the day- and night-time hours. Additionally, construction-related noise is responsible for a variety of impulsive, discontinuous noise sources, such as jack-hammer and/or vibratory rollers. Traffic noise, although varying in level, is more continuous as a noise source. Temporary increase in noise levels will occur during the time period that construction takes place. Noise levels due to construction, although temporary, can impact areas adjacent to the proposed project.
Impacts due to construction noise are dependent upon the following criteria:
- Time and duration of construction activities;
- Equipment types; and
- Equipment usage cycle.

Typical construction phases for the proposed project may involve the following construction activities:
- Demolition: Removal of structures within the right-of-way.
- Clearing and Grubbing: Existing landscaping, along with unwanted earth and rock.
- General Earthwork: Site topography will be altered in order to prepare the area for the roadway design. Earth moving operations will be required to prepare the roadbed. Trenches will be excavated for drainage materials.
- Foundations: Preparation for, and construction of, foundation support systems for both bridge and other primary foundation structures.
- Paving Operations: Preparation of the base layer, such as roadbed compaction and the laying of substrata material as well as surface paving operations.
- Finishing: Cleanup and landscaping.

Equipment such as bulldozers, scrapers, pavers, backhoe, graders, loaders, cranes, trucks, compressors, vibratory compactors, generators, and pile driving operations are typically utilized during construction.
Mitigation measures will be incorporated into the contract documents to lessen potential construction noise impacts. The following mitigation strategies will be employed to the extent practicable to limit the potential impact of noise:
- Source Control
- All exhaust systems in good working order, also using properly designed engine enclosures, and intake silencers.
- Regular equipment maintenance.
- Site Control
- Placement of stationary equipment as far away from sensitive receptors as possible (i.e., pumps, compressors, aggregate crushers, AC plants, operators, etc.).
- Choice of disposal sites and haul routes thereto.
- Employing shielding where possible.
- Time and Activity Constraints
- Schedule of operations to coincide with periods when people would least likely be affected.
- Limiting working hours and work days to least noise sensitive times.
- Community Awareness
- Public notification of construction operations.
- Methods to handle complaints.

\subsection*{5.0 REFERENCES}

Cowan, James. 1994. Handbook of Environmental Acoustics. New York: Van Nostrand Reinhold.

FHWA. 2016. Traffic Noise Model Version 2.5. May 19, 2016. Available at: https://www.fhwa.dot.gov/environment/noise/traffic_noise_model/tnm_v25/.

FHWA. 2011. Highway Traffic Noise: Analysis and Abatement Guidance. Original document dated June 2010, revised December 2010, and re-issued 2011. Available at: http://www.fhwa.dot.gov/Environment/noise/regulations_and_guidance/analysis_and_ab atement_guidance/revguidance.pdf.

FHWA. 2010. Procedures for Abatement of Highway Traffic Noise and Construction Noise: FAPG 23 CFR 772. July 13, 2010. Available at: https://www.gpo.gov/fdsys/pkg/FR-2010-07-13/pdf/2010-15848.pdf.

FHWA. 1996. Measurement of Highway-Related Noise: Final Report (FHWA-PD-96-046). May, 1996. Available at: http://www.fhwa.dot.gov/environment/noise/measurement/measure.cfm.

NHDOT (New Hampshire Department of Transportation). 2016. Ten Year Transportation Improvement Plan 2017-2026. Available at: https://www.nh.gov/dot/org/projectdevelopment/planning/typ/documents/ApprovalTYPCompleteBook6.24.16.pdf.

NHDOT. 2016. Policy and Procedural Guidelines for the Assessment and Abatement of Highway Traffic Noise for Type I \& II Highway Projects. November 30, 2016. Available at: https://www.nh.gov/dot/org/projectdevelopment/environment/units/programmanagement/documents/2016NHDOTTypeIandIINoisePolicy.pdf.

NHDOT and The Towns (New Hampshire Department of Transportation and the Towns of Derry and Londonderry). 2015. State/Local Project Agreement for Derry-Londonderry, I93 Exit 4A. Dated December 23, 2015.

Town of Londonderry, New Hampshire. 2016. Municipal Code Title IV, Chapter XIV, Noise Regulations. Ordinance \#2016-03. Signed June 2, 2016. Available at: http://www.londonderrynh.org/Pages/LondonderryNH_Manager/Official\%20Town\%20D ocuments/Ordinances/14-01\%20to\%20Present/16/16-03.

Town of Londonderry, New Hampshire. 2002. Municipal Code Title III, Land Use Codes.
Ordinance \#2002-12. Adopted August 26, 2002. Available at: http://www.londonderrynh.org/Pages/LondonderryNH_Manager/Official\%20Town\%20D ocuments/Ordinances/00-01\%20to\%2004-16/02/02-12.

Town of Londonderry, New Hampshire. 1997. Zoning Ordinance Section VII, Commercial Performance Standards. Adopted June 16, 1997. Available at: http://www.londonderrynh.org/Pages/LondonderryNH_Manager/Official\%20Town\%20D ocuments/Ordinances/97-01\%20to\%2099-18/97/97-06.

\section*{Appendix A: Noise Measurement Field Data Sheets, Photos, and Noise Meter Calibration Certificates}

\section*{MONITORING LOCATIONS - SKETCHES AND FIELD DATA}

\section*{Noise Monitoring Fieldwork - Site Diagram}

The Louis Berger Group, Inc.

 buildings \& signs, store names, hydrants, telephone poles, manholes, etc.)

North Arrow


16



Elevation View (Ground Plane/Cross-section view - Indicate terrain, roadway, height and location of receptor, meter, walls/barriers, buildings, etc.)

SHORT TERM NOISE MEASUREMENT RESULTS (20 MINUTES)
site A
Address 25 Trolley Car Ln


Note Ambient and Unusual Noises (erg. helicopter, sirplane, ambulance, motorcycle, police, ambulance, fire truck, garbage truck, people yelling/shouting, barking dog, etc)
Calm, overcast
\(\begin{array}{llllllll} & & m M & \text { NB } & \text { Car } & \text { DU } & \text { mT } & \text { HT } \\ 2 & 774 & 164 & 28 & 44 & 0\end{array}\)
\(\begin{array}{lllllll}\text { SB } & 2 & 794 & 209 & 32 & 41 & 1\end{array}\)
\(\begin{array}{lllllll}N B & 2 & 870 & 163 & 13 & 19 & 4\end{array}\)
\(\begin{array}{llllllll}\text { SB } & 13 & 791 & 112 & 12 & 10 & 4\end{array}\)


Calm Clear


PM small water pump for sining supply running; mas add to overall level pump stepped@ \(\approx 7: 50\) into 20:00.min ron

Noise Monitoring Fieldwork - Site Diagram The Louis Berger Group, Inc.



Note Ambient and Unusual Noises (egg. helicopter, airplane, ambulance, motorcycle, police, ambulance, fris truck, garbage truck, people yellinglshouting, barking dog, etc.)
AM Peak: no unusual noises to report

PM Peak: Lawn mowerinneranioring lot at start to 2minelaped.
* Traffic counts an back of sheet


Morning \(B\)
\begin{tabular}{lccc} 
Motorcycle & \(\frac{N B}{2}\) & \(\frac{S B}{2}\) \\
passenger & 2 & 74 & 794 \\
pickup & 164 & 209 \\
med truck & 28 & 32 \\
heangtruck & 44 & 41 \\
Buses & 6 & 1
\end{tabular}

Afternoon B
\begin{tabular}{cc} 
NB & SB \\
Made 2 & 13 \\
passenger 870 & 791 \\
picture 163 & 112 \\
med truck 13 & 12 \\
heavy 19 & 4 \\
Buses 4 & 4
\end{tabular}


Note Ambient and Unusual Noises (eeg. helicopter, alpplane, ambulance, motorcycle, police, ambulance, fro truck, garbage luck, people yelling/shouling, barking dog, etc.)
\(\qquad\)

passenger
pickup
med truck
4axle
Tractor trailer
saxle


38
36



\section*{Noise Monitoring Fieldwork - Site Diagram The Louis Berger Group, Inc.}


SHORT TERM NOISE MEASUREMENT RESULTS (20 MINUTES)
site C
Address 60 Seasons Ln


Note Ambient and Unusual Noises (eeg. helicopter, airplane, ambulance, motorcycle, police, ambulance, fire truck, garbage truck, people yalling/shouting, barking dog, etc.)
Calm , overccest
AM NB \(0 \quad 746 \quad 120 \quad 24 \quad 27 \quad 2\)
\(\begin{array}{llllllll}S B & 1 & 806 & 164 & 36 & 32 & 1\end{array}\)
PM Cdalm-Clear
\(\begin{array}{lllllll}\text { NB } & 4 & 921 & 220 & 23 & 18 & 4\end{array}\)
\(\begin{array}{lllllll}S B & 6 & 836 & 153 & 22 & 10 & 2\end{array}\)


Note Ambient and Unusual Noises (e,g, helicopter, airplane, ambulance, motorcycle, police, ambulance, frise (ruck, garbage truck, people yelling/shouting, barking dog, etc)
Calm Clear \(M\) Car PO nT HT B
\(\begin{array}{lllllll}N B & 7 & 890 & 174 & 34 & 42 & 2\end{array}\)
\(\begin{array}{lllllll}S B & 9 & 854 & 196 & 45 & 26 & 2\end{array}\)
Calm, Clear
\(\begin{array}{lllllll}N B & 5 & 887 & 223 & 21 & 13 & 2\end{array}\)
\(\begin{array}{lllllll}S B & 9 & 778 & 139 & 35 & 21 & 4\end{array}\)

\section*{Noise Monitoring Fieldwork - Site Diagram} The Louis Berger Group, Inc.


Plan View (Bird's Eye View - Indicate: site -location, meter-location, distance (ft) to landmarks, roadway \& travel lane direction, geographical objects - trees, water, buildings \& signs, store names, hydrants, telephone poles, manholes, etc.)


North Arrow


Elevation View (Ground Plane/Cross-section view - Indicate terrain, roadway, height and location of receptor, meter, wallsbaariers, buildings, etc.)



Note Ambient and Unusual Noises (eeg. helicopter, alpplane, ambulance, motorcycle, police, ambulance, fire truck, garbage truck, people yelling/shouting, barking dog, etc)
 Motorcycle


Pickup 29 * see back of sheet for em traffic
\(\qquad\)
\(\qquad\)


\begin{tabular}{ccc} 
PM Traffic \(-D\) & 9loolic & sre \\
motorcule & 1 & West \\
passengercars & 174 & 131 \\
pickup & 65 & 45 \\
Medtruck & 8 & \(\varnothing\) \\
Large
\end{tabular}


Note Ambient and Unusual Noises (erg. helicopter, airplane, ambulance, motorcycle, police, ambulance, fire truck, garbage inch, people yelling/shouting. barking dog, etc)
\(\qquad\)
Traffic count


\section*{Noise Monitoring Fieldwork - Site Diagram}

The Louis Berger Group, Inc.
\begin{tabular}{|c|c|c|c|c|}
\hline Receptor 1/Site \# & Date & \multicolumn{2}{|l|}{Site Address / Location} & \\
\hline & & & & P \\
\hline Lane / Traffic Direction & \multicolumn{4}{|l|}{Receptor / Site Surface (Grass, Lawn, Sidewalk, etc.) Nearby Landmark} \\
\hline & \multicolumn{2}{|l|}{Gracl} & & \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
Roadway Pavement Type \\
(Dirt Road, Asphalt, Concrete, Wet, etc.)
\end{tabular}} & \multicolumn{2}{|l|}{Distance to Landmark} \\
\hline \multirow[t]{2}{*}{Meterological Condition (Clear, Sunny, Overcast, etc.)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{|c|c|}
\hline \begin{tabular}{c} 
Temperature \\
(degrees)
\end{tabular} & \begin{tabular}{c} 
Wind Condition/Speed \\
(Mild, Breezy, Gusty, etc.)
\end{tabular} \\
\hline
\end{tabular}}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Equipment Check List \\
Noise Meter, Calibrator, Windscreen, Tripod
\end{tabular}} & Noise Meter Mod \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Plan View (Bird's Eye View - Indicate: ste -location, meter- Iocation, distance (ft) to landmarks, roadway \& travel lane direction, geographical objects - trees, water, buildings \& signs, store names, hydrants, telephone poles, manholes, etc.) \\
North Arrow
\end{tabular}} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Elevation View (Ground Plane/Cross-section view - Indicate terrain, roadway, height and location of receptor, meter, walls/barriers, buildings, etc.) \\
*Not to scale!
\end{tabular}} \\
\hline
\end{tabular}

SHORT TERM NOISE MEASUREMENT RESULTS (20 MINUTES)


Note Ambient and Unusual Noises (eeg. helicopter, airplane, ambulance, motorcycle, police, ambulance, fire truck, garbage luck, people yelling/shouting, barking dog, etc.)
Calm Clear \(m\) car pu mu HT \(B\)
\begin{tabular}{llllllll} 
& \(A M\binom{\varepsilon B}{\omega B}\) & 1 & 147 & 31 & 5 & 0 & 3 \\
Calm & & & & & \\
lar & \(\operatorname{EB}\) & 1 & 95 & 31 & 0 & 0 & 0 \\
& WB & 3 & 57 & 18 & 1 & 0 & 0
\end{tabular}

Address 71 Tsienneto Rd


Note Ambient and Unusual Noises (egg. helicopter, alplane, ambulance, motorcycle, police, ambulance, fire truck, garbage truck, people yelling/shouting, barking dog, etc.)
\(\qquad\)
 Bus

\section*{MONITORING LOCATIONS - TRAFFIC CLASSIFICATION DATA}

Tue. 20 Sep. AM
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Site/Record & \multicolumn{2}{|c|}{A/30} & \multicolumn{2}{|r|}{B/01} & \multicolumn{2}{|r|}{C/38} & \multicolumn{2}{|l|}{D/03} \\
\hline Time & \multicolumn{2}{|c|}{7:00-7:20} & \multicolumn{2}{|r|}{7:00-7:20} & \multicolumn{2}{|r|}{7:40-8:00} & \multicolumn{2}{|l|}{7:40-8:00} \\
\hline Direction/Road & NB I-93 & SB I-93 & NB I-93 & SB I-93 & NB I-93 & SB I-93 & WB Fol. Rd & EB Fol. Rd \\
\hline Motorcycles & 2 & 2 & 2 & 2 & 7 & 9 & 1 & 0 \\
\hline Cars & 774 & 794 & 774 & 794 & 890 & 854 & 131 & 102 \\
\hline Pick-Up & 164 & 209 & 164 & 209 & 174 & 196 & 29 & 20 \\
\hline Med. Truck & 28 & 32 & 28 & 32 & 34 & 45 & 4 & 4 \\
\hline Heavy Trk. & 44 & 41 & 44 & 41 & 42 & 26 & 0 & 1 \\
\hline Bus & 0 & 1 & 0 & 1 & 2 & 2 & 0 & 0 \\
\hline
\end{tabular}

Tue. 20 Sep. PM
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Site/Record & \multicolumn{2}{|l|}{A/33} & \multicolumn{2}{|r|}{B/05} & \multicolumn{2}{|r|}{C/32} & \multicolumn{2}{|l|}{D/04} \\
\hline Time & \multicolumn{2}{|l|}{17:30-17:50} & \multicolumn{2}{|l|}{17:30-17:50} & \multicolumn{2}{|l|}{16:30-16:50} & \multicolumn{2}{|l|}{7:40-8:00} \\
\hline Direction/Road & NB I-93 & SB I-93 & NB I-93 & SB I-93 & NB I-93 & SB I-93 & WB Fol. Rd & EB Fol. Rd \\
\hline Motorcycles & 2 & 13 & 3 & 13 & 4 & 6 & 3 & 1 \\
\hline Cars & 870 & 791 & 870 & 791 & 921 & 936 & 131 & 174 \\
\hline Pick-Up & 163 & 112 & 163 & 112 & 220 & 153 & 45 & 65 \\
\hline Med. Truck & 13 & 12 & 13 & 12 & 23 & 22 & 0 & 8 \\
\hline Heavy Trk. & 19 & 10 & 19 & 10 & 18 & 10 & 0 & 0 \\
\hline Bus & 4 & 4 & 4 & 4 & 4 & 2 & 0 & 0 \\
\hline
\end{tabular}

Wed. 21 Sep. AM
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Site/Record & \multicolumn{2}{|l|}{A/34} & \multicolumn{2}{|r|}{B/06} & D/07 & \multicolumn{2}{|c|}{E/35} \\
\hline Time & \multicolumn{2}{|l|}{7:00-7:20} & \multicolumn{2}{|r|}{7:00-7:20} & 7:30-7:50 & \multicolumn{2}{|c|}{7:30-7:50} \\
\hline Direction/Road & NB I-93 & SB I-93 & NB I-93 & SB I-93 & WB Fol. Rd EB Fol. Rd & WB Tsi Rd & EB Tsi Rd \\
\hline Motorcycles & 1 & 6 & 1 & 6 & 2 & & 1 \\
\hline Cars & 728 & 844 & 728 & 844 & 207 & & 147 \\
\hline Pick-Up & 141 & 176 & 141 & 176 & 49 & & 31 \\
\hline Med. Truck & 38 & 30 & 38 & 30 & 7 & & 5 \\
\hline Heavy Trk. & 36 & 31 & 36 & 31 & 0 & & 0 \\
\hline Bus & 0 & 1 & 0 & 1 & 1 & & 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Wed. 21 Sep. PM} \\
\hline Site/Record & \multicolumn{2}{|l|}{A/37} & \multicolumn{2}{|r|}{B/15} & \multicolumn{2}{|l|}{D/10} & \multicolumn{3}{|l|}{E/36} \\
\hline Time & \multicolumn{2}{|l|}{17:00-17:20} & \multicolumn{2}{|l|}{17:00-17:20} & \multicolumn{2}{|l|}{16:30-16:50} & \multicolumn{3}{|l|}{16:30-16:50} \\
\hline Direction/Road & \multicolumn{2}{|l|}{NB I-93 SB I-93} & NB I-93 & SB I-93 & \multicolumn{2}{|l|}{WB Fol. Rd EB Fol. Rd} & WB Tsi Rd & \multicolumn{2}{|l|}{EB Tsi Rd} \\
\hline Motorcycles & 8 & 5 & & 8 5 & 4 & 0 & 1 & 1 & 3 \\
\hline Cars & 969 & 880 & 969 & 9880 & 185 & 125 & 147 & & 57 \\
\hline Pick-Up & 164 & 157 & 16 & 4157 & 33 & 22 & 31 & & 18 \\
\hline Med. Truck & 21 & 20 & 21 & 120 & 1 & 6 & 5 & 5 & 1 \\
\hline Heavy Trk. & 15 & 22 & 15 & 522 & 1 & 0 & 0 & 0 & 0 \\
\hline Bus & 2 & 3 & & 23 & 0 & 0 & 3 & 3 & 0 \\
\hline \multicolumn{10}{|l|}{Thu. 22 Sep. AM} \\
\hline Site/Record & C/3 & & & E/16 & & & & & \\
\hline Time & 7:15-7 & 7:35 & 7:15 & -7:35 & & & & & \\
\hline Direction/Road & NB I-93 & SB I-93 & WB Tsi Rd & EB Tsi Rd & & & & & \\
\hline Motorcycles & 7 & 9 & & 21 & & & & & \\
\hline Cars & 890 & 854 & 87 & 728 & & & & & \\
\hline Pick-Up & 174 & 196 & 73 & 312 & & & & & \\
\hline Med. Truck & 34 & 45 & & 21 & & & & & \\
\hline Heavy Trk. & 42 & 26 & & \(0 \quad 0\) & & & & & \\
\hline Bus & 2 & 2 & & 00 & & & & & \\
\hline \multicolumn{10}{|l|}{Thu. 22 Sep. PM} \\
\hline Site/Record & C/3 & & & E/17 & & & & & \\
\hline Time & 16:30- & 16:50 & 16:30 & -16:50 & & & & & \\
\hline Direction/Road & NB I-93 & SB I-93 & WB Tsi Rd & EB Tsi Rd & & & & & \\
\hline Motorcycles & 5 & 9 & & \(0 \quad 1\) & & & & & \\
\hline Cars & 887 & 778 & 86 & 6107 & & & & & \\
\hline Pick-Up & 223 & 139 & 16 & \(6 \quad 17\) & & & & & \\
\hline Med. Truck & 21 & 35 & & \(3 \quad 3\) & & & & & \\
\hline Heavy Trk. & 13 & 21 & & \(0 \quad 1\) & & & & & \\
\hline Bus & 2 & 4 & & 00 & & & & & \\
\hline
\end{tabular}

\section*{MONITORING LOCATIONS - PHOTOGRAPHS}


Location A: 24 Trolley Car Lane, Looking East


Location A: 24 Trolley Car Lane, Looking North


Location B: 52 Trolley Car Lane, Looking Southeast


Location B: 52 Trolley Car Lane, Looking North


Location C: 60 Seasons Lane, Looking South


Location C: 60 Seasons Lane, Looking Northeast


Location D: 6 Folsom Road, Looking East


Location D:6 Folsom Road, Looking Southwest


Location E: 71 Tsienneto Road, Looking North


Location E: 71 Tsienneto Road, Looking West

\section*{Calibration Certificates}
\[
\begin{aligned}
& \text { ISO 17025: } 2005, \text { ANSI/NCSL Z540:1994 Part } 1 \\
& \text { ACCREDITED by NVLAP (an ILAC MRA signatory) }
\end{aligned}
\]

\section*{Calibration Certificate No. 36572}
\begin{tabular}{ll} 
Instrument: & Sound Level Meter \\
Model: & NL42 \\
Manufacturer: & Rion \\
Serial number: & \(\mathbf{0 0 1 3 3 0 0 2}\) \\
Tested with: & \begin{tabular}{l} 
Microphone UC52 s/n 144581 \\
\\
Type (class):
\end{tabular} \\
Preamplifier NH24 s/n 23049 \\
Customer: & Scantek, Inc. \\
Tel/Fax: & \(\mathbf{4 1 0 - 2 9 0 - 7 7 2 6 ~ / - 9 1 6 7 ~}\)
\end{tabular}

Date Calibrated:7/7/2016 Cal Due: 7/7/2017
Status:
In tolerance:
Out of tolerance:
See comments:
\begin{tabular}{c|c} 
Received & Sent \\
\hline \(\mathbf{X}\) & \(\mathbf{X}\) \\
\hline &. \\
\hline &
\end{tabular} Contains non-accredited tests: __Yes X_No Calibration service: __ Basic X Standard
Address: 6430 Dobbin Road, Suite C
Columbia, MD 21045

Tested in accordance with the following procedures and standards:
Calibration of Sound Level Meters, Scantek Inc., Rev. 6/26/2015
SLM \& Dosimeters - Acoustical Tests, Scantek Inc., Rev. 7/6/2011
Instrumentation used for calibration: Nor-1504 Norsonic Test System:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Instrument - Manufacturer} & \multirow[b]{2}{*}{Descriptlon} & \multirow[b]{2}{*}{S/N} & \multirow[b]{2}{*}{Cal. Date} & Traceability evidence & \multirow[t]{2}{*}{Cal. Due} \\
\hline & & & & Cal. Lab / Accreditation & \\
\hline 483B-Norsonic & SME Cal Unit & 25747 & Jul 6, 2016 & Scantek, Inc./ NVLAP & Jul 6, 2017 \\
\hline 483B-Norsonic & Function Generator & 61646 & Aug 12, 2015 & ACR Env./ A2LA & Aug 12, 2017 \\
\hline 34401A-Agilent Technologies & Digital Voltmeter & MY41022.043 & Aug 13, 2015 & ACR Env. / AzLA & Aug 13, 2016 \\
\hline DPI 141-Druck & Pressure Indicator & 790/00-04 & Nov 18, 2014 & ACR Env./ A2LA & Nov 18, 2016 \\
\hline HMP233-Vaisala Oyj & Humidity \& Temp. Transmitter & V3820001 & Oct 1, 2015 & ACR Env./ A2LA & Apr 1, 2017 \\
\hline PC Program 1019 Norsonic & Calibration software & v.6.1T & Validated Nov 2014 & Scantek, Inc. & - \\
\hline 1251-Norsonic & Calibrator & 30878 & Nov 10, 2015 & Scantek, inc./ NVLAP & Nov 10, 2016 \\
\hline 1251-Norsonic & Multifunction calibrator & 2305103 & Jul 24, 2015 & Scantek, Inc./ NVLAP & Jul 24, 2016 \\
\hline
\end{tabular}

Instrumentation and test results are traceable to SI (International System of Units) through standards maintained by NIST (USA) and NPL (UK).

Environmental conditions:
\begin{tabular}{|c|c|c|}
\hline Temperature \(\left({ }^{\circ} \mathrm{C}\right)\) & Barometric pressure \((\mathrm{kPa})\) & Relative Humidity \((\%)\) \\
\hline 22.6 & 99.65 & 44.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Calibrated by: & Jaremy Gotwalt & Authorized signatory: & Valentin, Buzduga \\
\hline Signature & lant 98 dhas & Signature & 7 \\
\hline Date & (0) 717116 & Date & \(7107 / 2016\) \\
\hline
\end{tabular}

\footnotetext{
Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory.
This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.
Document stored Z:\Calibration Lab\SLM 2016\RIONL42_00133002_M1.doC
}

CALIBRATION LABORATORY
ISO 17025: 2005, ANSI/NCSL Z540:1994 Part 1
ACCREDITED by NVLAP (an ILAC MRA signatory)


NVLAP Lab Code: 200625-0

\section*{Calibration Certificate No. 35807}
\begin{tabular}{|c|c|c|c|c|}
\hline Instrument: & Acoustical Calibrator & \multicolumn{3}{|l|}{Date Calibrated: 3/16/2016 Cal Due: 3/16/2017} \\
\hline Model: & 1251 & Status: & Received & Sent \\
\hline Manufacturer: & Norsonic & In tolerance: & X & X \\
\hline Serial number: & 22770 & Out of tolerance: & & \\
\hline Class (IEC 60942): & 1 & See comments: & & \\
\hline Barometer type: Barometer \(\mathrm{s} / \mathrm{n}\) : & & \multicolumn{3}{|l|}{Contains non-accredited tests: __Yes \(\underline{\mathbf{X}}\) No} \\
\hline Customer: Tel/Fax: & \begin{tabular}{l}
Scantek, Inc. \\
410-290-7726 / 410-290-9167
\end{tabular} & Address: \(\begin{array}{ll}6430 \\ & \text { Colum }\end{array}\) & bin Rd., Su MD, 2104 & \\
\hline
\end{tabular}

Tested in accordance with the following procedures and standards:
Calibration of Acoustical Calibrators, Scantek Inc., Rev. 1/16/2015
Instrumentation used for calibration: Nor-1504 Norsonic Test System:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instrument - Manufacturer} & \multirow[t]{2}{*}{Description} & \multirow[t]{2}{*}{S/N} & \multirow[t]{2}{*}{Cal. Date} & Traceability evidence & \multirow[b]{2}{*}{Cal. Due} \\
\hline & & & & Cal. Lab / Accreditation & \\
\hline 483B-Norsonic & SME Cal Unit & 31061 & Jul 20, 2015 & Scantek, Inc./ NVLAP & Jul 20, 2016 \\
\hline DS-360-SRS & Function Generator & 88077 & Sep 9, 2014 & ACR Env./ A2LA & Sep 9, 2016 \\
\hline 34401A-Agilent Technologies & Digital Voltmeter & MY47011118 & Sep 24, 2015 & ACR Env./ A2LA & Sep 24, 2016 \\
\hline HM30-Thommen & Meteo Station & 1040170/39633 & Oct 23, 2015 & ACR Env./ A2LA & Oct 23, 2016 \\
\hline 110 Norsonic & Real Time Analyzer & 1403978 & Mat 19, 2015 & Scantek, Inc. / NVLAT & Mar 19, 2016 \\
\hline PC Program 1018 Norsonic & Calibration software & v.6.1T & Validated Nov 2014 & Scantek, Inc. & - \\
\hline 4192-Brüel\&Kjær & Microphone & 2854675 & Nov 11, 2015 & Scantek, Inc. / NVLAP & Nov 11, 2016 \\
\hline 1203-Norsonic & Preamplifier & 92268 & Oct 14, 2015 & Scantek, Inc./ NVLAP & Oct 14, 2016 \\
\hline
\end{tabular}

Instrumentation and test results are traceable to SI (International System of Units) through standards maintained by NIST (USA) and NPL (UK)
\begin{tabular}{|c|c|c|c|}
\hline Calibrated by: & Jeremy Gotwalt & Authorized signatory: & Valentin Buzduga \\
\hline Signature &  & Signature & , \\
\hline Date & \(13 / 16 / 116\) & Date & \(3 / 1 6 \longdiv { 2 0 1 6 }\) \\
\hline
\end{tabular}

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory.
This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.
Document stored as: Z:\Calibration Lab\Cal 2016\NOR1251_22770_M1.doc

CALIBRATION LABORATORY

\author{
ISO 17025: 2005, ANSI/NCSL Z540:1994 Part 1 ACCREDITED by NVLAP (an ILAC MRA signatory)
}

\title{
Calibration Certificate No. 36955
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Instrument: & Sound Level Meter & \multicolumn{2}{|l|}{Date Calibrated:9/8/2016} & \multicolumn{2}{|l|}{Cal Due: 9/8/2017} \\
\hline Model: & NL42 & \multirow[t]{2}{*}{\begin{tabular}{l}
Status: \\
In tolerance:
\end{tabular}} & Received & \multicolumn{2}{|l|}{Sent} \\
\hline Manufacturer: & Rion & & x & x & \\
\hline Serial number: & 00321503 & \multicolumn{2}{|l|}{Out of tolerance:} & & \\
\hline Tested with: & Microphone UC52 s/n 139853 & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l|l} 
See comments: & \\
Contains non-accredited tests: & \\
Yes \(X\)
\end{tabular}}} \\
\hline & Preamplifier NH24 s/n 11523 & & & \multicolumn{2}{|l|}{Contains non-accredited tests: __Yes X No} \\
\hline Type (class): & 2 & \multicolumn{4}{|l|}{Calibration service: _ Basic X Standard} \\
\hline Customer: & Scantek, Inc. & \multirow[t]{2}{*}{Address: 6430} & \multicolumn{3}{|l|}{30 Dobbin Road, Suite C} \\
\hline Tel/Fax: & 410-290-7726 / 410-290-9167 & & , MD 2104 & & \\
\hline
\end{tabular}

Tested in accordance with the following procedures and standards: Calibration of Sound Level Meters, Scantek Inc., Rev. 6/22/2012 SLM \& Dosimeters - Acoustical Tests, Scantek Inc., Rev. 7/6/2011

Instrumentation used for calibration: Nor-1504 Norsonic Test System:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Instrument - Manufacturer} & \multirow[b]{2}{*}{Description} & \multirow[b]{2}{*}{S/N} & \multirow[b]{2}{*}{Cal. Date} & Traceability evidence & \multirow[b]{2}{*}{Cal. Due} \\
\hline & & & & Cal. Lab / Accreditation & \\
\hline 4838-Norsonic & SME Cal Unit & 31061 & Jul 27, 2016 & Scantek, Inc./ NVLAP & Jul 27, 2017 \\
\hline DS-360-SRS & Function Generator & 88077 & Sep 9, 2014 & ACR Env./ A2LA & Sep 9, 2016 \\
\hline 34401A-Agilent Technologies & Digital Voltmeter & MY47011118 & Sep 24, 2015 & ACR Env./ A2LA & Sep 24, 2016 \\
\hline HM30-Thommen & Meteo Station & 1040170/39633 & Oct 23, 2015 & ACR Env./ A2LA & Oct 23, 2016 \\
\hline PC Program 1019 Norsonic & Calibration software & v.6.1T & Validated Nov 2014 & Scantek, Inc. & - \\
\hline 1251-Norsonic & Calibrator & 30878 & Nov 10, 2015 & Scantek, Inc./ NVLAP & Nov 10, 2016 \\
\hline 4226-Brüel\&Kjær & Multifunction calibrator & 2305103 & Jul 25, 2016 & Scantek, Inc./ NVLAP & Jul 25, 2017 \\
\hline
\end{tabular}

Instrumentation and test results are traceable to SI (International System of Units) through standards maintained by NIST (USA) and NPL (UK).

Environmental conditions:
\begin{tabular}{|c|c|c|}
\hline Temperature \(\left({ }^{\circ} \mathrm{C}\right)\) & Barometric pressure \((\mathrm{kPa})\) & Relative Humidity \((\%)\) \\
\hline 22.0 & 99.95 & 58.8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Calibrated by: & Jeremy Gotwalt & Authorized signatory: & Valentin Buzduga \\
\hline Signature & un(4) 4tim & Signature & , V \\
\hline Date & \(10918 / 16\) & Date & \(9 / 09 / 2016\) \\
\hline
\end{tabular}

Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory.
This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.
Document stored Z:\Calibration Lab\SLM 2016\R|ONL42_00321503_M1.doc

\section*{Appendix F: NHDOT Environmental Justice Analysis}

\title{
STATE OF NEW HAMPSHIRE \\ DEPARTMENT OF TRANSPORTATION \\ INTER-OFFICE COMMUNICATION
}

DATE: June 4, 2018
IC.FROM: Jay Ankenbrock, Chief of Labor Compliance
TO: John Butler, Geometrics Engineer, Highway Design

RE: Environmental Justice Population Analysis, Project: Derry - Londonderry 13065

The attached analysis and recommendations are provided pursuant to Title VI of the Civil Rights Act of 1964 and Executive Orders 12898 \& 13166. The intent of these statutes is to ensure fair and full participation and the equal receipt of benefits under Federally-assisted programs. Your efforts to accommodate and encourage participation by traditionally underserved groups, where significant, will ensure program access and minimize the potential for disproportionate project impacts on protected groups.

The table entitled "EJ Population Analysis" shows the presence of protected groups that might be impacted by the project. Personnel responsible for project planning/design and the coordination of public meetings/hearings should use this analysis to guide their outreach efforts under Title VI and in support of developing a context sensitive solution. Based on the availability of information and where appropriate, we have included specific outreach recommendations to facilitate public comment from underrepresented groups.

Please note that US Census Bureau, American Community Survey (ACS) 2011-2015 data is used to provide to an EJ Population analysis for the project. If you have questions regarding this analysis, please contact me at 271-2467.

Encls: EJ Population Analysis, Derry - Londonderry 13065
cc: Keith Cota, Bureau of Highway Design
Michael O'Donnell, Bureau of Traffic
Kevin Nyhan, Administrator, Bureau of Environment
Paul Coddington, Bureau of Right-of-Way

\section*{EJ Population Analysis for Derry - Londonderry 13065}
\begin{tabular}{|c|c|c|c|c|}
\hline STUDY AREA & \begin{tabular}{l}
AVG\% \\
Elderly \\
Population
\end{tabular} & AVG \% Minority Population & AVG \% Low-income Household Population** & AVG\% LEP \\
\hline Impacted Area - Rockingham County, 1 mile radius of project area. & 13.5\%* & 3.9\% & 21.6\%* & 0.63\% \\
\hline Surrounding Area - Rockingham County, 3 mile radius of project area. & 10.9\%* & 4.43\% & 9.4\% & 0.63\% \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
REMARKS: \\
* The population percentage identified is meaningfully greater than the surrounding area and constitutes an EJ population. Characteristics of this particular study area indicate that targeted outreach efforts to solicit public participation should be taken. \\
** Low-income population for this analysis is defined as household income of less than \(\$ 25,000\). \\
LEP Definition: Where there is a population of people who speak English as a second language less than well (as indicated by the U.S. Census data). When a particular LEP language group constitutes \(5 \%\) of the impacted population, the Department is required to translate public information meeting notices and take appropriate measures to ensure language access. If this requirement exists, the Project Manager should contact the Title VI Coordinator for further assistance.
\end{tabular}} \\
\hline
\end{tabular}

Impacted Area: The impacted area was defined by the project limits and a 1 mile radius the immediate vicinity.

Surrounding Area: The surrounding area was defined by a 3 mile radius (excluding the impact area) of the project area

Special Considerations: Special consideration should be given to any project features that affect pedestrian accessibility. This project constitutes an alteration in accordance with Title II of the Americans with Disabilities Act. As such, minimum ADAAG accessibility requirements apply, unless deemed technically infeasible.

ADAAG was adopted as the 2010 Standards for Accessible Design on July 23, 2010 by the DOJ. Additional information is located at http://www.ada.gov/reg3a.html\#Anchor-Appendix-52467

For more information, I have also provided a link to the Draft Public Rights-of-Way Guidelines: http://www.access-board.gov/guidelines-and-standards/streets-sidewalks/public-rights-of-way/background/revised-draft-guidelines
The Draft PROWAG (Revised Draft Guidelines for Accessible Public Rights-of-Way) was released in November 2005 and has not been adopted by DOJ or FHWA. In 2006, FHWA issued a statement that the Draft PROWAG is to be considered best practice for making public rights-ofway accessible.
The Draft PROWAG includes specifications for detectable warnings and gives detailed information regarding their installation on curb ramps and on blended curbs, including at street corners, at cut-through islands and medians, and in front of buildings. It also has sections on accessible pedestrian signals (APS), roundabouts, channelized turn lanes, protruding objects, channelizing devices and barriers, and tactile and print signs.

Outreach Recommendations: In consideration of the populations above, we are providing contact information for all known agencies the project area. The Study area shows high rates for Low-Income and Elderly populations. These contacts should be included in your notification list for public information meetings and hearings related to this project

\section*{Resident/Agency Address}

\section*{Beaver Lake Lodge}

38 North Shore Road
Derry, NH 03038

\section*{Holiday Retirement at Birch Heights}

7 Kendall Pond Road
Derry NH 03038

\section*{Derry Healthcare \& Rehabilitation}

20 Chester Road
Derry, NH 03038
Tender Care Homes Nursing Service
4 Birch Street
Derry, NH 03038
Greater Derry Londonderry Chamber of Commerce
29 West Broadway

\section*{Organization/Housing Type}

Seniors

Seniors

Seniors
(603)432-3801
(603)434-2535

Seniors

Community (Business)
Karen Massahos, Owner (603)434-5683

Cell: 479-4742

Renee McCallister
(603)425-7755

\section*{Contact Information}

Derry, NH 03038

Derry Public Library
64 East Broadway
Derry, NH 03038-6410
Derry Community Television
14 Manning St
Derry, NH 03038
Derry Parks \& Recreation
Veterans Hall
31 West Broadway
Derry, NH 03038
Town of Derry Municipal Center
14 Manning St
Derry, NH 03038

\section*{Derry USPS Post Office}

24 Tsienneto Road
Derry, NH 03038
Town of Londonderry
268-B Mammoth Road
Londonderry, NH 03053
Leach Library
276 Mammoth Road
Londonderry, NH 03053
Londonderry Senior Affairs
535 Mammoth Road
Londonderry, NH 03053
Londonderry Access Center
281 Mammoth Road
Londonderry, NH 03053
Londonderry USPS Post Office
86 Nashua Road
Londonderry, NH 03053

Community (603)432-6140
\begin{tabular}{ll} 
Community Television & \begin{tabular}{l} 
Owen Provencher \\
\((603) 845-5514\)
\end{tabular}
\end{tabular}

Community

Municipal

Federal Government
(603)432-7835

Municipal

Community

Seniors

Community Television

Federal Government

Kevin Smith, Town Manager (603)432-1100 x120

Barbara Ostertag-Holtkamp
(603)432-1132

Catherine Blash, Director
(603)432-8554

Drew Caron
(603)432-1147 \(\times 179\)
(603)432-7194

Appendix G: Known and Potential Petroleum and Hazardous Materials Sites

The following databases were researched as part of this report and were noted to have documented sites within the Project area. Potential petroleum and hazardous materials sites are listed in the table following the database descriptions.

ALLSITES: Provides information on sites in NH, with activities that either have resulted in groundwater contamination or pose a potential hazard to groundwater supplies. The regulated activities and groundwater hazards include: confirmed releases of oil or hazardous materials to the soil and/or groundwater as a result of discharges, spills, and removal of underground storage tanks; underground injection wells such as floor drains, leaching galleries, and septic systems anything other than domestic wastewater; large discharges of wastewater such as domestic wastewater septic systems which are designed to discharge more than 20,000 gallons per day (gpd), land application of wastewater treatment facility effluent (spray irrigation, rapid infiltration rapid infiltration basins, etc.) and unlined septage and wastewater lagoons; unpermitted hazardous waste storage facilities; landfills and other waste repositories in which groundwater quality is at risk.

AST Database: This database contains registered ASTs. The data came from the NHDES AST Registration Data List.

CERCLIS: Comprehensive Environmental Response, Compensation, and Liability Information System. This database contains information on potentially hazardous material sites that have been reported to EPA by states, municipalities, private companies, and persons, pursuant to Section 103 of CERCLA. CERCLIS contains sites, which are either on, or proposed to be on, the NPL, and sites that are in the screening and assessment phase for possible inclusion on the NPL.

CONSENT: Major legal settlements that establish responsibility and standards for cleanup at NPL (Superfund) sites. Released periodically by U.S. District Courts after settlement by parties to litigation.

ERNS: The Emergency Response Notification System. This system records and stores information on reported releases of oil and hazardous substances. The source of this database is EPA.

ECHO: Enforcement \& Compliance History Information database. EPA's ECHO provides integrated compliance and enforcement information for about 800,000 regulated facilities nationwide.

FINDS: Facility Index System/Facility Registry System. This database is maintained by EPA and contains both facility information and "pointers" to other sources of information that contain more detail. Databases under FINDS include PCS (Permit Compliance System), AIRS (Aerometric Information Retrieval System), DOCKET (Enforcement Docket used to manage and track information on civil judicial enforcement cases for all environmental statutes), FURS (Federal Underground Injection Control), C-DOCKET (Criminal Docket System used to track criminal enforcement actions for all environmental statutes), FFIS (Federal Facilities Information System), STATE (State Environmental Laws and Statutes), and PADS (PCB Activity Data System).
FTTS: FIFRA/ TSCA Tracking System. FIFRA (Federal Insecticide, Fungicide, \& Rodenticide Act)/TSCA (Toxic Substances Control Act). FTTS tracks administrative cases and pesticide enforcement actions and compliance activities related to FIFRA, TSCA and EPCRA (Emergency Planning and Community Right-to-Know Act).

HIST FTTS: FIFRA/TSCA Tracking System Administrative Case Listing. A complete administrative case listing from the FIFRA/TSCA Tracking System (FTTS) for all 10 EPA regions. The information was obtained from the National Compliance Database (NCDB). NCDB supports the implementation of FIFRA and TSCA. Some EPA regions are now closing out records. Because of that, and the fact that some EPA regions are not providing EPA Headquarters with updated records, it was decided to create a HIST FTTS database. It included records that may not be included in the newer FTTS database updates. This database is no longer updated.

LUST Database: This incident report contains an inventory of reported LUST incidents. The data came from the NHDES LUST Sites Summary Report.

MANIFEST is a document that lists and tracks hazardous waste from the generator through transporters to a Treatment, Storage and Disposal (TSD) facility. States maintain databases of manifested hazardous waste.

NH BROWNFIELDS: Sites that have benefited from one or more brownfields initiative.
NH DRYCLEANERS: A listing of drycleaner locations in NH.
NPL: Also known as Superfund, this database is a subset of the CERCLIS and identifies over 1,200 sites for priority cleanup under the Superfund program. The source of this database is EPA.

RCRA-CESQG: RCRAInfo is EPA's comprehensive information system, providing access to data supporting RCRA of 1976 and the Hazardous and Solid Waste Amendments of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by RCRA. Conditionally exempt small quantity generators generate less than 100 kg of hazardous waste, or less than 1 kg of acutely hazardous waste per month.

RCRA NonGen / NLR: is also from the RCRAInfo database. Non-Generators do not presently generate hazardous waste.

RCRIS: The Resource Conservation and Recovery Information System: This database includes selected information on sites that generate, store, treat, or dispose of hazardous material as defined by RCRA. The source of this database is EPA.
ROD: Record of Decision: These documents mandate a permanent remedy at an NPL (Superfund) site, and contain technical and health information to aid the cleanup.

SEMS-ARCHIVE: Superfund Enterprise Management System Archive. This database tracks sites that have no further interest under the federal Superfund Program based on available information. The list was formerly known as the CERCLIS-NFRAP, renamed to SEMS ARCHIVE by the EPA in 2015. EPA may perform a minimal level of assessment work at a site while it is archived if site conditions change and/or new information becomes available. Archived sites have been removed and archived from the inventory of SEMS sites. Archived status indicates that, to the best of EPA's knowledge, assessment at a site has been completed and that EPA has determined no further steps will be taken to list the site on the NPL, unless information indicates this decision was not appropriate or other considerations require a recommendation for listing at a later time. The decision does not necessarily mean that there is
no hazard associated with a given site; it only means that based upon available information, the location is not judged to be potential NPL site.

SHWS: State Hazardous Wastes Sites. These records are the states' equivalent to CERCLIS. These sites may or may not already be listed on the federal CERCLIS list. Priority sites planned for cleanup using State funds (i.e., state equivalent of Superfund) are identified along with sites where cleanup will be paid for by potentially responsible parties. The data came from the NHDES Hazardous Material Inventory List.

SPILLS: This contains the state spills database and denotes an oil spill or release record from the NHDES Hazardous Waste Remediation Site database.

SWF/LF: Solid Waste Facility Information. Solid Waste Facilities/Landfill Sites. SWF/LF type records contain an inventory of solid waste disposal facilities or landfills in NH, maintained by NHDES.

SWRCY: Recycling Centers. A listing of recycling center locations in NH maintained by NHDES.

US BROWNFIELDS: EPA's listing of Brownfields properties from the Cleanups in My Community program, which provides information on Brownfields properties for which information is reported back to EPA, as well as areas served by Brownfields grant programs.

US ENG CONTROLS: Engineering Controls Sites List. A listing of sites maintained by EPA with engineering controls in place. Engineering controls include various forms of caps, building foundations, liners, and treatment methods to create pathway elimination for regulated substances to enter environmental media or effect human health.

US INST CONTROL: Sites with Institutional Controls. A listing of sites maintained by EPA with institutional controls in place. Institutional controls include administrative measures, such as groundwater use restrictions, construction restrictions, property use restrictions, and post remediation care requirements intended to prevent exposure to contaminants remaining on site. Deed restrictions are generally required as part of the institutional controls.

US MINES: Mines Master Index File. Contains all mine identification numbers issued for mines active or opened since 1971. The data also include violation information. Maintained by the Department of Labor.

UST Database: This database contains registered USTs, which are regulated under Subtitle I of RCRA. The source of the data is the NHDES UST Registration Data List.

KNOWN PETROLEUM AND HAZARDOUS MATERIALS SITES WITHIN 1,000 FEET OF THE PROPOSED ALIGNMENTS
\begin{tabular}{|c|c|c|c|c|}
\hline Site \# & Site Activity & Site Address & Database Source & Existing or New \\
\hline \multicolumn{5}{|c|}{DERRY} \\
\hline 1 & RESIDENCE & OLD COACH ROAD & SHWS & NEW \\
\hline 2 & A STREET & A STREET & ALLSITES, SHWS, UST & EXISTING \\
\hline 3 & CRYSTAL AVENUE PROPERTY & CRYSTAL AVENUE & ALLSITES & EXISTING \\
\hline 4 & REAL ESTATE PROPERTY & WEST BROADWAY & RCRA NonGen / NLR,
UST & EXISTING \\
\hline 5 & DEPARTMENT
STORE & ROUTE 28 & ALLSITES, UST & EXISTING \\
\hline 6 & RESIDENCE & WEST BROADWAY & ALLSITES & EXISTING \\
\hline 7 & CONVENIENCE STORE & EAST BROADWAY & LUST, UST & EXISTING \\
\hline 8 & AUTO REPAIR & WEST BROADWAY & RCRA NonGen / NLR, ALLSITES, LUST & EXISTING \\
\hline 9 & GAS STATION/CONVENI ENCE STORE & ROUTE 28 BYPASS & ALLSITES, UST & EXISTING \\
\hline 10 & TOWN OF DERRY & WEST BROADWAY & ECHO, FINDS, US BROWNFIELDS, ALLSITES, NH BROWNFIELDS & NEW \\
\hline 11 & FIRE DEPARTMENT & MANNING STREET & ALLSITES & EXISTING \\
\hline 12 & FIRE DEPARTMENT & EAST BROADWAY & LUST, UST & EXISTING \\
\hline 13 & TOWN OF DERRY & EAST BROADWAY & ALLSITES, UST & EXISTING \\
\hline 14 & SPILL & BROADWAY \& RAILROAD AVENUE & ALLSITES & EXISTING \\
\hline 15 & SALON & WEST BROADWAY & ALLSITES & EXISTING \\
\hline 16 & SERVICE STATION & CRYSTAL AVENUE & RCRA NonGen / NLR, LUST, UST & EXISTING \\
\hline 17 & REAL ESTATE PROPERTY & GRIFFIN STREET & ALLSITES & EXISTING \\
\hline 18 & MANUFACTURING FACILITY & MANCHESTER ROAD & ALLSITES, ECHO, MANIFEST, RCRACESQG, TRIS, UST & EXISTING \\
\hline 19 & FORMER SERVICE STATION & BIRCH \& E BROADWAY STREET & LUST, UST & EXISTING \\
\hline 20 & COMMERCIAL BUSINESS & MANCHESTER ROAD & LUST, UST, MANIFEST, RCRA NonGen / NLR & EXISTING \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Site \# & Site Activity & Site Address & Database Source & Existing or New \\
\hline 21 & SERVICE STATION & ASHLEIGH DRIVE & ALLSITES, LUST, UST & EXISTING \\
\hline 22 & APARTMENT COMPLEX & LARAWAY COURT & RCRA NonGen / NLR, ALLSITES & EXISTING \\
\hline 23 & RESIDENCE & WEST BROADWAY & ALLSITES & EXISTING \\
\hline 24 & FORMER OIL SITE & CRYSTAL AVENUE & LUST, UST & EXISTING \\
\hline 25 & COMMERCIAL PROPERTY & EAST BROADWAY & ALLSITES, LUST, UST & EXISTING \\
\hline 26 & MANUFACTURING FACILITY & MANCHESTER ROAD & ALLSITES, SHWS & EXISTING \\
\hline 27 & SHOPPING CENTER & ROUTE 28/CRYSTAL AVENUE & LUST, UST & EXISTING \\
\hline 28 & RESIDENCE & CHESTER ROAD & ALLSITES & NEW \\
\hline 29 & MARKET & MANCHESTER ROAD & LUST, UST & EXISTING \\
\hline 30 & EXCAVATION & MADDEN ROAD & ALLSITES, US MINES & EXISTING \\
\hline 31 & SERVICE STATION & SOUTH MAIN STREET & LUST, UST, ECHO, FINDS, RCRA NonGen / NLR & EXISTING \\
\hline 32 & MEDICAL CENTER & TSIENNETO ROAD & ALLSITES & NEW \\
\hline 33 & SCHOOL & PINKERTON STREET & ALLSITES, LUST & EXISTING \\
\hline 34 & UTILITY COMPANY & CRYSTAL AVENUE & RCRA NonGen / NLR, ALLSITES, LUST, UST & EXISTING \\
\hline 35 & MANUFACTURING FACILITY & MANCHESTER STREET & SWF/LF, SWRCY & NEW \\
\hline 36 & RESIDENCE & EAST BROADWAY & ALLSITES & EXISTING \\
\hline 37 & ROADSIDE & \(\underset{\text { ROAD }}{\text { ENGLISHE }}\) & ALLSITES & NEW \\
\hline 38 & RESIDENCE & EVERETT STREET & ALLSITES & EXISTING \\
\hline 39 & RESIDENCE & HIGH STREET & ALLSITES & EXISTING \\
\hline 40 & DRY CLEANERS & RAILROAD AVENUE & BROWNFIELDS, DRYCLEANERS, SHWS, UST, LIENS 2, MANIFEST, PRP, RCRA NonGen / NLR, SEMSARCHIVE, US BROWNFIELDS, ECHO, FINDS & EXISTING \\
\hline 41 & AUTO SALES & WEST BROADWAY & LUST, MANIFEST, RCRA NonGen / NLR, UST & EXISTING \\
\hline 42 & RESIDENCE & WEST BROADWAY & ALLSITES & NEW \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Site \# & Site Activity & Site Address & Database Source & Existing or New \\
\hline 43 & RESIDENCE & GROVE STREET & ALLSITES & EXISTING \\
\hline 44 & COMMERCIAL BUSINESS & SOUTH AVENUE & RCRA NonGen / NLR, ALLSITES, SHWS, UST & EXISTING \\
\hline 45 & \begin{tabular}{l}
PRINTING \\
BUSINESS
\end{tabular} & TINKHAM AVENUE & ALLSITES, MANIFEST, RCRA-CESQG, SHWS, SPILLS & EXISTING \\
\hline 46 & MACHINE SHOP & NUTFIELD COURT & LUST, UST & EXISTING \\
\hline 47 & PRESSURE WASHING BUSINESS & NORTH HIGH STREET & ALLSITES & NEW \\
\hline 48 & OIL FACILITY & CENTRAL COURT & ALLSITES, AST, LAST & EXISTING \\
\hline 49 & RESIDENCE & GROVE STREET & ALLSITES & EXISTING \\
\hline 50 & FUEL DISTRIBUTOR & SOUTH AVENUE & AST, LAST & EXISTING \\
\hline 51 & OIL STORAGE
PLANT & FRANKLIN STREET & ALLSITES, AST & EXISTING \\
\hline 52 & OIL COMPANY & CRYSTAL AVENUE & UST, LUST & NEW \\
\hline 53 & SCHOOL & GRINNEL ROAD & ALLSITES, UST & EXISTING \\
\hline 54 & ACCIDENT & CHESTER ROAD & ALLSITES & EXISTING \\
\hline 55 & COUNTERTOP STORE & ELM STREET & SEMS & NEW \\
\hline 56 & OIL DELIVERY COMPANY & CENTRAL COURT & ALLSITES, AST, LUST, UST & EXISTING \\
\hline 57 & MANUFACTURING FACILITY & LINLEW DRIVE & 2020 COR ACTION, CORRACTS, ECHO, FINDS, MANIFEST, RCRA NonGen / NLR & NEW \\
\hline 58 & COMMERCIAL PROPERTY & MAPLE STREET & ALLSITES & NEW \\
\hline 59 & RESIDENCE & LENNOX ROAD & ALLSITES & EXISTING \\
\hline \multicolumn{5}{|c|}{LONDONDERRY} \\
\hline 60 & RESIDENCE & TROLLEY CAR LANE & ALLSITES & EXISTING \\
\hline 61 & TOWING COMPANY & ROCKINGHAM ROAD & ALLSITES & EXISTING \\
\hline 62 & SERVICE STATION & NASHUA ROAD & LUST, UST & EXISTING \\
\hline 63 & HYDRAULIC RELEASE & TROLLEY CAR LANE & ALLSITES & NEW \\
\hline 64 & COMMERCIAL BUSINESS & LONDONDERRY ROAD & ALLSITES, RCRA NonGen / NLR & EXISTING \\
\hline 65 & COMMERCIAL BUSINESS & LONDONDERRY ROAD & AST, ALLSITES & EXISTING \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Site \# & Site Activity & Site Address & Database Source & \begin{tabular}{c} 
Existing or \\
New
\end{tabular} \\
\hline \hline 66 & RESIDENCE & ROCKINGHAM ROAD & ALLSITES & NEW \\
\hline 67 & SERVICE STATION & NASHUA ROAD & ALLSITES, LUST, UST & EXISTING \\
\hline 68 & RESIDENCE & COTEVILLE ROAD & ALLSITES & EXISTING \\
\hline 69 & \begin{tabular}{c} 
ELECTRIC \\
SUBSTATION
\end{tabular} & SEASONS LANE & ALLSITES & NEW \\
\hline 70 & SERVICE STATION & NASHUA ROAD & ALLSITES, LUST, SPILLS, & EXISTING \\
\hline 71 & \begin{tabular}{c} 
METAL FINISHING \\
BUSINESS
\end{tabular} & HILLSIDE AVENUE & \begin{tabular}{c} 
AIRS, SWF/LF, RCRA \\
NonGen / NLR
\end{tabular} & EXISTING \\
\hline 72 & MTBE SITE & WOODHENGE CIRCLE & ALLSITES & EXISTING \\
\hline
\end{tabular}

Source: Environmental Data Resources, Inc. \((2010,2016)\)
POTENTIAL PETROLEUM AND HAZARDOUS MATERIAL SITES WITHIN 500 FEET OF THE PROPOSED ALIGNMENTS
\begin{tabular}{|c|c|c|c|c|}
\hline Site \# & Site Activity & Site Address & Database Source & Existing or New \\
\hline \multicolumn{5}{|c|}{DERRY} \\
\hline 73 & CONVENIENCE STORE & MANCHESTER ROAD & RCRA NonGen / NLR, UST & EXISTING \\
\hline 74 & MANUFACTURING FACILITY & TINKHAM AVENUE & RCRA NonGen / NLR & NEW \\
\hline 75 & COMMERCIAL PROPERTY & WEST BROADWAY & UST & EXISTING \\
\hline 76 & AUTO SALES & MANCHESTER ROAD & RCRA NonGen / NLR, UST, MANIFEST & EXISTING \\
\hline 77 & AUTO PARTS STORE & CRYSTAL AVENUE & RCRA-CESQG & EXISTING \\
\hline 78 & MECHANIC & COMMERCIAL LANE & RCRA NonGen / NLR & EXISTING \\
\hline 79 & DENTIST & BIRCH STREET & RCRA-CESQG & EXISTING \\
\hline 80 & CONSTRUCTION COMPANY & ASHLEIGH DRIVE & RCRA NonGen / NLR & NEW \\
\hline 81 & BANK & EAST BROADWAY & UST & EXISTING \\
\hline 82 & PAVING BUSINESS & TSIENNETO ROAD & RCRA NonGen / NLR & EXISTING \\
\hline 83 & HARDWARE STORE & MARTIN ROAD & RCRA NonGen / NLR & EXISTING \\
\hline 84 & DENTIST & BIRCH STREET & RCRA NonGen / NLR & EXISTING \\
\hline 85 & AUTO DEALERSHIP & NORTH MAIN STREET & MANIFEST, RCRACESQG & EXISTING \\
\hline 86 & FEED SUPPLY BUSINESS & CRYSTAL AVENUE & RCRA NonGen / NLR & EXISTING \\
\hline 87 & AUTO BODY SHOP & STORER COURT & RCRA NonGen / NLR & EXISTING \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Site \# & Site Activity & Site Address & Database Source & Existing or New \\
\hline 88 & PRINTING BUSINESS & MANCHESTER ROAD & RCRA NonGen / NLR & EXISTING \\
\hline 89 & RESIDENCE & WEST BROADWAY & RCRA NonGen / NLR & EXISTING \\
\hline 90 & CHURCH & HOOD ROAD & UST & EXISTING \\
\hline 91 & MEDICAL OFFICE & TSIENNETO ROAD & RCRA NonGen / NLR & EXISTING \\
\hline 92 & CONVENIENCE STORE & EAST BROADWAY & RCRA NonGen / NLR & EXISTING \\
\hline 93 & PHARMACY/CONVENIENCE
STORE & EAST BROADWAY & RCRA-LQG, RCRA NonGen / NLR & EXISTING \\
\hline 94 & AUTO SALES & WEST BROADWAY & RCRA NonGen / NLR & EXISTING \\
\hline 95 & SALES BUSINESS & \[
\begin{gathered}
\text { MANCHESTER } \\
\text { ROAD } \\
\hline
\end{gathered}
\] & RCRA NonGen / NLR & EXISTING \\
\hline 96 & ANIMAL HOSPITAL & TSIENNETO ROAD & RCRA NonGen / NLR & EXISTING \\
\hline 97 & FEED SUPPLY BUSINESS & MARTIN STREET & UST & EXISTING \\
\hline 98 & FIRE DEPARTMENT & WEST BROADWAY & UST & EXISTING \\
\hline 99 & FIRE DEPARTMENT & MUNICIPAL DRIVE & RCRA NonGen / NLR & EXISTING \\
\hline 100 & MEDICAL CENTER & TSIENNETO ROAD & RCRA NonGen / NLR & EXISTING \\
\hline 101 & NEWSPAPER PUBLISHER & BROADWAY & RCRA NonGen / NLR & NEW \\
\hline 102 & POLICE & MUNICIPAL WAY & RCRA NonGen / NLR & EXISTING \\
\hline 103 & LIBRARY & EAST BROADWAY & UST & EXISTING \\
\hline 104 & TOWN OF DERRY & WEST BROADWAY & RCRA NonGen / NLR & EXISTING \\
\hline 105 & TOWN OF DERRY & MANNING STREET & RCRA NonGen / NLR, MANIFEST & EXISTING \\
\hline 106 & FIRE DEPARTMENT & EAST BROADWAY & RCRA NonGen / NLR & EXISTING \\
\hline 107 & RESIDENCE & BIRCH STREET & RCRA NonGen / NLR & EXISTING \\
\hline 108 & COMMERCIAL BUSINESS & SCOBIE POND ROAD & RCRA NonGen / NLR & EXISTING \\
\hline 109 & SERVICE STATION & CRYSTAL AVENUE & UST & EXISTING \\
\hline 110 & UTILITY COMPANY & A STREET & ECHO, RCRA-CESQG & NEW \\
\hline 111 & AUTO BODY SHOP & CENTRAL STREET & RCRA NonGen / NLR & NEW \\
\hline 112 & TELECOMMUNICATIONS SERVICE PROVIDER & EAST BROADWAY & AST, SPILLS, UST & EXISTING \\
\hline 113 & DRY CLEANERS & EAST BROADWAY & MANIFEST, RCRACESQG, DRYCLEANERS & EXISTING \\
\hline 114 & HARDWARE STORE & WEST BROADWAY & UST & EXISTING \\
\hline 115 & SERVICE STATION & WEST BROADWAY & RCRA NonGen / NLR & EXISTING \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Site \# & Site Activity & Site Address & Database Source & Existing or New \\
\hline 116 & PHOTO SHOP & MANCHESTER ROAD & RCRA NonGen / NLR & EXISTING \\
\hline 117 & MEDICAL OFFICE & TSIENNETO ROAD & RCRA-CESQG & NEW \\
\hline 118 & SERVICE STATION & DANFORTH CIRCLE & MANIFEST, RCRA NonGen / NLR & EXISTING \\
\hline 119 & SERVICE STATION & CRYSTAL AVENUE & MANIFEST, RCRACESQG & EXISTING \\
\hline 120 & LABORATORY & MANCHESTER ROAD & MANIFEST, RCRACESQG & EXISTING \\
\hline 121 & MACHINE SHOP & TINKHAM AVENUE & RCRA NonGen / NLR & EXISTING \\
\hline 122 & RESTAURANT & CENTRAL STREET & RCRA NonGen / NLR & NEW \\
\hline 123 & SUPERMARKET w/PHARMACY & MANCHESTER
ROAD & RCRA-CESQG & NEW \\
\hline 124 & MANUFACTURING FACILITY & WEST BROADWAY & RCRA NonGen / NLR & EXISTING \\
\hline 125 & COUNTRY CLUB & EAST BROADWAY & RCRA NonGen / NLR & EXISTING \\
\hline 126 & INSURANCE AGENCY & BROADWAY & RCRA NonGen / NLR & NEW \\
\hline 127 & TECH EDUCATION BUSINESS & TSIENNETO ROAD & RCRA NonGen / NLR & NEW \\
\hline 128 & AUTO BODY SHOP & CHESTER ROAD & RCRA-CESQG & EXISTING \\
\hline 129 & MANUFACTURING FACILITY & MANCHESTER ROAD & UST, RCRA NonGen / NLR & EXISTING \\
\hline 130 & MEDICAL CENTER & TSIENNETO ROAD & MANIFEST, RCRACESQG & NEW \\
\hline 131 & RESIDENCE & EAST BROADWAY & RCRA NonGen / NLR & EXISTING \\
\hline 132 & OIL DELIVERY COMPANY & LARAWAY RD & RCRA NonGen / NLR & EXISTING \\
\hline 133 & MEDIA PLACEMENT BUSINESS & TSIENNETO ROAD & RCRA NonGen / NLR & EXISTING \\
\hline 134 & SERVICE STATION & CRYSTAL AVENUE & RCRA NonGen / NLR & EXISTING \\
\hline 135 & INDUSTRIAL COMPANY & B STREET & RCRA NonGen / NLR & EXISTING \\
\hline 136 & RETAILER & EAST BROADWAY & UST & EXISTING \\
\hline 137 & AUTO REPAIR & AIKEN STREET & RCRA NonGen / NLR & EXISTING \\
\hline 138 & AUTO REPAIR & TINKHAM AVENUE & RCRA NonGen / NLR & EXISTING \\
\hline 139 & TELEPHONE COMPANY & EAST BROADWAY & RCRA NonGen / NLR & EXISTING \\
\hline 140 & MEDICAL CENTER & TSIENNETO ROAD & RCRA-CESQG & NEW \\
\hline 141 & AUTO PARTS STORE & MANCHESTER ROAD & RCRA-CESQG & NEW \\
\hline 142 & RESIDENCE & WEST BROADWAY & RCRA NonGen / NLR & EXISTING \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Site \# & Site Activity & Site Address & Database Source & Existing or New \\
\hline 143 & RESIDENCE & LYNNWOOD AVENUE & RCRA NonGen / NLR & EXISTING \\
\hline 144 & SCHOOL & PINKERTON STREET & FTTS, HIST FTTS, MANIFEST, RCRA NonGen / NLR, UST & EXISTING \\
\hline 145 & MEDICAL OFFICE & BIRCH STREET & RCRA NonGen / NLR & EXISTING \\
\hline 146 & MANUFACTURING FACILITY & \[
\begin{gathered}
\text { MANCHESTER } \\
\text { ROAD } \\
\hline
\end{gathered}
\] & RCRA-CESQG & EXISTING \\
\hline 147 & DRY CLEANERS & MANCHESTER
ROAD & MANIFEST, RCRACESQG, RCRA NonGen / NLR, DRYCLEANERS & EXISTING \\
\hline 148 & UTILITY COMPANY & A STREET & UST & EXISTING \\
\hline 149 & PROPERTY MANAGEMENT COMPANY & WEST BROADWAY & UST & EXISTING \\
\hline 150 & PROPERTY MANAGEMENT COMPANY & MARTIN STREET & UST & EXISTING \\
\hline 151 & RETAIL STORE & WEST BROADWAY & RCRA NonGen / NLR & EXISTING \\
\hline 152 & RECYCLING COMPANY & FRANKLIN STREET EXTENSION & RCRA NonGen / NLR & EXISTING \\
\hline 153 & SUPERMARKET & CRYSTAL AVENUE & RCRA-CESQG & NEW \\
\hline 154 & PAINT STORE & WEST BROADWAY & MANIFEST, RCRACESQG & EXISTING \\
\hline 155 & PAINT STORE & CRYSTAL AVENUE & RCRA NonGen / NLR & EXISTING \\
\hline 156 & BANK & EAST BROADWAY & UST & EXISTING \\
\hline 157 & MARKET & MANCHESTER ROAD & RCRA NonGen / NLR & EXISTING \\
\hline 158 & SERVICE STATION & ROUTE 28 \& FOLSOM ROAD & RCRA NonGen / NLR & EXISTING \\
\hline 159 & COMMERCIAL BUSINESS & TREASURE LANE & RCRA NonGen / NLR & EXISTING \\
\hline 160 & EQUIPMENT RENTAL & \[
\begin{gathered}
\text { MANCHESTER } \\
\text { ROAD } \\
\hline
\end{gathered}
\] & RCRA NonGen / NLR & EXISTING \\
\hline 161 & INDUSTRIAL COMPANY & MANCHESTER ROAD & RCRA NonGen / NLR & EXISTING \\
\hline 162 & AUTO SALES & A STREET & MANIFEST, RCRA NonGen / NLR & NEW \\
\hline 163 & INSURANCE AGENCY & EAST BROADWAY & UST & EXISTING \\
\hline 164 & SERVICE STATION & ASHLEIGH DRIVE & RCRA-SQG & EXISTING \\
\hline 165 & TOWN OF DERRY & WEST BROADWAY & UST & EXISTING \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Site \# & Site Activity & Site Address & Database Source & \begin{tabular}{c} 
Existing \\
or New
\end{tabular} \\
\hline \hline 166 & TOWN OF DERRY & \begin{tabular}{c} 
MANNING \& \\
BROADWAY
\end{tabular} & UST & EXISTING \\
\hline 167 & LAWN AND GARDEN & CRYSTAL AVENUE & ECHO, FINDS, RCRA- & CESQG
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Site \# & Site Activity & Site Address & Database Source & Existing or New \\
\hline 191 & WOODWORKING BUSINESS & CHESTER ROAD & RCRA NonGen / NLR & EXISTING \\
\hline 192 & MANUFACTURING FACILITY & TINKHAM AVENUE & RCRA NonGen / NLR & EXISTING \\
\hline 193 & LANDSCAPE DESIGNER & NORTH HIGH STREET & RCRA NonGen / NLR & NEW \\
\hline 194 & FARM & CHESTER ROAD & UST & EXISTING \\
\hline 195 & RESIDENCE & TINKHAM AVENUE & RCRA NonGen / NLR, UST & EXISTING \\
\hline 196 & RESIDENCE & BIRCH STREET & UST & EXISTING \\
\hline 197 & RESIDENCE & PINKERTON STREET & RCRA NonGen / NLR & EXISTING \\
\hline 198 & AUTO BODY SHOP & MAPLE STREET & ECHO, FINDS, RCRA-
CESQG & NEW \\
\hline 199 & COMMERCIAL BUSINESS & TINKHAM AVENUE & RCRA NonGen / NLR & EXISTING \\
\hline 200 & SERVICE STATION & HILLSIDE AVENUE & RCRA NonGen / NLR & EXISTING \\
\hline 201 & MANUFACTURING FACILITY & CORPORATE DRIVE & RCRA NonGen / NLR, ECHO, FINDS & NEW \\
\hline 202 & MANUFACTURING FACILITY & TINKHAM AVENUE & RCRA NonGen / NLR & EXISTING \\
\hline 203 & COMMERCIAL PROPERTY & CENTRAL COURT & MANIFEST, RCRA NonGen / NLR & EXISTING \\
\hline 204 & METAL FINISHING BUSINESS & MAPLE STREET & ECHO, US AIRS, FINDS, RCRA NonGen / NLR & EXISTING \\
\hline 205 & LABORATORY & ASH STREET EXTENSION & ECHO, FINDS, RCRA NonGen / NLR & NEW \\
\hline 206 & COMMERCIAL BUSINESS & NORTH AVENUE & RCRA NonGen / NLR & EXISTING \\
\hline 207 & FUNERAL HOME & BIRCH STREET & UST & EXISTING \\
\hline 208 & TOOL BUSINESS & MAPLE STREET & RCRA NonGen / NLR & EXISTING \\
\hline 209 & DRY CLEANERS & LINLEW DRIVE & DRYCLEANERS & EXISTING \\
\hline 210 & COMMERCIAL BUSINESS & HILLSIDE AVENUE & RCRA NonGen / NLR & EXISTING \\
\hline 211 & PHARMACY/CONVENIENCE
STORE & CRYSTAL AVENUE & MANIFEST, RCRACESQG & EXISTING \\
\hline 212 & AUTO PARTS STORE & CRYSTAL AVENUE & UST & EXISTING \\
\hline 213 & SCHOOL & HOOD ROAD & ECHO, FINDS, RCRA NonGen / NLR, US AIRS, UST & EXISTING \\
\hline 214 & REAL ESTATE AGENCY & SOUTH AVENUE & RCRA NonGen / NLR & EXISTING \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Site \# & Site Activity & Site Address & Database Source & Existing or New \\
\hline 215 & DENTIST & PINKERTON STREET & RCRA NonGen / NLR & EXISTING \\
\hline 216 & DENTIST & MANCHESTER AVENUE & RCRA NonGen / NLR & EXISTING \\
\hline 217 & RESIDENCE & SOUTH AVENUE & RCRA NonGen / NLR & EXISTING \\
\hline 218 & AUTO REPAIR & LONDONDERRY
ROAD & RCRA NonGen / NLR & NEW \\
\hline 219 & MAINTENANCE COMPANY & LONDONDERRY ROAD & RCRA NonGen / NLR & EXISTING \\
\hline 220 & MACHINE SHOP & COMMERCIAL LANE & RCRA NonGen / NLR & EXISTING \\
\hline 221 & MANUFACTURING FACILITY & LONDONDERRY
ROAD & RCRA NonGen / NLR & EXISTING \\
\hline 222 & SERVICE STATION & WEST BROADWAY & RCRA NonGen / NLR & EXISTING \\
\hline 223 & WHOLESALER & LONDONDERRY ROAD & RCRA NonGen / NLR, RCRA-CESQG & EXISTING \\
\hline 224 & SERVICE STATION & WEST BROADWAY & RCRA NonGen / NLR & EXISTING \\
\hline 225 & TRACTOR RETAILER & \[
\begin{gathered}
\text { ROCKINGHAM } \\
\text { ROAD } \\
\hline
\end{gathered}
\] & RCRA NonGen / NLR & EXISTING \\
\hline 226 & AUTO REPAIR & LONDONDERRY & RCRA NonGen / NLR, RCRA NonGen / NLR & EXISTING \\
\hline 227 & COMMERCIAL BUSINESS & LONDONDERRY & RCRA NonGen / NLR & EXISTING \\
\hline 228 & COMMERCIAL BUSINESS & LONDONDERRY ROAD & RCRA NonGen / NLR & EXISTING \\
\hline 229 & SERVICE STATION & NASHUA ROAD & UST & EXISTING \\
\hline 230 & MACHINE SHOP & COMMERICAL LANE & RCRA NonGen / NLR & EXISTING \\
\hline 231 & SERVICE STATION & NASHUA ROAD & RCRA NonGen / NLR & EXISTING \\
\hline 232 & EQUIPMENT RENTAL & ROUTE 28 & RCRA NonGen / NLR & NEW \\
\hline 233 & STATE OF NH & \[
\begin{aligned}
& \text { ROCKINGHAM } \\
& \text { ROAD }
\end{aligned}
\] & RCRA NonGen / NLR & EXISTING \\
\hline 234 & COMMERCIAL BUSINESS & LONDONDERRY & RCRA NonGen / NLR & EXISTING \\
\hline 235 & WATERPROOFING CONTRACTOR & LONDONDERRY
ROAD & RCRA NonGen / NLR & EXISTING \\
\hline 236 & AUTO FINISHING & COTEVILLE ROAD & RCRA NonGen / NLR & EXISTING \\
\hline 237 & AUTO REPAIR & \[
\begin{gathered}
\text { LONDONDERRY } \\
\text { ROAD } \\
\hline
\end{gathered}
\] & RCRA NonGen / NLR & EXISTING \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Site \# & Site Activity & Site Address & Database Source & Existing \\
or New
\end{tabular}

POTENTIAL PETROLEUM AND HAZARDOUS MATERIAL SITES - LOCATION UNCERTAIN
\begin{tabular}{|c|c|c|c|}
\hline Site \# & Site Activity & Site Address & Database Source \\
\hline \multicolumn{4}{|c|}{DERRY} \\
\hline 1 & DRY CLEANERS & CRYSTAL AVENUE & NH DRYCLEANERS \\
\hline 2 & MUNICIPAL LANDFILL & KENDALL POND ROAD & NH SWF/LF, NH ALLSITES, NH FINANCIAL ASSURANCE, SEMS-ARCHIVE \\
\hline \multicolumn{4}{|c|}{LONDONDERRY} \\
\hline 3 & DRY CLEANERS & ROUTE 102 & NH DRYCLEANERS \\
\hline 4 & IMPACTED WATER WELLS & BOSTON AND CHARLESTON AVENUE & NH SHWS \\
\hline 5 & AUTO REPAIR SHOP & PILLSBURY ROAD & SEMS-ARCHIVE, NH SHWS \\
\hline
\end{tabular}

\section*{Appendix H: Chloride Technical Report}

\title{
Chloride Loading in the Upper Beaver Brook Watershed - Current and Future Conditions
}

\section*{I-93 Exit 4A Supplemental Draft Environmental Impact Statement}

Prepared for:
Town of Derry
Town of Londonderry
New Hampshire Department of Transportation
Prepared by:
Normandeau Associates, Fuss \& O’Neill, Inc. and Louis Berger Group

August 27, 2018
NHDOT Project Number: 13065
Federal Project Number: IM-0931(201)
Fuss \& O'Neill, Inc. /Towns Project Number 05-0244

This page intentionally left blank.

\section*{TABLE OF CONTENTS}
ABBREVIATIONS AND ACRONYMS ..... IV
1.0 INTRODUCTION ..... 1
1.1 Existing Conditions ..... 1
1.2 Proposed Action ..... 2
1.3 Indirect/Foreseeable Actions ..... 2
2.0 REGULATORY FRAMEWORK ..... 5
2.1 Clean Water Act 303(d) and 305(b) ..... 5
2.1.1 New Hampshire Surface Water Assessment ..... 5
2.2 Beaver Brook Chloride TMDL ..... 7
2.3 NHDES TMDL Implementation Plan ..... 7
2.3.1 NHDOT Implementation Plan ..... 9
2.3.2 Town of Derry Implementation Plan ..... 11
2.3.3 Town of Londonderry Implementation Plan ..... 11
2.3.4 NHDES Private Sector Implementation Plan ..... 12
2.4 Water Quality Permits Required for the Proposed Action ..... 13
2.4.1 National Pollutant Discharge Elimination System (NPDES) ..... 13
2.4.2 401 Water Quality Certificate ..... 14
2.4.3 Alteration of Terrain Permit ..... 14
3.0 CURRENT CONDITIONS ..... 16
3.1 Impairment Status ..... 16
3.2 Regulated Discharges ..... 16
3.3 State and Municipal Chloride Loading in Upper Beaver Brook Watershed ..... 16
3.4 Beaver Brook Chloride TMDL Monitoring ..... 20
4.0 DIRECT IMPACTS OF THE PROPOSED ACTION ..... 22
4.1 Methods ..... 22
4.2 Results and Table ..... 22
4.3 Chloride Mitigation ..... 23
5.0 INDIRECT IMPACTS OF THE PROPOSED ACTION ..... 25
5.1 Methods ..... 26
5.2 Results and Table ..... 26
5.3 Chloride Mitigation ..... 28
6.0 CONCLUSION ..... 28
7.0 REFERENCES ..... 30
APPENDIX A: NHDOT BMP IMPLEMENTATION SUMMARY
APPENDIX B: TOWN OF DERRY, NH SALT REDUCTION PLAN FOR: BEAVER BROOK REVISION 2

APPENDIX C: TOWN OF LONDONDERRY, NH SALT REDUCTION BEST MANAGEMENT PRACTICES FOR THE BEAVER BROOK WATERSHED WITHIN THE BOUNDARIES OF THE TOWN OF LONDONDERRY
APPENDIX D: WOODMONT COMMONS PHASE I CHLORIDE MANAGEMENT PLAN

\section*{LIST OF FIGURES}

Figure 1. Upper Beaver Brook Watershed - Project Alternative A and Woodmont Commons East and West

\section*{LIST OF TABLES}

Table 1. Designated Uses for New Hampshire Non-Tidal Surface Waters \({ }^{\text {a }} 6\)
Table 2. Chloride Reduction Implementation Plan Matrix (from NHDES, 2011a) 8
Table 3. Salt Loading in the Upper Beaver Brook Watershed from NHDOT Patrol Shed 528 Maintained Roads and Municipal Sources for Derry and Londonderry: FY01 FY16 (tons/year) (NHDOT, 2018; Derry, 2018; Londonderry, 2018)18
Table 4. NHDOT and Municipal Salt Application Rate Estimates ..... 19
Table 5. Water Quality Violations Summary at NHDES TMDL Water Quality Monitoring Station 09-BVR - Beaver Brook at Kendall Pond Outlet (42 \({ }^{\circ} 50^{\prime} 23.04{ }^{\prime \prime}, 71^{\circ} 20^{\prime}\) 58.26") ..... 21
Table 6. Water Quality Violations Summary at NHDES TMDL Water Quality Monitoring Station 10A-BVR - Beaver Brook at Fordway Ext. Bridge (42² 52' 21.14", 71¹9' 46.06") ..... 21
Table 7. Water Quality Violation Periods at NHDES TMDL Water Quality Monitoring Stations 10A-BVR and 09-BVR ..... 22
Table 8. Estimated Future Chloride Loading on Public Roadways (per Source) ..... 22
Table 9. Chloride BMPs (from Table 9, NHDES, 2011a) ..... 23
Table 10. Indirect Impacts New Parking and Roadways Summary ..... 26
Table 11. Salt Loading Attributable to Indirect Impacts (Tons / Year) ..... 27

\section*{ABBREVIATIONS AND ACRONYMS}
\begin{tabular}{ll} 
AoT & NHDES Alteration of Terrain permit program \\
AU & \begin{tabular}{l} 
Assessment Unit for water quality assessment - collection of \\
stream reaches within a watershed
\end{tabular} \\
Beaver Brook & \begin{tabular}{l} 
Assessment Unit (AU) NHRIV700061203-16 within the Upper \\
Beaver Brook Watershed (Level 12 Hydrologic Unit \\
\(010700061025)\)
\end{tabular} \\
BMP & \begin{tabular}{l} 
Best Management Practice \\
CLD Consulting Engineers (As of August 7, 2017; Fuss \& O'Neill,
\end{tabular} \\
Inc.) & \begin{tabular}{l} 
Clean Water Act
\end{tabular} \\
CWA & Ltate Fiscal Year \\
FY & New Hampshire Department of Environmental Services \\
LBG & New Hampshire Department of Transportation \\
NHDES & Normandeau Associates, Inc. \\
NHDOT & The Towns of Derry and Londonderry Maximum Daily Load \\
Normandeau & United States Environmental Protection Agency \\
The Towns & Clean Water Act Section 401 Water Quality Certification
\end{tabular}

\subsection*{1.0 INTRODUCTION}

The Towns of Derry and Londonderry, New Hampshire (the Towns) and the New Hampshire Department of Transportation (NHDOT), in cooperation with the Federal Highway Administration (FHWA), are preparing a Supplemental Draft Environmental Impact Statement (SDEIS) for the Interstate 93 (I-93) Exit 4A Project (Project). The Project is located in the Towns and includes construction of a new interchange with I-93 (known as Exit 4A) and other transportation improvements to reduce congestion and improve safety along State Route 102 (NH 102), from I-93 easterly through downtown Derry, and to promote economic vitality in the Derry/Londonderry area.

The SDEIS presents the affected environment and the direct and indirect effects (environmental consequences) anticipated from the proposed Project in accordance with the requirements of the National Environmental Policy Act (NEPA; Public Law 91-190, 42 United States Code [USC] 4321-4347 as amended) and the regulations of the Council on Environmental Quality (CEQ; 40 Code of Federal Regulations [CFR] 1500-1508), as well as applicable FHWA regulations (23 CFR Part 771; 23 USC 138) and guidance (FHWA, 1987). Environmental consequences studied include impacts to water quality from each alternative assessed in the SDEIS. The Preferred Alternative in the SDEIS is Alternative A and that alternative is the focus of this report. Impacts from the proposed Project will include an increase in impervious area from additional roadway and a proportional increase in associated pollutants. Chloride, primarily from road salt used for winter road maintenance, is a pollutant of concern associated with increased impervious area.
This report provides:
- A review of the water quality regulatory environment for the proposed Project,
- An update on the status of chloride loading from NHDOT maintained roadways and municipally maintained roadways in the Towns of Derry and Londonderry in the Project area within Upper Beaver Brook watershed,
- A summary of expected chloride loading from the proposed Project and other reasonably foreseeable actions by others within the watershed, and
- A discussion of best management practices for the proposed Project and other reasonably foreseeable actions by others within the watershed that would be implemented to minimize chloride loading.

\subsection*{1.1 Existing Conditions}

The proposed Project lies within the Upper Beaver Brook watershed (Level 12 Hydrologic Unit 010700061025 ) as mapped in the US Geological Survey’s Watershed Boundary Dataset (NHDES, 2017a). Beaver Brook, south of the proposed Project, flows west under I-93 and then south into Massachusetts where it joins the Merrimack River in Lowell. Upper Beaver Brook has been subject to water quality investigations since 2003 in response to proposed development in the watershed, including widening and improvements to I-93 (NHDES, 2008).

\subsection*{1.2 Proposed Action}

The preferred alternative (Alternative A) for the proposed Project passes through Londonderry and Derry, with 3.2 miles of new alignment between the proposed I-93 Exit 4A interchange and eastern Derry. There would be approximately 1 mile of roadway construction on a new alignment, 1.6 miles of existing roadway reconstruction, and 0.6 mile of roadway with no improvements. It would originate from the proposed I-93 Exit 4A interchange location and travel southeast along new alignment through a wooded area to Folsom Road, near its intersection with North High Street and Madden Road. This alternative would continue to follow Folsom Road past Ross' Corner (Manchester Road/NH 28) and continue on Tsienneto Road across NH 28 Bypass to its end at NH 102, adjacent to Beaver Lake. Alternative A would cross Shields Brook, a perennial stream with a 3,767 acre watershed, as well as one other perennial stream on Tsienneto Road and several intermittent streams.

\subsection*{1.3 Indirect/Foreseeable Actions}

A Land Use Scenarios Technical Report (Louis Berger Group, 2017) prepared in conjunction with the SDEIS documents the development anticipated to occur if the proposed project were constructed. The Land Use Scenarios Technical Report predicts increased industrial development in Derry, increased residential development in Chester, and increased development in currently undeveloped land south and east of Exit 4A. Woodmont Commons, shown in Figure 1, is a planned, mixed-use, urban village in the Town of Londonderry. The developer, Pillsbury Realty Development, LLC, owns approximately 630 acres bordering the east and west sides of I-93. Alternative A would bisect the Woodmont East property.


Figure 1. Upper Beaver Brook Watershed - Project Alternative A and Woodmont Commons East and West

\subsection*{2.0 REGULATORY FRAMEWORK}

The Exit 4A project is subject to a variety of state and federal regulations and associated programs that ensure surface water quality is preserved or restored in all waters of the U.S. Impacts to waterbodies near the Alternative A alignment would necessitate involvement with these regulations as the Project proceeds through final design to construction.

\subsection*{2.1 Clean Water Act 303(d) and 305(b)}

The Clean Water Act (CWA), as amended in 1972, established the structure by which the federal government regulates discharges into the waters of the United States. Sections 303(d) and 305(b) of the CWA requires each state to submit two reports (CWA 303(d) report and CWA 305(b) report) to the U.S. Environmental Protection Agency (USEPA) every two years, documenting the water quality status of surface waters within the state. The New Hampshire Department of Environmental Services (NHDES) Watershed Management Bureau administers the monitoring and reporting of surface water quality to the USEPA. One of the required reports is New Hampshire's "305(b) Report" which describes the quality of New Hampshire's surface waters and analyzes the extent to which all such waters provide for the protection and propagation of a balanced population of shellfish, fish, and wildlife and allow recreational activities in and on the water.

The second report, required by Section 303(d) of the CWA requires submittal of a list of waters that:
- are impaired or threatened by a pollutant or pollutant(s);
- are not expected to meet water quality standards within a reasonable time even after application of best available technology standards for point sources or best management practices for nonpoint sources; and
- require development and implementation of a comprehensive water quality study (i.e., a Total Maximum Daily Load or TMDL study) that assesses pollutant loads consistent with water quality standards.

\subsection*{2.1.1 New Hampshire Surface Water Assessment}

The NHDES process for assessing surface water quality is detailed in the "Consolidated Assessment and Listing Methodology" (CALM) that interprets New Hampshire’s Surface Water Quality Regulations (Env-Wq 1702.17) and identifies "designated uses" for New Hampshire surface waters, defined as "the uses that a waterbody should support" (NHDES, 2017b).
Designated uses are listed in Table 1.

\section*{Table 1. Designated Uses for New Hampshire Non-Tidal Surface Waters \({ }^{\text {a }}\)}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Designated Use } & \multicolumn{1}{c|}{ NHDES Definition } \\
\hline Aquatic Life & \begin{tabular}{l} 
Waters that provide suitable chemical and physical conditions for \\
supporting a balanced, integrated and adaptive community of \\
aquatic organisms.
\end{tabular} \\
\hline Fish Consumption & \begin{tabular}{l} 
Waters that support fish free from contamination at levels that pose a \\
human health risk to consumers.
\end{tabular} \\
\hline Shellfish Consumption & \begin{tabular}{l} 
Waters that support a population of shellfish free from toxicants and \\
pathogens that could pose a human health risk to consumers
\end{tabular} \\
\hline \begin{tabular}{l} 
Drinking Water Supply After \\
Adequate Treatment
\end{tabular} & \begin{tabular}{l} 
Waters that with adequate treatment will be suitable for human \\
intake and meet state/federal drinking water regulations.
\end{tabular} \\
\hline \begin{tabular}{l} 
Primary Contact Recreation (i.e. \\
swimming)
\end{tabular} & \begin{tabular}{l} 
Waters that support recreational uses that involve minor contact with \\
the water.
\end{tabular} \\
\hline Secondary Contact Recreation & \begin{tabular}{l} 
Waters that support recreational uses that involve minor contact with \\
the water.
\end{tabular} \\
\hline Wildlife & \begin{tabular}{l} 
Waters that provide suitable physical and chemical conditions in the \\
water and the riparian corridor to support wildlife as well as aquatic \\
life
\end{tabular} \\
\hline
\end{tabular}

Notes: a - NHDES (2017e)
b-Parameters for assessing wildlife are under development, so no assessments for this designated use have been made to date.

New Hampshire's Administrative Rules Env-Wq 1703 et seq. provide the thresholds for pollutants, dissolved oxygen (DO), color, temperature, and other criteria that must be met for surface waters to be in compliance. Designated uses are assessed in the CALM using a \(1-5\) scale, with 1 indicating that all designated uses are attained, and 4 or 5 indicating that the Assessment Unit (AU, the waterbody or stream segment used for recording assessments) is impaired for one or more designated uses, as defined in the CALM:
- AU Category 4A: Impaired or threatened for one or more designated uses but does not require the development of a TMDL because a TMDL has been completed.
- AU Category 4B: Impaired or threatened for one or more designated uses but does not require the development of a TMDL because other pollution control requirements are reasonably expected to result in attainment of the water quality standard in the near future.
- AU Category 4C: Impaired or threatened for one or more designated uses but does not require the development of a TMDL because the impairment is not caused by a pollutant.
- AU Category 5: Impaired or threatened for one or more designated uses by a pollutant(s), and requires a TMDL (this is the 303(d) List) (NHDES, 2017b).
For impaired waterbodies on the 303(d) list, a TMDL is calculated that establishes the maximum amount of a pollutant that can be allowed in a waterbody to achieve water quality standards for all designated uses (NHDES, 2008). A TMDL report also identifies the sources of the
pollutant(s) of concern and the quantity of pollutant that could be discharged by each source while achieving water quality standards. All TMDLs are subject to public review and comment and review and approval by EPA (NHDES, 2008). A TMDL is determined as:
\[
\mathrm{TMDL}=\mathrm{WLA}+\mathrm{LA}+\mathrm{MOS}
\]

Where "WLA" is the waste load allocation for point sources of a pollutant; "LA" is the load allocation for nonpoint sources of a pollutant; and "MOS" is the margin of safety to account for uncertainty and unknowns (NHDES, 2008).

\subsection*{2.2 Beaver Brook Chloride TMDL}

In 2008, the NHDES prepared TMDL studies for four waterbodies in southern New Hampshire that were adjacent to I-93 (NHDES, 2008). One of those was Beaver Brook, AU
NHRIV700061203-16 in Derry and Londonderry (Figure 1), which includes the surface waters within the Upper Beaver Brook Watershed \({ }^{1}\). According to the TMDL, the majority ( \(\sim 95 \%\) ) of chloride loading in the watershed is associated with de-icing activities for public and private roadways and parking lots. The TMDL was set as a load duration curve based on the chronic water quality standard ( \(230 \mathrm{mg} / \mathrm{L} \mathrm{Cl}\) ) reduced by \(10 \%\), to include a \(10 \%\) margin of safety, (=207 \(\mathrm{mg} / \mathrm{LCl}\) ) multiplied by each streamflow value in a four day average flow duration curve determined by NHDES (NHDES, 2008). The load duration curve expresses the TMDL in tons of chloride per day that can be imported to the watershed at a given flow and meet the chronic water quality standard (NHDES, 2008). Of the daily salt import total expressed by the TMDL, \(66 \%\) is reserved for the WLA (MS4 permittees) and \(34 \%\) is reserved for the LA (nonpoint sources) (NHDES, 2008). NHDES has also expressed the TMDL for Beaver Brook as an alternative form, the percent reduction goal, which establishes an annual salt load allocation in tons of salt per year (NHDES, 2008). The annual salt load allocation is not the TMDL (the TMDL is the load duration curve), but is used for implementing the TMDL by establishing a longer term goal (i.e. versus daily criteria) for watershed salt imports that can be expected to meet water quality standards. Based on empirical water quality data and annual salt imports from all salt sources in the watershed and including a \(10 \%\) margin of safety, NHDES set the annual Upper Beaver Brook watershed salt load allocation at 9,069 tons of salt per year (NHDES, 2008). The TMDL report also sets forth the process by which each sector would be allocated an annual quantity of salt to be applied (the "salt load"). The recommended salt loads were negotiated via a Salt Reduction Workgroup, with representatives from each sector of salt applicators. Recommended salt loads per sector were established in the "Chloride Reduction Implementation Plan for Beaver Brook - Derry, Londonderry, Auburn, Chester, NH" (NHDES, 2011a).

\subsection*{2.3 NHDES TMDL Implementation Plan}

A TMDL study establishes a target for reducing a pollutant(s) in order to achieve water quality standards in an impaired waterbody. A TMDL implementation plan may identify a framework for achieving load reductions through existing or necessary controls that address the identified source(s) of pollutant(s).

\footnotetext{
1 "Beaver Brook" as used in this document refers to the NHDES Assessment Unit NHRIV700061203-16, consistent with documents referenced in this report.
}

The Chloride Reduction Implementation Plan for Beaver Brook (NHDES, 2011a) specifies a number of best management practices (BMPs) to optimize salt use efficiency and identifies activities and target dates for achieving compliance with the TMDL (see Table 2). The BMPs were identified consistent with the implementation plan goals to reduce salt loads and attain chloride water quality standards in the Upper Beaver Brook watershed while preserving winter road maintenance standards and traffic safety.

\section*{Table 2. Chloride Reduction Implementation Plan Matrix (from NHDES, 2011a)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Action}} & \multicolumn{8}{|l|}{Target Completion Date of Responsible Agencies} \\
\hline & & \[
\begin{gathered}
\text { NH } \\
\text { DES }
\end{gathered}
\] & UNH & \[
\begin{aligned}
& \text { NH } \\
& \text { DOT }
\end{aligned}
\] & Towns \({ }^{\text {a }}\) & LER \({ }^{\text {b }}\) & RPC \({ }^{\text {c }}\) & PS \({ }^{\text {d }}\) & \[
\begin{gathered}
\text { NH } \\
\text { DOS }^{\text {e }}
\end{gathered}
\] \\
\hline \multicolumn{10}{|c|}{Objective: Creation of Educational Manuals, Training Programs and Procedural/Operational Strategies} \\
\hline 1 & State Snow and Ice BMP Manual for Roadways & 2012 & & 2012 & & & & & \\
\hline 2 & State Snow and Ice BMP Manual for Parking Lots & 2012 & & 2012 & & & & 2012 & \\
\hline 3 & Develop DOT Winter Maintenance Training Program for Salt Reduction & & & 2012 & & & & & \\
\hline 4 & Certification Training Program for Private Sector & & 2011 & & & & & & \\
\hline 5 & Training and Certification Program for Municipal Staff & & 2011 & & 2011 & & & & \\
\hline 6 & Legislative approval of salt applicators license program & DLA \({ }^{\dagger}\) & & & & & & & \\
\hline 7 & Legislative approval of mandatory use of snow tires & & & & & & & & DLA \\
\hline 8 & Develop Join Incident Protocols & & & 2011 & & & & & 2011 \\
\hline 9 & Complete Driver Behavior Study & 2012 & & & & & & & \\
\hline 10 & Adopt traffic violation procedure to address reckless driving during inclement road conditions & & & & & & & & DLA \\
\hline 11 & Develop winter driving training and require attendance for repeat traffic violation offenders & & & & & & & & DLA \\
\hline 12 & Develop training for inexperienced drivers, such as high school students & & & & 2012 & & & & 2012 \\
\hline 13 & Reduce driving speed limits during inclement weather conditions & & & 2010 & 2010 & & & & \\
\hline 14 & Hold prewinter meetings to review Level of Service & & & & 2011 & 2011 & & & \\
\hline 15 & Develop call-back ranking system & & & & 2012 & 2012 & & & \\
\hline 16 & Develop and adopt a formal snow and ice removal policy & & & & 2011 & & & & \\
\hline 17 & Revise site plan review process to include designs and/or management strategies that may decrease chloride use & & & & 2012 & & 2012 & & \\
\hline 18 & Revise permit review process to include designs and/or management strategies that may decrease chloride use & 2012 & & & & & & & \\
\hline 19 & Creation of a salt reduction ordinance & & & & 2015 & & & & \\
\hline 20 & Require mandatory training for employees and contracted staff that deal with winter maintenance & & & 2012 & 2012 & & & 2012 & \\
\hline 21 & Review and update Salt Management Plans every 5 years & & & & 2015 & & & & \\
\hline 22 & Development of company operational procedure manual for snow and ice removal & & & & & & & 2015 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Action}} & \multicolumn{8}{|l|}{Target Completion Date of Responsible Agencies} \\
\hline & & \[
\begin{gathered}
\text { NH } \\
\text { DES }
\end{gathered}
\] & UNH & \[
\begin{gathered}
\text { NH } \\
\text { DOT }
\end{gathered}
\] & Towns \({ }^{\text {a }}\) & LER \({ }^{\text {b }}\) & RPC \({ }^{\text {c }}\) & PS \({ }^{\text {d }}\) & \[
\left|\begin{array}{c}
\text { NH } \\
\text { DOS }^{\text {e }}
\end{array}\right|
\] \\
\hline 23 & Develop record keeping strategy for salt application & & & 2012 & 2012 & & & 2012 & \\
\hline 24 & Properly store salt under cover and on an impervious surface and away from surface water & & & 2011 & 2011 & & & 2011 & \\
\hline \multicolumn{10}{|c|}{Objective: Snow and Ice Removal BMP Applications} \\
\hline 1 & Modify existing equipment for pre-wetting & & & & 2012 & & & 2012 & \\
\hline 2 & Implement pre-wetting watershed wide & & & 2014 & 2014 & & & 2014 & \\
\hline 3 & Implement anti-icing watershed wide & & & 2016 & 2016 & & & 2016 & \\
\hline 4 & Use handheld or truck mounted spreaders & & & 2011 & 2011 & & & 2011 & \\
\hline 5 & Install ground speed oriented spreaders to trucks & & & 2014 & 2014 & & & 2014 & \\
\hline 6 & Use alternative snow fighting methods such as snow fences where applicable & & & 2011 & 2011 & & & 2011 & \\
\hline 7 & Manage overflow parking areas based on level of use & & & 2013 & & & & 2013 & \\
\hline 8 & Properly maintain and calibrate equipment & & & 2011 & 2011 & & & 2011 & \\
\hline 9 & Complete periodic inspections of parking lots and walk ways for over application of deicer. Follow up with staff/contractor on findings. & & & & & & & 2012 & \\
\hline 10 & Adopt BMP's at all salt storage and handling facilities & & & 2012 & 2012 & & & 2012 & \\
\hline 11 & Track salt use utilizing salt accounting system developed by UNH T2 \({ }^{\text {g }}\) & & & & & & & 2012 & \\
\hline 12 & Install AVL systems to collect real time data & & & 2015 & 2015 & & & & \\
\hline
\end{tabular}

Notes: a - Derry and Londonderry
b - LER - Local Emergency Responders
c-RPC - Rockingham Planning Commission
d-PS - Private Sector
e - NHDOS - NH Department of Safety
f - DLA - Dependent on Legislative Approval
g - UNH T2 - University of New Hampshire Technology Transfer Center

\subsection*{2.3.1 NHDOT Implementation Plan}

A 19.8-mile section of Interstate I-93 from Salem, NH to Manchester, NH is undergoing reconstruction and widening to four lanes to improve transportation efficiency and safety with an expected completion date in October \(2019^{2}\). The I-93 project includes a 5.2 mile segment located within the Upper Beaver Brook watershed. In 2009, prior to NHDES' publication of the Chloride Reduction Implementation Plan for Beaver Brook (NHDES, 2011a) the NHDOT prepared the Implementation Plan to Increase the Efficiency and Effectiveness of Road Salt Use to Meet Total Maximum Daily Load for Chloride in Water Bodies along the I-93 Corridor from Salem to Manchester, NH: Beaver Brook; Dinsmore Brook; North Tributary to Canobie Lake; PorcupinePolicy Brook which demonstrated to NHDES how NHDOT could meet the Beaver Brook chloride TMDL (NHDOT, 2009).

\footnotetext{
\({ }^{2}\) http://www.rebuildingi93.com/content/news/ Accessed 4/18/2018.
}

The I-93 improvement project required a 401 Water Quality Certification (WQC) and preparation of an Environmental Impact Statement with a Record of Decision (ROD) from the FHWA that describes measures that would be taken to minimize harm to the environment, including water quality. To date, relevant BMPs identified in the Chloride Reduction Implementation Plan for Beaver Brook have been implemented including actions taken by NHDOT in executing the conditions of the I-93 project 401 WQC (NHDES, 2006) and consistent with the FHWA 2005 ROD for the I-93 project EIS (FHWA, 2005). NHDOT submitted a letter dated March 13, 2018 to Fuss \& O’Neill (Appendix A) that identifies all salt reduction BMPs that have been implemented to date consistent with the NHDOT Implementation Plan (NHDOT, 2009) and the NHDES Implementation Plan (NHDES, 2011a), as presented below (from Appendix A, pages 3-4). The NHDOT letter asserts, through implementation of salt reduction BMPs, compliance with all current permits (see Appendix A).
- Salt accounting - DOT meticulously monitors its salt stock in each patrol shed and reports that information annually to DES
- Pre-wetting - DOT applies liquid deicer to dry salt at time of application
- Anti-Icing - DOT applies brine directly to the pavement in advance of an oncoming storm when conditions allow
- Underbelly Plows - DOT utilizes these plows that enhance snow scraping / removal capabilities
- Ground-speed Spreader Controllers - All DOT trucks utilized out of Shed 528 have ground-speed, closed loop controllers
- Mobile Pavement Temperature Sensors - All DOT trucks located in Shed 528 have mobile pavement temperature sensors. Several road weather stations have also been established along I-93 corridor
- Equipment Calibration - DOT annually calibrates their spreader equipment prior to each season
- Enhanced Training - DOT provides enhanced training tracks participation via an online accounting system. Hired equipment operators are encouraged to attend
- Improved Storage Practices - DOT has just completed upgrading a depot shed in Salem which has increased indoor storage capacity
- Snow and Ice Forecasting - DOT utilizes computer software that provides forecast for plowing and salting with information feed from it Roadside Weather Information System
- Enhanced Plow Blade Technology - DOT utilizes flexible plow blades that provide better road contact and enhance snow scraping / removal capabilities
- GPS/AVL technology - All DOT spreader trucks located in Shed 528 are equipped with GPS/AVL which helps track salt usage by specific trucks and areas or interest.
- Variable Messaging Signs - VMS have been installed to warn drivers of impending or current weather and traffic conditions and set lower speed limits
- Enhanced Material Reporting Relative to Winter Severity - DOT has been reporting post-implementation salt usage relative to pre-implementation usage while adjusting for winter weather severity.

\subsection*{2.3.2 Town of Derry Implementation Plan}

The Town of Derry developed the document Salt Reduction Plan for: Beaver Brook with subsequent updates (Derry, 2011a; Derry, 2016) in response to the TMDL and the 2011 Chloride Reduction Implementation Plan for Beaver Brook (NHDES, 2011a). The 2016 Salt Reduction Plan, included as Appendix B, details several measures that have been implemented to reduce salt loading in Beaver Brook (Derry, 2016):
- Purchased five salt reducing plow trucks
- Salt pre-wetting sprayers on new trucks
- Groundspeed controls on new trucks
- Pavement temperature sensors on new trucks
- Salt spreader calibration program developed and implemented to ensure accurate application rates.
- All Derry municipal operators have been trained in the Green Snow Pro Program offered by the UNH Technology Transfer Center
- Derry regularly hosts the Green Snow Pro Program training in its municipal center on Manning Street.
- Derry officials supported the passage of the Voluntary Certified Salt Applicator law each time it was presented to the legislature.
- Derry has filmed and broadcasted plow truck ride-alongs on its public access television station.
- Derry has provided ride-alongs for the DES Salt Reduction Coordinator.
- Derry public television interviewed DES and UNH salt reduction experts during a segment about the chloride contamination issues in Beaver Brook.
The town committed in 2016 to equipping nine plow trucks with Automatic Vehicle Location (AVL) technology which will allow the town to track the amount of salt applied on each salt route and will log salt applied in a central database. This system also helps avoid duplicating salting efforts by displaying a trail of where other salt applicators have been.

\subsection*{2.3.3 Town of Londonderry Implementation Plan}

The Town of Londonderry developed a salt reduction plan (Londonderry, 2011) in response to the TMDL and the 2011 Chloride Reduction Implementation Plan for Beaver Brook (NHDES, 2011a). The Londonderry salt reduction plan, included as Appendix C identified a number of BMPs and implementation goals for reducing salt loads including equipment upgrades, improved equipment calibration procedures, private sector outreach, and improved weather monitoring. Londonderry reports in the document Town of Londonderry, NH Salt Reduction Best

Management Practices for the Beaver Brook Watershed Within the Boundaries of the Town of Londonderry (Londonderry, 2018a) that as of March 2018, they have completed the following:
- Purchased five dump trucks with underbody discharge spreaders
- Salt pre-wetting and ground speed control on new trucks
- Pavement temperature sensors on new trucks
- Spreader control units on new trucks to allow adaptive road treatment
- Developed and implemented spreader calibration policies
- Developed and implemented salt use tracking policies
- Salt reduction training program is required for town staff and road maintenance contractors
- Upgraded local weather forecast service to aid road maintenance decision making process

\subsection*{2.3.4 NHDES Private Sector Implementation Plan}

The 2011 Chloride Reduction Plan for Beaver Brook provides recommendations for salt reduction by the private sector including reporting of salt usage to the University of New Hampshire Technical Transfer Center. Specific elements of the implementation plan applicable to the private sector are itemized in Table 2. NHDES has also published "Best Management Practices and Salt-Use Minimization Efforts in Chloride-Impaired Watersheds of New Hampshire - A Guidance Document for Private Developers and Contractors" (NHDES, 2016 see Appendix D) which reiterates elements of the 2011 Chloride Reduction Plan and provides specific guidance on how to develop an individual Salt Minimization Plan. Individual salt minimization plans identify and describe the development being maintained, and provide the following:
- Operational Guidelines
- Winter Operator Certification Requirements - such as Green SnowPro \({ }^{3}\) Training, which is administered by NHDES
- Weather Monitoring - How weather information is gathered and communicated
- Equipment Calibration Requirements
- Mechanical Removal - information such as snow storage and plowing frequency
- Salt Usage Evaluation and Monitoring - Description of salt usage monitoring and reporting
- Analysis of Alternative De-icing Materials, Site Design Considerations and Watershed Offsets

\footnotetext{
\({ }^{3}\) Voluntary Certified Salt Applicator Program, authorized in Env-Wq 2200
}

\subsection*{2.4 Water Quality Permits Required for the Proposed Action \\ 2.4.1 National Pollutant Discharge Elimination System (NPDES)}

The National Pollutant Discharge Elimination System (NPDES) permit program, under the authority of the CWA, addresses water pollution by regulating point sources that discharge pollutants to waters of the United States. Two permitting programs under NPDES are relevant to highway construction projects in the Project study area: the Construction General Permit (CGP) and the Municipal Separate Storm Sewer System (MS4) general permit. While a Construction General Permit will be required for the Project, only the MS4 permit has a chloride nexus and is discussed in this section.

\section*{Municipal Separate Storm Sewer System (MS4) Permit}

The NPDES program requires that operators of Municipal Separate Storm Sewer Systems (MS4s) file a notice of intent to obtain coverage under the MS4 permit for stormwater discharge from these systems. MS4s are defined by the EPA as a stormwater conveyance or system of conveyances that is owned by a state, city, town, village, or public entity that discharges to waters of the U.S. Owners and operators of MS4s in 61 New Hampshire municipalities, including Derry and Londonderry, are required to apply for coverage under the MS4 permit program. In January 2017, EPA released the General Permits (GPs) for New Hampshire MS4s, which took effect on July 1, 2018 (USEPA, 2017). The MS4 general permit has special requirements for operators of MS4s that discharge to Beaver Brook, Dinsmore Brook, North Tributary to Canobie Lake, and Policy-Porcupine Brook. These requirements are detailed in Appendix F "Requirements of Approved Total Maximum Daily Loads" of the 2017 MS4 General Permits (USEPA, 2017).

\section*{NHDOT and Municipally Maintained Surfaces}

Under Appendix F Part I. 1 of the 2017 MS4 permit, municipalities (which includes NHDOT under this permit) must develop a Chloride Reduction Plan by July 1, 2019, which must be fully implemented by July 1, 2023. Elements of the municipal Chloride Reduction Plan, briefly, are:
- Tracking of salt applied (starting July 1, 2020)
- Planned activities for salt reduction such as:
- Operational changes (pre-wetting, pre-treating salt stockpile, increased plowing prior to de-icing, monitoring of road surface temperature) implemented by July 1, 2019
- New or modified equipment
- Staff training - implemented by July 1, 2019
- Adoption of guidelines for application rates
- Equipment calibration
- Designation of no-salt and low salt zones
- Estimate of total tonnage of salt reduction expected
- Implementation schedule - full implementation by July 1, 2023.

\section*{Privately Maintained Surfaces}

Private facilities that drain to an MS4 in the Upper Beaver Brook watershed also have chloride reduction requirements as specified in Appendix F Part I. 1 of the 2017 NH MS4 permit and must be included within a permittee's Chloride Reduction Plan. These requirements include:
- Private parking lots with 10 or more parking spaces draining to the MS4 must be identified
- Private parking lot owners and operators and private street owners and operators are required to utilize salt applicators trained and certified in accordance with Env-Wq 2203
- Private parking lot owners and operators and private street owners and operators have to report annual salt usage within the municipal boundaries to the UNH Technology Transfer Center or directly to the permittee
- Private new development and redevelopment projects are required to minimize salt usage, and track and report amounts used using the UNH Technology Transfer Center online tool (http://www.roadsalt.unh.edu/Salt/)

\subsection*{2.4.2 401 Water Quality Certificate}

Proponents of federal actions that propose discharges to waters of the U.S. that require a federal permit or license, such as a permit under Section 404 or Section 402 (e.g. MS4 GP) of the Clean Water Act, are required to obtain a Water Quality Certification (WQC) through Section 401 of the Clean Water Act. In New Hampshire, the NHDES Watershed Management Bureau administers this program. For projects that require a Section 404 permit from the Army Corps of Engineers and that fall under the NH Programmatic General Permit (USACE, 2017) the 401 WQC is programmatic under state WQC \#2017-404P-001, and no separate application is needed. Projects that require an individual Section 404 permit from the Army Corps of Engineers must apply for a WQC from the NHDES Watershed Management Bureau.

The NHDES Watershed Management Bureau commonly requires applicants for individual WQCs to develop and adopt a BMP-based Chloride Management Plan, as discussed in "Best Management Practices and Salt-Use Minimization Efforts in Chloride-Impaired Watersheds of New Hampshire - A Guidance Document for Private Developers and Contractors" (NHDES, 2016). The proposed Exit 4A project would be located entirely within the Upper Beaver Brook watershed and would require an individual WQC. Accordingly, the WQC will likely require a condition that NHDOT and the Towns prepare and adopt BMP-based Chloride Management Plans similar to the Chloride Reduction Plan (Appendix F of the 2017 MS4 permit) required for the MS4 permit.

\subsection*{2.4.3 Alteration of Terrain Permit}

The NHDES Alteration of Terrain (AoT) Bureau is also charged with oversight of the NH Water Quality Standards. The AoT Bureau issues permits for projects that disturb:
- 100,000 square feet or more,
- 50,000 square feet or more for projects within 250 feet of surface waters under the jurisdiction of RSA 483, the New Hampshire Water Quality Protection Act, or
- Projects of any size that disturb areas with a grade of 25 percent or greater within 50 feet of any surface water.

NHDOT has been granted an exemption from the requirement to obtain an individual Alteration of Terrain Permit by NHDES as detailed in an agreement signed by NHDOT and NHDES titled "Department of Transportation Terrain Alteration Permit Exemption" (NHDES, 2011b). The agreement recognizes that NHDOT projects are designed, constructed and maintained to comply with all provisions of state water quality standards under a number of state and federal regulations, standards, guidance documents, and contract provisions. These standards are listed in the agreement and are updated by NHDOT as needed:
- DOT Standard Specifications for Road and Bridge Construction, specifically Sections 107 and 645 (approved August 17, 2010)
- AASHTO "Highway Drainage Guidelines," 4th Edition, 2007
- EPA's "Developing Your Stormwater Pollution Prevention Plan-A Guide for Construction Sites," May 2007
- US Department of Transportation, "Best Management Practices for Erosion and Sediment Control," June 1995
- New Hampshire Department of Environmental Services "New Hampshire Stormwater Management Manual" Volumes 1, 2 \& 3, December 2008
- NHDOT "Guidelines for Temporary Erosion Control and Stormwater Management," 2002
- NHDOT "Best Management Practices for Routine Roadway Maintenance Activities in New Hampshire," August 2001
- NHDOT "Construction Manual"; June 1, 2006
- FHWA's "Guidance Manual for Monitoring Highway Runoff Water Quality" March 2001
- FHWA's "Urban Drainage Design Manual," September 2009
- FHWA's "Hydraulic Design of Highway Culverts," April 2012
- All applicable Federal Aviation Administration Advisory Circulars and Orders
- The American Railway Engineering and Maintenance-of-Way (AREMA) "Manual for American Railway Engineering and Maintenance-of Way Association," April 2015
The construction of the proposed Project will be in compliance with all requirements imposed under the 2011 agreement.

\subsection*{3.0 CURRENT CONDITIONS}

\subsection*{3.1 Impairment Status}

The 2008 chloride TMDL remains in effect for Beaver Brook (AU NHRIV700061203-16). Other reaches of Beaver Brook, NHRIV700061203-11 and NHRIV70061203-09, are listed in the most recent 303 (d) list (NHDES, 2017c) as impaired for aquatic life by chloride.

\subsection*{3.2 Regulated Discharges}

Discharges to Beaver Brook are currently regulated by the MS4 General Permit and by existing Alteration of Terrain permits for private development and municipal infrastructure, and under the 2011 agreement between NHDOT and the NHDES Alteration of Terrain program (NHDES, 2011b).

\subsection*{3.3 State and Municipal Chloride Loading in Upper Beaver Brook Watershed}

Annual salt use within Upper Beaver Brook watershed for NHDOT and the Towns (FY01 through FY10) was summarized in the NHDES Chloride Reduction Implementation Plan (NHDES, 2011a). Table 3 presents the annual chloride loading estimates for NHDOT Patrol Shed 528 and the municipally maintained assets for the Towns of Derry and Londonderry within the Upper Beaver Brook watershed for FY01-FY16 (NHDES, 2011a; Derry, 2018; Londonderry, 2018; NHDOT, 2018). NHDOT Patrol Sheds 508, 512, 513, and 514 are also responsible for state roadway maintenance in Upper Beaver Brook watershed but are not discussed in this report as only Patrol Shed 528 maintains state roadway within the Exit 4A project area. Other sources, including other NHDOT maintained assets, private roads and private parking lots, contribute significantly to chloride loads in the watershed, and therefore the ability of the watershed to meet the established TMDL, but are not within the scope of this report and are not presented (for a comprehensive presentation of chloride loads in Upper Beaver Brook watershed see NHDES, 2011a). Table 3 includes all reported tonnage for the Beaver Brook watershed from the Town of Derry which includes 14.4 acres of municipal parking lots, as Derry does not track municipal parking lot salt application separately, and no separate tally of salt application on municipal roadways has been published by NHDES since 2011 (NHDES, 2011a). Review of the table reveals the relatively high degree of variability in annual salt loading for Patrol Shed 528, Derry, and Londonderry. As may be expected, salt loading in Upper Beaver Brook watershed is strongly correlated with winter weather (NHDES, 2011a). A weather severity index (WSI) has been used by NHDES to evaluate seasonal salt application totals relative to overall winter severity (e.g. total snowfall, total storm hours, etc.) and a positive correlation was found ( \(\mathrm{r}^{2}=0.884\) ) over a ten year period from 2001 through 2010 (Section 4.2, NHDES, 2011a). As of 2011, NHDES reported chloride reductions were still needed in Upper Beaver Brook watershed to meet the TMDL target total annual salt imports, even with WSI adjustments to annual salt imports (NHDES, 2011a).
Table 4 presents estimates of salt loading rates for NHDOT Shed 528 and the towns of Londonderry and Derry's municipally maintained roads. Because Derry does not track municipally maintained roads separately from their 14.4 acres of municipally maintained parking lots, all of which fall within the Beaver Brook watershed, the average salt application outside of
the Beaver Brook watershed was used to calculate an estimate of the loading rate per lane mile, because it represents roadway salt use only.

Table 3. Salt Loading in the Upper Beaver Brook Watershed from NHDOT Patrol Shed 528 Maintained Roads and Municipal Sources for Derry and Londonderry: FY01 - FY16 (tons/year) (NHDOT, 2018; Derry, 2018; Londonderry, 2018)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Source & Treatment Area & FY01 & FY02 & FY03 & FY04 & FY05 & FY06 & FY07 & FY08 & FY09 & FY10 & FY11 & FY12 & FY13 & FY14 & FY15 & FY16 \\
\hline \begin{tabular}{l}
NHDOT \\
Patrol \\
Shed 528
\end{tabular} & 21.70 lanemiles - salt tonnage used & 642 & 364 & 611 & 466 & 622 & 371 & 304 & 667 & 495 & 361 & 384 & 212 & 329 & 518 & 590 & 723 \\
\hline Derry & Beaver Brook watershed 212 lane-miles + 14.4 acres parking lots salt tonnage used \({ }^{\text {a }}\) & 3,241 & 2,209 & 3,621 & 2,312 & 2,947 & 3,404 & 1,354 & 3,795 & 2,909 & 2,310 & 2,178 & 1,254 & 2,520 & 3,432 & 2,772 & 1,650 \\
\hline Londonderry & Beaver Brook Watershed municipal roads \({ }^{\text {b }}\) & 1,229 & 616 & 1,185 & 638 & 1,212 & 678 & 535 & 1,170 & 828 & 607 & 809 & 353 & 718 & 1,090 & 879 & 578 \\
\hline & TOTAL (tons) & 5,112 & 3,189 & 5,417 & 3,416 & 4,781 & 4,453 & 2,193 & 5,633 & 4,232 & 3,278 & 3,370 & 1,819 & 3,567 & 5,040 & 4,241 & 2,951 \\
\hline
\end{tabular}

Notes: a - Derry tracks salt usage within the Beaver Brook watershed but does not track municipal road salt application separately from municipal parking lot salt application. As such, municipal parking lots are included in this total.
b - Londonderry does not track salt loading within the Beaver Brook watershed separately from other municipal roadways. The Londonderry Salt Reduction Plan reports that there are 77.9 municipally maintained roadway lane-miles within the Beaver Brook watershed (Londonderry, 2011). Londonderry reports that there are 368.8 total municipally maintained lane-miles in Londonderry (Londonderry, 2018). Beaver Brook Watershed municipal road salt application was calculated by multiplying Londonderry's reported salt tonnage totals by 77.9/368.8.

Table 4. NHDOT and Municipal Salt Application Rate Estimates
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Source & Treatment Area and Rate & FY01 & FY02 & FY03 & FY04 & FY05 & FY06 & FY07 & FY08 & FY09 & FY10 & FY11 & FY12 & FY13 & FY14 & FY15 & FY16 & AVG FY08FY16 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
NHDOT \\
Patrol Shed \\
528
\end{tabular}} & 21.70 lanemiles - salt tonnage used & 642 & 364 & 611 & 466 & 622 & 371 & 304 & 667 & 495 & 361 & 384 & 212 & 329 & 518 & 590 & 723 & 475 \\
\hline & tons/lanemile/year & 29.6 & 16.8 & 28.2 & 21.5 & 28.7 & 17.1 & 14.0 & 30.7 & 22.8 & 16.7 & 17.7 & 9.8 & 15.2 & 23.9 & 27.2 & 33.3 & 21.9 \\
\hline \multirow[t]{2}{*}{Derry} & Non-Beaver Brook Watershed (roads only) 118 lanemiles \(^{\text {a }}\) & 1,669 & 1,138 & 1,865 & 1,191 & 1,518 & 1,754 & 697 & 1,955 & 1,498 & 1,190 & 1,122 & 646 & 1,298 & 1,768 & 1,428 & 850 & 1,306 \\
\hline & tons/lanemile/year & 14.1 & 9.6 & 15.8 & 10.1 & 12.9 & 14.9 & 5.9 & 16.6 & 12.7 & 10.1 & 9.5 & 5.5 & 11.0 & 15.0 & 12.1 & 7.2 & 11.1 \\
\hline \multirow[t]{2}{*}{Londonderry} & Town-wide municipal roads only 368.8 lanemiles & 5,818 & 2,916 & 5,610 & 3,019 & 5,736 & 3,208 & 2,533 & 5,541 & 3,918 & 2,873 & 3,828 & 1,669 & 3,398 & 5,160 & 4,161 & 2,738 & 3,698 \\
\hline & tons/lanemile/year & 15.8 & 7.9 & 15.2 & 8.2 & 15.6 & 8.7 & 6.9 & 15.0 & 10.6 & 7.8 & 10.4 & 4.5 & 9.2 & 14.0 & 11.3 & 7.4 & 10.0 \\
\hline
\end{tabular}

Notes: a - Salt application tonnages for Derry municipal roads outside of the Beaver Brook watershed was used to estimate lane-mile application rates. Derry reports that total lane miles maintained by the town \(=329.8\). Total lane miles within the Beaver Brook watershed \(=212\).

\subsection*{3.4 Beaver Brook Chloride TMDL Monitoring}

A component of the 2008 Beaver Brook chloride TMDL is the requirement for in-stream monitoring to evaluate changes in water quality following approval of the TMDL (EPA, 2008). The TMDL specifies near-continuous ( 15 minute readings) specific conductance monitoring over a nine-year period from 2007-2016 at two water quality monitoring stations in the Upper Beaver Brook watershed to determine achievement of the TMDL. The two identified water quality stations are 10A-BVR (located on Beaver Brook at Fordway Ext. bridge) and 09-BVR (located on Beaver Brook at the outlet of Kendall Pond) as shown in Figure 1. Periodic chloride and specific conductance data exist for station 10A-BVR for the period 2002 through 2006. Nearly continuous monitoring data has since been collected at station 10A-BVR from July 2006 through June 2017 (NHDES, 2018) as presented in NHDES' annual TMDL Data Report and Quality Assurance Audit (NHDES, 2007, NHDES, 2008b, NHDES, 2009, NHDES, 2010, NHDES, 2011c, NHDES, 2012, NHDES, 2014, NHDES, 2015, NHDES, 2016b, NHDES, 2017d, NHDES, 2018). A nearly continuous data record also exists for station 09-BVR from July 2006 through June 2009 as presented in the NHDES' annual TMDL Data Report and Quality Assurance Audit (NHDES, 2007, NHDES, 2008b, NHDES, 2009).
A summary of water quality violations at the TMDL monitoring stations 10A-BVR and 09-BVR is presented in Table 5 as summarized from all available published data for the continuous specific conductance monitoring conducted in support of the Beaver Brook chloride TMDL study. The data presented were collected, quality controlled, and published by NHDES in their annual Data Report and Quality Assurance Audit. Numerous other water quality stations have been periodically monitored for chloride in the Upper Beaver Brook Watershed (see NHDES, 2007; NHDES, 2008a); however, the Beaver Brook chloride TMDL identifies attainment of chloride water quality standards at stations 10A-BVR and 09-BVR, determined by a period of continuous specific conductance monitoring, as one of the primary means for determining achievement of the TMDL (NHDES, 2008a) and is therefore presented here.
In the three years of continuous specific conductance and chloride monitoring at station 09-BVR, from July 2006 through June 2009, no acute or chronic chloride water quality violations were documented. Published data are not available beyond June 2009 at station 09-BVR. At station \(10 \mathrm{~A}-\mathrm{BVR}\), there are eleven years of continuous specific conductance monitoring data available and in that period there were no documented violations of the acute chloride water quality standard and there were two documented violations of the chronic chloride water quality standard as presented in Table 5. Both documented chronic chloride water quality standards violations were short in duration ( 5.28 days from November 29 - December 4, 2007; and 5.06 days from February 5 - February 10, 2011), as presented in Table 6. There have been no further documented chloride water quality standards violations at station 10A-BVR between February, 2011 and June, 2017 (i.e. the most recent published TMDL Data Report [NHDES, 2018]). Therefore, the TMDL monitoring data have demonstrated that the number and duration of chloride water quality standards violations have decreased since approval of the Beaver Brook chloride TMDL in 2008, with no violations documented in the past six years of published TMDL Data Reports.

Table 5. Water Quality Violations Summary at NHDES TMDL Water Quality Monitoring Station 09-BVR - Beaver Brook at Kendall Pond Outlet (4250' 23.04 ", \(71^{\circ}\) 20' 58.26")
\begin{tabular}{|c|c|c|c|c|c|}
\hline Date Range & Number of valid specific conductance data points & Percent of reporting period with valid conductance data & Number of violations of accute chloride water quality standard (1 hr rolling average) & Number of violations of chronic chloride water quality standard (4 day rolling average) & Duration of chronic exceedance(s) \\
\hline 7/1/06-6/30/07 & 35,001 & 99.89 & 0 & 0 & - \\
\hline 7/1/07-6/30/08 & 35,108 & 99.92 & 0 & 0 & - \\
\hline 7/1/08-6/30/09 & 27,583 & 78.72 & 0 & 0 & - \\
\hline 7/1/09-6/30/10 & 0 & 0 & - & - & - \\
\hline 7/1/10-6/30/11 & 0 & 0 & - & - & - \\
\hline 7/1/11-6/30/12 & 0 & 0 & - & - & - \\
\hline 7/1/12-6/30/13 & 0 & 0 & - & - & - \\
\hline 7/1/13-6/30/14 & 0 & 0 & - & - & - \\
\hline 7/1/14-6/30/15 & 0 & 0 & - & - & - \\
\hline 7/1/15-6/30/16 & 0 & 0 & - & - & - \\
\hline 7/1/16-6/30/17 & 0 & 0 & - & - & - \\
\hline
\end{tabular}

Table 6. Water Quality Violations Summary at NHDES TMDL Water Quality Monitoring Station 10A-BVR - Beaver Brook at Fordway Ext. Bridge ( \(42^{\circ}{ }^{\circ} 52^{\prime}\) 21.14", 71¹9' 46.06")
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \begin{tabular}{c} 
Number of \\
Date Range
\end{tabular} & \begin{tabular}{c} 
Percent of \\
valid specific \\
conductance \\
data points
\end{tabular} & \begin{tabular}{c} 
reporting period \\
with valid \\
conductance data
\end{tabular} & \begin{tabular}{c} 
Number of \\
violations of \\
water chloride \\
standard (1 hr \\
rolling average)
\end{tabular} & \begin{tabular}{c} 
Number of \\
violations of \\
chronic chloride \\
water quality \\
standard (4 day \\
rolling average)
\end{tabular} \\
\hline \(7 / 1 / 06-6 / 30 / 07\) & 35,001 & 99.89 & 0 & \begin{tabular}{c} 
Duration of \\
chronic \\
exceedance \\
(days)
\end{tabular} \\
\hline \(7 / 1 / 07-6 / 30 / 08\) & 24,253 & 69.03 & 0 & 0 & - \\
\hline \(7 / 1 / 08-6 / 30 / 09\) & 34,961 & 99.77 & 0 & 0 & 5.28 \\
\hline \(7 / 1 / 09-6 / 30 / 10\) & 35,023 & 99.95 & 0 & 0 & - \\
\hline \(7 / 1 / 10-6 / 30 / 11\) & 27,853 & 79.49 & 0 & 0 & - \\
\hline \(7 / 1 / 11-6 / 30 / 12\) & 34,637 & 98.58 & 0 & 0 & - \\
\hline \(7 / 1 / 12-6 / 30 / 13\) & 34,357 & 98.05 & 0 & 0 & - \\
\hline \(7 / 1 / 13-6 / 30 / 14\) & 35,018 & 99.94 & 0 & 0 & - \\
\hline \(7 / 1 / 14-6 / 30 / 15\) & 33,260 & 94.92 & 0 & 0 & - \\
\hline \(7 / 1 / 15-6 / 30 / 16\) & 35,118 & 99.95 & 0 & 0 & - \\
\hline \(7 / 1 / 16-6 / 30 / 17\) & 34,587 & 98.71 & 0 & 0 & - \\
\hline
\end{tabular}

Table 7. Water Quality Violation Periods at NHDES TMDL Water Quality Monitoring Stations 10A-BVR and 09-BVR
\begin{tabular}{|l|c|c|c|c|}
\hline \begin{tabular}{c} 
NHDES TMDL WQ \\
Monitoring Station
\end{tabular} & \begin{tabular}{c} 
Time of Start \\
of Violation
\end{tabular} & \begin{tabular}{c} 
Time of End of \\
Violation
\end{tabular} & Duration (days) & \begin{tabular}{c} 
Number of \\
Violations
\end{tabular} \\
\hline 10A-BVR & \(11 / 29 / 20076: 00\) & \(12 / 4 / 200712: 45\) & 5.28 & 1 \\
\hline 10A-BVR & \(2 / 5 / 20113: 45\) & \(2 / 10 / 20115: 15\) & 5.06 & 1 \\
\hline
\end{tabular}

\subsection*{4.0 DIRECT IMPACTS OF THE PROPOSED ACTION}

\subsection*{4.1 Methods}

The proposed Project falls entirely within the Upper Beaver Brook Watershed. Methods used to estimate chloride loading from each potential source are as follows:
Additional chloride loading for Exit 4A was estimated by identifying which of the proposed new lane-miles, as determined by CLD Consulting Engineers (CLD) \({ }^{4}\) would be maintained by NHDOT and the Towns. The on-off ramps and the bridge over I-93 (1.51 lane-miles or ln-mi) would be maintained by NHDOT-Patrol Shed 528. Londonderry would maintain the \(2.50 \mathrm{ln}-\mathrm{mi}\) that would be located within its town boundaries while 3.59 ln -mi would be the responsibility of the Town of Derry. Salt loading for each roadway section was assumed to equal the FY01 FY10 historic average annual salt loading rates for each entity shown in Table 3. Thus, salt loading for Exit 4A was calculated as: Average Salt Usage (tons/lane-mile/year) as calculated in Table 4 (by Entity) x Lane-Miles Maintained by Each Entity for Alternative A = Estimated Salt Loading (tons/year) for the proposed Project. The total estimated salt loading on public roadways is the sum of estimated salt loading by NHDOT plus the salt loading from the Town of Derry and Town of Londonderry.

\subsection*{4.2 Results and Table}

The total additional annual chloride loading estimated for the proposed Project is 99.4 tons per year.

\section*{Table 8. Estimated Future Chloride Loading on Public Roadways (per Source)}
\begin{tabular}{|c|c|c|c|}
\hline Source & \begin{tabular}{c} 
Average annual salt \\
usage FY08-FY16 \\
(Tons/Lane- \(_{\text {Mile/Year) }}\)
\end{tabular} & \begin{tabular}{c} 
Lane-Miles \\
Maintained by Each \\
Entity for \\
Alternative A
\end{tabular} & \begin{tabular}{c} 
Estimated salt \\
loading for \\
Alternative A \\
(Tons/Year)
\end{tabular} \\
\hline \begin{tabular}{c} 
NHDOT \\
Patrol Shed \\
528
\end{tabular} & 21.9 & 1.51 & 33.1 \\
\hline \begin{tabular}{c} 
Town of \\
Londonderry
\end{tabular} & 10.6 & 2.5 & 26.5 \\
\hline \begin{tabular}{c} 
Town of \\
Derry
\end{tabular} & 11.1 & 3.59 & 39.8 \\
\hline & Total & 99.4 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{4}\) CLD was purchased on August 7, 2017 and became Fuss \& O’Neill, Inc. (Fuss \& O’Neill).
}

Table Notes - a. This estimate assumes that salt application rates on all municipal lane miles within Londonderry are consistent.
b. This estimate assumes that salt application rates on all municipal lane miles within Derry are the consistent.

\subsection*{4.3 Chloride Mitigation}

Chloride mitigation in the Upper Beaver Brook watershed is addressed for current salt users in the 2017 NH MS4 permit (USEPA, 2017), which became effective on July 1, 2018 and is discussed in Section 2.4.1. A requirement of the 2017 MS4 Permit is for permittees to develop a Chloride Reduction Plan by July 2019, as detailed in Appendix F of the permit. One of the key components to developing a successful Chloride Reduction Plan will be identifying actions (BMPs) that will be used to reduce chlorides in the watershed and achieve the waste load allocation specified in the Beaver Brook chloride TMDL. The TMDL chloride reduction implementation plan (NHDES, 2011a), developed in support of the Beaver Brook chloride TMDL, outlines a number of BMPs that can be used to achieve significant reductions in salt use by the various salt users in the watershed as discussed in Section 2.3. Many of the same salt reduction activities identified in the TMDL implementation plan are also identified in Appendix F of the MS4 permit as recommended components of a permittees required Chloride Reduction Plan. The salt reduction BMPs identified in the TMDL chloride reduction implementation plan (NHDES, 2011a) are summarized in Table 9 including the associated \% chloride reduction potential for each BMP and the implementation status to date by the NHDOT and the Towns. As demonstrated in Table 9, many salt applicator BMPs which are planned or already implemented in the watershed have the potential to reduce salt use, during the specified operation, by as much as \(30-50 \%\). These actions also satisfy the salt reduction activities listed in Appendix F of the MS4 and therefore will likely be included as core components of the required Chloride Reduction Plans for NHDOT and the Towns and will likely be extended to any future actions requiring chloride mitigation, including the proposed Exit 4A Project.

The use of BMPs outlined in the TMDL chloride reduction implementation plan (NHDES, 2011) and summarized in Table 9, will likely result in significantly less salt load than could be achieved under the minimum requirements of the 2017 NH MS4 Permit, which does not require use of BMPs but rather recommends BMPs be included in a permittee's Chloride Reduction Plan (See Part I. 1 of 2017 NH MS4 Appendix F). Given the current level of adoption of salt reducing BMPs in the watershed by NHDOT and the Towns, it is likely that the watershed salt load, required to be reported in 2020 per the MS4 permit, will demonstrate compliance with the TMDL waste load allocation.

Table 9. Chloride BMPs (from Table 9, NHDES, 2011a)
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c} 
Chloride \\
Reduction \\
BMPs
\end{tabular} & \multicolumn{1}{|c|}{ Definition } & \begin{tabular}{c} 
Potential \% \\
Chloride \\
Reduction
\end{tabular} & Implementation Status \\
\hline Pre-Wetting & \begin{tabular}{l} 
Application of salt brine or \\
proprietary chemical to dry salt \\
as it is being applied to the \\
roadway
\end{tabular} & \(20 \%-30 \%\) & \begin{tabular}{l} 
NHDOT - Implemented \\
Derry - Implemented \\
Londonderry - Implemented
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Chloride Reduction BMPs & Definition & Potential \% Chloride Reduction \({ }^{\text {a }}\) & Implementation Status \\
\hline Pre-Treating & Application of salt brine or proprietary chemical to dry salt either before, during, or after it has been loaded into the truck. & 10\% - 30\% & NHDOT - Planned Derry - Planned Londonderry - Planned \\
\hline Anti-Icing & Application of salt brine or proprietary chemical up to 48 hours in advance of onset of storm. & 10\% - 30\% & \begin{tabular}{l}
NHDOT - Implemented \\
Derry - Planned \\
Londonderry -Planned
\end{tabular} \\
\hline Zero-Velocity Spreaders & Spreader ejects salt particles at the same velocity of the forward motion of the truck's traveling speed; allowing salt to drop as if the spreading vehicle was standing still. & 10\%-50\% & NHDOT - Not planned Derry - Not planned Londonderry - Not planned \\
\hline Groundspeed Oriented Spreader Controls & Allows accurate dispensation of prescribed salt application rates irrespective of vehicle speed. Controls can be integrated to automatically vary application rate with ground temperature. Controller units can integrate GIS and wirelessly download application rate data for review & 10\%-30\% \({ }^{\text {b }}\) & NHDOT - Implemented Derry - Implemented Londonderry - Planned \\
\hline Equipment Calibration & Ensures equipment application of chlorides is accurate & 5-20\% & NHDOT - Implemented Derry - Implemented Londonderry -Implemented \\
\hline In-Cab Air/Ground Temp. Sensor & Installation of pavement and air temperature sensors with in-cab readout. & 1\%-10\% \({ }^{\text {b }}\) & \begin{tabular}{l}
NHDOT - Implemented \\
Derry - Implemented \\
Londonderry - Implemented
\end{tabular} \\
\hline Training, improved storage and handling practices & Training staff about various best management practices, improving storage and handling practices for loading and unloading salt & 10\%-25\% \({ }^{\text {b }}\) & \begin{tabular}{l}
NHDOT - Implemented \\
Derry - Implemented \\
Londonderry - Implemented
\end{tabular} \\
\hline
\end{tabular}

Notes: a. Reductions assumed do not take into account existing practices.
b. Highly dependent on existing procedures and level of adoption.

\section*{Chloride Mitigation for the Proposed Action}

The Beaver Brook chloride TMDL study (NHDES, 2008) developed a daily chloride load as a function of streamflow determined to attain water quality standards. The daily load/streamflow target is problematic for managing salt applicators, given the inherent variability of daily streamflow; therefore, the TMDL study also provides an alternative expression of the maximum daily load, presented as an annual salt load ( 9,069 tons/year), to allow for a more realistic salt management goal and aid with implementing the TMDL. The Salt Reduction Workgroup, an
interagency advisory group with representatives from NHDES, NHDOT, and other stakeholders (NHDES, 2008), is responsible for distributing the total allocation among various sectors of the Upper Beaver Brook watershed as presented in the most recent sector load allocations in the TMDL chloride reduction implementation plan (NHDES, 2011a). However, assigning sector allocations has proven to be difficult, due to the highly variable data inputs to the original TMDL, and sector allocations remain contentious. The total watershed salt allocation of 9,069 tons/year is the executable articulation of the TMDL percent reduction goal, regardless of current or future sector allocations, and is a basis for determining achievement of the TMDL.
Within the Upper Beaver Brook watershed, MS4 permittees are subject to the requirements of Appendix F of the 2017 NH MS4 permit including the requirement to "reduce chloride discharges to support achievement of the WLA included in the applicable approved TMDL." The Beaver Brook chloride TMDL study provides an alternative expression of the TMDL waste load allocation as an annual salt loading allowance (commonly called the "salt load allocation" of 9,069 tons salt/year (NHDES, 2008). The Beaver Brook chloride TMDL also does not "include an allowance for future growth, so any future construction of additional roads or parking lots in the Beaver Brook watershed would necessitate additional load reductions elsewhere in the watershed" (NHDES, 2008). Therefore, any future development in the Upper Beaver Brook watershed would be subject to the MS4 requirement for permittees to support achievement of the waste load allocation and it would be necessary to offset any exceedance of the salt load allocation that would result from future development through salt load reductions elsewhere in the watershed.

The Proposed Action will contribute an additional salt load to the watershed estimated to be 99.4 tons/year as presented in Section 4.2. This load represents \(1 \%\) of the 9,069 tons/year Upper Beaver Brook watershed salt load allocation, which is a minor increase. This additional salt load is expected to be offset by NHDOT and the Towns through development and execution of Chloride Reduction Plans as required in the 2017 NH MS4. In addition, NHDOT, Derry and Londonderry plan to implement salt reducing BMPs not specified in the MS4 permit (as presented in Section 2.3) which will provide additional assurances that the Project salt load will be offset and the Beaver Brook chloride TMDL can be achieved.

\subsection*{5.0 INDIRECT IMPACTS OF THE PROPOSED ACTION}

The proposed Project will improve access to areas currently inaccessible and will facilitate development of these areas. As such, development that will follow its completion is an indirect impact of the project. The proposed Project will likely result in additional industrial development in Derry if areas currently zoned as residential are rezoned as industrial, and if existing lower density industrial development are redeveloped. The project is also anticipated to facilitate more residential development in several towns, but particularly in Chester where 371 additional residential units are anticipated. Woodmont Commons, shown in Figure 1, is a planned, mixeduse, urban village in the Town of Londonderry. The developer, Pillsbury Realty Development, LLC, owns approximately 630 acres bordering the east and west sides of I-93. Alternative A would bisect the property. The Town of Londonderry recently granted approval of the Woodmont Commons West Phase I plan.

\subsection*{5.1 Methods}

This analysis assumes a range of build-outs of Woodmont Commons with separate accountings for Woodmont Commons East and Woodmont Commons West (including Market Basket expansion) to clearly account for the two related but separate actions. A separate estimate for additional Derry industrial development is also provided. New private road lane-miles and parking acreage were determined by Louis Berger Group (LBG) based on the documentation provided in the Land Use Scenarios Technical Document (Louis Berger Group, 2017).
Determinations for parking were made by assuming a 300 sq . ft. requirement for each expected parking space, including travel aisles associated with the parking spaces. For new private roadways, each divided roadway length was assumed to equal a single lane length while each non-divided roadway length was assumed to equal two lane lengths. Thus, the total mileage of divided streets was multiplied by one and non-divided street mileage was multiplied by two to yield total lane-miles. Existing roadways within Woodmont Commons were assumed to receive no additional salt loading, even if those roadways were to be upgraded, except when additional lane-miles were proposed.

Residential development has not been included in this calculation because the nature of residential development, including lot size and road layout, is not foreseeable. Chester is anticipated to have the largest proportion of increase in residential development, where approximately \(11 \%\) of the town (1,784 acres) falls into the Upper Beaver Brook Watershed.

\subsection*{5.2 Results and Table}

The foreseeable new parking and private roadways are summarized in Table 10. Development scenarios for the No-Build, Build (with Exit 4A) and incremental (development attributable to the project, or the difference between the Build and No-Build)

\section*{Table 10. Indirect Impacts New Parking and Roadways Summary}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Development Activity} & \multicolumn{3}{|l|}{Development Scenarios with No-Build} & \multicolumn{3}{|l|}{Development Scenarios with Exit 4A} & \multicolumn{3}{|l|}{Incremental
Development
Attributable to Exit 4A} \\
\hline & Parking (acres) & Min BuildOut Lane Miles & \begin{tabular}{l}
Max \\
Build- \\
Out \\
Lane \\
Miles
\end{tabular} & Parking (acres) & Min BuildOut Lane Miles & Max BuildOut Lane Miles & Parking (acres) & Min BuildOut Lane Miles & \begin{tabular}{l}
Max \\
Build- \\
Out \\
Lane \\
Miles
\end{tabular} \\
\hline Woodmont Commons East & 4.70 & 4.43 & 6.18 & 26.38 & 6.14 & 7.53 & 21.69 & 1.71 & 1.35 \\
\hline Woodmont Commons West & 19.17 & 6.14 & 8.32 & 27.20 & 7.11 & 19.93 & 8.02 & 0.97 & 11.60 \\
\hline Additional Derry Industrial & 0 & 0 & 0 & 2.38 & 0 & 0 & 2.38 & 0 & 0 \\
\hline
\end{tabular}

The foreseeable new actions associated with the Woodmont Commons development will contribute to future chloride loading in the Beaver Brook watershed. Chloride loading for parking was determined using the application rate used in the "Data Report for the Total Maximum Daily Loads for Chloride For Waterbodies in the Vicinity of the I-93 Corridor From Massachusetts to Manchester, NH: Policy-Porcupine Brook Beaver Brook Dinsmore Brook North Tributary to Canobie Lake" (NHDES, 2007) of 6.4 tons/acre/year. This rate is in turn based on an analysis of salt use by maintainers of private roads and parking lots that was specifically prepared for the Beaver Brook TMDL titled "Salt Loading Due to Private Winter Maintenance Practices" (Sassan and Kahl, 2007). Sassan and Kahl established a range of 5.7 6.4 tons/acre/year, with 6.4 tons/acre/year being the average rate for educational institutions which had the best records of salt purchases and areas serviced. Sassan and Kahl acknowledge that there is a high degree of variability in salt application rate reporting from private applicators.
Chloride loading for new streets was determined from new lane-miles provided by LBG. Each divided roadway length was assumed to equal a single lane length while each non-divided roadway length was assumed to equal two lane lengths. Thus, the total mileage of divided streets was multiplied by one and non-divided street mileage was multiplied by two to yield total lanemiles. Existing roadways within Woodmont Commons were assumed to receive no additional salt loading, even if those roadways were to be upgraded, except when additional lane-miles were proposed. When additional lanes miles were added to existing roadways, the new lanemiles were added to the new lane-miles calculation. New chloride loading was determined using the average FY08-FY16 municipal rates, per methods described in Section 3.3.

Table 11. Salt Loading Attributable to Indirect Impacts (Tons / Year)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & Develo & \[
\begin{aligned}
& \text { ment Sce } \\
& \text { h No-Buil }
\end{aligned}
\] & narios & Develo & ment th Exit & narios & Increme Attrib & tal De table t & \begin{tabular}{l}
opment \\
xit 4A
\end{tabular} \\
\hline Activity & Parking & Min BuildOut & Max BuildOut & Parking & Min BuildOut & Max BuildOut & Parking & Min BuildOut & Max BuildOut \\
\hline Woodmont Commons East & 30.1 & 47.0 & 65.5 & 168.9 & 65.1 & 79.8 & 138.8 & 18.2 & 14.3 \\
\hline Woodmont Commons West & 122.7 & 65.1 & 88.2 & 174.1 & 75.4 & 211.2 & 51.3 & 10.3 & 123.0 \\
\hline Additional Derry Industrial & 0.0 & 0.0 & 0.0 & 15.3 & 0.0 & 0.0 & 15.3 & 0.0 & 0.0 \\
\hline Total & 152.8 & 112.1 & 153.7 & 358.2 & 140.6 & 291.0 & 205.4 & 28.5 & 137.3 \\
\hline Potential Additional Salt Load Range & \multicolumn{3}{|l|}{264.8-306.5 tons / year} & \multicolumn{3}{|l|}{498.7-649.2 tons / year} & \multicolumn{3}{|l|}{233.9-342.7 tons / year} \\
\hline
\end{tabular}

Under these scenarios, the salt loading from incremental development attributable to the construction of Exit 4A could range from 233.9 tons/year to 342.7 tons/year.

\subsection*{5.3 Chloride Mitigation}

The Beaver Brook chloride TMDL establishes an annual salt load allocation as an alternative expression of the maximum daily load requirement and is used as a planning and management target for various sectors in the watershed as discussed in Sections 2.2 and 4.3. Private parking lots are designated the largest sector salt allocation, approximately \(35 \%\) of the Beaver Brook watershed total salt load allocation in the most recent TMDL Implementation Plan (NHDES, 2011a). Development attributable to the construction of Exit 4A would potentially contribute 233.9-342.7 tons of salt/year, which would comprise \(2.5 \%-3.8 \%\) of the total watershed allocation of 9,069 tons of salt/year.

All future development (including additional development induced by construction of Exit 4A) will require implementation of reasonable and practical BMPs to reduce chloride loading, consistent with the Chloride Reduction Plans required in the MS4 permit and/or AoT permitting (as was required for Woodmont Commons Phase I, included herein as Appendix D). The 2017 MS4 permit has additional requirements for private sector salt applicators including requiring all existing and future private parking lot and private roadway owners to only utilize salt applicators who are trained and certified according to Env-Wq-2203 Certification of Commercial Applicators, report annual salt usage to the UNH T2 Center or to the MS4 permittee, and include the private sector in a MS4 permittee's Chloride Reduction Plan. These measures will assure reduction of salt loads in the private sector including indirect impacts as well as watershed-wide.

It is reasonable to expect the annual salt load from private roads and parking lots will decrease with adoption of the 2017 NH MS4 permit due to the salt reduction measures included in the permit. While the Beaver Brook chloride TMDL does not allow for additional future salt loads, development can occur as long as sector annual salt load allocations are met. Indirect impacts could potentially contribute a future additional salt load equivalent to \(2.5 \%-3.8 \%\) of the total watershed allocation and while this is not explicitly accounted for in the TMDL, it is possible for the private sector allocation, including Project indirect impacts, to still meet the allocation through adoption of BMPs. Studies have shown that salt application rates on private roads and parking lots can be reduced with BMPs (e.g. Hossein and Fu, 2015) well below the 6.4 tons/acre/year assumed for this study and as used by NHDES to develop their salt load estimates for private roads and parking lots (NHDES, 2007). Because salt application has historically not been required to be tracked in private parking lots, it is unknown whether the current salt load has been reduced to the allocation goal and if not whether the salt load increase attributable to indirect impacts will need to be further mitigated beyond the current permitting requirements. As private sector salt use data becomes available as part of the 2017 NH MS4 requirements, better assessments of the Beaver Brook salt imports compared to sector allocations will be possible and will serve to further guide management of chlorides in the private sector.

\subsection*{6.0 CONCLUSION}

NHDOT and the Towns have been implementing salt reduction BMPs in the Upper Beaver Brook Watershed since the 2008 Beaver Brook chloride TMDL was published. NHDOT reports
that they are in compliance with their Permits through execution of their respective Implementation Plans for chloride (Appendix A, page 1). Londonderry and Derry report that they are continuing with implementation of their salt reduction plans (Appendix B, Appendix C). Reasonably foreseeable actions are expected to contribute additional salt loads to the Upper Beaver Brook watershed as demonstrated in Sections 4 and 5 of this document. However, additional salt loads to the Upper Beaver Brook watershed are expected to be mitigated through the BMPs already in place and additional planned BMPs outlined in various implementation plans (NHDOT, 2009; Derry, 2011; Derry, 2016; Londonderry, 2011). The 2017 MS4 permit includes requirements for salt reduction implementation and reporting by the private sector, which contributes nearly half the total salt load to Beaver Brook (NHDES, 2011a), in Derry and Londonderry. When fully implemented, the 2017 MS4 will require all existing and future private parking lot and private roadway owners to only utilize salt applicators trained and certified according to Env-Wq-2203 Certification of Commercial Applicators and report annual salt usage to the UNH T2 Center or to the MS4 permittee.

It is anticipated that development and execution of a BMP based chloride reduction implementation plan (or plans) will be required as permit conditions to satisfy all applicable state and federal permitting requirements. BMPs required to be implemented will likely be comparable the BMPs currently implemented as part of the I-93 improvement project, with which the NHDOT reports they are in compliance, and comparable to the current BMPs implemented by the Towns. As such, the Towns and NHDOT would meet anticipated permitting requirements through extension of planned and currently utilized salt reduction BMPs.

\subsection*{7.0 REFERENCES}

Federal Highway Administration (FHWA). 2005. Record of Decision FHWA-NH-EIS-02-01-F. I-93, Salem to Manchester IM-IR-93-1(174)0, 10418-C; Salem, Windham, Derry, Londonderry, Manchester Rockingham and Hillsborough Counties, New Hampshire. Concord, NH, June 2005.

Derry. 2011. Salt Reduction Plan for Beaver Brook. Derry, New Hampshire. 22 pp.
Derry. 2016. Salt Reduction Plan for Beaver Brook, Revision 2. Derry, New Hampshire. 11pp.
Derry. 2018. Mike Fowler, Director of Public Works. Town of Derry. Personal communication June 1, 2018.

Hossain, K. and L. Fu. 2015. Optimal Snow and Ice Control of Parking Lots and Sidewalks. A Summary Final Report. Department of Civil \& Environmental Engineering. Univ. of Waterloo, Waterloo, Ontario, Canada. 27pp.
Londonderry. 2011. Salt Reduction Plan for: Beaver Brook Watershed Within the Boundaries of Londonderry. Londonderry, New Hampshire. 38 pp.

Londonderry. 2018a. Salt Reduction Best Management Practices for the Beaver Brook Watershed Within the Boundaries of the Town of Londonderry. 3 pp.
Londonderry. 2018b. Janusz Czyzowski, Director of Public Works and Engineering. Town of Londonderry. Personal Communication, June 5-6, 2018.

Louis Berger Group. 2017. Land Use Scenarios Technical Report, I-93 Exit 4A Supplemental Draft Environmental Impact Statement, 195 pp.

NHDES (New Hampshire Department of Environmental Services). 2006. Water Quality Certification in fulfillment of Section 401 of the United States Clean Water Act (33 U.S.C 1341) WQC \#2002-007. NHDES, Water Division, Concord, NH. May 2, 2006.

NHDES. 2007. Data Report for the Total Maximum Daily Loads for Waterbodies in the Vicinity of the I-93 Corridor from Massachusetts to Manchester, NH: Policy-Porcupine Brook Beaver Brook Dinsmore Brook North Tributary to Canobie Lake. NHDES, Watershed Management Bureau, Concord, NH. December, 2007.

NHDES. 2008a. Total Maximum Daily Load (TMDL) Study for Waterbodies in the Vicinity of the I-93 Corridor from Massachusetts to Manchester, NH: Beaver Brook in Derry and Londonderry, NH. NHDES, Watershed Management Bureau, Concord, NH. April, 2008.

NHDES. 2008b. FY08 TMDL Implementation Monitoring Data Report and Quality Assurance Audit for the Total Maximum Daily Loads for Waterbodies in the Vicinity of the I-93 Corridor from Massachusetts to Manchester, NH: Policy-Porcupine Brook Beaver Brook Dinsmore Brook North Tributary to Canobie Lake. NHDES, Watershed Management Bureau, Concord, NH. August, 2008.

NHDES. 2009. SFY09 TMDL Implementation Monitoring Data Report and Quality Assurance Audit for the Total Maximum Daily Loads for Waterbodies in the Vicinity of the I-93 Corridor from Massachusetts to Manchester, NH: Policy-Porcupine Brook Beaver Brook Dinsmore Brook North Tributary to Canobie Lake. NHDES, Watershed Management Bureau, Concord, NH. October, 2009.

NHDES. 2010. SFY10 TMDL Implementation Monitoring Data Report and Quality Assurance Audit for the Total Maximum Daily Loads for Waterbodies in the Vicinity of the I-93 Corridor from Massachusetts to Manchester, NH: Policy-Porcupine Brook Beaver Brook Dinsmore Brook North Tributary to Canobie Lake. NHDES, Watershed Management Bureau, Concord, NH. August, 2010.
NHDES. 2011a. Chloride Reduction Implementation Plan for Beaver Brook, Derry, Londonderry, Auburn, Chester, NH. NHDES, Watershed Management Bureau, Concord, NH. August, 2011.
NHDES. 2011b. Department of Transportation Terrain Alteration Permit Exemption. NHDES, Alteration of Terrain Bureau, Concord, NH. July, 2011.

NHDES. 2011c. SFY11 TMDL Implementation Monitoring Data Report and Quality Assurance Audit for the Total Maximum Daily Loads for Waterbodies in the Vicinity of the I-93 Corridor from Massachusetts to Manchester, NH: Policy-Porcupine Brook Beaver Brook Dinsmore Brook North Tributary to Canobie Lake. NHDES, Watershed Management Bureau, Concord, NH. December, 2011.

NHDES. 2012. SFY12 TMDL Implementation Monitoring Data Report and Quality Assurance Audit for the Total Maximum Daily Loads for Waterbodies in the Vicinity of the I-93 Corridor from Massachusetts to Manchester, NH: Policy-Porcupine Brook Beaver Brook Dinsmore Brook North Tributary to Canobie Lake. NHDES, Watershed Management Bureau, Concord, NH. December, 2012.

NHDES. 2014. SFY13 TMDL Implementation Monitoring Data Report and Quality Assurance Audit for the Total Maximum Daily Loads for Waterbodies in the Vicinity of the I-93 Corridor from Massachusetts to Manchester, NH: Policy-Porcupine Brook Beaver Brook Dinsmore Brook North Tributary to Canobie Lake. NHDES, Watershed Management Bureau, Concord, NH. February, 2014.
NHDES. 2015. SFY14 TMDL Implementation Monitoring Draft Data Report and Quality Assurance Audit for the Total Maximum Daily Loads for Waterbodies in the Vicinity of the I-93 Corridor from Massachusetts to Manchester, NH: Policy-Porcupine Brook Beaver Brook Dinsmore Brook North Tributary to Canobie Lake. NHDES, Watershed Management Bureau, Concord, NH. January, 2015.
NHDES. 2016a. Best Management Practices and Salt-Use Minimization Efforts in ChlorideImpaired Watersheds of New Hampshire - A Guidance Document for Private Developers and Contractors. NHDES, Watershed Management Bureau, Concord, NH. December, 2016.

NHDES. 2016b. SFY15 TMDL Implementation Monitoring Data Report and Quality Assurance Audit for the Total Maximum Daily Loads for Waterbodies in the Vicinity of the I-93 Corridor from Massachusetts to Manchester, NH: Policy-Porcupine Brook Beaver Brook Dinsmore Brook North Tributary to Canobie Lake. NHDES, Watershed Management Bureau, Concord, NH. March, 2016.

NHDES. Onestop Datamapper. 2017a Available at: http://nhdesonestop.sr.unh.edu/html5viewer/. Accessed July 17, 2017.

NHDES. 2017b. 2016 Section 305(b) and 303(d) Consolidated Assessment and Listing Methodology. New Hampshire Department of Environmental Services. Concord, NH. November, 2017. Available at: https://www.des.nh.gov/organization/divisions/water/wmb/swqa/2016/documents/r-wd-17-08.pdf.

NHDES. 2017c. Draft 2016 List of Threatened or Impaired Waters that Require a TMDL. New Hampshire Department of Environmental Services. Concord, NH. May, 2017. Available at: https://www.des.nh.gov/organization/divisions/water/wmb/swqa/2016/documents/r-wd-17-09-app-a1.pdf.

NHDES. 2017d. SFY16 TMDL Implementation Monitoring Data Report and Quality Assurance Audit for the Total Maximum Daily Loads for Waterbodies in the Vicinity of the I-93 Corridor from Massachusetts to Manchester, NH: Policy-Porcupine Brook Beaver Brook Dinsmore Brook North Tributary to Canobie Lake. NHDES, Watershed Management Bureau, Concord, NH. June, 2017.

NHDES. 2018. SFY17 TMDL Implementation Monitoring Data Report and Quality Assurance Audit for the Total Maximum Daily Loads for Waterbodies in the Vicinity of the I-93 Corridor from Massachusetts to Manchester, NH: Policy-Porcupine Brook Beaver Brook Dinsmore Brook North Tributary to Canobie Lake. NHDES, Watershed Management Bureau, Concord, NH. April, 2018.

NHDOT (New Hampshire Department of Transportation). 2009. Implementation Plan to Increase the Efficiency and Effectiveness of Road Salt Use to Meet Total Maximum Daily Load for Chloride in Water Bodies along the I-93 Corridor from Salem to Manchester, NH: Beaver Brook; Dinsmore Brook; North Tributary to Canobie Lake; Porcupine-Policy Brook. NHDOT, Bureau of Environment, Concord, NH. September, 2009.

NHDOT. 2018. Mark Hemmerlein, Water Quality Program Manager, New Hampshire Department of Transportation. Personal communication June 1, 2018.

United States Army Corps of Engineers (USACE). 2017. General Permit No: NAE-2016-02415. USACE, Regulatory Division, Concord, MA. August, 2017. Available at: http://www.nae.usace.army.mil/portals/74/docs/regulatory/StateGeneralPermits/NH/NH \%20General\%20Permit\%2018August2017.pdf

United States Environmental Protection Agency (USEPA). 2017. General Permits for Stormwater Discharges from Small Municipal Separate Storm Sewer Systems. Available at: https://www3.epa.gov/region1/npdes/stormwater/nh/2017-small-ms4-general-permitnh.pdf

\section*{APPENDIX A: NHDOT BMP IMPLEMENTATION SUMMARY}

THE STATE OF NEW HAMPSHIRE
DEPARTMENT OF TRANSPORTATION

\author{
Victoria F. Sheehan \\ Commissioner
}

William Cass, P.E.
Assistant Commissioner
March 13, 2018
Derry-Londonderry, 13065
I-93, Exit 4A Study
[Water Quality BMP-Based Approach]

Christopher R. Bean, PE
Executive Vice President/Division Leader
CLD/Fuss \& O'Neill, Inc.
540 Commercial St (South Entry)
Manchester, NH 03101

\section*{Dear Chris;}

As the Exit 4A team works toward the draft Exit 4A NEPA document this spring of 2018, the Department's recommendation for our project's approach in addressing chlorides is to be consistent with TMDL Implementation plans for affected waterbodies in the Project Area (i.e.: Beaver Brook). In doing so, the qualitative analysis will need to take the following into account for the Exit 4A NEPA documentation:
1. Calculate a proposed increase in salt load for the activity, list the BMPs that can be used to mitigate the increase in salt usage, and provide project commitment to the continued employment of the BMPs in the TMDL Implementation Plans, as published, for the watershed;
2. Identify the BMPs to be included in the design and operation of the project, explain how these measures meet the requirements of the current TMDL Implementation Plans for the watershed (recommend using the narratives provided in the Implementation Plans for removal efficiencies);
3. Under Exit 4A existing conditions will need to include the operation of the I-93 fourth lane. The Department remains in compliance with the Beaver Brook TMDL Implementation Plan for chloride through the use of the following updated BMP-based approach;
a. Consistent with the adaptive management strategy in the l-93 ROD to the EIS, the Department has continuously and diligently worked with DES to identify and adopt various chloride reduction measures to reduce salt use in the project corridor from both DOT operations, and others. DOT has met the terms and conditions of the I-93 Water Quality Certificate (WQC) and, subsequently, the Implementation Plan developed by DES following completion of the TMDL studies;
b. Consistent with the I-93 WQC, Department has met all conditions, including specific chloride-related stipulations;
i. Condition E-6 (chloride monitoring) - performed the requested monitoring in six non-TMDL watersheds with data reports submitted to DES through FY 2012;
ii. Condition E-7 (TMDL studies) - assisted in the development of the TMDL studies by providing funding to cover DES costs, among other efforts;
iii. Condition E-8 (implementation plan development) - assisted in testing chloride reduction measures that were later included in the Implementation Plans (see table below);
iv. Condition E-9 (implement chloride reductions in the Implementation Plans) upgraded the Division of Operation's winter maintenance equipment for the I-93 corridor and other State-operated roads, and implemented all the various chloride reduction measures as outlined in DES' Chloride Reduction Implementation Plans (see table below).
v. Condition E-10 (DOT to implement adaptive management outlined in the I-93 ROD) - The Department contribution to additional chloride loads beyond those based on existing management practices is actually lower with anticipated reductions in the average annual road salt usage in excessive of \(20 \%\) on a per lane-mile basis. This is due directly to the implementation of the suite of BMPs described in the 1-93 ROD and outlined in Table I below.
4. With respect to the I-93 MOA, the DOT has met all the conditions specified. Consistent with the l-93 ROD and WQC, the MOA included a mechanism to fund the TMDL studies, DOT agreed to comply with the Implementation Plans, and to assist the municipalities and private sectors in complying with the Implementation Plans.

In summary, it is the Department's recommended approach for the Exit 4A NEPA document to take a qualitative approach versus quantifying the specific salt reductions (ie.: "counting grains of salt"). As you can see from the process noted above, our maintenance commitments and activities is best addressed through the expanded use of the BMPs identified in the DES Implementation Plan for the Beaver Brook watershed. By following these DES accepted practices, the chloride reduction goals will be achieved for the Exit 4A project.

Should you have any questions, please feel free to contact me. Thanks.


Keith A. Cota, P.E.
Chief Project Manager
KAC/kac
cc: Peter Stamnas, Director of Project Development
Kevin Nyhan, Administrator, Bureau of Environment

Table 1. Chloride Reduction BMPs Implemented by NHDOT along the I-93 Roadway
\begin{tabular}{|l|l|c|c|}
\hline \begin{tabular}{l} 
Chloride \\
Reduction BMP
\end{tabular} & \multicolumn{1}{|c|}{ Description } & \begin{tabular}{c} 
Elements of the \\
Record of \\
Decision
\end{tabular} & \begin{tabular}{c} 
Included in DES \\
Implementation \\
Plans
\end{tabular} \\
\hline Salt Accounting & \begin{tabular}{l} 
DOT meticulously monitors is salt stock \\
in each patrol shed and reports that \\
information annually to DES
\end{tabular} & X & X \\
\hline Pre-wetting & \begin{tabular}{l} 
DOT applies liquid deicer to dry salt at \\
time of application
\end{tabular} & & X \\
\hline Anti-Icing & \begin{tabular}{l} 
DOT applies brine directly to the \\
pavement in advance of an oncoming \\
storm when conditions allow
\end{tabular} & X & X \\
\hline Underbelly Plows & \begin{tabular}{l} 
DOT utilizes these plows that enhance \\
snow scraping / removal capabilities
\end{tabular} & X & X \\
\hline \begin{tabular}{l} 
Ground-speed \\
Spreader \\
Controllers
\end{tabular} & \begin{tabular}{l} 
All DOT trucks utilized out of Shed 528 \\
have ground-speed, closed loop \\
controllers
\end{tabular} & X \\
\hline \begin{tabular}{l} 
Mobile Pavement \\
Temperature \\
Sensors
\end{tabular} & \begin{tabular}{l} 
All DOT trucks located in Shed 528 \\
have mobile pavement temperature \\
sensors. Several road weather stations \\
have also been established along I-93 \\
corridor
\end{tabular} & X & X \\
\hline \begin{tabular}{l} 
Equipment \\
Calibration
\end{tabular} & \begin{tabular}{l} 
DOT annually calibrates their spreader \\
equipment prior to each season
\end{tabular} & X & X \\
\hline \begin{tabular}{l} 
Enhanced \\
Training
\end{tabular} & \begin{tabular}{l} 
DOT provides enhanced training tracks \\
participation via an online accounting \\
system. Hired equipment operators are \\
encouraged to attend
\end{tabular} & X & X \\
\hline \begin{tabular}{l} 
Improved Storage \\
Practices
\end{tabular} & \begin{tabular}{l} 
DOT has just completed upgrading a \\
depot shed in Salem which has increased \\
indoor storage capacity
\end{tabular} & X \\
\hline \begin{tabular}{l} 
DOT utilizes computer software that \\
Srovides forecast for plowing and salting \\
with information feed from it Roadside \\
Weather Information System
\end{tabular} & X & X \\
\hline \begin{tabular}{l} 
Enhanced Plow \\
Blade Technology
\end{tabular} & \begin{tabular}{l} 
DOT utilizes flexible plow blades that \\
provide better road contact and enhance \\
snow scraping / removal capabilities
\end{tabular} & X & X \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
GPS/AVL \\
technology
\end{tabular} & \begin{tabular}{l} 
All DOT spreader trucks located in Shed \\
528 are equipped with GPS/AVL which \\
helps track salt usage by specific trucks \\
and areas or interest.
\end{tabular} & X \\
\hline \begin{tabular}{l} 
Variable \\
Messaging Signs
\end{tabular} & \begin{tabular}{l} 
VMS have been installed to warn drivers \\
of impending or current weather and \\
traffic conditions and set lower speed \\
limits
\end{tabular} & X \\
\hline \begin{tabular}{l} 
Enhanced \\
Material \\
Reporting \\
Relative to Winter \\
Severity
\end{tabular} & \begin{tabular}{l} 
DOT has been reporting post- \\
implementation salt usage relative to \\
pre-emplementation usage while \\
adjusting for winter weather severity.
\end{tabular} & X \\
\hline
\end{tabular}

Notes: \({ }^{1}\) Shed 528 in Derry performs winter maintenance activities along the southern I-93 corridor.

\section*{Town of Derry, NH}


Salt Reduction Plan For:
Beaver Brook

Original Approved by Council:
Revision 1: 8/11/2011
Revision 2: 3/9/2016

\section*{Legal Notices:}

These are General guidelines used by the Derry, NH Public Works Dept. Each decision to mobilize crews, extend operation hours, and to apply de-icing, anti-icing, and pre-treatment materials is made based on particular weather conditions, past experience, and the availability of resources and therefore may not adhere strictly to this policy.
Table of Contents
1.0 Introduction ..... 3
2.0 Plan Development ..... 5
3.0 Winter Maintenance Overview ..... 6
4.0 Proposed Best Management Practices (BMPs) ..... 8
4.1 Previous (Rounds 1-3) Best Management Practices Summary ..... 8
4.2 Equipment Upgrade Automatic Vehicle Location ..... 8
5.0 Implementation Cost \& Timeline ..... 9
6.0 Salt Usage Evaluation \& Monitoring ..... 10
7.0 Summary ..... 10
List of Tables
Table 1: Winter Maintenance Activities ..... 6
Table 2: Town-Wide Road Mileage Summary ..... 6
Table 3: Summarized Level of Service Policy ..... 7
Table 4: Annual Town Wide Material Usage Summary (last 2 fiscal years) ..... 7
Table 5: Summarized Estimated Reductions from rounds 1-3 ..... 8
Table 6: AVL Estimated Reductions for Round 4 ..... 9
Table 11: Estimated Cost Table - Round 4 ..... 9
Table 12: Round 4 Project Timeline ..... 9
List of Figures
Figure 1: Beaver Brook ..... 4
List of Appendices
Figure 1: Beaver Brook ..... 4

\subsection*{1.0 Introduction}

Beaver Brook has been identified as impaired by the New Hampshire Department of Environmental Services (DES) and the US Environmental Protection Agency (EPA) for chloride concentrations that exceed state and federal water quality standards. NH DES has completed a Total Maximum Daily Load (TMDL) analysis (April 2008) to quantify pollutant reductions needed to meet the state water quality standards for chlorides. The goal of the TMDL is to reduce chloride loads from all sources (municipal, state and private/commercial sources) so that water quality standards for all the designated uses affected by chloride pollution are met in all areas of the Beaver Brook watershed.

The TMDL is expressed as a load duration curve and is based on a 4-day average concentration. The units for the TMDL are expressed as tons of chloride per day. The TMDL was set at the level necessary to achieve the EPA and DES standard of \(230 \mathrm{mg} \mathrm{Cl} / \mathrm{L}\) standard which includes a \(10 \%\) margin of safety in order to address impacts associated with chlorides on the instream, benthic, and riparian communities. In order to meet water quality standards, significant reductions from current chloride loading from all sources are required. The Town of Derry has agreed to implement reduction measures and improve storage, handling and application operations in order to reduce the amount of chlorides applied during snow and ice removal operations while maintaining an acceptable level of service (LOS) on roadways. See Appendix A for a copy of the approved Municipal Resolution stating same.

This salt reduction plan will serve as a general scope of work for implementation of salt reduction efforts. The Federal Highway Administration has allocated funds to assist municipalities with salt source reductions to implement the chloride TMDL in the I-93 corridor. Preparation of this Salt Reduction Plan is a prerequisite to eligibility for these funds.

For purposes of this plan, salt or chloride reduction efforts not only include simply applying less de-icing materials that contain chloride, but a series of actions that include operational changes and improvements, mechanical upgrades, outreach and awareness activities, and monitoring, all of which are designed and implemented with the result being a net decrease in chloride loading to the watershed.

It is important to note that since the development of the TMDL and prior to development of this plan, the Town of Derry has already started taking chloride reduction measures including construction of a new salt/sand storage facility and loading procedures, calibration of spreaders, preparation of a draft outreach brochure targeted at the private/commercial sectors, and periodic conductivity monitoring of select tributaries to Beaver Brook that is separate from monitoring conducted by NHDES.

Beaver Brook is a 4.86 mile stream segment located in Auburn, Derry, Chester, and Londonderry, NH. The associated watershed is 30.33 square miles (NHDES, Total Maximum Daily Load (TMDL) Study for Waterbodies in the Vicinity of the I-93 Corridor from Massachusetts to Manchester, NH: Beaver Brook in Auburn, Chester, Derry, and Londonderry 2008) (see figure 3).


Derry is responsible for winter maintenance on \(212.78^{2}\) lane miles ( 106.39 road miles) of road within the watershed. Derry maintains \(29^{4}\) parking lots ( 14.4 Acres \(-627,483 \mathrm{Sq}\). Ft.) within the watershed. These parking lots include paved (impervious) lots associated with municipal operations (employee lots, highway and waste water facilities, fire and police stations, etc), general public use parking (town parks, municipal lots, library, cemetery, etc.) and the associated parking lot driveways

NHDOT is responsible for winter maintenance operations on approximately \(53^{2}\) lane miles within the entire Beaver Brook Watershed. Within the municipal boundaries of Derry ( within the watershed) NHDOT maintains approximately 4.4 lane miles of Interstate I-93 and approximately 17.6 miles of other state routes.

Roadways and parking lots which are not maintained by Derry or DOT are classified as private. These paved surfaces are maintained each winter season by a private snow and ice removal company hired by the respective land owner. Within the watershed and within the municipal boundaries of Derry there are approximately \(31.5^{2}\) lane miles ( 15.75 road miles) of private roads, \(270.5^{3}\) acres of parking lots, and \(9.18^{3}\) miles of parking lot driveways as of the date of this plan. The area of parking lots and parking lot driveways is expected to increase as additional development occurs in areas approved as commercial and industrial.

\footnotetext{
\({ }^{1}\) Photo Credit: NHDES TMDL 2008
\({ }^{2}\) NHDOT 2010 GIS Road Centerline File
\({ }^{3}\) PSU Parking Lot Study
\({ }^{4}\) Derry GIS 2010
}

\subsection*{2.0 Plan Development}

The goal for the Salt Reduction Plan (SRP) is to set a policy and procedural framework to demonstrate how the Town of Derry will continuously work to improve winter maintenance operations while effectively and efficiently using road salt during snow and ice removal operations. New practices contained within this plan are intended to reduce the amount of road salt applied by the Town thus working towards meeting the Town's allocation of the required TMDL load reductions while continuing to meet town level of service (LOS).

Derry will provide winter maintenance to ensure the designated LOS to roadways, parking lots and sidewalks is maintained according to applicable state and local legislation while striving to minimize adverse impacts to the environment. These commitments will be met by:
- Adhering to the procedures contained within this Salt Reduction Plan;
- Committing to ongoing winter maintenance staff training and education;
- Reporting fiscal year salt use data to the NH DES
- Re-evaluating the effectiveness of the Salt Reduction Plan as needed to incorporate new cost-effective technologies or changes in procedures.

The SRP is meant to be dynamic to allow the municipality to evaluate and phase-in any changes, new approaches and technologies in winter maintenance activities in a fiscally sound manner.

To reduce the financial burden on municipal tax payers the town will participate in the I-93 Watersheds municipal salt reduction program developed in 2008 by the NH Department of Transportation in cooperation with the Federal Highway Administration. The program will administer a reimbursement process to assist towns with implementing TMDL load reductions. This SRP has been prepared in partial fulfillment of program requirements to address TMDL chloride load reductions.

\subsection*{3.0 Winter Maintenance Overview}

Derry is responsible for winter maintenance on various roads and parking lots within the watershed and winter maintenance involves numerous activities, not all of which involve snow clearing or deicing. The summary below provides detail on paved surface maintained, material usage, application rates, and level of service policy. The major activities related to winter maintenance are:

Table 1: Winter Maintenance Activities
\begin{tabular}{|l|l|}
\hline Snow Plowing & Snow Storage \\
\hline Salt/Sand Spreading & Sidewalk Plowing \& De-icing \\
\hline Salt \& Sand Storage & Install Hydrant Flags, Hydrant Clearing \\
\hline Snow \& Ice Removal & Drainage Clearing \\
\hline
\end{tabular}

The Town of Derry currently maintains \(160.81^{4}\) miles of public roads town-wide, and 14.4 acres of parking lots. Town-maintained parking lots include: town municipal offices, Derry Library, Derry Fire Dept., Derry Police Dept. Derry Transfer Station, Derry recreational parks, and a few public lots. All of the parking lots are located within the watershed, however approximately \(66 \%\) of roads are within the watershed.

Table 2: Town-Wide Road Mileage Summary
\begin{tabular}{|l|c|c|c|}
\hline Road Classification & \begin{tabular}{c} 
Average Daily \\
Traffic
\end{tabular} & \begin{tabular}{c} 
Typical Road \\
Width
\end{tabular} & \begin{tabular}{c} 
Number of Lane \\
Miles
\end{tabular} \\
\hline Arterial & \(3,000+\) & \(24^{\prime}-36^{\prime}\) & 56.6 \\
\hline Collector & \(1,000-3,000\) & \(22^{\prime}-24^{\prime}\) & 63.2 \\
\hline Access Street & \(<500\) & \(18^{\prime}-20^{\prime}\) & 210 \\
\hline
\end{tabular}

Note: Road classifications per NHOEP (http://www.nh.gov/oep/resourcelibrary/documents/12-roads.pdf)
Derry roads have been classified based on the average daily traffic and maintainer in order that LOS can be set for each classification of road. It should be noted that the LOS policy has remained consistent throughout the TMDL process. During snow and ice events, the LOS and operating procedures constantly change depending on numerous factors, all of which change depending on forecasts, projected road conditions, and the actual conditions observed. Some of the factors that affect the Town's LOS and OP include but are not limited to observed and anticipated precipitation rates, regular forecasts of snowfall and temperature changes throughout the storm, projected post-storm forecast (warm-up or deep freeze), time of day (solar assistance), and locality (hills or high traffic intersections). Derry also does not apply salt each time that plows are out and does not apply salt on unpaved roads. The Town's Snow and Ice Control Policy is included in Appendix B. Also included are select pages to the Town of Derry Winter Operations Booklet which is updated annually. Some pages are omitted as they include operators personal information (names and home phone numbers) which are subject to frequent changes.

Table 3: Summarized Level of Service Policy
\begin{tabular}{|l|l|}
\hline Arterial Roads & \begin{tabular}{l} 
Full width bare pavement as soon as practical after storm \\
event terminates.
\end{tabular} \\
\hline Collector Streets & \begin{tabular}{l} 
Full width bare pavement as soon as practical after storm \\
event terminates.
\end{tabular} \\
\hline Access Streets & \begin{tabular}{l} 
Full width bare pavement as soon as practical after storm \\
event terminates.
\end{tabular} \\
\hline
\end{tabular}

Materials used in winter maintenance vary annually and are a function of winter weather severity. The table below provides an overview of average material usage. A detailed 10 year average is provided within Appendix C. The 10 year average is used to evaluate salt usage to normalize the effects of more and less severe winters. NHDOT analysis has found that a 10 year average is approximately equal to the Weather Severity Index (WSI) normalized average.

Table 4: Annual Town Wide Material Usage Summary (Last 2 fiscal years)
\begin{tabular}{|l|c|c|r|}
\hline Material & \(\mathbf{2 0 1 4 / 2 0 1 5}\) & \(\mathbf{2 0 1 5} / \mathbf{2 0 1 6}\) & \(\mathbf{1 0}\) Year Average \\
\hline Solids & & & \\
\hline Rock Salt \((\mathrm{NaCl})\) & 5200 Tons & 4200 Tons & 3977 Tons \\
\hline
\end{tabular}

Table 5: Beaver Brook Watershed Usage
\begin{tabular}{|l|r|r|r|}
\hline Material & \(\mathbf{2 0 1 4 / 2 0 1 5}\) & \(\mathbf{2 0 1 5 / 2 0 1 6}\) & 10 Year Average \\
\hline Solids & & & \\
\hline Rock Salt \((\mathrm{NaCl})\) & 3772 Tons & 3432 Tons & 2625 Tons \\
\hline
\end{tabular}

Current application rates town wide are set at approximately \(300 \mathrm{lb} /\) lane mile ( \(\pm 50 \mathrm{lb}\) ). The material applied varies from a \(100 \%\) salt application to a \(20-25 \%\) Salt/Sand Mix. Town-wide plow route maps are included in Appendix D.

\subsection*{4.0 Proposed Best Management Practices (BMPs)}

\subsection*{4.1 Previous (Rounds 1-3) Best Management Practices Summary}

Derry has demonstrated an ongoing commitment to salt reduction in several key areas
Equipment: Derry has participated in each round of federal funding for salt reduction. It has purchased a total of five (5) salt reducing plow trucks with pre-wetting sprayers, groundspeed controls, pavement temperature sensors, and instituted a calibration program to ensure accurate application.

Training: All Derry municipal operators have been trained in the Green Snow Pro Program offered by the UNH Technology Transfer Center, and the municipality regularly hosts the training in its municipal center on Manning Street. Derry Officials also supported the passage of the Voluntary Certified Salt Applicator law each time it was presented to the legislature.

Public Outreach: The town has filmed and broadcasted plow truck ride-alongs on its public access television station. It has also provided ride-alongs for the DES Salt Reduction Coordinator. Additionally Derry public television also interviewed DES and UNH salt reduction experts during a segment about the chloride contamination issues in Beaver Brook.

Total Estimated Planned reductions from rounds 1-3 are summarized below:

Table 6: Summarized Estimated Reductions from rounds 1-3
\begin{tabular}{|c|c|c|c|c|c|}
\hline Watershed & \begin{tabular}{c} 
Existing \\
Imports \(^{5}\)
\end{tabular} & \begin{tabular}{c} 
Estimated \\
Reduction
\end{tabular} & \begin{tabular}{c} 
Estimated \\
Reduction
\end{tabular} & \begin{tabular}{c} 
Estimated \\
Reduced \\
Imports
\end{tabular} & \begin{tabular}{c} 
TMDL \\
Allocation
\end{tabular} \\
\hline & Tons/Year & Percent & Tons/Year & Tons/Year & Tons/Year \\
\hline Beaver Brook & 2705.05 & \(18 \%\) & 486.91 & \(2,218.14\) & \(2,264.4\) \\
\hline
\end{tabular}

\subsection*{4.2 Equipment Upgrade Automatic Vehicle Location}

The town proposes to equip the nine (9) vehicles that operate within Beaver Brook with Automatic Vehicle Location (AVL) technology. This technology will allow the town to track the amount of salt applied on each of the salt routes dynamically. It will also log the amount of salt applied in a central database so that town staff can analyze application rates per route and storm for further optimization.

The system will also feature an in cab display where operators can view a 90 minute trail of the position of other plow vehicles. By viewing this trail operators will be able to stop spreading de-icing chemical in areas where they overlap with other plow trucks. Studies

\footnotetext{
\({ }^{5}\) per 10 year average from Round 1
}
have shown greater than thirty percent reduction (30\%) from overlap along in urban areas. Because Derry is somewhat rural the town is estimating a \(4 \%\) reduction due to implementation of this technology.

Table 7: AVL Estimated Refuctions for Round 4
\begin{tabular}{|c|c|c|c|c|c|}
\hline Watershed & \begin{tabular}{c} 
Existing \\
Imports \(^{6}\)
\end{tabular} & \begin{tabular}{c} 
Estimated \\
Reduction
\end{tabular} & \begin{tabular}{c} 
Estimated \\
Reduction
\end{tabular} & \begin{tabular}{c} 
Estimated \\
Reduced \\
Imports
\end{tabular} & \begin{tabular}{c} 
TMDL \\
Allocation
\end{tabular} \\
\hline & Tons/Year & Percent & Tons/Year & Tons/Year & Tons/Year \\
\hline Beaver Brook & 2,625 & \(4 \%\) & 105 & 2,520 & 2264.4 \\
\hline
\end{tabular}

\subsection*{5.0 Implementation Cost \& Timeline}

Equipment costs reflect Derry's best estimate at this time. Costs may change due to factors beyond the town's control. The table below summarizes BMP and the associated estimated costs. It should be noted that matching funds will be compliant with 49 CFR18.24 and 49 CFR19.23.
\begin{tabular}{|r|r|c|}
\hline \multicolumn{1}{|c|}{ Table 8: Estimated Cost Table - Round 4 } \\
\hline BMP & Equipment & Estimated Cost \\
\hline 4.1 Equipment AVL Upgrade & \begin{tabular}{c} 
Nine AVL systems including \\
required data plan and support
\end{tabular} & \(\$ 47,500\) \\
\hline & Total Project Cost: & \(\mathbf{\$ 4 7 , 5 0 0 . 0 0}\) \\
\hline & Total Federal: & \(\mathbf{\$ 3 8 , 0 0 0 . 0 0}\) \\
\hline & Total Municipal Match (20\%): & \(\$ 9,500.00\) \\
\hline & Municipal Match Due: & \(\mathbf{\$ 9 , 5 0 0 . 0 0}\) \\
\hline
\end{tabular}

Table 9: Round 4 Project Timeline
\begin{tabular}{|c|c|}
\hline Time Period & Action \\
\hline March-April 2016 & Steering Committee Approval \\
\hline May 2016 & Budget Approval \\
\hline June 2016-October 2016 & Procurement \\
\hline November 2016 & Implementation \\
\hline
\end{tabular}

Notes: The town anticipates implementation for winter 2016-17. In the event that procurement is delayed the system will be implemented for winter 2017-2018.

\footnotetext{
\({ }^{6}\) Using Current 10 year average
}

\subsection*{6.0 Salt Usage Evaluation \& Monitoring}

Derry continues to monitor its salt usage with respect to TMDL compliance. Derry is committed to a multi-year program of efforts and operational modifications that would result in salt reduction with the goal of meeting TMDL load allocation requirements. It is anticipated that salt usage data will be compiled throughout the winter and be summarized and analyzed during the spring. Data will be provided to state agencies on an annual basis, and will be used in future salt reduction plans. Salt usage data will be substantiated with documentation such as invoices, cancelled checks, purchase orders, and or delivery receipts and be provided in total annual usage format based on fiscal/seasonal year on town letterhead.

DES proposes TMDL compliance will be measured using a 10 year average and confidence intervals as currently described in a DRAFT document titled "TMDL IMPLEMENTATION PLAN CONSIDERATIONS" dated April 15, 2010 prepared by NHDES and is included in Appendix E. This document is subject to change following additional Salt Reduction Workgroup discussions.

It is noted that determination of TMDL compliance hinges upon 1) monitoring conducted by DES at the compliance points and 2) DES providing Derry with compliance point monitoring data in a timely manner as it becomes available.

\subsection*{7.0 Summary}

The town commits to providing a written report and oral presentation to the salt reduction workgroup. The town is committing to reducing is chloride imports into the Beaver Brook Watershed by implementing the BMP's contained herein.

\section*{APPENDIX A \\ Derry Town-Wide Municipal Salt Usage Summary FY1991 through FY2015}
\begin{tabular}{|c|c|}
\hline Fis cal Year & \begin{tabular}{c} 
Town-Wide Salt Use \\
(tons)
\end{tabular} \\
\hline FY15 & 4200 \\
\hline FY14 & 5200 \\
\hline FY13 & 3818 \\
\hline FY12 & 1900 \\
\hline FY11 & 3300 \\
\hline FY10 & 3500 \\
\hline FY09 & 4407 \\
\hline FY08 & 5750 \\
\hline FY07 & 2051 \\
\hline FY 06 & 5158 \\
\hline FY05 & 4465 \\
\hline FY04 & 3503 \\
\hline FY03 & 5486 \\
\hline FY 02 & 3347 \\
\hline FY 01 & 4910 \\
\hline FY 00 & 3035 \\
\hline FY 99 & 2708 \\
\hline FY 98 & 3590 \\
\hline FY 97 & 3796 \\
\hline FY 96 & 7110 \\
\hline FY 95 & 2160 \\
\hline FY 94 & 3171 \\
\hline FY 93 & 3625 \\
\hline FY 92 & 3365 \\
\hline FY 91 & 2600 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\(10-\mathrm{yr}\) aver. 5 -yr aver.} & Watershed Salt Use (tons) & \multicolumn{2}{|l|}{\(10-\mathrm{yr}\) aver. 5 -yr aver.} \\
\hline 3977 & 3653 & 2772 & 2625 & 2411 \\
\hline 3914 & 3688 & 3432 & 2583 & 2434 \\
\hline 3940 & 3779 & 2520 & 2600 & 2494 \\
\hline 3952 & 3771 & 1254 & 2608 & 2489 \\
\hline 4097 & 3802 & 2178 & 2704 & 2509 \\
\hline 4258 & 4173 & 2310 & 2810 & 2754 \\
\hline 4211 & 4366 & 2909 & 2779 & 2882 \\
\hline 4041 & 4185 & 3795 & 2667 & 2762 \\
\hline 3825 & 4133 & 1354 & 2525 & 2728 \\
\hline 4000 & 4392 & 3404 & 2640 & 2899 \\
\hline 4195 & 4342 & 2947 & 2769 & 2866 \\
\hline 3965 & 4056 & 2312 & 2617 & 2677 \\
\hline 3931 & 3897 & 3621 & 2595 & 2572 \\
\hline 3745 & 3518 & 2209 & 2472 & 2322 \\
\hline 3747 & 3608 & 3241 & 2473 & 2381 \\
\hline \multirow[t]{10}{*}{3516} & 4048 & 2003 & 2321 & 2672 \\
\hline & 3873 & 1787 & & 2556 \\
\hline & 3965 & 2369 & & 2617 \\
\hline & 3972 & 2505 & & 2622 \\
\hline & 3886 & 4693 & & 2565 \\
\hline & 2984 & 1426 & & 1970 \\
\hline & & 2093 & & \\
\hline & & 2393 & & \\
\hline & & 2221 & & \\
\hline & & 1716 & & \\
\hline
\end{tabular}

Note: Fiscal Year runs July 1 through June 30 i.e., FY10 is July 1, 2009 through June 30,2010

\title{
APPENDIX C: TOWN OF LONDONDERRY, NH SALT REDUCTION BEST MANAGEMENT PRACTICES FOR THE BEAVER BROOK WATERSHED WITHIN THE BOUNDARIES OF THE TOWN OF LONDONDERRY
}

\title{
Town of Londonderry, NH
}

\title{
Salt Reduction Best Management Practices
}

\author{
For \\ The Beaver Brook Watershed Within the Boundaries of the Town of Londonderry
}

The Town of Londonderry currently maintains a total of 186 miles of public roads and 26 acres of parking lots throughout the town. Londonderry is responsible for winter maintenance of 78 lane miles ( 39 road miles) of town owned roads within the Beaver Brook watershed. Londonderry also maintains 2 municipal parking lots (2.4 Acres) within the Beaver Brook watershed.

Londonderry provides winter maintenance to town roadways and parking lots in accordance with Londonderry's "Winter Maintenance Snow and Ice Control Policy" while striving to minimize adverse impacts to the environment. These efforts are met by:
- Adhering to the procedures contained within the Town's Salt Reduction Plan (SRP)
- Committing to ongoing winter maintenance staff training and education
- Reporting fiscal year salt use data to the NH DES
- Re-evaluating the effectiveness of the SRP as needed to incorporate new technologies or changes in procedures.

The goal of the Salt Reduction Plan (SRP) is to provide procedural framework for the Town of Londonderry to continuously strive to improve winter maintenance operations while effectively and efficiently using road salt during snow and ice removal operations. New practices, mechanical upgrades, outreach and awareness activities contained within the SRP plan are intended to reduce the amount of road salt applied therefore working towards decreasing chloride loading to the watershed and meeting the required TMDL.

The SRP is meant to be dynamic to allow the municipality to evaluate and phase-in any changes, new approaches and technologies in winter maintenance activities in a fiscally sound manner.

The town purchased five 6-wheel dump trucks with underbelly (dump/spreader combination) discharge spreaders also equipped with sprayers to prewet salt and a ground speed oriented spreaders. The trucks primarily are used in four plow routes of municipally maintained roads within the Beaver Brook watershed. In addition to the prewetting equipment the trucks are equipped with a pavement temperature sensor with in cab readout.

Spreader Control Units are used to calibrate and accurately dispense material regardless of vehicle speed. The controllers are capable of controlling pre-wetting equipment, ground speed oriented spreaders, and temperature sensor data. The units allow management to set application rates which will automatically change with vehicle speed and ground temperature. Prescribed application rates may only be changed with an administrative password.

Londonderry calibrates each spreader unit prior to the winter season using manufacturer information. Calibrated settings are logged in a master sheet, and stored inside the vehicle. Prior to each storm each truck is checked to verify that settings are calibrated to dispense the proper amount of chemical. Each unit is re-calibrated at least once during the season, and hydraulically controlled units are re-calibrated whenever the hydraulic system is altered or maintained.

Properly calibrated equipment ensures that each spreader is dispensing the appropriate amount of material for each storm. This practice reduces waste and improves efficiency of chemical dispensation

In-Cab Air/Pavement Temperature Sensor Unit provides air and pavement temperature readings on an in-cab display and integrate into the spreader control unit.

Electronically Controllable Hydraulic Valves allows the controller to adjust auger and spinner speeds.

In addition the town maintains a log of salt usage for snow plow routes to tabulate salt usage.
Londonderry takes advantage of NHDOT's knowledge based on the States application rates and best practices to aid in the success of the Salt Use Reduction.

Londonderry requires that all town staff and private contractors hired by the town attend salt reduction trainings. Londonderry is planning to engage in a public outreach program including sending mailers to local business owners encouraging them to require their winter maintenance contractors to attend salt reduction training. A website and local Access TV program will be created to educate homeowners and homeowner associations town-wide about proper salt use. The town will post informational brochures and best management practices information on town websites and in town hall. The town may also investigate other avenues such as posting winter driving tips in the town high school, and speaking to new drivers about safe winter driving. The town will also communicate with the local bus company. In addition the town will communicate with the private contractors who the town is aware of and encourage them to attend training. Londonderry strongly supports a program requiring the certification of private sector salt applicators.

The goal of the outreach program is to increase awareness and encourage private sector applicators to become trained and implement best practices. Outreach to new drivers and local bus companies is the first step in changing driver expectation within town and could result in less salt use in the long term.

Londonderry upgraded a contract with a meteorological service Precision Weather Forecasting to obtain custom storm forecasts for the community, with the capability of viewing and printing weather reports for use during winter storm events. This more accurate information results in more efficient salt use and applications at key points during the storm.

The town is committed to the efforts of reducing its chloride imports into the Beaver Brook Watershed by implementing the BMP's as described above.

\section*{APPENDIX D: WOODMONT COMMONS PHASE I CHLORIDE MANAGEMENT PLAN}

\title{
The State of New Hampshire \\ Department of Environmental Services
}

\author{
Clark B．Freise，Assistant Commissioner
}

\author{
RE：Woodmont Commons，Planned Unit Development \\ Garden Lane and Pillsbury Road \\ Tax Map 10，Block 41，52，54－1，Londonderry，NH
}

Permit：AoT－1213

Dear Applicant：
Based upon the plans and application，approved on February 15，2017，we are hereby issuing RSA 485－A：17 Alteration of Terrain Permit AoT－1213．As part of the processing of this application，DES grants approval to waiving specific requirements of Rule Env－Wq 1507．04，Groundwater Recharge Requirements，finding that generally elevated groundwater elevations at the site preclude reasonable opportunities to recharge groundwater， and finding that some recharge will be achieved at proposed filtration basins．It was further determined that granting the waiver would not have an adverse impact on the environment，public health，public safety，or abutting properties，and that granting the request is consistent with the intent and purpose of the rule waived． Additional documentation relative to the waiver requested is contained within the file．This permit is subject to the following conditions

1．Activities shall not cause or contribute to any violations of the surface water quality standards established in Administrative Rule Env－Wq 1700.

2．You must submit revised plans for permit amendment prior to any changes in construction details or sequences．You must notify the Department in writing within ten days of a change in ownership．

3．You must notify the Department in writing prior to the start of construction and upon completion of construction．Forms are available at：http：／／des．nh．gov／organization／divisions／water／aov／categories／forms．htm． If any underground detention systems，infiltration systems，or filtering systems are installed，a letter must be provided，signed by a qualified engineer，stating that the individual observed such system（s） prior to such system（s）being backfilled，and that in his or her professional opinion，such system（s） conform to the approved plans and specifications．

4．The plans，latest revision dated February 13，2017，and supporting documentation in the permit file are a part of this approval．

5．This permit expires on February 15，2022．No earth moving activities shall occur on the project after this expiration date unless the permit has been extended by the Department．If requesting an extension，the request must be received by the department before the permit expires．The Amendment


6．This permit does not relieve the applicant from the obligation to obtain other local，state or federal permits that may be required（e．g．，from US EPA，US Army Corps of Engineers，etc．）．Projects disturbing over I acre may require a federal stormwater permit from EPA．Information regarding this

Alteration of Terrain Permit AoT-1213
Woodmont Commons, Planned Unit Development Garden Lane and Pillsbury Road
Tax Map 10, Block 41, 52, 54-1, Londonderry, NH
Page 2 of 2
permitting process can be obtained at:
http://des.nh.gov/organization/divisions/water/stormwater/construction.htm.
7. All stormwater practices shall be inspected and maintained in accordance with Env-Wq 1507.08 and the project Inspection and Maintenance (I\&M) Manual. All record keeping required by the I\&M Manual shall be maintained by the identified responsible party, and be made available to the department upon request.

8.Winter snow and ice management activities shall be in accordance with the Chloride Management Plan, Woodmont Commons - Planned Unit Development, Londonderry, New Hampshire, received by the Department on October 18, 2016.
9. If applicable, no activity shall occur in wetland areas until a Wetlands Permit is obtained from the Department. Issuance of this permit does not obligate the Department to approve a Wetlands Permit for this project.


Ridgely Mauck, P.E.
Alteration of Terrain Bureau
cc:Londonderry Planning Board
ec: TFMoran, Inc.

\title{
WOODMONT COMMONS - PLANNED UNIT DEVELOPMENT LONDONDERRY, NEW HAMPSHIRE
}

\author{
Chloride Management Plan
}

\author{
WInter Operational Guidelines
}

The following Chloride Management Plan is for the Woodmont Commons Planned Unit Development in Londonderry, New Hampshire. The Plan Includes road salt source reduction methodologies in the categaries of, road salt equlpment specifications, certification requirements, stormwater management efforts, public awareness efforts, and road salt usage and monitoring requirements. Due to the evolving nature of chloride management efforts, the Chlorides Management Plan will be periodically reviewed to reflect the current management standards.

\subsection*{1.0 Background Information}

The Woodmont Commons live-work-play development is mostly located within the Beaver Brook Watershed In Londonderry and Derry, New Hampshire. In 2006, the New Hampshire Department of Envlronmental Services (NHDES) and the US Environmental Protection Agency (EPA) designated the Beaver Brook Watershed, and three additional watersheds along the l-93 corridor, as impaired watersheds due to locational chloride concentrations that exceed the Total Maximum Daily Load (TMDL) in portions of each watershed. Further studies within these watersheds identified the saurces of chloride loading as winter operational use of de-icing, anti-icing and pretreatment materials applied for the removal of snow and surface maintenance. These studies further attributed the primary sources of chloride loading to three major user groups. Within the \(1-93\) corridor, approximately \(10-15 \%\) of the overall chloride load was attributed to winter operational activities on State roads. Public and private sector user groups, the additional two groups identified, equally accounted for the remaining portion of the chloride load.

In an attempt to reduce chloride loading derived from the use of de-icing, anti-lcing and pretreatment materials applied for the removal of snow and surface maintenance within the Beaver Brook Watershed, the Towns of Londonderry, Auburn, Chester, and Derry, in conjunction with the New Hampshire Department of Transportation, have developed salt reduction plans for each of the four towns within the Beaver Brook Watershed. According to the Salt Reduction Plan for the Town of Londonderry, and the additional supporting documents used to develop the plan, source reduction is identified as the most effective method for reducing chloride loading in the Beaver Brook Watershed. The primary source reduction methodologies outlined in the Salt Reduction Plan focus on increased education opportunities for municipal employees and private contractors involved with winter operational activities, more accurately calibrated application methods, enhanced forecasting, improved surface monitoring technologles, and public outreach efforts that include measures to ensure that the private sector entities located within the Beaver Brook Watershed continually adhere to the current standards.

Included in the Salt Reduction Plan for the Town of Londonderry is the NHDES Watershed Management Bureau, 2010 Draft TMDL Implementation Plan Considerations document. In this document is a table for how the TMDL allocations are broken down in each of the four impaired watersheds. For the Beaver Brook Watershed, the ten year rolling average TMDL of 5,863.4 tons/year is distributed between NHDOT I-93, NHDOT other roads, Londonderry Municipal, Derry Municipal, Chester \& Auburn, Londonderry Private, Derry Prlvate, Londonderry Future, and Derry Future. The Plan further identifies that within the Beaver Brook Watershed the Town's objective is to reduce chloride imports by \(5 \%\) annually to achieve the ten year rolling average TMDL allocation.

In keeping with these expectations, the Town of Londonderry worked closely with the Woodmont Commons Management Team to ensure that the Master Plan reflected the objectives outlined in the Salt Reduction Plan for the Town of Londonderry.

\subsection*{2.0 Operational Guidelines - Chloride Management}

All Woodmont Commons Team Managers are responsible for assisting in meeting compliance for the following protocols. it is important to note that portions of the Woodmont Commons Property is NOT located in the portlon of the Beaver Brook Watershed that is impaired, runoff water leaving the property does pass through the impaired portion of the watershed. Woodmont Commons Team Managers are expected to minimize the effects of the use of de-icing, anti-lcing and pretreatment materials by adhering to the strict guidelines outlined below.

The Woodmont Commons winter operational de-icing, anti-icing and pretreatment materials will adhere to the following protocols:

\subsection*{2.1 Private Maintenance Contracting Equipment Requirements and Training}

Woodmont Commons serves as a model for private sector participation by committing to contract with snow removal maintenance providers who have been trained and are knowledgeable of the Best Management Practices (BMPs) for snow removal under reduced salt applications. Each Woodmont Commons Team Manager is responsible to know and be up to date on the current standards for snow removal under reduced salt applications. These practices are published and updated by the UNH Technology Transfer (T2) program.

All Woodmont Commons Team Managers directly involved with winter operational activities, and all private contractors engaged at the Woodmont Commons premises for the purposes of winter operational snow removal and surface maintenance, must be current UNHT2 Green SnowPro Certified operators or equivalent, and will use only pre-approved methods for spreading abrasives on private roadways and parking lats. When a salt aggregate or brining solution is applied for the purposes of snow removal or surface maintenance, it will adhere to the current BMP standard, including pre-treatment and ground speed-controlled spreaders as outlined in the NHDES August 2011 Salt Reduction Implementation Plan for the Beaver Brook Watershed.
2.1.1 MInimum Specification Requirements for De-icing, Anti-icing and Pretreatment Equipment All private contractors engaged at the Woodmont Commons premises for the purposes of winter operational snow removal and surface maintenance, must be current UNHT2 Green SnowPro Certified operators or equivalent. All equipment utilized on the Woodmont Commons premises for the purpose of winter operational snow removal and surface maintenance will conform to the following specifications.

\subsection*{2.1.1.1 Material Spreader Control Unit}

All equipment utilized for the applicatlon of road salt aggregate shall be equipped with a spreader control unit with the ability to calibrate and accurately dispense aggregate materials at a uniform density and frequency based on the forward rate of the vehicle or equivalent spreader carrier unit. At a minimum, acceptable spreader control units will include the capacity to control salt aggregates, pre-wetting equipment, ground speed orientation, and air/ground surface temperature data. The unit will also allow Woodmont Commons Operational Management password access to confirm and set calibration limits which will automatically adjust to the vehicle/carrier speed and ground surface temperature.

\subsection*{2.1.1.2 Brining Equipment Control Unit}

All equipment utilized for the application of brining and pre-wetting solution shall be equipped
with a spreader control unit with the ability to calibrate and accurately dispense brining and prewetting solution at a uniform density and frequency based on the forward rate of the vehicle or equivalent carrier unit. At a minimum, acceptable spreader control units will include the capacity to directly interface with salt aggregate equipment, pre-wetting equlpment, ground speed orientation, and air/ground surface temperature data. The unit will also allow Woodmont Commons Operational Management password access to confirm and set callibration limits which will automatically adjust to the vehicle/carrier speed and ground surface temperature.

\subsection*{2.1.1.3 Alr/Ground Surface Temperature Monitors}

All vehicie/carriers utilized for the application of road salt aggregate or brining and pre-wetting solution shall be equipped with an annually calibrated and operational air/ground surface temperature monitor capable of providing in-cab operator displays and automatic interface with a compatible spreader control unit. At a minimum, acceptable air/ground surface temperature monitor units will include the capacity to interface with spreader control units and be compatible with salt aggregate equipment, pre-wetting equipment, and air/ground speed orientation data. The unit will also allow Woodmont Commons Operational Management access to confirm and/or calibrate limits to ensure accurate interface with the vehicle/carrier speed and ground surface temperature function.

\subsection*{2.1.1.4 Electronically Controlled Hydraulic Valve Unit}

All equipment utilized for the application of road salt aggregate or brining and pre-wetting solution shall be equipped with an electronically controlled hydraulic valve unit capable of providing in-cab operator displays and automatic interface with a functional spreader control unit. At a minimum, an acceptable electronically controlled hydraulic valve unit will include the capacity to interface with a vehicle/carrier spreader control unit that automatically adjusts salt aggregates, pre-wetting equipment, ground speed orientation, and ground surface temperature data. The unit will also allow Woodmont Commons Operational Management access to confirm and/or calibrate limits to ensure accurate interface with the vehicle/carrier spreader control interface.

\subsection*{2.1.2 Equipment Calibration Requirements}

All equipment utilized on the Woodmont Commons premises for the purpase of winter operational snow removal and surface maintenance will conform to the following calibration requirements.

\subsection*{2.1.2.1 Annual Callbration Requtrements}

All private contractors engaged at the Woodmont Commons premises for the purpose of winter operational snow removal and surface maintenance shall provide two copies of the annual calibration report for each plece of equipment utilized on the Woodmont Commons premises. Each calibration report shall include the vehicle/carrier VIN number and the serial numbers for each component including, but not limited to, spreader control units, salt aggregate spreader equipment, brining/pre-wetting equipment, ground speed orientation unit, and alr/ground surface temperature monitor. Annual calibration reports will be available on file in the Woodmont Commons Property Management Building and be present in the vehicle/carrier at all times. Prior to each use, each vehicle/carrier operator will perform a systems check to verify that unit settings remain within the guidelines established by the Woodmont Commons Management Team in order to accurately dispense material. All private contractors engaged at the Woodmont Commons premises for the purpose of winter operational snow removal and surface maintenance will be subject to spot Inspections by members of the Woodmont Commons Management Team to ensure that each vehicle/carrier is operating in a manner consistent with the guidelines set herein or State and Municipal regulations. All units will be recalibrated and the updated calibration reports will be provided each time repairs or maintenance procedures affect the hydraulic system
of the vehicle/carrier.

\subsection*{2.1.3 Winter Operator Certification Requirements}

All private contractors engaged at the Woodmont Commons premises for the purpose of winter operational snow removal and surface maintenance must be current UNHT2 Green SnowPro Certified operators or equivalent, and will use only pre-approved methods for spreading abrasives on private roadways and parking lots. All private contractors engaged at the Woodmont Commons premises for the purpose of winter operational snow removal and surface maintenance shall provide to Woodmont Commons management two coples of the annual UNHT2 Green SnowPro certificate or equivalent for each operator utilized on the Woodmont Commons premises. The annual UNHT2 Green SnowPro certificate or equivalent for each operator will be available on file in the Woodmont Commons Property Management Building and be present in the vehicle/carrier at all times.

\subsection*{2.2 Improved Weather Monitoring}

Woodmont Commons will coordinate weather information for use by winter maintenance contractors. This information in conjunction with site specific air/ground surface temperature monitoring will ensure that private contractors engaged at the Woodmont Commons premises for the purpose of winter operational snow removal and surface maintenance will make more informed decisions as to when and to what extent de-icing, anti-icing and pretreatment materials are applied to private roadways, sidewalks, and parking lots.

\subsection*{2.3 Increased Mechanical Removal Capabllities}

Woodmont Commons will endeavor to use mechanical removal means on a more frequent basis for roadways, parking lots and sidewalks, Dedicating more manpower and equipment to increase snow removal frequencies prevents the buildup of snow and the corresponding need for de-icing, anti-icing and pretreatment materials. Shortened maintenance routes, with shorter service intervals, will be used to stay ahead of snowfall. Minimized snow and ice packing will reduce the need for abrasives, salt aggregates, and/or brining solution to restore surfaces back to bare surface states after winter precipitation events.

After storm events the Woodmont Commons management team will be responsible for having the streets swept to recapture unmelting de-icing materials, when practical.

\subsection*{2.4 Public Awareness Campaign}

Woodmont Commons will inform all future developers, grantees, and tenants at the Woodmont Commons development of the need to reduce the use of de-icing, anti-icing and pretreatment materials on roadways, parking lots, and sidewalks.

\subsection*{2.5 Summary}

The above-described methodologles are incorporated into the Woodmont Commons Operational Manual and are to be used to qualify and retain all private contractors engaged at the Woodmont Commons premises for the purpose of winter operational snow removal and surface maintenance. This section of the Manual, as with the Town of Londonderry's Salt Reduction Plan, is intended to be an adaptive management document that is modified as required based on experience gained from past practices and technological advancements that reflect chloride BMP standards. Each member of the Woodmont Common Management Team is required to review this document and the current standard Best Management Practices published by the UNH Technology Transfer (T2) program annually. Each member of the Woodmont Commons Management Team directly involved with winter operational guldelines is required to be certified as a UNHT2 Green SnowPro or equivalent and undergo the necessary requirements to maintain this certification annually.

\subsection*{3.0 Stormwater Management}

Wherever applicable, stormwater in locations subject to winter operational de-icing, anti-icing and pretreatment materials will be directed to the Woodmont Commons Tiered Stormwater Management System. The Woodmont Commons Stormwater Management System is designed using a comprehensive stormwater management philosophy designed to retain and treat stormwater based on land use. Stormwater volumes and pollutant signatures vary based on land use. By identifying the potential stormwater characteristics based on the land use, stormwater management efforts may be designed to remediate stormwater pollutants at the source level prior to conveying the stormwater down gradlent for additional treatment.

\subsection*{3.1 Woodmont Commons Tlered Stormwater Management System Overview}

The Tiered Stormwater Management Plan for the Woodmont Commons Planned Unit Development (PUD) is a multifaceted proposal composed of stormwater systems at the Slte Level and Area Level. These stormwater land-use goals can layer with additional land-use goals such as landscaping requirements, greenspace, greenway, actlve recreational, and passive open space components as defined in sections 2.4.6 PUD Site Plan Landscape Requirements and 2.3.6 Conserved Green Space and Shared Open Space Standards of the Woodmont Commons PUD Master Plan accepted by the Town of Londonderry on September 11, 2013.

Site Level stormwater management systems will focus on removal of total suspended solids (TSS), and if/where soil conditions are suitable, bio-remediation will be implemented to capture excess nutrient loads and other contaminants typically found in residential stormwater runoff.

Area Level systems will be spaced and sized to receive the stormwater from the Site Level systems, while extending the treatment processes and resonance period of the stormwater treatment.

The Area Level systems will detain and release the treated stormwater outside of the PUD area consistent with the rates of discharge prior to the project. The Area Level systems will provide additional filtration and macro nutrlent removal as the base rate of flow is slowed. The plants and microbial species selected will promote long-term nutrients entrainment and incorporate elements of vegetation to maintain optimum wildlife values, and bacterial and mycoremediation rates.

Much of the stormwater from the PUD on the west slde of I-93 will discharge to Duck Pond in the southwest corner of the Woodmont Common's property. The Duck Pond impoundment will be enhanced consistent with the Master Plan to promote recreational opportunities for the surrounding communities in a successional trajectory that is best suited to sustain the resource into the future.

\subsection*{4.0 Salt Usage Evaluation and Monitoring}

The Woodmont Commons Management Team is committed to an ongoing Chloride Management Plan to aid the Town of Londonderry in its efforts towards reducing chloride imports into the Beaver Brook Watershed. All prlvate contractors engaged at the Woodmont Commons premises for the purpose of winter operational snow removal and surface maintenance shall provide two copies of the standardized Storm Report, which includes detailed information regarding treatment areas and the use of de-icing, antiicing and pretreatment materials applied for the removal of snow and surface maintenance on the Woodmont Commons premises. Each spring, Woodmont Commons will submit a Summary Document, including coples of the Storm Reports, operator certifications, equipment used for roadway and sidewalk winter maintenance, calibration reports and amount of de-icing materials used, to the Town of Londonderry Department of Public Works for their use In documenting the chloride usage in the Beaver Brook Watershed.

\subsection*{5.0 Chloride Management Plan Summary}

The Woodmont Commons Management Team is committed to maintaining written documentatlon and adaptlve management solutions for the Town of Londonderry to supplement in its efforts towards reducing chloride imports into the Beaver Brook Watershed. These efforts include minimizing chloride imports Into unimpaired portions of the watershed by the implementation and enforcement of the BMP standards outlined above in section 2.0 Operational Guidelines - Chloride Management; implementation and maintenance of the efforts outlined above in section 3.0 Stormwater Management; and the adherence and adaptive management efforts outlined above in section 4.0 Salt Usage Evaluation and Monitoring.

\section*{Appendix I: 2014-2015 Vernal Pool Assessment Report}

\title{
2014-2015 Vernal Pool Assessment Report for NHDOT
}

March 2016
Hyrax-Pillsbury Property
East of I-93, Londonderry, NH

A vernal pool assessment was conducted from May 2014 through June 2015 on the 200-plus acre parcel of land owned by Hyrax Derry Partners LLC and Pillsbury Realty Development LLC (Hyrax-Pillsbury) located to the east of Interstate 93 in Londonderry, New Hampshire (the Property). This was a joint effort between Stable Growth Environmental LLC (SGE), Northeast Wetland Restoration (NWR) and Stoney Ridge Environmental LLC (SRE), with field work completed by Michael Parsont (NH Certified Wetland Scientist), Gerard Thomas (Wildlife Biologist), Richard Bolton (Wildlife Biologist) and Geoffrey Wilson (Urban Forester).

This assessment was performed five years after a prior study was conducted by Normandeau Associates (Normandeau) in April-May 2009. Locations of the pools identified on or immediately adjacent to the Property by Normandeau were documented in their Hyrax Wetland Delineation Report, dated September 2011, which utilized the data collected by Normandeau staff from the 2009 vernal pool survey. In June-July 2013, SGE/NWR initially visited the 2009 pool sites, as reported in 2011. These sites were further assessed in the field by SGE/SRE during the vernal pool amphibian breeding season in May 2014; by SGE towards the end of the two-month required hydroperiod in early June 2014 and to assess pool permanency in September 2014; by SGE/SRE during the vernal pool amphibian breeding season in May 2015; and by SGE in early-mid June 2015.

By definition, vernal pools are required to hold water for at least two continuous months in the spring and/or summer, and are intended to be seasonal not permanent (see enclosed State and Federal vernal pool definitions). Therefore, to designate a pool site as a "vernal pool", a minimum of two field observations in the same year are necessary to document the wet/dry cycle, one of which must be during the vernal pool amphibian breeding season to identify the presence of indicator species and the other should occur later within two months following spring ice-out.

Enclosed with this report is a figure prepared by CLD Consulting Engineers, Inc. (CLD) that shows the locations of the 2009 vernal pools (identified by Normandeau in the September 2011 report as on or immediately adjacent to the Property) that are within the limits CLD defined for this report. A table is enclosed that identifies these 2009 vernal pools. Subsequent columns in this table include: (1) relevant information taken from Normandeau's 2011 chart; (2) indicators present as identified on Normandeau's 2009 data forms; (3) indicators present in May 2014; (4) if water was present in June 2014; (5) if water was present in September 2014; (6) indicators present in May 2015; (7) if water was present in June 2015; and (8) comments. The comments include: 2006 indicators data from a Woodlot Alternatives Inc. study (for ten of the 2009 vernal pools), distinctions between the Normandeau 2011 report and the 2009 data forms, additional 2014-2015 considerations and pool quality determination. The Woodlot Alternatives information was obtained from the 2006 Draft Environmental Impact Statement, which states the study was comprised of one visit to each pool in late April 2006 with no follow-up visits.

Stable Growth Environmental LLC

Precipitation records for Concord, New Hampshire, from 1868 to present, show that 2005 (57 inches) and 2006 ( 55 inches) were the second and third highest precipitation years on record to date, respectively. Additionally, 2008 ( 58 inches) was the highest precipitation year to date, while 2009 had 47 inches total, which was well above the average of 41 inches. Meanwhile, 2012 and 2013 were average ( 40 and 41 inches respectively), 2014 was above average ( 46 inches) and 2015 had been well below average at the time of the final pool assessments ( 10 inches to May 31, 2015, with the average being 16 inches through that date).

There are a total of eleven pool locations identified on the enclosed table. An SGE NH Vernal Pool Determination/Assessment Data Form is enclosed for each of these locations. Based on the information obtained during the 2014-2015 field assessments, two of these 2009 pool locations did not meet the State criteria or the Federal criteria to be considered vernal pools in 2014-15 (VP 41B and VP 43). They either had insufficient indicators present and/or an insufficient hydroperiod. Also, one of these pools (VP 41B) appeared to be isolated and not part of a wetland. The remaining nine vernal pools are identified as VP \(2,3,4,5,6,7,8,42\) and 46.

Finally, a table is included showing all of the vernal pools in the study area.

\section*{NEW HAMPSHIRE CODE OF ADMINISTRATIVE RULES}

Env-Wt 101.105 "Upland buffer" means an area of land that is contiguous to a jurisdictional resource and that contributes to the functions and values of that resource.

> Source. (See Revision Notes \#2 and \#3 at chapter heading for Env-Wt 100) \#8340, eff 4-25-05; renumbered by \#9094 (from Env-Wt 101.96 to Env-Wt 101.97); renumbered by \#9131 (from Env-Wt 101.97 to Env-Wt 101.100); renumbered by \#9713 (from Env-Wt 101.100 to Env-Wt 101.106 )

Env- Wt 101.106 "Vernal pool" means a surface water or wetland, including an area intentionally created for purposes of compensatory mitigation, which provides breeding habitat for amphibians and invertebrates that have adapted to the unique environments provided by such pools and which:
(a) Is not the result of on-going anthropogenic activities that are not intended to provide compensatory mitigation, including but not limited to:
(1) Gravel pit operations in a pit that has been mined at least every other year; and
(2) Logging and agricultural operations conducted in accordance with all applicable New Hampshire statutes and rules; and
(b) Typically has the following characteristics:
(1) Cycles annually from flooded to dry conditions, although the hydroperiod, size, and shape of the pool might vary from year to year;
(2) Forms in a shallow depression or basin;
(3) Has no permanently flowing outlet;
(4) Holds water for at least 2 continuous months following spring ice-out;
(5) Lacks a viable fish population; and
(6) Supports one or more primary vernal pool indicators, or 3 or more secondary vernal pool indicators.

Source. \#9131, eff 4-19-08; renumbered by \#9713 (from Env-Wt 101.99 to Env-Wt 101.105)
Env-Wt 101.107 "Watercourse" means any surface water that:
(a) Develops and maintains a defined scoured channel, with evidence of sediment transport, that:
(1) Is greater than 75 feet in length; or
(2) Is of any length and connected to another jurisdictional area at either end; and
(b) Is not a drainage swale.

Source. \#9713, eff 5-12-10
Env-Wt 101.108 "Watershed" means a geographical area in which all water drains to a given stream, lake, wetland, estuary, or ocean.

Source. (See Revision Notes \#2 and \#3 at chapter heading for Env-Wt 100) \#8340, eff 4-25-05; renumbered by \#9094 (from Env-Wt 101.97 to Env-Wt 101.98); renumbered by \#9131 (from Env-Wt 101.98 to Env-Wt 101.101);
facilitate moorage of vessels where such areas have been established for that purpose by the U.S. Coast Guard, provided:
- Placement in the area is away from vegetated shallows
- If the above isn't possible, proper/eco-friendly moorings are used so chains or other connections don't rest on the bottom in veg. shallows 15 .
- Float stops, chains, or other devices must be used to provide \(\geq 2.5\)-foot clearance between the bottom of the float and the substrate during all tides

Scientific measurement devices, and small weirs and flumes constructed primarily to record water quantity and velocity provided the discharge of fill is limited to 10 cubic yards. No work may restrict movement of aquatic species or potentially threaten to impact or entangle sea turtles or marine mammals in near-coastal waters.

Survey activities including core sampling, seismic exploratory operations, plugging of seismic shot holes, other exploratory-type bore holes and oil and gas test wells, soil survey and sampling, and historic resources surveys. Discharges and structures associated with the recovery of historic resources are not authorized. Drilling and the discharge of excavated material from test wells for oil and gas exploration are not authorized. Fill placed for roads, pads and other similar activities is not authorized, nor is any permanent structure.

\section*{End Notes/Definitions}
\({ }^{1}\) Bordering and Contiguous Wetlands: A bordering wetland is immediately next to its adjacent waterbody and may lie at, or below, the OHW mark (MHW in navigable waters) of that waterbody and is directly influenced by its hydrologic regime. Contiguous wetlands extend landward from their adjacent waterbody to a point where a natural or manmade discontinuity exists. Contiguous wetlands include bordering wetlands as well as wetlands that are situated immediately above the ordinary high water mark and above the normal hydrologic influence of their adjacent waterbody. Note, with respect to the Federally designated navigable rivers, the wetlands bordering and contiguous to the tidally influenced portions of those rivers are reviewed under "II. Navigable Waters."
\({ }^{\mathbf{2}}\) Regulation: Either DES or NHCP must regulate an activity for it to be eligible for authorization as a Minimum Impact Project of this NH PGP. The Minimum Impact Project category does not apply to activities exempt from State regulation. These activities must report to the Corps.
\({ }^{3}\) Direct, Secondary (Indirect), and Cumulative Impacts:
Direct Impacts: The immediate loss of aquatic ecosystem within the footprint of the fill.
Secondary (Indirect) impacts: These are effects on an aquatic ecosystem that are associated with a discharge of dredged or fill materials, but do not result from the actual placement of the dredged or fill material. ( 40 CFR \(230.11(\mathrm{~h})\) ). Secondary impacts are those impacts outside the footprint of the fill (e.g., beyond the bounds of the disposal site) that arise from and are associated with the direct discharge of dredged or fill material. Some examples are: I) Habitat Fragmentation. This occurs when a relatively undisturbed habitat block is interrupted or broken apart by roads, ditches, disturbance of vegetation, or development of structures. II) Interruption of Travel Corridors. Travel corridors are routes that many species travel on to find food, mates, shelter, and cover. Many aquatic species follow stream channels and wetlands, and follow established routes season after season. III) Vernal Pools. These are critically important breeding habitats for amphibians. Many amphibians disperse several hundred feet from their breeding ponds into the adjacent upland habitat after the breeding season has ended. IV) Hydrology, hydrological functions and non-point source impacts: A) Interference with the migration or movement of fish and shellfish from one area to another, such as placement of a dam eliminating access to spawning grounds for anadromous fish. B) Greater amounts of sediment, nutrients, and other pollutants such as lead, oil, gas, and salt that could impact wetlands and streams. Sediment causes turbidity, which reduces aquatic life and usually transports pesticides, heavy metals and other toxins into streams. This is especially a concern in watersheds where the streams are already listed as impaired by NHDES. C) Submerged NE PGP - Appendix A
aquatic vegetation is very dependent on light transmission and small changes in ambient turbidity can preclude it from growing in certain areas. D) Trout spawning areas are selected in areas that are well flushed and aerated, and new amounts of deposition may result in a spawning area being eliminated due to siltation of fish eggs. E) Physical effects such as erosion, accretion, entrenchment, sedimentation, embedment, channel or shoreline migration and failure to pass bedload material, organic matter and large woody debris.
Cumulative Impacts: The extent of past, present, and foreseeable developments in the area may be an important consideration in evaluating the significance of a particular project's impacts. Although the impacts associated with a particular discharge may be minor, the cumulative effect of numerous similar discharges can result in a large impact. Cumulative impacts should be estimated only to the extent that they are reasonable and practical.
\({ }^{4}\) Incidental Fallback: The term "discharge of dredged or fill material" also includes certain discharges resulting from excavation.
\({ }^{5}\) Water Diversions: Water diversions are activities such as bypass pumping or water withdrawals. Temporary flume pipes, culverts or cofferdams where normal flows are maintained within the stream boundary's confines aren't water diversions. "Normal flows" are defined as no change in flow from pre-project conditions. See GC 21.
\({ }_{7}^{6}\) Special Aquatic Sites: These include both inland \& salt marsh wetlands, mud flats, vegetated shallows \({ }^{15}\), coral reefs, and riffle \& pool complexes. (40 CFR 230).
\({ }^{7}\) Special Wetlands: These include 1. enriched/calcareous seepage swamps, estuarine wetlands, floodplains, peatlands, unique basin swamps/marshes, and vernal pools, 2 . all wetlands that provide habitat for threatened or endangered species, and 3 . all exemplary wetland natural community occurrences as designated by the NH Natural Heritage Bureau (NHNHB). The wetland types provided in 1 above are expanded below and fully described in Natural Community Systems of New Hampshire and Natural Communities of New Hampshire, which are available at www.nhnaturalheritage.org. Note: The Corps will use the definition of vernal pools that is listed below, not the definition in the referenced Natural Heritage documents. The applicant is required to have NHNHB check the wetland types listed in 2 and 3 above by either requesting a hard copy review or using the DataCheck Tool at www.nhnaturalheritage.org.
\(\rightarrow \quad\) Vernal Pool (VP) and Habitat: VPs are confined basin depressions with water for two or more continuous months in the spring and/or summer, for which evidence of one or more of the following indicator vernal pools species: wood frogs (Rana sylvatica), mole salamanders (Ambystoma spp), and fairy shrimp (Eubranchipus spp) has been documented OR for which evidence of two or more of the following facultative organisms: caddisfly (Trichoptera) larvae casings, fingernail clams (Sphaeriidae), or amphibious snails (Basammatophora) and evidence that the pool does not contain an established reproducing fish population has been documented. Vernal pool habitat is the seasonal pool depression, seasonal pool envelope ( 100 FT radius from the VP edge) and seasonal pool terrestrial habitat ( 750 FT radius from the VP edge). The Corps will determine on a case-by-case basis which vernal pools are within their jurisdiction. Enriched/Calcareous seepage swamps: Wetlands characterized by the discharge of enriched groundwater. Floristic composition is an indicator of these conditions.
- Calcareous sloping fen system
- Calcareous riverside seep (natural community)
- Circumneutral seepage swamp (natural community)
- Red maple-black ash-swamp saxifrage swamp (natural community)
- Circumneutral hardwood forest seep (natural community)
- Northern hardwood-black ash-conifer swamp (natural community) Estuarine wetlands: Wetland communities occurring in subtidal and intertidal coastal habitats connected to the ocean but semi-enclosed by land and protected from high-energy wave action. These wetlands are periodically exposed and flooded by tides.
- Salt marsh system
- Brackish tidal riverbank marsh system
- Sparsely vegetated intertidal system
- Subtidal system

Floodplains: Areas of low land along a watercourse that are subject to periodic flooding and sediment deposition.
- Montane/near borcal floodplain system
- Major river silver maple floodplain system
- Temperate minor river floodplain system
- Swamp white oak floodplain forest (natural community)

Peatlands: Peat-accumulating wetlands, including bogs, fens, cedar swamps, which are often dominated with sphagnum moss, heath family plants and sedges.
- Alpine/subalpine bog system
- Kettle hole bog system

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline VPool ID\# (2009) & April-May 2009
(2011 chart) & Normandeau (2009 data forms) & \begin{tabular}{l}
May 2014 \\
SGE w/SRE \({ }^{+}\)
\end{tabular} & \begin{tabular}{l}
June 2014 \\
Hydroperiod
\end{tabular} & \begin{tabular}{l}
Sept 2014 \\
Hydroperiod
\end{tabular} & \begin{tabular}{l}
May 2015 \\
SGE w/SRE \({ }^{+}\)
\end{tabular} & \begin{tabular}{l}
June 2015 \\
Hydroperiod
\end{tabular} & Comments \\
\hline 46 & Semi-perm pool, linked to VP42 \& 47, "med" & SS egg masses & WF egg masses (12), WF larvae (1000s), caddisfly larvae & Yes & No water present & SS egg mass (1), juv/adult WFs, caddisfly/aquatic beetle larvae & Yes & Moderate quality \\
\hline *43 & Linked to intermittent stream, green frog present, "low" & caddisfly larvae, fingernail clams, flat spire snails & caddisfly larvae & Yes & No water present & aquatic beetle larvae & No water present & Not vernal pool \\
\hline 42 & Perm pool, mostly in powerline ROW, bullfrog larvae, "modified", NHDES vpool??, "high" & WF/SS egg masses, caddisfly larvae, spire/flat spire snails, dragonfly larvae & WF larvae, caddisfly larvae, flat spire snails & Yes & No water present & WF larvae, aquatic beetle larvae & Yes & Semi-perm pool on 2009 data form, unclear why "question mark" regarding NHDES vpool; moderate quality \\
\hline *41B & Not natural, "not fishless", in utility ROW, linked to VP42, NHDES vpool??, "high" & WF larvae & No indicators present & Yes & No water present & aquatic beetle larvae & Yes & Only tadpoles present, no fish noted on 2009 data form, unclear why "question mark" re: NHDES vpool; large rut w/mud bottom, no veg; not vernal pool; isolated? \\
\hline \[
\begin{gathered}
8 \\
\text { offsite }
\end{gathered}
\] & "modified", semi-perm pool, "med" & WF/SS egg masses, caddisfly larvae, spire snails, flat spire snails & WF larvae (1000s), caddisfly larvae & Yes & No water present & WF larvae, caddisfly larvae, aquatic beetle larvae, damselfly larvae & Yes & WF egg masses in 2006; active gravel pit/beaver flowage on 2009 data form; green frogs present (2014); impacted by adj. land use, low quality \\
\hline 7 & Perm pool, very deep, "high" & WF/SS egg masses, WF larvae & WF egg masses (4), WF larvae, f.shrimp, caddisfly larvae & Yes & No water present & BSS/SS egg masses (2/13), WF larvae, juv WFs & Yes & SS egg masses, WF larvae in 2006; bullfrog larvae present (2014); semiperm pool; high quality \\
\hline 6 & Perm pool, "high" & WF/SS egg masses, caddisfly larvae, fingernail clams, spire snails, dragonfly larvae & WF egg masses (3), WF larvae, f.shrimp, caddisfly/aquatic beetle larvae, flat spire snails & Yes & No open water present (mucky soil under veg) & SS egg masses (3), WF larvae, juv/adult WFs, caddisfly/aquatic beetle larvae, fingernail clams & Yes & SS egg masses, WF larvae in 2006; only 0.17 ac on 2009 data form; semi-perm pool; portion in utility ROW w/no canopy, other portion w/buttonbush; moderate quality \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline VPool ID\# (2009) & April-May 2009
(2011 chart) & Normandeau (2009 data forms) & \begin{tabular}{l}
May 2014 \\
SGE w/SRE \({ }^{+}\)
\end{tabular} & \begin{tabular}{l}
June 2014 \\
Hydroperiod
\end{tabular} & \begin{tabular}{l}
Sept 2014 \\
Hydroperiod
\end{tabular} & May 2015 SGE w/SRE \({ }^{+}\) & \begin{tabular}{l}
June 2015 \\
Hydroperiod
\end{tabular} & Comments \\
\hline 5 & Assoc w/stream, maybe perm in/outlet/fish present, "high" & WF/SS egg masses, WF larvae, caddisfly larvae & WF egg masses (6), caddisfly larvae & Yes & No water present & SS egg masses (9), WF larvae, f.shrimp, caddisfly larvae, spire snails & Yes & SS/WF egg masses in 2006; "assoc w/stream" not on 2009 data form; linked to VP4; moderate quality \\
\hline 4 & Perm pool, assoc w/stream, maybe perm in/outlet, "modified", maybe fish present & SS egg masses, caddisfly larvae, fingernail clams, aquatic beetle larvae, spire/flat spire snails & WF egg mass (1), WF larvae, f.shrimp, caddisfly larvae, flat spire snails & Yes & No water present & \begin{tabular}{l}
SS egg masses (3), WF larvae (1000s), \\
f.shrimp, aquatic beetle larvae, fingernail clams, spire snails
\end{tabular} & Yes & SS/WF egg masses in 2006; semi-perm, "maybe" perm, "deep", hydrology poss. modified by l-93 on 2009 data form; assoc w/stream not on 2009 data form; affected by l-93 drainage, linked to VP5; high quality \\
\hline 3 & Bullfrog larvae present, may be fish, semi-perm pool, assoc w/stream link to VP4, maybe perm in/outlet, "med" & SS egg masses, caddisfly larvae, spire snails, flat spire snails & WF larvae, f.shrimp, caddisfly larvae, aquatic beetle larvae & Yes & No water present & \begin{tabular}{l}
WF larvae (1000s), \\
f.shrimp, caddisfly larvae, fingernail clams
\end{tabular} & Yes & SS egg mass in 2006; "at least portion" is perm pool and "modified" on 2009 data form; assoc w/stream and link to VP4 not on 2009 data form; bullfrogs present (2014); affected by l-93 drainage; moderate quality \\
\hline 2 & "Modified", semi-perm pool, assoc w/stream, maybe perm in/outlet, may be fish, "med" & WF egg masses, caddisfly larvae, fingernail clams, spire snails, flat spire snails & f.shrimp, caddisfly larvae, flat spire snails & Yes & No water present & SS egg masses (3), WF larvae, f.shrimp, caddisfly/aquatic beetle larvae, fingernail clams & \begin{tabular}{l}
Yes \\
(water present in localized areas, otherwise wet muck)
\end{tabular} & SS/WF egg masses in 2006; on 2009 data form hydrology possibly modified by I-93, connect to VP3; assoc \(\mathrm{w} /\) stream not on 2009 data form; is affected by I-93 drainage, link to VP3?; moderate quality \\
\hline
\end{tabular}
+SRE = Stoney Ridge Environmental LLC, Professional Wildlife Biologist (G.Thomas in 2014, R.Bolton in 2015)
*Designated vernal pool in 2009 that does not meet the State or Federal criteria to be considered a vernal pool in 2014-15

Pool ID \#: \(\qquad\) Survey Dates):
\(7 / 12 / 13,5 / 8 / 14,5 / 22 / 14,6 / 6 / 14,5 / 19 / 15,6 / 12 / 15\)
\(\qquad\)
Observer's Name: \(\qquad\) Observer's Name: \(\qquad\)
R. Bolton (5/2015)

\section*{POOL CHARACTERISTICS}
(1) LANDSCAPE SETTING (check all that apply):
_I Isolated Upland Depression \(\quad \underline{\text { Within Larger Wetland System }} \quad\) _ Within Floodplain
\(\underline{\text { Part of a Pool Complex (within } 1000 \mathrm{ft} \text { of one/more vernal pools) _ Other: }}\)
(2) WETLAND TYPE (choose dominant):
\begin{tabular}{lll}
\(\underline{\checkmark}\) Forested Wetland \(\quad\) _ Shrub Wetland & _ Herbaceous Wetland & _Open Water \\
_ Floodplain & _ Peatland (fen or bog) & _ Other:
\end{tabular}
(3) POOL ORIGIN:

(4) POOL SIZE (approximate dimensions): \(30^{\prime} \times 120^{1}=3,600\) sq \(\mathrm{ft}(0,08 \mathrm{ac})\)
(5) MAX POOL DEPTH (at time of survey): _ 0-12" (0-1 ft) \(\sqrt{12-36^{\prime \prime}}(1-3 \mathrm{ft}) \_^{36-60^{\prime \prime}}(3-5 \mathrm{ft}) \quad \_>60^{\prime \prime}(>5 \mathrm{ft})\)
(6) PREDOMINANT SUBSTRATE: _ Mineral Soil _ Leaf Litter \(\quad\) Organic (peat/muck) _ Other:
(7) ESTIMATED HYDROPERIOD (provide rationale):


Inlet: _None \(\underline{\sqrt{l}}\) Intermittent _Permanent (channel with well-defined banks, permanent flow)
Outlet: _ None \({ }^{\text {Intermittent (seasonal) _Permanent }}\)
(9) SURROUNDING HABITAT (check all that apply and provide percentages/descriptions as applicable): Forested: Mixed eplands/wetlands _ Shrub:
_ Open (e.g. meadow, agriculture, golf course):
\(\checkmark\) Developed: residential to northwest
other: powerline Row

Pool ID \#: 46
Project Name: 193 - Exit 4 A

Survey Dates \(5: 7 / 7 / 13,5 / 8 / 14,5 / 22 / 14,6 / 6 / 14,5 / \operatorname{lq} / 15,6 / 2 / 15\) Location: Londonderry , NH

\section*{POOL INDICATOR SPECIES}


SECONDARY INDICATORS (check all observed):

State \& Federal:
\(\underline{V}\) Caddisfly Larvae/Casings Fingernail Clams/Shells Spire-Shaped Snails/Shells
__ Flat-Spire Snails/Shells State Only: __ Aquatic Beetle Larvae __ Damselfly Larvae/Exuviae __True Fly Larvae/Pupae
__ Dragonfly Larvae/Exuviae Clam Shrimp/Shells
OTHER SPECIES/RARITY:

POOL STATUS
Primary Indicators Present? Y N
2 or more Federal Secondary Indicators? Y N
3 or more State Secondary Indicators? Y (N)
Water Present for 2 or more Continuous Months in Spring/Summer?
(Y) N

Seasonal Pool? (Y) N Lacks a Viable Fish Population? (Y) N
FEDERAL VERNAL POOL? (Y) N
STATE OF NH VERNAL POOL? Y N
comments Numerous WF eggmasses/dadpoles present in late May 2014. 55 egg mass present in May 2015.

Pool ID \#:
43 Project Name: \(\qquad\)
Observer's Name:


Observer's Name


Survey Date(s): \(7 / 12 / 13,5 / 8 / 14,5 / 20 / 14,6 / 6 / 14,9 / 3 / 14,5 / 19 / 15,6 / 12 / 15\) Location: Londonderry, NH
Credentials: ASH CWS
Credentials:


\section*{POOL CHARACTERISTICS}
(1) LANDSCAPE SETTING (check all that apply):
_ Isolated Upland Depression
\(\downarrow\) Within Larger Wetland System
\(\checkmark\) Part of a Pool Complex (within 1000 ft of one/more vernal pools)
_ Within Floodplain
(2) WETLAND TYPE (choose dominant):
\begin{tabular}{lll}
\(\underline{V_{\text {Forested Wetland }} \quad \text { _ Shrub Wetland }}\) _ Herbaceous Wetland & _Open Water \\
_ Floodplain & _ Peatland (fen or bog) & O Other:
\end{tabular}
(3) POOL ORIGIN:
\(\checkmark\) Natural \(\qquad\) _ Manmade _ Manmade for Mitigation
_ Unknown If not natural, describe:
(4) POOL SIZE (approximate dimensions): \(15^{\prime} \times 40^{\prime}=600 \mathrm{sq} \mathrm{ft} \cdot(0.01 \mathrm{ac})\)
(5) MAX POOL DEPTH (at time of survey): \(\sqrt[\downarrow]{ } 0-12^{\prime \prime}(0-1 \mathrm{ft}) \quad{ }^{12-36^{\prime \prime}}(1-3 \mathrm{ft}) \quad{ }^{36-60^{\prime \prime}}(3-5 \mathrm{ft}) \quad \_>60^{\prime \prime}(>5 \mathrm{ft})\)
(6) PREDOMINANT SUBSTRATE: \(\underline{\swarrow}\) Mineral Soil _ Leaf Litter _Organic (peat/muck) _other:
(7) ESTIMATED HYDROPERIOD (provide rationale):
\begin{tabular}{llll}
\begin{tabular}{l} 
(drying out completely \\
in most years)
\end{tabular} & \begin{tabular}{c} 
Semi-Permanent \\
(drying partially in all yrs \& \\
completely in drought yrs)
\end{tabular} & Permanent Explain: Shallow, no water precent Sept. 2014 . \\
No Winter present June 2015.
\end{tabular}
(8) INLET/OUTLET FLOW:
\begin{tabular}{lll} 
Inlet: & None Intermittent _ Permanent (channel with well-defined banks, permanent flow) \\
Outlet: __None & \multicolumn{1}{l}{ Intermittent (seasonal) _Permanent }
\end{tabular}
(9) SURROUNDING HABITAT (check all that apply and provide percentages/descriptions as applicable):

\section*{\(\sqrt{ }\) Forested: Mixed uplandos/vettonods}
_Shrub:
_ Open (e.g. meadow, agriculture, golf course):
_ Developed:
Vother: cleared ROW immed. abjacht (southeast), ATV visage, highway to southerest

Pool ID \#: \(\qquad\) Survey Dates):


\section*{POOL INDICATOR SPECIES}


SECONDARY INDICATORS (check all observed):

State \& Federal: \(\begin{aligned} & \begin{array}{l}\text { Caddisfly Larvae/Casings } \\ \\ \\ \\ \\ \\ \\ \\ \\ \text { Fingernail Clams/Shells } \\ \text { Spire-Shaped Snails/Shell } \\ \end{array} \text { Flat-Spire Snails/Shells }\end{aligned}\)
OTHER SPECIES/RARITY:

POOL STATUS
Primary Indicators Present? Y (N)

State Only: __ Aquatic Beetle Larvae
__ Damselfly Larvae/Exuviae True Fly Larvae/Pupae
__ Dragonfly Larvae/Exuviae
__Clam Shrimp/Shells
519/15: aquatic bethe larva 6/12/15: no water present

2 or more Federal Secondary Indicators? Y (V
3 or more State Secondary Indicators? Y (N)
Water Present for 2 or more Continuous Months in Spring/Summer? N
Seasonal Pool? Y Lacks a Viable Fish Population? (Y) N
FEDERAL VERNAL POOL? Y (N)
STATE OF NH VERNAL POOL? Y N
COMMENTS

\section*{Not sufficient indicators present.}

Pool ID \#: 42
Project Name: I93-Erit 4A
Observer's Name:


Observer's Name: \(\qquad\) Rubolton (5/2015)

\section*{POOL CHARACTERISTICS}
(1) LANDSCAPE SETTING (check all that apply):
I Isolated Upland Depression
Within Larger Wetland System
- Part of a Pool Complex (within 1000 ft of one/more vernal pools)

Survey Dates):
\(7 / 12 / 13,5 / 9 / 14,5 / 23 / 14,6 / 6 / 14,9 / 3 / 14,5 / 191 / 15\), Location: \(\qquad\) \(6 / 12 / 15\)

Credentials: NH CNS
Credentials:
\(\qquad\) 1111
(2) WETLAND TYPE (choose dominant):
\(\qquad\) Floodplain _ Peatland (fen or bog) _ Other:
(3) POOL ORIGIN:
_ Natural \(\quad\) V Matural-Modified Manmade _Manmade for Mitigation
_Unknown If not natural, describe: within poterenlive Row cleaning
(4) POOL SIZE (approximate dimensions): \(40^{\prime} \times 120^{\prime}=4,800\) sg ff. (0.11 ac.)
(5) MAX POOL DEPTH (at time of survey): __0-12" (0-1 ft) \(\sqrt{ } 12-36^{\prime \prime}(1-3 \mathrm{ft}) \ldots 36-60^{\prime \prime}(3-5 \mathrm{ft}) \ldots>60^{\prime \prime}(>5 \mathrm{ft})\)
(6) PREDOMINANT SUBSTRATE: \(\underline{\swarrow}\) Mineral Soil _ Leaf Litter _ Organic (peat/muck) _ Other:
(7) ESTIMATED HYDROPERIOD (provide rationale):
\(\underset{\begin{array}{c}\text { (drying out completely } \\ \text { in most years) }\end{array}}{\text { Ephemeral }} \begin{aligned} & \text { (dry } \\ & \text { (8) INLET/OUTLET FLOW: }\end{aligned}\)

Inlet: __ None \(\quad\) Intermittent _ Permanent (channel with well-defined banks, permanent flow) Outlet: _ None \(\underline{\text { Intermittent (seasonal) _ Permanent }}\)
(9) SURROUNDING HABITAT (check all that apply and provide percentages/descriptions as applicable):

V Forested: wired wethands/vplends
\(\qquad\) Shrub:
__ Open (e.g. meadow, agriculture, golf course):
_ Developed:
Vother: powerline Row, highway to southwest

Pool ID \#: 42 Survey Date (s):
Project Name: I93 - Exit 4A

\section*{\(7 / 12 / 13,5 / 9 / 14,5 / 23 / 14,6 / 6 / 14,9 / 3 / 14,5 / 19 / 15,6 / 12 / 15\)}

\section*{POOL INDICATOR SPECIES}


SECONDARY INDICATORS (check all observed):
State \& Federal: \begin{tabular}{l}
\(\quad \swarrow\) Caddisfly Larvae/Casings \\
\\
\\
\\
Fingernail Clams/Shells \\
Spire-Shaped Snails/Shells \\
Flat-Spire Snails/Shells
\end{tabular}

State Only: __ Aquatic Beetle Larvae
__ Damselfly Larvae/Exuviae
__True Fly Larvae/Pupae
__ Dragonfly Larvae/Exuviae
Clam Shrimp/Shells
OTHER SPECIES/RARITY:

\section*{POOL STATUS}

Primary Indicators Present? Y 2 or more Federal Secondary Indicators? (Y) (N)
3 or more State Secondary Indicators? Y N
Water Present for 2 or more Continuous Months in Spring/Summer? Y N
Seasonal Pool? (Y) N Lacks a Viable Fish Population? Y
FEDERAL VERNAL POOL? Y N
STATE OF NH VERNAL POOL? (Y) N
COMMENTS WF tadpoles present May 2014 , no egg masses observed. \(\operatorname{sqn}\), in May 2015\(\rangle\)

Pool ID \#: \(\qquad\) \(41 B\)

\section*{\(7 / 12 / 13,5 / 8 / 14,5 / 22 / 14,6 / 6 / 14,9 / 3 / 14,5 / 19 / 15,6 / 12 / 5\)} Project Name: I93 -Exit 4A

Observer's Name: \(\qquad\)
Observer's Name: \(\qquad\) R. Bolton (5/2015)

\section*{POOL CHARACTERISTICS}

Survey Dates): Location: Londonderry, NIt
\(\qquad\)
credentials: \(\frac{\text { Prof. Wildlife Biologist }}{11}\)
\(\qquad\)
Credentials: NH CWS
(1) LANDSCAPE SETTING (check all that apply):
\(\checkmark\) Isolated Upland Depression
_ Within Larger Wetland System
_ Within Floodplain
\(\underline{\checkmark}\) Part of a Pool Complex (within 1000 ft of one/more vernal pools)
(2) WETLAND TYPE (choose dominant):
_ Forested Wetland _ Shrub Wetland _ Herbaceous Wetland _ Open Water _ Floodplain _ Peatland (fen or bog) - Other: skidder rut, wo vegetation
(3) POOL ORIGIN:
_ Natural
-Natural-Modified \(\underline{V}\) Manmade
If not natural, describithin ipowlerline Row road
(4) POOL SIZE (approximate dimensions): \(10^{1} \times 30^{1}=300\) sq ft .
(5) MAX POOL DEPTH (at time of survey): \(\left.\sqrt{ } 0-12^{\prime \prime}(0-1 \mathrm{ft}) \quad\right]^{12-36^{\prime \prime}}(1-3 \mathrm{ft}) \quad{ }^{36-60^{\prime \prime}}(3-5 \mathrm{ft}) \quad \_>60^{\prime \prime}(>5 \mathrm{ft})\)
(6) PREDOMINANT SUBSTRATE: \(\sqrt{ }\) Mineral Soil _ Leaf Litter _organic (peat/muck) _ Other:
(7) ESTIMATED HYDROPERIOD (provide rationale):
\begin{tabular}{l} 
(drying out completely \\
in most years)
\end{tabular} \begin{tabular}{c} 
(drying partially in all yrs \& \\
completely in drought yrs)
\end{tabular}\(\quad\) Permanent \(\quad\) Explain: Shallow; no wafer present Sept. 2014.
(8) INLET/OUTLET FLOW:

Inlet: \(\sqrt{ }\) None _Intermittent _ Permanent (channel with well-defined banks, permanent flow) Outlet:__None \(\underline{\checkmark}\) Intermittent (seasonal) _ Permanent
(9) SURROUNDING HABITAT (check all that apply and provide percentages/descriptions as applicable):

S Forested: miveld vplande/wetlands
_ Shrub:
_ Open (e.g. meadow, agriculture, golf course):
_ Developed:
V other: Within powerline Row (totally cleared of vegetation), highway to west + sooth

Pool ID \#: \(41 B\)
Project Name: I93- ERIN HA

Survey Dates): \(7 / 12 / 13,5 / 8 / 14,5 / 22 / 14,6 / 6 / 14,9 / 3 / 14,5 / 19 / 15,6 / 12 / 15\)
Location: : Londonderry, NH

POOL INDICATOR SPECIES


SECONDARY INDICATORS (check all observed):

State \& Federal: \(\qquad\) Caddisfly Larvae/Casings Fingernail Clams/Shells Spire-Shaped Snails/Shells
\(\qquad\) Flat-Spire Snails/Shells

State Only: __ Aquatic Beetle Larvae Damselfly Larvae/Exuviae True Fly Larvae/Pupae
Dragonfly Larvae/Exuviae Clam Shrimp/Shells 5/19/15: aquaticbeetce larvae 6/12/15: water present

\section*{POOL STATUS}

Primary Indicators Present? Y (V)
2 or more Federal Secondary Indicators? \(Y\) N
3 or more State Secondary Indicators? Y
Water Present for 2 or more Continuous Months in Spring/Summer?
Seasonal Pool? (Y) Lacks a Viable Fish Population?
FEDERAL VERNAL POOL? Y N
STATE OF NH VERNAL POOL? Y N
COMMENTS
No indicators present 2014 ; one state secondary indicator present May 2015. \(\rightarrow\) [Also, isolated pool that is not part of wetland (no federalijrisdiction?)?]

Pool ID \#:


Survey Dates):


Project Name: \(\qquad\) I93-Exit 4A Location: Londonderry, NH
Observer's Name:


Observer's Name: \(\qquad\) R. Bolton (2015) Credentials: \(\qquad\)
Credentials:


\section*{POOL CHARACTERISTICS}
(1) LANDSCAPE SETTING (check all that apply):
\[
\begin{aligned}
& \text { _ Isolated Upland Depression Within Larger Wetland System } \\
& \downarrow \text { Part of a Pool Complex (within } 1000 \mathrm{ft} \text { of one/more vernal pools) }
\end{aligned}
\]
_ Other:
(2) WETLAND TYPE (choose dominant):
\(\qquad\) Herbaceous Wetland
_ Open Water
\(\qquad\) Floodplain _ Peatland (fen or bog) _ Other:

\section*{(3) POOL ORIGIN:}
\(\forall\) Natural
_ Natural-Modified _ Manmade _ Manmade for Mitigation _ Unknown If not natural, describe: may have been impacted by adj: gravel pit operation
(4) POOL SIZE (approximate dimensions): \(75^{\prime} \times 250^{\prime}=18,750\) soft. ( 0.43 ac.)
(5) MAX POOL DEPTH (at time of survey): _ 0-12" (0-1 ft) \(\underline{V}^{12-36^{\prime \prime}(1-3 \mathrm{ft})} \_^{36-60^{\prime \prime}(3-5 \mathrm{ft})} \quad{ }^{\prime}>60^{\prime \prime}(>5 \mathrm{ft})\)
(6) PREDOMINANT SUBSTRATE: _ Mineral Soil _ Leaf Litter \(\swarrow\) Organic (peat/muck) _ other:
(7) ESTIMATED HYDROPERIOD (provide rationale):

- E
Ephemeral (drying out completely in most years)
\(\underline{\checkmark}\) Semi-Permanent (drying partially in all yrs \& completely in drought yrs)
_Permanent
(8) INLET/OUTLET FLOW:

Inlet: \(\underline{\downarrow}\) None _ Intermittent _ Permanent (channel with well-defined banks, permanent flow) Outlet: \(\underline{V}\) None _ Intermittent (seasonal) __Permanent
(9) SURROUNDING HABITAT (check all that apply and provide percentages/descriptions as applicable):

Forested: mostly uplands (west)
_ Shrub:
_ Open (e.g. meadow, agriculture, golf course):
_ Developed:
Vother: active gravel pit operation adjacent to northeast.

Pool ID \#: \(\qquad\) 8 (a frit) Survey Dates): \(\qquad\) \(5 / 8 / 14,5 / 22 / 14,66 / 6 / 14,9 / 3 / 14,5 / 2 / 15,6 / 612 / 15\) Project Name: \(\qquad\) I93-Gxit 4A

Location: \(\qquad\) Londonderry, NIT

POOL INDICATOR SPECIES


SECONDARY INDICATORS (check all observed):
State \& Federal: \(\qquad\) Caddisfly Larvae/Casings

State Only: \(\qquad\) Aquatic Beetle Larvae
\(\qquad\) Fingernail Clams/Shells
\(\qquad\) Spire-Shaped Snails/Shells
\(\qquad\) Flat-Spire Snails/Shells

OTHER SPECIES/RARITY: green frogs

POOL STATUS
Primary Indicators Present? N
2 or more Federal Secondary Indicators? Y (N)
3 or more State Secondary Indicators?

Skulls: WF larvae cadsisth larvae aquatic beetle larvae damselfly larvae 6/12/15: water present

Water Present for 2 or more Continuous Months in Spring/Summer? Y Y
Seasonal Pool? V Lacks a Viable Fish Population? N
FEDERAL VERNAL POOL? (i) N
STATE OF NH VERNAL POOL? (i) N
COMMENTS WF larvae present late May. 2014+2015.
[* very limited populations present - believed to be polluted by adjacent activities]

Pool ID \#: \(\qquad\)

\section*{Survey oates (s): Y/12/13, S/9/14, \(5 / 23 / 14,6 / 6 / 14,9 / 3 / 14,5 / 19 / 5,6 / 2 / 1 / 5\)}

Project Name: Ia 3-Exi+4A
Observer's Name:


Observer's Name:


\section*{POOL CHARACTERISTICS}
(1) LANDSCAPE SETTING (check all that apply):
\(\checkmark\) Isolated Upland Depression \(\qquad\) Within Larger Wetland System \(\qquad\) Within Floodplain
Part of a Pool Complex (within 1000 ft of one/more vernal pools) \(\qquad\) Other:
(2) WETLAND TYPE (choose dominant):

(3) POOL ORIGIN:

(4) POOL SIZE (approximate dimensions): \(40^{\prime} \times 100^{1}=4,000 \mathrm{sqfft} \cdot(0.09 \mathrm{ac})\)
(5) MAX POOL DEPTH (at time of survey): _ 0-12" \((0-1 \mathrm{ft}) \underline{\vee} 12-36^{\prime \prime}(1-3 \mathrm{ft}) \underline{\vee} 36-60^{\prime \prime}(3-5 \mathrm{ft}) \ldots>60^{\prime \prime}(>5 \mathrm{ft})\)
(6) PREDOMINANT SUBSTRATE: _ Mineral Soil _ Leaf Litter \(\swarrow\) Organic (peat/muck) _ Other:
(7) ESTIMATED HYDROPERIOD (provide rationale):


_ Shrub:
__Open (e.g. meadow, agriculture, golf course):
_ Developed:
Josher: Powiveline Row

Pool ID \#: \(\qquad\) Project Name: I93 - Exit 4 A
Survey Dates): \(7 / 12 / 13,5 / 9 / 14,5 / 23 / 14,6 / 6 / 14,9 / 3 / 14,5 / 1915,6 / 12 / 15\) Location: Londonderry, NH

\section*{POOL INDICATOR SPECIES}


SECONDARY INDICATORS (check all observed):

State \& Federal: \(\qquad\) Caddisfly Larvae/Casings Fingernail Clams/Shells Spire-Shaped Snails/Shells __ Flat-Spire Snails/Shells

State Only: __ Aquatic Beetle Larvae
__ Damselfly Larvae/Exuviae True Fly Larvae/Pupae _ Dragonfly Larvae/Exuviae Clam Shrimp/Shells
5/19/15: \(155 / 55\) egg masses (2/13)
WF larvae
jun. WFS
6/1215: Water present
-

\section*{POOL STATUS}

Primary Indicators Present? (Y) N
2 or more Federal Secondary Indicators? Y N
OTHER SPECIES/RARITY: bullfrog larvae (2014)

3 or more State Secondary Indicators? Y (N)

Water Present for 2 or more Continuous Months in Spring/Summer?
Seasonal Pool? Y Lacks a Viable Fish Population? Y
federal vernal pool? (Y) n
STATE OF NH VERNAL POOL? Y N
comments some WF esguasses present in late Man 20.'4, BSS/SS eg g mass + WF larval present in May 2015.

Pool ID \#: \(\qquad\)
Project Name: \(\qquad\)
Survey Dates):

\section*{\(7 / 12 / 13,5 / 9 / 14,5 / 23 / 14,6 / 6 / 14,9 / 3 / 14,5 / 19 / 15\),} Location:


Observer's Name: \(\qquad\) Credentials: \(\qquad\)
Observer's Name: \(\qquad\) Credentials: \(\qquad\)

\section*{POOL CHARACTERISTICS}
(1) LANDSCAPE SETTING (check all that apply):
\(\underline{V}\) Isolated Upland Depression
_ Within Larger Wetland System \(\qquad\) Within Floodplain Part of a Pool Complex (within 1000 ft of one/more vernal pools) Other:
(2) WETLAND TYPE (choose dominant):
\begin{tabular}{ll} 
_ Forested Wetland \(\quad\) Shrub Wetland & Herbaceous Wetland _ Open Water \\
_ Floodplain & _ Peatland (fen or bog) \\
_ Other:
\end{tabular}
(3) POOL ORIGIN:
\(\downarrow\) Natural _ Natural-Modified _Manmade _Manmade for Mitigation _ Unknown If not natural, describe:
(4) POOL SIZE (approximate dimensions): \(\sim 50^{\prime} \times 200^{1}=10,000\) sq ft ( 0.23 ac )
(5) MAX POOL DEPTH (at time of survey): _ 0-12" (0-1 ft) \(\quad\) 12-36" (1-3 ft) \(\quad{ }^{36-60^{\prime \prime}}(3-5 \mathrm{ft}) ~ \_>60^{\prime \prime}(>5 \mathrm{ft})\)
(6) PREDOMINANT SUBSTRATE: _ Mineral Soil _ Leaf Litter \(\underline{\text { 久 Organic (peat/muck) _ Other: }}\)
(7) ESTIMATED HYDROPERIOD (provide rationale):


Inlet: \(\sqrt{ }\) None -
Outlet: \(\sqrt{ }\) None _ intermittent (seasonal) _ Permanent
(9) SURROUNDING HABITAT (check all that apply and provide percentages/descriptions as applicable):
\(\checkmark\) Forested: mostly uplands
_ Shrub:
__ Open (e.g. meadow, agriculture, golf course):
_ Developed:
V other: Half of wetland, with in cleared powerline Row (dense herbaceos/shrob vegetation is present

Pool ID \#: \(\qquad\) 6 Survey Date (s): \(7 / 12 / 13,5 / 9 / 14,5 / 23 / 14,6 / 6 / 14,9 / 3 / 14,5 / 19 / 15,6 / 22 / 15\)
Project Name: \(\qquad\) 193. Exit 4A

Location: \(\qquad\) Londonderry, NH

POOL INDICATOR SPECIES


SECONDARY INDICATORS (check all observed):

State \& Federal:
 Caddisfly Larvae/Casings Fingernail Clams/Shells
\(\qquad\) Spire-Shaped Snails/Shells
\(\qquad\) Flat-Spire Snails/Shells

OTHER SPECIES/RARITY:

POOL STATUS
Primary Indicators Present? Y 2 or more Federal Secondary Indicators? \((\underset{Y}{ }\) ) N 3 or more State Secondary Indicators? Y N
Water Present for 2 or more Continuous Months in Spring/Summer?
519915: 55 egg masses (3) WF larvae/juv.jadults caddistm/aq bette larvae fingernail dams 6/12/15: water present

Seasonal Pool? V Lacks a Viable Fish Population? (Y) N
FEDERAL VERNAL POOL? N
STATE OF NH VERNAL POOL? (Y) N
comments Fairy shrimp, WF egguarses and WE tadpoles present late May 2014.
\[
\text { SS egg masses. }+ \text { WF larvae present in May } 2015 .
\]

Pool ID \#: \(\qquad\)

\section*{Survey Dates): \\ \(6 / 24 / 13,5 / 8 / 14,5 / 22 / 14,6 / 6 / 14,9 / 3 / 14,519 / 15,6 / 12 / 15\)}

Project Name: I93 -Exit 4A
Observer's Name:
 Observer's Name: \(\qquad\) R.Boltou (5/2015)

\section*{POOL CHARACTERISTICS}
(1) LANDSCAPE SETTING (check all that apply):

(3) POOL ORIGIN:
\(\underline{V}\) Natural _ Natural-Modified _ Manmade _ Manmade for Mitigation
_ Unknown If not natural, describe:
(4) POOL SIZE (approximate dimensions): \(50^{\prime} \times 80^{\circ}=4,000\) sq ff \(\cdot(0.099 \mathrm{C}\).)
(5) MAX POOL DEPTH (at time of survey): _-0-12" (0-1 ft) \(\backslash \underline{ } 12-36^{\prime \prime}(1-3 \mathrm{ft})\) _ \(36-60^{\prime \prime}(3-5 \mathrm{ft}) \quad\) _ \(>60^{\prime \prime}\) ( \(>5 \mathrm{ft}\) )
(6) PREDOMINANT SUBSTRATE: _ Mineral Soil _ Leaf Litter \(\swarrow\) Organic (peat/muck) _Other:
(7) ESTIMATED HYDROPERIOD (provide rationale):
\(\underset{\)\begin{tabular}{l}
\text { (drying out completely } \\
\text { in most years) }
\end{tabular}\(}{\substack{\text { (dry } \\
\text { con }}}\)
(8) INLET/OUTLET FLOW:
\(\underset{\begin{array}{l}\text { (drying partially in all yrs \& } \\ \text { completely in drought yrs) }\end{array}}{\text { SemiPermanent }}\)
Explain: No water present Sept. 2014, though water present Tone 2014 and
fairly deep in May 2014 . Water present June 2015. \(\begin{array}{lll}\text { Inlet: } & \text { V } \text { Intermittent _ Permanent (channel with well-defined banks, permanent flow) } \\ \text { Outlet: _ None } & \text { Intermittent (seasonal) _Permanent }\end{array}\)
(9) SURROUNDING HABITAT (check all that apply and provide percentages/descriptions as applicable):
\(\sqrt{ }\) Forested: mostly uplands

\section*{_ Shrub:}
\(\qquad\) Open (e.g. meadow, agriculture, golf course):
_ Developed:
\(\checkmark\) Other: I93 highway located to southwest



POOL INDICATOR SPECIES


SECONDARY INDICATORS (check all observed):
State \& Federal:
— Caddisfly Larvae/Casings
_ Fingernail Clams/Shells
_ Spire-Shaped Snails/Shells
_ Flat-Spire Snails/Shells

State Only: __ Aquatic Beetle Larvae
__Damselfly Larvae/Exuviae
__True Fly Larvae/Pupae
__ Dragonfly Larvae/Exuviae
__Clam Shrimp/Shells

\section*{OTHER SPECIES/RARITY:}

\section*{POOL STATUS}

Primary Indicators Present? (Y) N 2015
3 or more State Secondary Indicators? Y (N)
Water Present for 2 or more Continuous Months in Spring/Summer? (Y) N
Seasonal Pool? (Y) N Lacks a Viable Fish Population? (Y) N
FEDERAL VERNAL POOL? (Y)
STATE OF NH VERNAL POOL? (Y) N
cOMments WF egg masses present end May 2014. SS egg masses + WF Larval fishrimp present in May 2015.

Pool ID \#: \(\qquad\) Project Name:

\section*{I93-Exit 4A}

Observer's Name: \(\qquad\) Observer's Name: \(\qquad\) R. Bolton (5/2015) POOL CHARACTERISTICS
(1) LANDSCAPE SETTING (check all that apply):
_Isolated Upland Depression \(\quad \downarrow\) Within Larger Wetland System \(\quad\) — Within Floodplain
Part of a Pool Complex (within 1000 ft of one/more vernal pools) _Other:
(2) WETLAND TYPE (choose dominant):

(3) POOL ORIGIN:
\(\checkmark\) Natural
_ Unknown
If not natural, describe:
(4) POOL SIZE (approximate dimensions): \(10^{\prime} \times 150^{\prime}=15,000\) sq \(\mathrm{ft} \cdot(0,34 \mathrm{ac}\).
(5) MAX POOL DEPTH (at time of survey): \(\qquad\) \(0-12^{\prime \prime}(0-1 \mathrm{ft})\) \(\qquad\) 12-36" (1-3 f
ft) \(\sqrt{ } 36-60^{\prime \prime}(3-5 \mathrm{ft})\) _ \(>60^{\prime \prime}\) (>5 ft)
(6) PREDOMINANT SUBSTRATE: _ Mineral Soil _ Leaf Litter \(\quad\) O Organic (peat/muck) _ Other:
(7) ESTIMATED HYDROPERIOD (provide rationale):
_ Ephemeral (drying out completely in most years)
\(\underline{\checkmark}\) Semi-Permanent \(\quad\) ? Permanent (drying partially in all yrs \& completely in drought yrs)

Explain: No water present Sept. 2014, though deep water present May-Jure 2014. Water present June 2015.
(8) INLET/OUTLET FLOW:
\(\begin{array}{lll}\text { Inlet: _None } & \underline{V} \text { Intermittent _ Permanent (channel with well-defined banks, permanent flow) } \\ \text { Outlet: _ None } & \underline{V} \text { Intermittent (seasonal) __Permanent }\end{array}\)
(9) SURROUNDING HABITAT (check all that apply and provide percentages/descriptions as applicable): Forested: Mostly uplands _ Shrub:
_ Open (e.g. meadow, agriculture, golf course):
_ Developed:
V other: I93 highway immediately adjacent (southwest)

Pool ID \#: \(\qquad\) Project Name: I93 -Exit 4A

Survey Date (s):


Location: \(\qquad\)

\section*{POOL INDICATOR SPECIES}


SECONDARY INDICATORS (check all observed):
State \& Federal:
 Caddisfly Larvae/Casings

State Only: ___ Aquatic Beetle Larvae Fingernail Clams/Shells Spire-Shaped Snails/Shells
__ Damselfly Larvae/Exuviae
_ True Fly Larvae/Pupae
_ Dragonfly Larvae/Exuviae

OTHER SPECIES/RARITY:

\section*{POOL STATUS}

Primary Indicators Present? N
2 or more Federal Secondary Indicators? (Y) N 2014
S/i9/15: ss eggrasses (3)
WF larvae \((10005)\)
Eslinimp
ago beetle larval
fingernail dams, spiv snails
b/12/15: water present

3 or more State Secondary Indicators? (V) 2015
Seasonal Pool? (Y) N Lacks a Viable Fish Population? Y
FEDERAL VERNAL POOL? Y N
STATE OF NH VERNAL POOL? (Y) N
COMMENTS fairy shrimp present early May, WF egg mass/lervae present late May \(2014,14\). SS egg masses + WFlarvae + Fshmimp present in Nay 2015.

Pool ID \#: \(\qquad\) 3 Project Name: \(\qquad\) I93-Exit \(4 A\)
\(\qquad\) Observer's Name: Observer's Name: \(\qquad\) Survey Dates): \(6 / 24 / 13,5 / 9 / 14,5 / 23 / 14,6 / 6 / 14,9 / 3 / 14,5 / 19 / 15,6 / 22 / 15\) Location: Condondeny, NH
Credentials: \(\qquad\) credentials: \(\frac{\text { Prof. Wild lite Biologist }}{\text { "1 }}\)

\section*{POOL CHARACTERISTICS}
(1) LANDSCAPE SETTING (check all that apply):
 Part of a Pool Complex (within 1000 ft of one/more vernal pools)
_ Within Floodplain _ Other:
(2) WETLAND TYPE (choose dominant):
\(\qquad\) _ Forested Wetland
_ Floodplain
\(\underline{V}\) Shrub Wetland \(\qquad\) Herbaceous Wetland
_ Open Water
(3) POOL ORIGIN:
, Natural
_Natural-Modified _ Manmade _Manmade for Mitigation _ Unknown If not natural, describe: pool extends to toe of slope of 工-93
(4) POOL SIZE (approximate dimensions): \(150^{\prime} \times 200^{\prime}=30,000 \mathrm{sq} \mathrm{ft}(0.69 \mathrm{ac}\).)

(6) PREDOMINANT SUBSTRATE: _ Mineral Soil _ Leaf Litter \(\mathcal{V}\) Organic (peat/muck) _Other:
(7) ESTIMATED HYDROPERIOD (provide rationale):

(9) SURROUNDING HABITAT (check all that apply and provide percentages/descriptions as applicable):
\(\sqrt{ }\) Forested: Mixed uplands + wetlands
_ Shrub:
__Open (e.g. meadow, agriculture, golf course):
_ Developed:
LIther: I93 highway immediately adjacent (sothwerst)

Pool ID \#: \(\qquad\) 3 Project Name: I93-

Survey Dates):

\section*{} Location: Londonderry, NH

\section*{POOL INDICATOR SPECIES}


SECONDARY INDICATORS (check all observed):

State \& Federal: \(\underline{\checkmark}\) Caddisfly Larvae/Casings __ Fingernail Clams/Shells __ Spire-Shaped Snails/Shells __ Flat-Spire Snails/Shells

State Only: \(\quad \backslash\) Aquatic Beetle Larvae
__ Damselfly Larvae/Exuviae True Fly Larvae/Pupae
__ Dragonfly Larvae/Exuviae Clam Shrimp/Shells
s/19/L: F. shrimp
wT laval (1000s) caddishly Larvae fingernail clams 6/12/15: water present.

3 or more State Secondary Indicators? Y (N)


POOL STATUS
Primary Indicators Present? (Y) N 2 or more Federal Secondary Indicators? (Y) (N) Water Present for 2 or more Continuous Months in Spring/Summer? (Y) N Seasonal Pool? V Lacks a Viable Fish Population? (Y) N FEDERAL VERNAL POOL? (Y) N STATE OF NH VERNAL POOL? (Y) N
comments Fairy shrimp present early May_ WF larvae present late May 2014. Fairy shrimp + WF larval present May 2015.

Pool ID \#: 2
Project Name: I93 - Exit 4A
Observer's Name:
 Observer's Name: \(\qquad\) R. Bolton (5/2015)

\section*{POOL CHARACTERISTICS}
(1) LANDSCAPE SETTING (check all that apply): _ Isolated Upland Depression \(\quad\) Within Larger Wetland System Location: Londonderry, NH Credentials: \(\qquad\) Credentials:

_ Within Floodplain Other:
\(\checkmark\) Part of a Pool Complex (within 1000 ft of one/more vernal pools)
(2) WETLAND TYPE (choose dominant):
\begin{tabular}{lll}
\(\sqrt{ }\) Forested Wetland \(\quad\) _ Shrub Wetland & _ Herbaceous Wetland & _Open Water \\
_ Floodplain & _ Peatland (fen or bog) & Other:
\end{tabular}
(3) POOL ORIGIN:
\(\underline{V}\) Natural
_ Natural-Modified
_ Manmade for Mitigation
_Unknown If not natural, describe: pool extends to toe of slope of \(工 93\)
(4) POOL SIZE (approximate dimensions): \(100^{\prime} \times 150^{\prime}=15,000 \mathrm{sqft}(0.34 \mathrm{ac})\)
(5) MAX POOL DEPTH (at time of survey):
\(\downarrow 0-12^{\prime \prime}(0-1 \mathrm{ft}) \quad 1\)
(6) PREDOMINANT SUBSTRATE: _ Mineral Soil _ Leaf Litter \(\underline{\swarrow}\) Organic (peat/muck) _Other:
(7) ESTIMATED HYDROPERIOD (provide rationale):
_ Ephemeral (drying out completely in most years)
\(\downarrow\) Semi-Permanent _ Permanent (drying partially in all yrs \& \(\begin{aligned} & \text { Semi-Permanent } \\ & \text { (drying partially in all yrs \& } \\ & \text { completely in drought yrs) }\end{aligned}\) \(\begin{gathered}\text { Explain: Permanent } \\ \text { though shallow, significant } \\ \text { Water present May-Jone } 2014 . \\ \text { Water present in localized areas }\end{gathered}\) Water present in localized areas
(8) INLET/OUTLET FLOW:

(9) SURROUNDING HABITAT (check all that apply and provide percentages/descriptions as applicable): \(\checkmark\) Forested: mostly wetlands, uplands to east _ Shrub:
__ Open (e.g. meadow, agriculture, golf course):
_ Developed:
other: I93 highway immediately adjacent to southwest

Pool ID \#: \(\qquad\) 2 Survey Date (s): \(6 / 24 / 13,5 / 9 / 14,5 / 23 / 14,6 / 6 / 144,9 / 3 / 14,5 / 121 / 5,6 / 12 / 15\)
Project Name: \(\qquad\) I93 -Exit \(4 A\)

Location: \(\qquad\)
POOL INDICATOR SPECIES


SECONDARY INDICATORS (check all observed):
State \& Federal:
 Caddisfly Larvae/Casings

State Only: \(\qquad\) Aquatic Beetle Larvae
\(\qquad\) Fingernail Clams/Shells
\(\qquad\) Spire-Shaped Snails/Shells Flat-Spire Snails/Shells

OTHER SPECIES/RARITY:

POOL STATUS
Primary Indicators Present? (Y) N 2 or more Federal Secondary Indicators? (Y) N
\(\qquad\) Damselfly Larvae/Exuviae
\(\qquad\) True Fly Larvae/Pupae
\(\qquad\) Dragonfly Larvae/Exuviae
\(\qquad\) Clam Shrimp/Shells
Slac/15: 55 egg marses (3) WF larval, fishrimp caddisty l aq beetle larvae fingernail dams

3 or more State Secondary Indicators?
\[
\begin{aligned}
& (1) N \text { N } 2014 \\
& (1)-2015
\end{aligned}
\]

Water Present for 2 or more Continuous Months in Spring/Summer? (Y) N
Seasonal Pool? (Y) \(\mathrm{N} \quad\) Lacks a Viable Fish Population? Y
FEDERAL VERNAL POOL? YN
STATE OF NH VERNAL POOL? \(Y\) N
comments Fairy shrimp present early and late May 2014. SS egg masses + WF larvae + fishrimp present in May 2015.

\section*{Exit 4A Project Vernal Pool Survey Summary}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{April 2006 Survey - Primary Indicator \({ }^{\text {b }}\)}} & \multicolumn{12}{|c|}{2009 Survey - 1st visit / 2nd visit \({ }^{\text {a }}\)} & \multicolumn{8}{|l|}{\multirow[b]{2}{*}{Additional information - Rows in bold italics indicate pools surveyed in 2014-2015.}} \\
\hline & & & & & & \multicolumn{5}{|c|}{Primary Indicator \({ }^{\text {b }}\)} & \multicolumn{7}{|c|}{Secondary Indicator \({ }^{\text {b }}\)} & & & & & & & & \\
\hline \[
\begin{gathered}
\text { Pool } \\
109
\end{gathered}
\] & \[
\begin{aligned}
& \text { Relative } \\
& \text { Value }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Pool } \\
& \text { Atrti- } \\
& \text { butes }
\end{aligned}
\] & \[
\begin{gathered}
\begin{array}{c}
\text { Size } \\
\text { (acres) }
\end{array}
\end{gathered}
\] & sS egg
masses & WF egg & \[
\begin{gathered}
\text { wfegg } \\
\text { mass- } \\
\text { es }
\end{gathered}
\] & \[
\underset{\text { larvae }}{\mathrm{wF}}
\] & ss egg
masses & Blue ss egg es & \[
\begin{aligned}
& \text { Fairy } \\
& \text { Shrimp }
\end{aligned}
\] & \[
\begin{gathered}
\text { Caddis- } \\
\text { fily } \\
\text { Larve }
\end{gathered}
\] & Finger-
nail
Clams \(^{\text {c }}\) & \[
\begin{aligned}
& \text { Aqua- } \\
& \text { tic } \\
& \text { beetle } \\
& \text { leavae }
\end{aligned}
\] & Spire Shaped
snails & \[
\begin{gathered}
\text { Flat } \\
\text { spire } \\
\text { snailsc }
\end{gathered}
\] & \[
\begin{gathered}
\text { True } \\
\text { Frly } \\
\text { larvae }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Drag. } \\
& \text { onfly } \\
& \text { larvae }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Pool } \\
& \text { fishless }
\end{aligned}
\] & Perm.
Inlet Outlet & \[
\begin{aligned}
& \text { Perm. } \\
& \text { pool }
\end{aligned}
\] & Natural \({ }^{3}\) & \[
\begin{gathered}
\text { Phys. } \\
\text { insal } \\
\text { sel. } \\
\text { ting }
\end{gathered}
\] & Notes & NHDES Vernal Pool & USACE Vernal
Poolt \\
\hline 2 & m & & 0.42 & 15 & 8 & 18 & & & & & \(y\) & \(y\) & & \(y\) & \(y\) & & & maybe & maybe & semi & modified & 2 & \begin{tabular}{l}
2009-193 may impact hydrology; assoc. with stream \\
May 2014 - f. shrimp, caddisfly, flat spire snails \\
May 2015 - SS egg masses, WF larvae, \(f\). shrimp, caddisfly \& aquatic beetle larvae, fingernail clams
\end{tabular} & \(y\) & \(y\) \\
\hline 3 & \(m\) & & 0.52 & 1 & 0 & & & 13 & & & \(y\) & & & \(y\) & \(y\) & & & maybe & maybe & semi & \(y\) & 2 & \begin{tabular}{l}
2009-bull frog larvae present, linked to 17; associated with a stream May 2104 - WF larvae, fairy shrimp, caddisfly larvae, aquatic beetle larvae \\
May 2015 - WF larvae (1000s), fairy shrimp, caddisfly larvae, fingernail clams
\end{tabular} & \(y\) & \(y\) \\
\hline 4 & \(h\) & *\# & 0.21 & 50 & 50 & & & 88 & & & \(y\) & \(y\) & \(y\) & \(y\) & \(y\) & & & maybe & maybe & perm & modified & 2 & \begin{tabular}{l}
2009-193 may impact hydrology; assoc. with a stream \\
May 2014 - WF egg mass (1), WF larvae, f. shrimp, caddisfly larvae, flat spire snails May 2015 - SS egg masses (3), WF larvae (1000s), f. shrimp, aquatic beetle larvae, fingernail clams, spire snails
\end{tabular} & \(y\) & \(y\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{April 2006 Survey - Primary Indicator \({ }^{\text {b }}\)}} & \multicolumn{12}{|c|}{2009 Survey - 1st visit / 2nd visit \({ }^{\text {a }}\)} & \multicolumn{8}{|l|}{\multirow[b]{2}{*}{Additional information - Rows in bold italics indicate pools surveyed in 2014-2015.}} \\
\hline & & & & & & \multicolumn{5}{|c|}{Primary Indicator \({ }^{\text {b }}\)} & \multicolumn{7}{|c|}{Secondary Indicator \({ }^{\text {b }}\)} & & & & & & & & \\
\hline \[
\begin{gathered}
\text { Pool } \\
\text { IDg }
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline \begin{array}{c}
\text { Relative } \\
\text { Value }
\end{array} \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \text { Pool } \\
& \text { Atrri- } \\
& \text { butes } \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\text { Size } \\
\text { (acres) }
\end{gathered}
\] & SS egg & WF egg & \[
\begin{gathered}
\text { wF egs } \\
\text { mass- } \\
\text { es }
\end{gathered}
\] & \[
\underset{\substack{\mathrm{wr} \\ \text { larvae }}}{\mathrm{w}}
\] & \[
\begin{array}{|l|l}
\hline \text { sS egg } \\
\text { masses }
\end{array}
\] & Blue ss egg mass
es & \[
\begin{gathered}
\text { Fairy } \\
\text { Shrimp }
\end{gathered}
\] & \[
\begin{gathered}
\text { Caddis- } \\
\text { fly } \\
\text { Larvae }^{c} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { Finger- } \\
\text { nail } \\
\text { Clams }{ }^{\circ} \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \text { Aquar } \\
& \text { tic } \\
& \text { beate } \\
& \text { barvae }
\end{aligned}
\] &  & \[
\begin{array}{|c}
\text { Flat } \\
\text { spire } \\
\text { snails }
\end{array}
\] & \[
\begin{gathered}
\text { True } \\
\text { Fly } \\
\text { larvae }
\end{gathered}
\] & \[
\begin{gathered}
\text { Drag- } \\
\text { onfly } \\
\text { larvae }
\end{gathered}
\] & \[
\begin{gathered}
\text { Pool } \\
\text { fishless }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Perm. } \\
& \text { Inlet/ } \\
& \text { Outlet }
\end{aligned}
\] & \(\underset{\substack{\text { Perm. } \\ \text { pool }}}{ }\) & Natural \({ }^{3}\) & \[
\begin{array}{|c}
\text { Phys- } \\
\text { Phal } \\
\text { s.al- } \\
\text { ting }
\end{array}
\] & Notes & NHDES Poole & USACE Vernal Pool \\
\hline 5 & \[
\begin{array}{|l}
\hline h \\
(2009) \\
m \\
(2016) \\
\hline
\end{array}
\] & * & 0.12 & 32 & 20 & 11 & 0/y & \(27 / 21\) & & & \(y\) & & & & & & & maybe & maybe & \(n\) & \(y\) & 2 & \begin{tabular}{l}
2009 - associated with a stream \\
May 2014 - WF egg masses (6), caddisfly larvae \\
May 2015 - SS egg masses (9), WF larvae, f. shrimp, caddisfly larvae, spire snails
\end{tabular} & \(y\) & \(y\) \\
\hline 6 & \begin{tabular}{l}
\(h\)
\((2009)\)
\(m\) \\
\(\underset{(2016)}{m}\)
\end{tabular} & * & 0.41 & 39 & \[
\begin{aligned}
& >100 \\
& \text { tp's }
\end{aligned}
\] & 33 & & 29 & & & \(y\) & 0/y & & 0/y & & & 0/y & \(y\) & \(n\) & \(y\) & \(y\) & 1 & May 2014 - WF egg masses (3), WF larvae, f.shrimp, caddisfly/aquatic beetle larvae, flat spire snails May 2015 - SS egg masses (3), WF larvae, juv/adult WFs, caddisfly/aquatic beetle larvae, fingernail clams & \(y\) & \(y\) \\
\hline 7 & h & *\# & 0.09 & 63 & \[
\begin{aligned}
& >1000 \\
& \text { tp's } \\
& \hline
\end{aligned}
\] & 35/1 & 0/y & 6/29 & & & \(y\) & & & & & & & \(y\) & \(n\) & \(y\) & \(y\) & 1 & 2009 - very deep May 2014 - WF egg masses (4), WF larvae, f.shrimp, caddisfly larvae May 2015- BSS/SS egg masses (2/13), WF larvae, juv WFs & \(y\) & \(y\) \\
\hline 8 & \[
\begin{array}{|l}
\hline \boldsymbol{m} \\
(2009) \\
l \\
(2016) \\
\hline
\end{array}
\] & & 0.44 & 0 & 3 & 1 & & 10/13 & & & \(y\) & & & 0/y & & & & \(y\) & \(n\) & semi & modified & 2 & May 2014 - WF larvae (1000s), caddisfly larvae May 2015 - WF larvae, caddisfly larvae, aquatic beetle larvae, damselfly larvae & \(y\) & \(y\) \\
\hline 9 & m & & 0.08 & 0 & 34 & 15 & & & & & y/y & & & & & & & y & n & semi & y & 1 & & y & y \\
\hline 11 & 1 & & NR & 5 & 0 & & & & & & & & & & & & & y & n & n & NR & 2 & & y & y \\
\hline 12 & 1 & & 0.15 & 0 & 5 & 0 & 0 & & & & & & & & & & & y & n & ephem & n & 2 & & y & y \\
\hline 13 & h & *\# & 0.13 & 10 & 12 & 28/0 & 5/7 & 50/6 & & & y/y & 0/y & & 0/y & & & & y & n & n & \(y\) & 2 & within intermittent stream corridor & \(y\) & \(y\) \\
\hline 14 & 1 & & 0.08 & 6 & 0 & & & & & & & & & & & & & y & NR & n & NR & 2 & & y & y \\
\hline 15 & 1 & & 0.07 & 0 & 3 & & & & & & & & & & & & & y & NR & n & NR & 2 & & y & y \\
\hline 16 & 1 & & 0.15 & 1 & 2 & & & & & & & & & & & & & y & NR & n & NR & 2 & & y & y \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{c} 
April 2006 \\
\begin{tabular}{c} 
Survey - Primary \\
Indicator
\end{tabular} \\
\hline
\end{tabular}}} & \multicolumn{12}{|c|}{2009 Survey - 1st visit / 2nd visit \({ }^{\text {a }}\)} & \multicolumn{8}{|l|}{\multirow[b]{2}{*}{Additional information - Rows in bold italics indicate pools surveyed in 2014-2015.}} \\
\hline & & & & & & \multicolumn{5}{|c|}{Primary Indicator \({ }^{\text {b }}\)} & \multicolumn{7}{|c|}{Secondary Indicator \({ }^{\text {b }}\)} & & & & & & & & \\
\hline \begin{tabular}{l} 
Pool \\
\hline 109
\end{tabular} & \[
\begin{gathered}
\text { Relative } \\
\text { Value }
\end{gathered}
\] & \[
\begin{array}{|c}
\text { Pool } \\
\text { Putri- } \\
\text { butes }
\end{array}
\] & \[
\begin{gathered}
\text { Size } \\
\text { (acres) }
\end{gathered}
\] & \[
\begin{gathered}
\text { ssegg } \\
\text { masses }
\end{gathered}
\] & WF egg & \[
\begin{array}{|c}
\text { WF egs } \\
\text { mass- } \\
\text { es }
\end{array}
\] & \[
\underset{\substack{\mathrm{wr} \\ \text { larvae }}}{\mathrm{w}}
\] & SS egg
masses & \[
\begin{gathered}
\text { Blue ss } \\
\text { egs } \\
\text { mass } \\
\text { es } \\
\hline
\end{gathered}
\] & \[
\begin{array}{|c}
\text { Fairy } \\
\text { Shrimp }
\end{array}
\] & \[
\begin{gathered}
\text { Caddis- } \\
\text { falv- } \\
\text { Larvae }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Finger- } \\
& \text { nail } \\
& \text { Clams }^{\text {a }}
\end{aligned}
\] & \[
\begin{gathered}
\text { Aquaa- } \\
\text { tic } \\
\text { beate } \\
\text { Larvae }
\end{gathered}
\] & \[
\begin{gathered}
\text { Spire } \\
\text { Shap- } \\
\text { sed } \\
\text { snails }
\end{gathered}
\] & \[
\begin{array}{|c|c}
\text { Flat } \\
\text { spire } \\
\text { snails }
\end{array}
\] & \[
\begin{gathered}
\text { True } \\
\text { Tly } \\
\text { larvae }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Drag- } \\
& \text { ontly } \\
& \text { larvae }
\end{aligned}
\] & \[
\begin{gathered}
\text { Pool } \\
\text { fishless }
\end{gathered}
\] & \[
\begin{gathered}
\text { Perm. } \\
\text { Pnlet } \\
\text { Inutet } \\
\hline
\end{gathered}
\] & Perm. & Natural \({ }^{3}\) & \[
\begin{gathered}
\text { Phys. } \\
\text { Phys. } \\
\text { seal } \\
\text { ting }
\end{gathered}
\] & Notes & NHDES Poole Poole & USACE Vernal
Pool Pool' \\
\hline 17 & h & \# & 0.26 & 3 & 42 & & & & & & & & & & & & & \(y\) & NR & n & NR & 2 & & y & y \\
\hline 18 & 1 & & 0.13 & 0 & 7 & & & & & & & & & & & & & y & NR & n & NR & 2 & Many tadpoles present in 2006. & y & y \\
\hline 19 & 1 & & 0.16 & 5 & 0 & & & & & & & & & & & & & y & NR & n & NR & 2 & & y & y \\
\hline 20 & h & *\# & 0.12 & 71 & 20 & & & & & & & & & & & & & y & NR & n & NR & 2 & & y & y \\
\hline 21 & m & & 0.05 & 14 & 7 & & & & & & & & & & & & & y & NR & n & NR & 2 & & y & y \\
\hline 22 & h & \# & 0.78 & NS & NS & & & 42/21 & & & y & y & & & & & & y & n & \(y\) & \(y\) & 1 & painted turtle in pool & y & y \\
\hline 23 & h & \# & 0.05 & NS & NS & & & 23/19 & & & & & & & & & & y & n & maybe & y & 2 & ephemeral link to 22 & y & y \\
\hline 25 & 1 & & 0.02 & NS & NS & & & 2 & & & y & & & & & y & & y & n & n & y & 1 & ephemeral link to 26 & y & y \\
\hline 26 & h & + & 0.09 & NS & NS & & & 5 & & 4/y & & & & 0/y & & y & & y & n & n & y & 1 & & y & y \\
\hline 27 & h & \# & 0.01 & NS & NS & & & 30/2 & & & \(y\) & y & & \(y\) & \(y\) & \(y\) & & y & n & \(y\) & y & 2 & bullfrog larvae present & y & \(y\) \\
\hline 28 & h & \# & 0.45 & NS & NS & & & 6/9 & \(>50\) & & \(y\) & y & & & y & & & y & n & semi & y & 1 & & y & y \\
\hline 29 & 1 & & 0.04 & NS & NS & & & & & & y & y & & y & y & & & y & n & n & modified & 2 & & y & y \\
\hline 31 & 1 & & 0.04 & NS & NS & & & 5 & & & y & & & \(y\) & & & & y & n & semi & gp & 2 & ephemeral outlet to 32 & n & y \\
\hline 32 & 1 & & 0.04 & NS & NS & 8 & & 5 & & & y & & & y & & y & & y & n & semi & modified & 1 & old gravel pit or beaver flowage, green frog present & y & y \\
\hline 35 & h & + & 0.07 & NS & NS & & & & & >10 & & & & & & y & & y & n & n & y & 2 & ephemeral outlet to 36 & y & y \\
\hline 36 & 1 & & 0.02 & & & & & & & & y & & & & y & & & y & n & n & y & 2 & ephemeral link to 22 & n & y \\
\hline 38 & 1 & & 0.02 & & & & 0/y & & & & y/y & & & & & & & y & n & n & y & 2 & Green frog present, ephemeral link to 37 & y & y \\
\hline 41A & h & + & 0.003 & NS & NS & & & & & y & & & & & & y & & y & n & n & y & 1 & & y & y \\
\hline 42 & \begin{tabular}{l}
\(h\)
\(\boldsymbol{n} 2009)\)
\(m\) \\
(2016)
\end{tabular} & * & 0.12 & NS & NS & \(>50\) & & 1/1 & & & \(y\) & & & \(y\) & \(y\) & & \(y\) & \(y\) & \(n\) & \(y\) & modified & 2 & 2009 - Portion of pool within powerline ROW, bullfrog larvae May 2014 - WF larvae, caddisfly larvae, flat spire snails May 2015 - WF larvae, aquatic beetle larvae & ? & \(y\) \\
\hline 44 & h & + & 0.01 & NS & NS & 1 & y & & & \(y\) & y & & & & & y & & y & n & semi & y & 1 & & y & y \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{April 2006 Survey - Primary Indicator \({ }^{\text {b }}\)}} & \multicolumn{12}{|c|}{2009 Survey - 1st visit / 2nd visit \({ }^{\text {a }}\)} & \multicolumn{8}{|l|}{\multirow[b]{2}{*}{Additional information - Rows in bold italics indicate pools surveyed in 2014-2015.}} \\
\hline & & & & & & \multicolumn{5}{|c|}{Primary Indicator \({ }^{\text {b }}\)} & \multicolumn{7}{|c|}{Secondary Indicator \({ }^{\text {b }}\)} & & & & & & & & \\
\hline \[
\begin{gathered}
\text { Pool } \\
109
\end{gathered}
\] & \[
\begin{aligned}
& \text { Relative } \\
& \text { Value }
\end{aligned}
\] & \[
\begin{gathered}
\text { Pool } \\
\text { Atrti- } \\
\text { butres }
\end{gathered}
\] & \[
\begin{gathered}
\text { Size } \\
(\text { sacres })
\end{gathered}
\] & SS egg & WF egg masses & \[
\begin{gathered}
\text { wf egs } \\
\text { mass- } \\
\text { es }
\end{gathered}
\] & \[
\underset{\text { larvae }}{\mathrm{wF}}
\] & ss egg & \[
\begin{gathered}
\text { Bue ss } \\
\text { egg } \\
\text { mass- } \\
\text { es }
\end{gathered}
\] & \[
\begin{gathered}
\text { Fairy } \\
\text { Shrimp }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Caddis- } \\
& \text { fly } \\
& \text { Larvae }
\end{aligned}
\] & \[
\begin{array}{|l|l}
\hline \begin{array}{l}
\text { Finger- } \\
\text { nail } \\
\text { Clams }
\end{array} \\
\hline
\end{array}
\] & \[
\begin{gathered}
\text { Aqua- } \\
\text { tic } \\
\text { beetle } \\
\text { larvae }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Spire } \\
& \text { Shap. } \\
& \text { ed } \\
& \text { snails }
\end{aligned}
\] & \[
\begin{gathered}
\text { Flat } \\
\text { spire } \\
\text { spails } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { True } \\
\text { Fly } \\
\text { Farvae }
\end{gathered}
\] & \[
\begin{gathered}
\text { Drag- } \\
\text { onfly } \\
\text { larvae } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\begin{array}{c}
\text { Pool } \\
\text { fishless }
\end{array} \\
\hline
\end{gathered}
\] & Perm.
Inlet/ Outlet & Perm. pool & Natural \({ }^{3}\) & \begin{tabular}{l}
Physical \\
\(\substack{\text { set- } \\ \text { ting } \\ \\ \text { d }}\)
\end{tabular} & Notes & NHDES Verna Pool \({ }^{\text {e }}\) & \[
\begin{gathered}
\text { USACE } \\
\text { Vernal } \\
\text { Pool' }
\end{gathered}
\] \\
\hline 46 & m & & 0.07 & NS & NS & & & 11/8 & & & & & & & & & & \(y\) & \(n\) & semi & \(y\) & 2 & 2009 - linked to 42 \& 47 May 2014 - WF egg masses (12), WF larvae (1000s), caddisfly larvae May 2015- SS egg mass (1), juv/adult WFs, caddisfly/aquatic beetle larvae & \(y\) & \(y\) \\
\hline 47 & 1 & & 0.03 & NS & NS & & \(y\) & & & & & & & & & & & \(y\) & n & n & \(y\) & 2 & linked to 46 & y & y \\
\hline 48 & h & * & 0.08 & NS & NS & 4 & y & 32/19 & & & y/y & & & & y & y & & y & n & semi & y & 2 & adult wood frog observed, linked to 47 & y & y \\
\hline 49 & h & + & 0.15 & NS & NS & 0/y & y/y & & & y/y & y & & & & & y & & y & n & y & y & 2 & hundreds of wood frog larvae, linked to 50 & y & y \\
\hline 50 & h & * & 0.11 & NS & NS & & & 90/79 & & & y & y & & & & & & y & n & y & y & 2 & & y & y \\
\hline 51 & 1 & & 0.13 & NS & NS & & 0/y & & & & & & & & & & & y & n & n & n & 2 & pool in woods road & y & \(y\) \\
\hline 54 & h & *\# & 0.57 & NS & NS & 50 & & 92/42 & & & y & & & & & y & & y & n & y & y & 1 & lots of bull frog larvae, deep pool & y & y \\
\hline 56 & h & \# & 0.08 & NS & NS & 1 & & 0/20 & & & y/y & y & & y & & & & y & n & n & y & 2 & & y & y \\
\hline 57 & h & *\# & 0.08 & NS & NS & 38 & 0/y & 40/13 & & & y & y & & & y & & & y & n & semi & y & 2 & outlets to 61 & y & y \\
\hline 58 & h & \# & 0.03 & NS & NS & 8 & & 23/18 & & & y/y & y & & & & & & y & n & semi & y & 1 & linked to 2 & y & y \\
\hline 59 & h & * \# + & 0.18 & NS & NS & 23 & 0/y & & 50-100 & 1/y & & & & 0/y & & & & y & n & n & y & 1 & trash in pool & y & y \\
\hline 60 & 1 & & 0.01 & NS & NS & & & & & & y/y & \(\mathrm{y} /\) - & & & y/y & & & y & n & n & n & 2 & & n & y \\
\hline 63 & h & + & 0.01 & NS & NS & & & & & >10/y & & & & & & y & & y & n & n & y & 1 & Possible ribbon snake sighted & y & y \\
\hline 64 & h & & 0.01 & NS & NS & & & & \(>20\) & & 0/y & & & 0/y & & & & y & n & n & y & 1 & GP within 100' & n & y \\
\hline
\end{tabular}
a First survey April 22 to 28; second visit May 7 and 8, 2009.
b NH Env-Wt. 101.86 and 101.87.
c USACE, NH PGP vernal pool facultative indicators.
d 1-Isolated depression 2-associated with wetland complex.
e Supports one or more primary vernal pool indicators, or 3 or more secondary vernal pool indicators (Env-Wt. 101.108).
f Evidence of one or more indicator vernal pool species (primary) or evidence of two or more facultative species (footnote b), (USACE, 2012).

Gaps in vernal pool IDs indicate pools eliminated from consideration as vernal pools under both USACE and NHDES criteria.

\section*{Qualitative Values:}
h=high productivity ( 20 or more WF, SS or BS egg masses; or fairy shrimp present
m=medium productivity ( 10 to 19 WF , SS, or BS egg masses)
I=low productivity (<10 WF, BS, or SS egg masses)

\section*{Pool Attributes:}
+ = fairy shrimp present BS=blue-spotted salamander

SS=spotted salamander
WF=wood frog
NR=Not Recorded
\# = 20 or more wood frog egg masses present
* \(=20\) or more spotted salamander or blue-spotted salamander egg masses present
tp \(=\) tadpole

\section*{Appendix J: Wetlands and Vernal Pools Functions and Values}

Wetlands proposed to be impacted by each alternative were reviewed to determine what functions and values the wetland currently provides that may be affected by construction of each alternative. The Highway Methodology Workbook Supplement (USACE, 1999) recognizes up to 13 different functions and values, including:
- Groundwater recharge/discharge; GW
- Floodflow Alteration; FA
- Fish and Shellfish habitat; FS
- Sediment/toxicant retention; SR
- Nutrient removal/retention/transformation; NR
- Production Export; PE
- Sediment/shoreline stabilization; SS
- Wildlife habitat; WH
- Recreation; RE
- Education/scientific value; ED
- Uniqueness/Heritage; UH
- Visual Quality/aesthetics; VQ and
- Endangered Species; ES

Results of the impact review follow. In accordance with Highway Methodology practices, functions are either assigned a P, for Primary Function provided by the wetland, an X for function provided by the wetland, or left blank to indicate that the function is not provided by the wetland.

Table 1 Impacts to Wetland Functions and Values for 4A Alternatives
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{17}{|c|}{Alternative A Impacts to Wetland Functions and Values} \\
\hline Wetland ID & Total Wetland Acres & Square Feet Impact & Cowardin Class & \[
\sum_{0}^{3}
\] & \[
\mathbb{K}
\] & 』 & \(\underset{\sim}{¢}\) & \[
\frac{\mathfrak{r}}{\mathbf{z}}
\] & 뜬 & ¢ & \[
\frac{\mathbf{T}}{3}
\] & \[
\underset{\sim}{\boldsymbol{\sim}}
\] & ㅁ & エ & \(\stackrel{O}{>}\) & ¢ \\
\hline 11 & 3.38 & 3,350 & PFO & x & x & - & x & x & x & - & x & - & - & - & - & - \\
\hline 13 & 0.06 & 958 & PFO & x & - & - & - & - & - & - & - & - & - & - & - & - \\
\hline 14 & 3.46 & 51,317 & PFO & x & P & x & P & x & x & X & P & - & - & - & x & - \\
\hline 15 & 0.27 & 5,344 & PFO & x & X & - & X & x & x & - & P & - & - & - & - & - \\
\hline 16 & 0.46 & 8,115 & PFO & \(x\) & x & - & x & x & x & - & P & - & - & - & - & - \\
\hline 17 & 0.30 & 5,530 & PFO & x & X & - & X & X & x & - & P & - & - & - & - & - \\
\hline 18 & 0.02 & 659 & PEM & x & - & - & - & - & - & - & X & - & - & - & - & - \\
\hline 19 & 0.22 & 8,745 & PFO & x & x & - & x & x & x & - & P & - & - & - & - & - \\
\hline 20 & 0.03 & 1,504 & PFO & X & X & - & x & X & X & - & P & - & - & - & - & - \\
\hline 22 & 0.61 & 12 & PFO & x & x & - & X & x & x & - & P & - & - & - & - & - \\
\hline 24 & 0.11 & 3,388 & PFO & x & X & - & P & x & X & - & X & - & - & - & - & - \\
\hline 35 & 0.10 & 1,882 & PFO & x & - & - & - & - & - & - & P & - & - & - & - & - \\
\hline 39 & 0.19 & 4,172 & PEM & x & - & - & \(x\) & - & - & - & X & - & - & - & - & - \\
\hline 40 & 0.02 & 852 & PSS & x & - & - & X & - & - & - & - & - & - & - & - & - \\
\hline 41 & 0.95 & 756 & PFO & x & P & x & P & x & P & \(x\) & P & - & - & - & - & - \\
\hline 46 & 0.18 & 57 & PFO & x & P & x & P & x & P & X & P & - & - & - & X & - \\
\hline 49 & 1.15 & 2,020 & PFO & X & - & X & X & X & - & - & P & - & - & - & - & - \\
\hline 54 & 0.12 & 251 & PEM & x & - & - & - & - & x & - & P & - & - & - & - & - \\
\hline 55 & 0.07 & 2 & PEM & x & - & - & - & - & x & - & P & - & - & - & - & - \\
\hline 56 & 0.31 & 33 & PEM & x & X & - & P & - & x & - & X & - & - & - & - & - \\
\hline 59 & 2.91 & 1,479 & PFO & X & P & X & X & X & P & X & P & X & - & - & X & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{17}{|c|}{Alternative B－Impacts to Wetland Functions and Values} \\
\hline Wetland ID & Total Wetland Acres & Square Feet Impact & Cowardin Class & \[
\underset{N}{2}
\] & \[
\mathbb{4}
\] & が & ๙ & \[
\underset{\mathbf{x}}{\mathbf{x}}
\] & ш & \[
\mathscr{\omega}
\] & \[
\frac{\mathrm{T}}{3}
\] & \[
\underset{\text { 区 }}{\text { ■ }}
\] & 뭄 & 픽 & \[
9
\] & ¢ \\
\hline 11 & 3.38 & 3，350 & PFO & x & X & － & x & x & x & － & x & － & － & － & － & － \\
\hline 13 & 0.06 & 958 & PFO & x & － & － & － & － & － & － & － & － & － & － & － & － \\
\hline 14 & 3.46 & 51，317 & PFO & x & P & x & P & X & x & X & P & － & － & － & x & － \\
\hline 15 & 0.27 & 5，344 & PFO & x & X & － & X & X & x & － & P & － & － & － & － & － \\
\hline 16 & 0.46 & 8，115 & PFO & x & x & － & x & X & x & － & P & － & － & － & － & － \\
\hline 17 & 0.30 & 5，530 & PFO & x & X & － & x & X & X & － & P & － & － & － & － & － \\
\hline 18 & 0.02 & 659 & PEM & x & － & － & － & － & － & － & X & － & － & － & － & － \\
\hline 19 & 0.22 & 7，610 & PFO & x & X & － & x & X & X & － & P & － & － & － & － & － \\
\hline 20 & 0.03 & 1，504 & PFO & x & X & － & X & X & X & － & P & － & － & － & － & － \\
\hline 21 & 0.06 & 871 & PFO & X & － & － & － & － & － & － & X & － & － & － & － & － \\
\hline 22 & 0.61 & 758 & PFO & X & X & － & X & X & X & － & P & － & － & － & － & － \\
\hline 23 & 0.05 & 978 & PFO & \(x\) & x & － & X & X & X & － & P & － & － & － & － & － \\
\hline 24 & 0.11 & 1，252 & PFO & x & X & － & P & X & X & － & X & － & － & － & － & － \\
\hline 32 & 0.01 & 256 & PFO & \(x\) & － & － & X & － & － & － & － & － & － & － & － & － \\
\hline 33 & 0.03 & 1，482 & PFO & x & － & － & － & － & － & － & － & － & － & － & － & － \\
\hline 34 & 0.07 & 2，916 & PFO & \(x\) & － & － & － & － & － & － & － & － & － & － & － & － \\
\hline 36 & 0.01 & 416 & PFO & x & － & － & － & － & － & － & P & － & － & － & － & － \\
\hline 37 & 0.06 & 2，153 & PFO & X & － & － & － & － & － & － & － & － & － & － & － & － \\
\hline 38 & 0.93 & 15，325 & PFO & x & P & x & P & X & P & x & P & － & － & － & x & － \\
\hline 42 & 2.26 & 55，700 & PUB & X & P & X & P & x & X & X & X & ， & － & － & X & － \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{17}{|c|}{Alternative B - Impacts to Wetland Functions and Values} \\
\hline Wetland ID & Total Wetland Acres & Square Feet Impact & Cowardin Class & \[
\underset{\cup}{3}
\] & \[
\mathbb{K}
\] & \(\stackrel{0}{4}\) & \[
\stackrel{\widetilde{\sigma}}{\boldsymbol{\sigma}}
\] & \[
\underset{\mathbf{Z}}{\mathbf{Z}}
\] & \[
\underset{\square}{\boldsymbol{a}}
\] & ๗ & \[
\frac{1}{3}
\] & \[
\underset{\sim}{\boldsymbol{\sim}}
\] & 믐 & エ & \[
\mathrm{O}
\] & ¢ \\
\hline 43 & 2.38 & 347 & PSS/PEM & X & P & - & P & X & X & - & P & X & - & - & X & - \\
\hline 44 & 0.12 & 4,748 & PEM & P & - & - & P & X & - & - & - & - & - & - & - & - \\
\hline 47 & 2.27 & 18,453 & PFO & P & P & - & X & X & X & X & P & - & - & - & - & - \\
\hline 48 & 8.58 & 90,956 & PFO & P & P & - & X & X & X & X & P & - & - & - & - & - \\
\hline 50 & 0.20 & 5,037 & PEM & - & - & - & X & - & - & - & X & - & - & - & - & - \\
\hline 51 & 0.16 & 3,576 & PEM & - & - & - & X & - & - & - & X & - & - & - & - & - \\
\hline 52 & 2.17 & 19,976 & PFO & - & - & - & X & - & - & - & X & - & X & - & - & - \\
\hline 53 & 7.42 & 79,714 & PSS & P & P & X & X & X & X & X & P & - & - & - & - & - \\
\hline 56 & 0.31 & 13 & PEM & X & X & - & P & - & X & - & X & - & - & - & - & - \\
\hline 57 & 0.12 & 614 & PSS & - & - & - & - & - & - & - & X & - & - & - & - & - \\
\hline 59 & 1.72 & 2,806 & PFO & X & P & X & X & X & P & X & P & X & - & - & X & - \\
\hline 47 & 2.27 & 18,453 & PFO & P & P & - & X & X & X & X & P & - & - & - & - & - \\
\hline 48 & 8.58 & 90,956 & PFO & P & P & - & X & X & X & X & P & - & - & - & - & - \\
\hline 50 & 0.20 & 5,037 & PEM & - & - & - & X & - & - & - & X & - & - & - & - & - \\
\hline 51 & 0.16 & 3,576 & PEM & - & - & - & X & - & - & - & X & - & - & - & - & - \\
\hline 52 & 2.17 & 19,976 & PFO & - & - & - & X & - & - & - & X & - & X & - & - & - \\
\hline 53 & 7.42 & 79,714 & PSS & P & P & X & X & X & X & X & P & - & - & - & - & - \\
\hline 56 & 0.31 & 13 & PEM & X & X & - & P & - & X & - & X & - & - & - & - & - \\
\hline 57 & 0.12 & 614 & PSS & - & - & - & - & - & - & - & X & - & - & - & - & - \\
\hline 59 & 1.72 & 2,806 & PFO & X & P & X & X & X & P & X & P & X & - & - & X & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{17}{|c|}{Alternative C-Impacts to Wetland Functions and Values} \\
\hline Wetland ID & Total Wetland Acres & Square Feet Impact & Cowardin Class & \[
\underset{\substack{3}}{3}
\] & 《 & \% & ๗ & \[
\frac{\mathfrak{r}}{\mathbf{z}}
\] & 름 & ¢ & \[
\underset{3}{\mathbf{T}}
\] & \[
\underset{\sim}{\boldsymbol{x}}
\] & 믄 & I & O & ¢ \\
\hline 1 & 5.41 & 26,288 & PFO & P & P & X & P & P & P & x & P & - & - & - & x & - \\
\hline 2 & 0.01 & 16 & PFO & X & - & - & - & - & X & - & P & - & - & - & - & - \\
\hline 3 & 0.06 & 2,185 & PFO & x & - & - & x & - & - & - & P & - & - & - & - & - \\
\hline 4 & 6.40 & 54,416 & PFO & P & P & X & P & P & P & x & P & - & - & - & X & - \\
\hline 5 & 0.19 & 8,125 & PFO & x & - & - & X & - & - & - & x & - & - & - & - & - \\
\hline 6 & 0.20 & 1,305 & PFO & x & - & - & x & - & - & - & x & - & - & - & - & - \\
\hline 7 & 0.05 & 925 & PFO & x & - & - & x & - & - & - & X & - & - & - & - & - \\
\hline 8 & 0.93 & 17,270 & PEM & x & x & - & x & x & X & - & P & - & - & - & - & - \\
\hline 9 & 3.63 & 1,025 & PFO & x & x & - & x & x & P & x & P & - & - & - & - & - \\
\hline 10 & 0.10 & 735 & PFO & x & - & - & x & - & - & - & X & - & - & - & - & - \\
\hline 11 & 3.38 & 1,693 & PFO & x & x & - & x & x & x & - & X & - & - & - & - & - \\
\hline 25 & 0.13 & 4,194 & PFO & - & - & - & - & - & - & - & P & - & - & - & - & - \\
\hline 26 & 0.22 & 8,332 & PSS & - & - & - & x & - & - & - & - & - & - & - & - & - \\
\hline 27 & 0.04 & 1,152 & PSS & - & - & - & X & - & - & - & - & - & - & - & - & - \\
\hline 28 & 0.42 & 12,758 & PFO & - & - & - & P & - & - & - & X & - & - & - & - & - \\
\hline 29 & 0.35 & 5,616 & PSS & - & - & - & X & - & - & - & - & - & - & - & - & - \\
\hline 30 & 0.08 & 732 & PEM & - & - & - & x & - & - & - & - & - & - & - & - & - \\
\hline 31 & 0.04 & 534 & PEM & - & - & - & x & - & - & - & - & - & - & - & - & - \\
\hline 47 & 2.27 & 18,453 & PFO & P & P & - & X & X & x & X & P & - & - & - & - & - \\
\hline 48 & 8.58 & 90,956 & PFO & P & P & - & X & x & X & X & P & - & - & - & - & - \\
\hline 50 & 0.20 & 5,037 & PEM & - & - & - & X & - & - & - & X & - & - & - & - & - \\
\hline 51 & 0.16 & 3,576 & PEM & - & - & - & x & - & - & - & X & - & - & - & - & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{17}{|c|}{Alternative C－Impacts to Wetland Functions and Values} \\
\hline Wetland ID & Total Wetland Acres & Square Feet Impact & Cowardin Class & \[
\underset{\circlearrowleft}{3}
\] & \[
\mathbb{4}
\] & \[
\mathbb{H}
\] & ๙ & \[
\frac{\text { 뜰 }}{}
\] & \[
\underset{\square}{\square}
\] & \[
\mathscr{\omega}
\] & \[
\frac{ \pm}{3}
\] & \[
\underset{\sim}{\boldsymbol{x}}
\] & 믐 & エ & O & ¢ \\
\hline 52 & 2.17 & 19，976 & PFO & － & － & － & X & － & － & － & X & － & X & － & － & － \\
\hline 53 & 7.42 & 79，714 & PSS & P & P & X & X & X & X & X & P & － & － & － & － & － \\
\hline 57 & 0.12 & 614 & PSS & － & － & － & － & － & － & － & X & － & － & － & － & － \\
\hline 59 & 1.72 & 2，788 & PFO & X & P & X & X & X & P & X & P & X & － & － & X & － \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{17}{|c|}{Alternative D－Impacts to Wetland Functions and Values} \\
\hline Wetland ID & Total Wetland Acres & Square Feet Impact & Cowardin Class & \[
\underset{\circlearrowleft}{3}
\] & 《 & \％ & \[
\frac{\mathfrak{c}}{\boldsymbol{\omega}}
\] & \[
\underset{\sim}{\mathbf{n}}
\] & 山 & 0 & \[
\frac{ \pm}{3}
\] & \[
\underset{\sim}{\boldsymbol{\sim}}
\] & 믄 & エ & O & ¢ \\
\hline 1 & 5.41 & 26，288 & PFO & P & P & X & P & P & P & X & P & － & － & － & X & － \\
\hline 2 & 0.01 & 16 & PFO & X & － & － & － & － & X & － & P & － & － & － & － & － \\
\hline 3 & 0.06 & 2，185 & PFO & X & － & － & X & － & － & － & P & － & － & － & － & － \\
\hline 4 & 6.40 & 54，379 & PFO & P & P & X & P & P & P & X & P & － & － & － & X & － \\
\hline 5 & 0.19 & 8，125 & PFO & X & － & － & X & － & － & － & X & － & － & － & － & － \\
\hline 6 & 0.20 & 1，305 & PFO & X & － & － & X & － & － & － & X & － & － & － & － & － \\
\hline 7 & 0.05 & 925 & PFO & X & － & － & X & － & － & － & X & － & － & － & － & － \\
\hline 8 & 0.93 & 17，270 & PEM & X & X & － & X & X & X & － & P & － & － & － & － & － \\
\hline 9 & 3.63 & 1，025 & PFO & X & X & － & X & X & P & X & P & － & － & － & － & － \\
\hline 10 & 0.10 & 735 & PFO & X & － & － & X & － & － & － & X & － & － & － & － & － \\
\hline 11 & 3.38 & 1，841 & PFO & X & X & － & X & X & X & － & X & － & － & － & － & － \\
\hline 25 & 0.13 & 4，194 & PFO & － & － & － & － & － & － & － & P & － & － & － & － & － \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{17}{|c|}{Alternative D- Impacts to Wetland Functions and Values} \\
\hline Wetland ID & Total Wetland Acres & Square Feet Impact & Cowardin Class & \[
\underset{N}{2}
\] & \[
\mathbb{\Perp}
\] & © & \[
\mathfrak{\sim}
\] & \[
\frac{\mathbf{x}}{\mathbf{z}}
\] & щ & \[
\boldsymbol{\sim}
\] & \[
\frac{\mathbf{T}}{3}
\] & \[
\underset{\sim}{\boldsymbol{x}}
\] & 믐 & 폭 & \[
0
\] & ¢ \\
\hline 26 & 0.22 & 8,332 & PSS & - & - & - & x & - & - & - & - & - & - & - & - & - \\
\hline 27 & 0.04 & 1,152 & PSS & - & - & - & X & - & - & - & - & - & - & - & - & - \\
\hline 28 & 0.42 & 12,758 & PFO & - & - & - & P & - & - & - & x & - & - & - & - & - \\
\hline 29 & 0.35 & 5,616 & PSS & - & - & - & X & - & - & - & - & - & - & - & - & - \\
\hline 30 & 0.08 & 732 & PEM & - & - & - & x & - & - & - & - & - & - & - & - & - \\
\hline 31 & 0.04 & 534 & PEM & - & - & - & X & - & - & - & - & - & - & - & - & - \\
\hline 45 & 1.57 & 5,009 & PSS/PEM & P & X & - & P & X & - & - & - & - & - & - & - & - \\
\hline 46 & 0.18 & 789 & PFO & X & P & X & P & X & P & X & P & - & - & - & X & - \\
\hline 49 & 1.15 & 2,020 & PFO & X & - & X & X & X & - & - & P & - & - & - & - & - \\
\hline 54 & 0.12 & 203 & PEM & x & - & - & - & - & x & - & P & - & - & - & - & - \\
\hline 55 & 0.07 & 2 & PEM & x & - & - & - & - & x & - & P & - & - & - & - & - \\
\hline 56 & 0.31 & 33 & PEM & X & X & - & P & - & X & - & X & - & - & - & - & - \\
\hline 59 & 2.91 & 1,479 & PFO & X & P & X & X & X & P & X & P & X & - & - & X & - \\
\hline
\end{tabular}

Exit 4A
Supplemental Draft Environmental Impact Statement Appendix G Wetland Photographs


Photo 1. Facing west-northwest from Wetland 14,
south of Project boundary crossing with Stream Crossing 1 (5/21/2018)


Photo 2. Facing southwest from northern boundary of Wetland 14 (5/21/2018).

Exit 4A
Supplemental Draft Environmental Impact Statement
Appendix G Wetland Photographs

Riprap from recent construction on I-93.


Photo 3. Facing northwest from Stream Crossing 1 crossing with western Project boundary, within Wetland 14 (5/21/2018)


Exit 4A
Supplemental Draft Environmental Impact Statement Appendix G Wetland Photographs

Photo 4. Facing east-southeast from western Project boundary crossing with Wetland 14 (5/21/2018)


Photo 5. Facing north near southern end of Wetland 15 towards Vernal Pool 2 (5/21/2018). Erosion controls from recent construction for I-93.


Exit 4A
Supplemental Draft Environmental Impact Statement Appendix G Wetland Photographs

Photo 6. Facing southeast from northwest boundary of Wetland 15, towards Vernal Pool 2 (5/21/2018) Sideslopes of recently widened I-93 to right in photo.


Photo 7. Facing north-northwest from southern boundary of Wetland 16, towards Vernal Pool 03 (5/21/2018). Erosion controls from recent I-93 construction.

Exit 4A
Supplemental Draft Environmental Impact Statement Appendix G Wetland Photographs


Photo 8. Facing north-northeast from northern boundary of Wetland 16, towards Vernal Pool \(4(5 / 21 / 2018)\)


Photo 9. Facing east-northeast to Wetland 16, near southern boundary of Vernal Pool 4 (5/21/2018). Erosion controls from recent l-93 construction.

Exit 4A
Supplemental Draft Environmental Impact Statement Appendix G Wetland Photographs


Photo 10. Facing north-northeast of Wetland 17 and Stream Crossing 7 (5/21/2018)


Photo 11. Facing southwest from northeastern boundary of Wetland 17 and Stream 7 (5/21/2018)

Exit 4A
Supplemental Draft Environmental Impact Statement Appendix G Wetland Photographs


Photo 12. Facing east-southeast from eastern boundary of Wetland 19, towards Vernal Pool 42, south of Wetland 18 (5/21/2018)


Photo 13. Facing northeast from western boundary of Wetland 19, towards Vernal Pool 42 (5/21/2018)

Exit 4A
Supplemental Draft Environmental Impact Statement
Appendix G Wetland Photographs


Photo 14. Facing northwest from eastern boundary of Wetland 20 (5/21/2018)


Photo 15. Facing east-northeast between wetlands 20 and 22 along
Stream 8 (5/21/2018)

Exit 4A
Supplemental Draft Environmental Impact Statement Appendix G Wetland Photographs


Photo 16. Facing northeast from junction of Stream 8 and Wetland 22 at Project boundary crossing/southern boundary of Vernal Pool 46 (5/21/2018)


Photo 17. Facing north-northeast from southern boundary of Wetland 24, toward Vernal Pool 06 (5/21/2018)

Exit 4A
Supplemental Draft Environmental Impact Statement
Appendix G Wetland Photographs


Photo 18. Facing west from eastern boundary of Wetland 24, toward Vernal Pool 06 (5/21/2018)


Photo 19. Facing north from Wetland 35 to Vernal Pool 08 from southwest Project boundary crossing
(5/21/2018)

Exit 4A
Supplemental Draft Environmental Impact Statement Appendix G Wetland Photographs


Photo 20. Facing southwest from Wetland 35 to Vernal Pool 08 from eastern pool/wetland boundary (5/21/2018)


Photo 21. Facing south-southwest from northeast boundary of Wetland 39 (5/24/2018)

Exit 4A
Supplemental Draft Environmental Impact Statement
Appendix G Wetland Photographs


Photo 22. Facing northeast from southwest boundary of Wetland 40, near Stream 11 (5/24/2018)


Photo 23. Facing northwest to Wetland 41 and Stream 2, north of North High Street (5/15/2018)

Exit 4A
Supplemental Draft Environmental Impact Statement
Appendix G Wetland Photographs


Photo 24. Facing southeast toward Stream 2 at road crossing, south of North High Street (5/15/2018)


Photo 25. Facing south to Wetland 41 from Franklin Street Extension (5/21/2018)

Exit 4A
Supplemental Draft Environmental Impact Statement
Appendix G Wetland Photographs


Photo 26. Facing southeast towards Wetland 46 from Folsom Road (5/15/2018)


Photo 27. Facing northwest from Tsienneto Road toward Wetland 49 (5/15/2018)

Exit 4A
Supplemental Draft Environmental Impact Statement
Appendix G Wetland Photographs


Photo 28. Facing northwest from Tsienneto Road toward Wetland 54/Vernal Pool 11 (5/15/2018)


Supplemental Draft Environmental Impact Statement Appendix G Wetland Photographs

Photo 29. Facing southeast from Tsienneto Road toward Stream Crossing 4 (5/15/2018)


Photo 30. Facing northwest from Tsienneto Road toward Wetland 56 (5/15/2018)


Exit 4A
Supplemental Draft Environmental Impact Statement Appendix G Wetland Photographs

Photo 31. Facing southeast from Tsienneto Road toward Wetland 59 (5/15/2018)


Photo 32. Facing north from Tsienneto Road toward Wetland 59 (prime wetland) and Stream Crossing 5 (5/15/2018)

Exit 4A
Supplemental Draft Environmental Impact Statement Appendix G Wetland Photographs


Photo 33. Facing south from Tsienneto Road toward Wetland 59 and Stream Crossing 5 (5/15/2018)


Photo 34. Facing southeast from Chester Road (NH Route 102) towards Wetland 59 and Stream Crossing 6 into Beaver Lake (5/15/2018)

Exit 4A
Supplemental Draft Environmental Impact Statement
Appendix G Wetland Photographs


Photo 35. Facing northwest from Chester Road (NH Route 102) towards Stream Crossing 6 (5/15/2018)


Photo 36 Wetland 60, north of Tsienneto Road, view north (7/27/2018)

Exit 4A
Supplemental Draft Environmental Impact Statement Appendix G Wetland Photographs


Photo 37 Wetland 61, south of Tsienneto Road, view south (7/27/2018)

\section*{Appendix K: Agency Correspondence}

NH Natural Heritage Bureau NHB Datacheck Results Letter

To: Sarah Barnum, Normandeau Associates
25 Nashua Rd
Bedford, NH 03110

From: Amy Lamb, NH Natural Heritage Bureau
Date: \(\quad 4 / 4 / 2016\) (valid for one year from this date)
Re: Review by NH Natural Heritage Bureau
NHB File ID: NHB16-0960 Town: Derry, Londonderry Location: North End of project area

Description: I-93 Exit 4A Project: This is a re-evaluation request from previous submittals in 2010, 2005 and 1999. This review is intended to ensure data presented in the project's Final Environmental Impact Statement (FEIS) is up to date. Project proposes to construct a new interchange one mile north of Exit 4 on Interstate 93 in Londonderry and Derry, NH. New interchange would consist of an easterly-only new construction access road that would connect with Folsom Road and then traverse east along Folsom and Tsienneto Roads. Work along Tsienneto Road would typically result in slight adjustments to easterly end of roadway and intersection improvements with Rt 28, Bypass Route 28, and Rt 102. We request that the five remaining alternatives within this study be evaluated to ensure they are each provided the most recent NHNHB review for sensitive plants and animals (Alternatives A through D and F).
cc: Kim Tuttle

As requested, I have searched our database for records of rare species and exemplary natural communities, with the following results
Comments: Please coordinate with NH Fish \& Game and the NHB to avoid and minimize impacts to the species and exemplary natural systems below.

Natural Community
Medium level fen system*

\section*{State \(^{1}\) Federal Notes}

Level fens are stagnant, and as such are characterized by low nutrient levels, relatively high acidity levels, and accumulations of peat. The primary threats to this community are changes to its hydrology (especially that which causes pooling), increased nutrient input from stormwater runoff, and sedimentation from nearby disturbance.
Poor level fen/bog system*

\section*{Plant species}

Dwarf Huckleberry (Gaylussacia bigeloviana)*

Level fens are stagnant, and as such are characterized by low nutrient levels, relatively high acidity levels, and accumulations of peat. The primary threats to this community are changes to its hydrology (especially that which causes pooling), increased nutrient input from stormwater runoff, and sedimentation from nearby disturbance.

\section*{State \({ }^{1}\) Federal Notes}

T

The primary threats are changes to this species' peatland habitat, including changes to

\footnotetext{
Department of Resources and Economic Development
Division of Forests and Lands
(603) 271-2214 fax: 271-6488
}

DRED/NHB
172 Pembroke Rd.
Concord, NH 03301
local hydrology, increased nutrient input from stormwater runoff, and sedimentation from nearby disturbance.
red threeawn (Aristida longespica var. geniculata)* E
The pond or lake shore natural communities where this species occurs are extremely vulnerable to trampling, and tend to disappear from areas that experience even moderate recreational use. They are also vulnerable to changes to the lake's hydrology. Additional habitats include sandplains and disturbed openings.

\section*{Vertebrate species}
\begin{tabular}{lcll} 
Banded Sunfish (Enneacanthus obesus) & SC & -- & Contact the NH Fish \& Game Dept (see below). \\
Blanding's Turtle (Emydoidea blandingii) & E & -- & Contact the NH Fish \& Game Dept (see below). \\
New England Cottontail (Sylvilagus transitionalis) & E & -- & Contact the NH Fish \& Game Dept (see below). \\
\begin{tabular}{l} 
Northern Black Racer (Coluber constrictor \\
constrictor)
\end{tabular} & T & -- & Contact the NH Fish \& Game Dept (see below). \\
\begin{tabular}{l} 
Smooth Green Snake (Opheodrys vernalis) \\
Spotted Turtle (Clemmys guttata)
\end{tabular} & SC & -- & Contact the NH Fish \& Game Dept (see below). \\
Wood Turtle (Glyptemys insculpta) & T & -- & Contact the NH Fish \& Game Dept (see below).
\end{tabular}

Wood Turtle (Glyptemys insculpta)
Contact the NH Fish \& Game Dept (see below).
\({ }^{1}\) Codes: "E" = Endangered, "T" = Threatened, "SC" = Special Concern, "--" = an exemplary natural community, or a rare species tracked by NH Natural Heritage that has not yet been added to the official state list. An asterisk (*) indicates that the most recent report for that occurrence was more than 20 years ago.
Contact for all animal reviews: Kim Tuttle, NH F\&G, (603) 271-6544.
A negative result (no record in our database) does not mean that a sensitive species is not present. Our data can only tell you of known occurrences, based on information gathered by qualified biologists and reported to our office. However, many areas have never been surveyed, or have only been surveyed for certain species. An on-site survey would provide better information on what species and communities are indeed present.

\section*{NHB16-0960}


\title{
New Hampshire Natural Heritage Bureau - System Record \\ Medium level fen system
}

Legal Status
Federal: Not listed
State: Not listed

Conservation Status
Global: Not ranked (need more information)
State: Rare or uncommon

\section*{Description at this Location}

Conservation Rank: Historical records only - current condition unknown.
Comments on Rank:

Detailed Description: 1992: Closer to the pond edge, the heath shrubs are shorter or dwarfed and dominated by Chamaedaphne calyculata (leatherleaf) and Myrica gale (sweet gale), with Rhododendron canadense (rhodora) most common along the high-shrub border. Small pockets of open sphagnum moss and sedges are found near the inlet stream and pond edge, with a greater diversity of species apparent. Species found in these areas include Carex trisperma (threeseeded sedge), Andromeda polifolia var. glaucophylla (bog rosemary), Eriophorum virginicum (tawny cotton-grass), Vaccinium macrocarpon (large cranberry), Drosera intermedia (spatulate-leaved sundew), and Peltandra virginica (arrow arum). Nuphar variegata (variegated yellow pondlily), Nymphaea odorata (white waterlily), and Brasenia schreberi (water shield) are found along the edges of the floating mat.
General Area: 1992: The northwest side of Scobie Pond has an approximate 8-acre basin with several associations including hardwood-conifer basin swamp, high shrub bog, dwarf heath-shrub bog and acidic fen communities represented. Collectively, they form a level bog ecosystem. The rare gaylussacia dumosa var bigeloviana was sought but not found, although the habitat appeared appropriate for it. A vernal pond is found about 100 yards SSW from the Cardinal Road cul de sac.
General Comments:
Management
1992: Housing expansion to north/northeast of the pond could present threats to the ecosystem water quality. Houses on the pond appear to be relatively benign in terms of direct threats, but water quality impacts are uncertain.

\section*{Location}

Survey Site Name: Scobie Pond
Managed By:
County: Rockingham
Town(s): Londonderry
Size: 34.2 acres Elevation: 360 feet
Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 1992: Site was accessed from end of Cardinal Road off of Partridge Road. (junction at Derry/Londonderry line) off of Old Derry Road. May be better access from elsewhere.

\section*{Dates documented}
First reported: 1992-06-09 Last reported: 1992-06-09

\title{
New Hampshire Natural Heritage Bureau - System Record \\ Poor level fen/bog system
}

\section*{Legal Status}

Federal: Not listed
State: Not listed

Conservation Status
Global: Not ranked (need more information)
State: Rare or uncommon

\section*{Description at this Location}

Conservation Rank: Historical records only - current condition unknown.
Comments on Rank:
Detailed Description: 1992: Population of Gaylussacia dumosa var bigeloviana was found in the fen community.
General Area: he classic fen sequence of floating mat, open peat, low heath, tall heath, dwarf spruce and larch, and shrub swamp is found in this wetland complex. The lag varies from 20 to over 200 feet wide, although the low and high heath zones are not always well developed. The dominant plant in the low heath where the dwarf huckleberry was found was leatherleaf. Dwarf black spruce and larch are scattered throughout this zone. The shrub swamp further back from the pond is dominated by mountain holly, winterberry holly, and high bush blueberry.
General Comments:
Management
Comments:

\section*{Location}

Survey Site Name: Lower Shields Pond
Managed By:
County: Rockingham
Town(s): Derry
Size: 41.8 acres Elevation: 380 feet
Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: Take Rte 28BYP north from Derry Village traffic circle ca 2 miles to Shields Pond Road on the right. Go ca. 0.5 mile to culverted creek. There is a path beyond the powerlines that you hike to from the west side of the stream.

\section*{Dates documented}

First reported: 1992-09-11
Last reported: 1992-09-11

\title{
New Hampshire Natural Heritage Bureau - Plant Record Dwarf Huckleberry (Gaylussacia bigeloviana)
}

\section*{Legal Status}

Federal: Not listed
State: Listed Threatened

\section*{Conservation Status}

Global: Apparently secure but with cause for concern
State: Imperiled due to rarity or vulnerability

\section*{Description at this Location}

Conservation Rank: Historical records only - current condition unknown.
Comments on Rank:

Detailed Description: 1992: Ca. 200 plants seen, 60 percent with mature fruit and dispersing seed, 30 percent in leaf. Growing at the bottom of a slope in wet-mesic condition. May be more plants scattered through the leatherleaf.
General Area: 1992: The huckleberry was found on a low heath mat that rings a portion of the shallow water pond. The classic fen sequence of floating mat, open peat, low heath, tall heath, dwarf spruce and larch, and shrub swamp, is found in this wetland complex. The dominant plant in the low heath where the the dwarf huckleberry was found was Chamaedaphne calyculata. Dwarf Picea mariana, and Larix larcina are scattered throughout this zone. The shrub swamp further back from the pond is dominated by Nemopanthus mucronata, Ilex verticillata, and Vaccininium corymbosum.
General Comments:
Management
Comments:

\section*{Location}

Survey Site Name: Lower Shields Pond
Managed By:
County: Rockingham
Town(s): Derry
Size: 41.8 acres Elevation: 370 feet
Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: Take Rte 28BYP north from Derry Village traffic circle ca. 2 miles to Shields Pond Road on the right. Go ca. 0.5 mile to culverted creek. There is a path beyond the powerlines that you hike to from the west side of the stream.

\section*{Dates documented}
First reported: 1992-09-11 Last reported: 1992-09-11

\title{
New Hampshire Natural Heritage Bureau - Plant Record red threeawn (Aristida longespica var. geniculata)
}
\begin{tabular}{ll} 
Legal Status & Conservation Status \\
\hline Federal: Not listed & Global: Demonstrably \\
State: Listed Endangered & State: Critically impe \\
& \\
Description at this Location & \\
\hline Conservation Rank: Historical records only - current condition unknown. \\
Comments on Rank: & \\
& \\
Detailed Description: & 1977: Specimen collected. \\
General Area: & 1977: Disturbed area, railroad right-of-way. \\
General Comments: & 1993: AT\&e put through in 1993. \\
Management & \\
Comments: &
\end{tabular}

\section*{Location}

Survey Site Name: Derry
Managed By: Tuckernuck Development LLC
County: Rockingham
Town(s): Derry
Size: 4592.3 acres Elevation: 235 feet
Precision: Within 1.5 miles of the area indicated on the map (location information is vague or uncertain).
Directions: Derry. Railroad right-of-way.

\section*{Dates documented}

First reported: 1977-10-15 Last reported: 1977-10-15

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ Banded Sunfish (Enneacanthus obesus)
}

\section*{Legal Status}

Federal: Not listed
State: Special Concern

Conservation Status
Global: Demonstrably widespread, abundant, and secure
State: Rare or uncommon

\section*{Description at this Location}

\section*{Conservation Rank: Not ranked}

Comments on Rank:
Detailed Description: 2005: Area 8978: 2 observed, age and sex unknown. Area 8972: 1 observed, age and sex unknown. 2000: Area 260: 1 observed, age and sex unknown (Obs_id 368). 1938: Cohas Brook: Specimen collected.
General Area: 2005: Area 8978: Freshwater - stream or river. Area 8972: Freshwater - stream or river. Wide channel with a lot of pickerel weed and submerged vegetation. Marsh and pond-like area. 2000: Area 260: Freshwater - stream or river (Obs_id 368). 1938: Cohas Brook: Vegetation moderate, rushes and Potamogeton (pondweed). Partly wooded shore, moderate current.
General Comments: 2000: Area 260: Sampled by DES electrofishing 150 meter index site (Obs_id 368).
Management
Comments:

\section*{Location}
\begin{tabular}{lll}
\hline Survey Site Name: & Cohas Brook & \\
Managed By: & NHDOT Mitigation & \\
& & \\
County: & Hillsborough & \\
Town(s): & Manchester & Elevation: 195 feet \\
Size: & 84.8 acres &
\end{tabular}

Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 1938: Cohas Brook: Cohas Brook from I93 W to Little Island Pond. 2000: Area 260: Cohas Brook at DES Station 00m-50. 2005: Area 8978: Little Cohas Brook on Hall Rd. Area 8972: Cohas Brook on Auburn Rd. at sand and gravel pit.

\section*{Dates documented}

First reported: 1938
Last reported: 2005-10-03

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ Banded Sunfish (Enneacanthus obesus)
}

\section*{Legal Status \\ Federal: Not listed \\ State: Special Concern}

Conservation Status

Global: Demonstrably widespread, abundant, and secure State: Rare or uncommon

\section*{Description at this Location}

Conservation Rank: Not ranked
Comments on Rank:
Detailed Description: 2005: Area 9005: 8 observed, sex and age unknown.
General Area: 2005: Area 9005: Freshwater - stream or river. Large open area with submergent vegetation at perimeter.
General Comments:
Management
Comments:

\section*{Location}

Survey Site Name: Shields Brook
Managed By:
County: Rockingham
Town(s): Londonderry
Size: .0 acres Elevation:
Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 2005: Area 9005: From the junction of Broadway and Rockingham Rd take Rockingham Rd (also Rte. 28) N for ca. 1.75 miles until it crosses Shield Brook.

Dates documented
First reported: 2005-08-22 Last reported: 2005-08-22

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ \\ Blanding's Turtle (Emydoidea blandingii)
} \\ \\ Blanding's Turtle (Emydoidea blandingii)
}
\begin{tabular}{ll} 
Legal Status \\
\hline Federal: & Not listed \\
State: \(\quad\) Listed Endangered
\end{tabular}

Conservation Status
Global: Apparently secure but with cause for concern State: Critically imperiled due to rarity or vulnerability

\section*{Description at this Location}

Conservation Rank: Good quality, condition and landscape context ('B' on a scale of A-D).
Comments on Rank:
Detailed Description: 1997: Area 11910: 1 turtle. Plastron length 8.25 inches.
General Area: 1997: Area 11910: Wetlands and woods nearby. Two small ponds within 0.25 miles (Shields and Rainbow Ponds).
General Comments: 1997: Area 11910: Observed by Joel and Ron Miller.
Management
Comments:

\section*{Location}
\(\begin{array}{ll}\text { Survey Site Name: } & \text { Lower Shields Pond } \\ \text { Managed By: } & \text { Rugh - Private Owner }\end{array}\)
County: Rockingham
Town(s): Derry
Size: \(\quad 17.7\) acres Elevation: 400 feet
Precision: Within 1.5 miles of the area indicated on the map (location information is vague or uncertain).
Directions: 1997: Area 11910: [From Derry Village rotary, take Rte. 102 about 1.5 miles north. Turn left on English Range Road. Follow for ca. 1 mile to vicinity of Rainbow Lake and Lower Shields Pond.]

Dates documented
First reported: 1997-05-20 Last reported: 1997-05-20

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ \\ Blanding's Turtle (Emydoidea blandingii)
} \\ \\ Blanding's Turtle (Emydoidea blandingii)
}


\section*{Location}
\begin{tabular}{ll} 
Survey Site Name: & Little Cohas Brook \\
Managed By: & NHDOT Mitigation
\end{tabular}

County: Rockingham
Town(s): Londonderry
Size: 7.7 acres Elevation:

Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 2004: Area 9278: End of Delta Road off of Harvey Road behind the Londonderry Armed Forces Reserve Center.

\section*{Dates documented}

First reported: 2004-05-15 Last reported: 2004-05-15

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ \\ Blanding's Turtle (Emydoidea blandingii)
} \\ \\ Blanding's Turtle (Emydoidea blandingii)
}
\begin{tabular}{ll} 
Legal Status & Conservation Status \\
\hline Federal: Not listed & Global: Apparently secure but with cau \\
State: Listed Endangered & State: Critically imperiled due to rarit \\
Description at this Location & \\
\hline Conservation Rank: Good quality, condition and landscape context ('B' on a scale of A-D). \\
Comments on Rank: \\
Detailed Description: 2005: Area 9329: 1 adult turtle, road kill with \(8 " \times 5.5\) " shell. \\
General Area: \\
General Comments: \\
Management \\
Comments:
\end{tabular}

\section*{Location}

Survey Site Name: Scobie Pond
Managed By:
County: Rockingham
Town(s): Derry
Size: . 2 acres Elevation:

Precision: Within (but not necessarily restricted to) the area indicated on the map.

Directions: 2005: Area 9329: Scoby Pond Road ca 0.25 miles from Rte 28. The vicinity of M \&ycling.

\section*{Dates documented}

First reported: 2005-06-01 Last reported: 2005-06-01

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ \\ Blanding's Turtle (Emydoidea blandingii)
} \\ \\ Blanding's Turtle (Emydoidea blandingii)
}
\begin{tabular}{ll} 
Legal Status & Conserva \\
\hline Federal: Not listed & Global: A \\
State: Listed Endangered & State: C \\
Description at this Location & \\
\hline Conservation Rank: Not ranked & \\
Comments on Rank: & \\
Detailed Description: 2006: Area 11743: 1 adult female seen. \\
General Area: \\
General Comments: & \\
Management \\
Comments:
\end{tabular}

\section*{Location}

Survey Site Name: Nesenkeag Brook
Managed By:
County: Rockingham
Town(s): Londonderry
Size: . 4 acres Elevation:

Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 2006: Area 11743: Crossed Mayflower Drive approximately 150' from High Range Road.

\section*{Dates documented}

First reported: 2006-06-15 Last reported: 2006-06-15

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ \\ Blanding's Turtle (Emydoidea blandingii)
} \\ \\ Blanding's Turtle (Emydoidea blandingii)
}

\section*{Legal Status}

Federal: Not listed
State: Listed Endangered

Conservation Status
Global: Apparently secure but with cause for concern State: Critically imperiled due to rarity or vulnerability

\section*{Description at this Location}

Conservation Rank: Not ranked
Comments on Rank:

Detailed Description: 2005: Area 11511: 1 adult turtle observed 30 yards from a medium to large vernal pool.
General Area: 2005: Area 11511: Near medium to large vernal pool. Meadows and little woods.
General Comments:
Management
Comments:

\section*{Location}

Survey Site Name: Lower Shields Pond
Managed By:
County: Rockingham
Town(s): Derry
Size: 7.7 acres Elevation:
Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 2005: Area 11511: About 200 yards from powerline off Paul Avenue.

\section*{Dates documented}

First reported: 2005-04-18 Last reported: 2005-04-18

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ \\ Blanding's Turtle (Emydoidea blandingii)
} \\ \\ Blanding's Turtle (Emydoidea blandingii)
}
\begin{tabular}{ll} 
Legal Status & Conservation Status \\
\hline Federal: Not listed & Global: Apparently secure \\
State: Listed Endangered & State: Critically imperiled \\
& \\
Description at this Location & \\
\hline Conservation Rank: Not ranked \\
Comments on Rank: \\
& \\
Detailed Description: & 2008: Area \(11543 \mathrm{M}: 2\) adults seen. \\
General Area: & 2008: Area \(11543 \mathrm{M}:\) Beaver pond. On a log in the water. \\
General Comments: & \\
Management \\
Comments:
\end{tabular}

\section*{Location}

Survey Site Name: Lower Shields Pond
Managed By:
County: Rockingham
Town(s): Derry
Size: 30.8 acres Elevation:
Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 2008: Area 11543M: Intersection of powerlines off Scenic Drive and Paul Avenue.

\section*{Dates documented}

First reported: 2008-05-14 Last reported: 2008-05-14

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ \\ Blanding's Turtle (Emydoidea blandingii)
} \\ \\ Blanding's Turtle (Emydoidea blandingii)
}

\section*{Legal Status}

Conservation Status
Federal: Not listed
State: Listed Endangered

Global: Apparently secure but with cause for concern
State: Critically imperiled due to rarity or vulnerability

\section*{Description at this Location}

Conservation Rank: Not ranked
Comments on Rank:

Detailed Description: 2006: Area 11689M: 1 young individual female seen on 2006-05-18. 1 adult seen on 2006-05-20.
General Area: 2006: Area 11689M: Near vernal pool.
General Comments:
Management
Comments:

\section*{Location}

Survey Site Name: Lower Shields Pond
Managed By:
County: Rockingham
Town(s): Derry
Size: 30.8 acres Elevation:
Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 2006: Area 11689M: Vernal pool near beaver pond at powerline between Paul Avenue \&c Drive.

\section*{Dates documented}

First reported: 2006-05-18 Last reported: 2006-05-20

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ \\ Blanding's Turtle (Emydoidea blandingii)
} \\ \\ Blanding's Turtle (Emydoidea blandingii)
}
\begin{tabular}{ll} 
Legal Status & Conservation Statu \\
\hline Federal: Not listed & Global: Apparently \\
State: Listed Endangered & State: Critically im \\
& \\
Description at this Location & \\
\hline Conservation Rank: Not ranked & \\
Comments on Rank: \\
Detailed Description: 2006: Area 11854: 1 adult male turtle observed. \\
General Area: & \\
General Comments: & \\
Management \\
Comments:
\end{tabular}

\section*{Location}

Survey Site Name: Lower Shields Pond
Managed By:
County: Rockingham
Town(s): Derry
Size: . 2 acres Elevation:

Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 2006: Area 11854: 36R Scenic Drive.

\section*{Dates documented}

First reported: 2006-06-23 Last reported: 2006-06-23

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ \\ Blanding's Turtle (Emydoidea blandingii)
} \\ \\ Blanding's Turtle (Emydoidea blandingii)
}
\begin{tabular}{ll} 
Legal Status & Conservation \\
\hline Federal: Not listed & Global: App \\
State: Listed Endangered & State: Criti \\
& \\
\hline Description at this Location & \\
\hline Conservation Rank: Not ranked & \\
Comments on Rank: & \\
& \\
Detailed Description: & 2009: Area 12308: 1 observed. \\
General Area: & 2009: Area 12308: In residential building. \\
General Comments: & \\
Management & \\
Comments: &
\end{tabular}

\section*{Location}

Survey Site Name: Little Cohas Brook
Managed By:
County: Rockingham
Town(s): Londonderry
Size: 7.7 acres Elevation:

Precision: Within (but not necessarily restricted to) the area indicated on the map.

Directions: 2009: Area 12308: 13 Delta Drive, Suite 7, Londonderry.

\section*{Dates documented}

First reported: 2009-09-23 Last reported: 2009-09-23

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ \\ Blanding's Turtle (Emydoidea blandingii)
} \\ \\ Blanding's Turtle (Emydoidea blandingii)
}
\begin{tabular}{ll} 
Legal Status & Conservation Status \\
\hline Federal: Not listed & Global: Apparently secure but with cause for concen \\
State: Listed Endangered & State: \\
& \\
Descritically imperiled due to rarity or vulner this Location & \\
\hline Conservation Rank: Not ranked \\
Comments on Rank: \\
& \\
Detailed Description: & 2006: Area 11746: 3 adult females seen. \\
General Area: & 2006: Area 11746: Stream adjacent to open tussock, sedge, meadow with seeps. \\
General Comments: & \\
Management \\
Comments:
\end{tabular}

\section*{Location}

Survey Site Name: Scobie Pond
Managed By:
County: Rockingham
Town(s): Londonderry
Size: . 4 acres Elevation:

Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 2006: Area 11746: A superfund site (the Auburn Road landfill).

\section*{Dates documented}

First reported: 2006-04-02 Last reported: 2006-04-02

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ \\ Blanding's Turtle (Emydoidea blandingii)
} \\ \\ Blanding's Turtle (Emydoidea blandingii)
}
\begin{tabular}{ll} 
Legal Status & Conservation Status \\
\hline Federal: Not listed & Global: Apparently secure but with cause \\
State: Listed Endangered & State: Critically imperiled due to rarity \\
Description at this Location & \\
\hline Conservation Rank: Not ranked & \\
Comments on Rank: & \\
& \\
Detailed Description: & 2010: Area 12821: 1 adult female nesting. \\
General Area: & 2010: Area 12821: Digging nest in residential yard within mixed forest. \\
General Comments: & \\
Management \\
Comments:
\end{tabular}

\section*{Location}

Survey Site Name: Lower Shields Pond
Managed By:
County: Rockingham
Town(s): Derry
Size: 1.9 acres Elevation:

Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 2010: Area 12821: 24 Paul Avenue, Derry.

\section*{Dates documented}

First reported: 2010-07-10 Last reported: 2010-07-10

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ \\ Blanding's Turtle (Emydoidea blandingii)
} \\ \\ Blanding's Turtle (Emydoidea blandingii)
}

\section*{Legal Status \\ Conservation Status}

Federal: Not listed
Global: Apparently secure but with cause for concern
State: Listed Endangered

\section*{Description at this Location}

Conservation Rank: Not ranked
Comments on Rank:

Detailed Description: 2012: Area 12991M: 1 female observed, laying eggs.
General Area: 2012: Area 12991M: Residential yard. Laying eggs in mulched garden area near retaining wall.
General Comments:
Management
Comments:

\section*{Location}

Survey Site Name: Scobie Pond
Managed By:
County: Rockingham
Town(s): Londonderry
Size: 1.9 acres Elevation:
Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 2012: Area 12991M: 27 Partridge Lane, Derry.

\section*{Dates documented}

First reported: 2012-05-31 Last reported: 2012-05-31

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ \\ Blanding's Turtle (Emydoidea blandingii)
} \\ \\ Blanding's Turtle (Emydoidea blandingii)
}
\begin{tabular}{ll} 
Legal Status & Conservation Status \\
\hline Federal: Not listed & Global: Apparently secure but \\
State: Listed Endangered & State: \\
& \\
Description at this Location imperiled due \\
\hline Conservation Rank: Not ranked & \\
Comments on Rank: & \\
Detailed Description: & 2012: Area 13045: 1 adult observed. \\
General Area: & 2012: Area 13045: Gravel road shoulder near wetland forest. \\
General Comments: & \\
Management \\
Comments:
\end{tabular}

\section*{Location}

Survey Site Name: Little Cohas Brook
Managed By:
County: Rockingham
Town(s): Londonderry
Size: 1.9 acres Elevation:

Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 2012: Area 13045: Aviation Park Drive, Londonderry, just before cul-de-sac at end of road.

\section*{Dates documented}

First reported: 2012-06-07 Last reported: 2012-06-07

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ \\ Blanding's Turtle (Emydoidea blandingii)
} \\ \\ Blanding's Turtle (Emydoidea blandingii)
}
\begin{tabular}{ll} 
Legal Status & Conservation Status \\
\hline Federal: Not listed & Global: Apparently secure but with ca \\
State: Listed Endangered & State: Critically imperiled due to rarity \\
& \\
Description at this Location & \\
\hline Conservation Rank: Not ranked & \\
Comments on Rank: & \\
& \\
Detailed Description: & 2013: Area 13547: 1 juvenile observed, sex unknown. \\
General Area: & 2013: Area 13547: Roadside, suburban area near wood and wetland. \\
General Comments: & \\
Management & \\
Comments:
\end{tabular}

\section*{Location}

Survey Site Name: Scobie Pond
Managed By:
County: Rockingham
Town(s): Londonderry
Size: 1.9 acres Elevation:

Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 2013: Area 13547: Auburn Road, Derry, approximately 200 feet north of Old Derry Road.

\section*{Dates documented}

First reported: 2013-05-22 Last reported: 2013-05-22

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ \\ Blanding's Turtle (Emydoidea blandingii)
} \\ \\ Blanding's Turtle (Emydoidea blandingii)
}
\begin{tabular}{ll} 
Legal Status & Conservation Status \\
\hline Federal: Not listed & Global: Apparently secure but with \\
State: Listed Endangered & State: Critically imperiled due to \\
& \\
Description at this Location & \\
\hline Conservation Rank: Not ranked & \\
Comments on Rank: & \\
Detailed Description: & 2013: Area 13428: 1 adult observed, sex unknown. \\
General Area: & 2013: Area 13428: Roadside in residential area, coniferous forest. \\
General Comments: & \\
Management & \\
Comments:
\end{tabular}

\section*{Location}

Survey Site Name: Nesenkeag Brook
Managed By:
County: Rockingham
Town(s): Londonderry
Size: 1.9 acres Elevation:

Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 2013: Area 13428: High Range Road, Londonderry. Crossing Road at intersection of High Range Road and Davis Drive.

\section*{Dates documented}

First reported: 2013-06-10 Last reported: 2013-06-10

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ \\ Blanding's Turtle (Emydoidea blandingii)
} \\ \\ Blanding's Turtle (Emydoidea blandingii)
}
\begin{tabular}{ll} 
Legal Status & Conservation Status \\
\hline Federal: Not listed & Global: Apparently secure but w \\
State: Listed Endangered & State: Critically imperiled due \\
& \\
Description at this Location & \\
\hline Conservation Rank: Not ranked & \\
Comments on Rank: & \\
Detailed Description: & 2014: Area 13919: 1 adult observed, sex unknown. \\
General Area: & 2014: Area 13919: Office park just west of Little Cohas Brook \\
General Comments: & \\
Management & \\
Comments:
\end{tabular}

\section*{Location}

Survey Site Name: Little Cohas Brook
Managed By:
County: Rockingham
Town(s): Londonderry
Size: . 4 acres Elevation:

Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 2014: Area 13919: Outside of office building on Delta Drive, Londonderry (42.91197, -71.41648).

\section*{Dates documented}

First reported: 2014-06-12 Last reported: 2014-06-12

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ New England Cottontail (Sylvilagus transitionalis)
}


The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ New England Cottontail (Sylvilagus transitionalis)
}
\begin{tabular}{|c|c|}
\hline Legal Status & Conservation Status \\
\hline Federal: Not listed & Global: Rare or uncommon \\
\hline State: Listed Endangered & State: Critically imperiled due to rarity or vulnerability \\
\hline \multicolumn{2}{|l|}{Description at this Location} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Conservation Rank: Not ranked
Comments on Rank:}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Detailed Description: 2013: Winter observations at 13 points.2011: Winter observations at 32 points.2002: \(1+\) age and sex unknowns (Obs_id 744).} \\
\hline \multicolumn{2}{|l|}{General Area: 2002: Terrestrial: grassland / field (Obs_id 744).} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{General Comments: 2002: Results of J. Litvaitis Regional NEC Survey - 2003 (Obs_id 744).
Management}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Comments:} \\
\hline \multicolumn{2}{|l|}{Location} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{ll} 
Survey Site Name: & Little Cohas Brook, south of \\
Managed By: & NHDOT Mitigation
\end{tabular}}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{County: Rockingham} \\
\hline \multicolumn{2}{|l|}{Town(s): Londonderry} \\
\hline Size: 27.6 acres & Elevation: \\
\hline \multicolumn{2}{|l|}{Precision: Within (but not necessarily restricted to) the area indicated on the map.} \\
\hline \multicolumn{2}{|l|}{Directions: 2002: Stonyfield Farm (Obs_id 744).} \\
\hline \multicolumn{2}{|l|}{Dates documented} \\
\hline First reported: 2002-02-02 & Last reported: 2013 \\
\hline
\end{tabular}

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ Northern Black Racer (Coluber constrictor constrictor)
}
\begin{tabular}{ll} 
Legal Status & Conservation Status \\
\hline Federal: Not listed & Global: Demonstrably widespread, abundant, and \\
State: Listed Threatened & State: \\
& \\
Description at this Location & \\
\hline Conservation Rank: Not ranked & \\
Comments on Rank: & \\
Detailed Description: & 2013: Area 13552: 1 adult observed, sex unknown. \\
General Area: & 2013: Area 13552: Scrub-shrub wetland under powerline adjacent to substation. \\
General Comments: & \\
Management \\
Comments:
\end{tabular}

\section*{Location}

Survey Site Name: Scobie Pond, south of
Managed By:
County: Rockingham
Town(s): Londonderry
Size: . 4 acres Elevation:
Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 2013: Area 13552: Electric substation at Scobie Pond Road, Londonderry.

\section*{Dates documented}

First reported: 2013-05-28 Last reported: 2013-05-28

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ Northern Black Racer (Coluber constrictor constrictor)
}
\begin{tabular}{l} 
Legal Status \\
\hline Federal: Not listed \\
State: Listed Threatened \\
Description at this Location \\
\hline Conservation Rank: Not ranked \\
Comments on Rank:
\end{tabular}

Comments on Rank:

Detailed Description: 2014: Area 13599: 1 adult observed, sex unknown. Area 13607: 1 adult observed, sex unknown.
General Area: 2014: Area 13599: Roadside.
General Comments:
Management
Comments:

\section*{Location}

Survey Site Name: I-93, Londonderry
Managed By:
County: Rockingham
Town(s): Londonderry
Size: . 9 acres Elevation:
Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 2014: Area 13599: Side of I-93, Londonderry (42.88717, -71.34987). Area 13607: Side of I-93, Londonderry (42.88556, -71.34861).

Dates documented
First reported: 2014-07-30 Last reported: 2014-07-30

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ \\ Smooth Green Snake (Opheodrys vernalis)
} \\ \\ Smooth Green Snake (Opheodrys vernalis)
}
\begin{tabular}{ll} 
Legal Status & Conservation Status \\
\hline Federal: Not listed & \begin{tabular}{l} 
Global: Demonstrably widespread, abundant, and se \\
State: \(\quad\) Special Concern \\
State: Rare or uncommon
\end{tabular} \\
Description at this Location & \\
\hline Conservation Rank: Not ranked & \\
Comments on Rank: & \\
& \\
Detailed Description: & 2008: Area 11542: 1 adult seen. 2004: Area 11663: 1 adult seen. \\
General Area: & 2008: Area 11542: On side of Vista Avenue. 2004: Area 11663: Residential yard. \\
General Comments: \\
Management \\
Comments:
\end{tabular}

\section*{Location}

Survey Site Name: Vista Avenue
Managed By:
County: Rockingham
Town(s): Derry
Size: 13.8 acres Elevation:
Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 2008: Area 11542: On the side of Vista Avenue, Derry.2004: Area 11663: 16 Paul Avenue, Derry.

\section*{Dates documented}

First reported: 2004-07-01 Last reported: 2008-08-01

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ \\ Smooth Green Snake (Opheodrys vernalis)
} \\ \\ Smooth Green Snake (Opheodrys vernalis)
}
\begin{tabular}{l} 
Legal Status \\
\hline Federal: Not listed \\
State: Special Concern \\
\\
Description at this Location \\
\hline Conservation Rank: Not ranked \\
Comments on Rank: \\
\\
Detailed Description: 2003: Area 1044: 1 observed. \\
General Area: \\
General Comments: \\
Management \\
Comments:
\end{tabular}

\section*{Location}

Survey Site Name: Little Cohas Marsh
Managed By: NHDOT Mitigation
County: Rockingham
Town(s): Londonderry
Size: 1.9 acres Elevation:

Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 2003: Area 1044: West shore of marsh, \(1 / 4\) mile south of the dam, on the perimeter of the Army National Guard detention pond

\section*{Dates documented}

First reported: 2003-09-17 Last reported: 2003-09-17

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record Spotted Turtle (Clemmys guttata)
}

\section*{Legal Status}

Federal: Not listed
State: Listed Threatened

\section*{Conservation Status}

Global: Demonstrably widespread, abundant, and secure
State: Imperiled due to rarity or vulnerability

\section*{Description at this Location}

Conservation Rank: Good quality, condition and landscape context ('B' on a scale of A-D).
Comments on Rank:

Detailed Description: 2006: Area 11884: 1 gravid (2 eggs) female killed on road. Area 11687M: 1 young individual seen on 04-28. 14 " long young individual seen on 04-30. 1 adult seen on 05-19. 1997: 1 adult observed.
General Area: 2006: Area 11687M: Powerline near beaver pond. 1997: Small brook, outflow of Rainbow Pond.
General Comments: 1997: Observed by Joel and Ron Miller.
Management
Comments:

\section*{Location}

Survey Site Name: Rainbow Pond
Managed By:
County: Rockingham
Town(s): Derry
Size: 11.0 acres Elevation: 395 feet

Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 2006: Area 11884: Cul-de-sac on Paul Avenue. Area 11687M: Off Paul Avenue \&c Drive powerline intersection. 1996:[From Derry Village rotary, take Rte. 28 Bypass north about 2 miles. Turn right onto Shields Pond Road. Access outlet stream by taking the 5th left.]

\section*{Dates documented}

First reported: 1997-06-21 Last reported: 2006-07-13

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record Spotted Turtle (Clemmys guttata)
}

\section*{Legal Status}

Federal: Not listed
State: Listed Threatened

\section*{Conservation Status}

Global: Demonstrably widespread, abundant, and secure
State: Imperiled due to rarity or vulnerability

\section*{Description at this Location}

Conservation Rank: Fair quality, condition and/or landscape context ('C' on a scale of A-D).
Comments on Rank:

Detailed Description: 2014: Area 13573: 1 adult female observed.2013: Area 13553: 1 adult observed, sex unknown.2006: Area 11710: 1 seen.
General Area: 2014: Area 13573: Forested wetland, connects to shrub wetland.2013: Area 13553: Forested wetland.
General Comments:
Management
Comments:

\section*{Location}
\begin{tabular}{ll}
\hline Survey Site Name: & Scobie Pond vicinity \\
Managed By: & Scobie Pond Recreation Area
\end{tabular}

County: Rockingham
Town(s): Derry
Size: 11.4 acres Elevation:
Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 2014: Area 13573: Forested wetland between powerlines [west of electric substation].2013: Area 13553: Electric substation at Scobie Pond Road, Londonderry.2006: Area 11710: Scobie Pond Road.

Dates documented
First reported: 2006-07-13 Last reported: 2014-05-02

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record Spotted Turtle (Clemmys guttata)
}
\begin{tabular}{ll} 
Legal Status & Conservation Status \\
\hline Federal: Not listed & Global: Demonstrably widespread, abund \\
State: Listed Threatened & State: Imperiled due to rarity or vulnera \\
& \\
Description at this Location & \\
\hline Conservation Rank: Fair quality, condition and/or landscape context ('C' on a scale of A-D). \\
Comments on Rank: \\
& \\
Detailed Description: & 2006: Area 11745: 1 adult seen. \\
General Area: \\
General Comments: & \\
Management \\
Comments:
\end{tabular}

\section*{Location}

Survey Site Name: Old Derry Road, north of
Managed By:
County: Rockingham
Town(s): Londonderry
Size: . 4 acres Elevation:

Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 2006: Area 11745: [Wetlands along unnamed tributary of Cohas Brook near Derry town line, approximately 1 km north of Old Derry Road].

\section*{Dates documented}

First reported: 2006-04-02 Last reported: 2006-04-02

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record Spotted Turtle (Clemmys guttata)
}


The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ Wood Turtle (Glyptemys insculpta)
}
\begin{tabular}{ll} 
Legal Status & Conservation Status \\
\hline Federal: Not listed & Global: Apparently secu \\
State: Special Concern & State: Rare or uncomm \\
Description at this Location & \\
\hline Conservation Rank: Not ranked & \\
Comments on Rank: & \\
& \\
\begin{tabular}{ll} 
Detailed Description: & 2011: Area 13154: 1 adult observed. \\
General Area: & 2011: Area 13154: Forest adjacent to residential yard. \\
General Comments: & \\
Management \\
Comments:
\end{tabular}
\end{tabular}

\section*{Location}
\begin{tabular}{lll}
\hline Survey Site Name: & \begin{tabular}{l} 
Beaver Lake, south of \\
Managed By:
\end{tabular}\(\quad\) Shepard
\end{tabular}\(\quad\)\begin{tabular}{ll} 
\\
County: & Rockingham \\
Town(s): & Derry \\
Size: & 1.9 acres
\end{tabular}

Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 2011: Area 13154: 26 Pond Road, Derry.

\section*{Dates documented}

First reported: 2011-08-27 Last reported: 2011-08-27

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\section*{Memo}

NH Natural Heritage Bureau NHB Datacheck Results Letter

To: Sarah Barnum, Normandeau Associates
25 Nashua Rd
Bedford, NH 03110

From: Amy Lamb, NH Natural Heritage Bureau
Date: \(4 / 4 / 2016\) (valid for one year from this date)
Re: Review by NH Natural Heritage Bureau
NHB File ID: NHB16-0961 Town: Derry, Londonderry Location: South end of project area

Description: I-93 Exit 4A Project: This is a re-evaluation request from previous submittals in 2010, 2005 and 1999. This review is intended to ensure data presented in the project's Final Environmental Impact Statement (FEIS) is up to date. Project proposes to construct a new interchange one mile north of Exit 4 on Interstate 93 in Londonderry and Derry, NH. New interchange would consist of an easterly-only new construction access road that would connect with Folsom Road and then traverse east along Folsom and Tsienneto Roads. Work along Tsienneto Road would typically result in slight adjustments to easterly end of roadway and intersection improvements with Rt 28, Bypass Route 28, and Rt 102. We request that the five remaining alternatives within this study be evaluated to ensure they are each provided the most recent NHNHB review for sensitive plants and animals (Alternatives A through D and F).
cc: Kim Tuttle

As requested, I have searched our database for records of rare species and exemplary natural communities, with the following results.

\title{
Comments: This site is within an area flagged for possible impacts on the state-listed Alasmidonta varicosa (brook floater) in Beaver Brook. Please coordinate with NH Fish \& Game and the NHB to avoid and minimize impacts to the species below.
}

\section*{Invertebrate Species}

Brook Floater (Alasmidonta varicosa)

\section*{Plant species}

\section*{State \({ }^{1}\) Federal Notes \\ State \({ }^{1}\) Federal Notes}
bird-foot violet (Viola pedata)
T -- This species occurs in sandplains, disturbed openings, dry forests, and thin woods. Threats would include direct destruction of the plants or major alterations in their habitat.
butterfly milkweed (Asclepias tuberosa)*
E -- Threats to this species include direct destruction of its habitat.
common star-grass (Hypoxis hirsuta) T
T -- This species occurs in sandplains, disturbed openings, dry forests, and thin woods. Threats would include direct destruction of the plants or major alterations in their habitat.
Downy Arrowwood (Viburnum rafinesquianum)*
E
-- Threats to this understory species would be activities that impacted its habitat (dry

\footnotetext{
Department of Resources and Economic Development
Division of Forests and Lands
(603) 271-2214 fax: 271-6488
}

DRED/NHB
172 Pembroke Rd.
Concord, NH 03301

E
- --
forests and thin woods), such as logging and development.
Alteration of the hydrologic regime is likely the worst threat to this species. Also damaging are over-collection of flowers, succession and overshading by woody species, invasion of wetlands by exotic plant species, and human trampling of loose moss.
\begin{tabular}{|c|c|c|c|}
\hline greater fringed-gentian (Gentianopsis crinita) & T & -- & Vulnerable to shading by invading trees and to di impede their ability to reproduce (such as mowing plants are in bloom). \\
\hline northern tubercled bog-orchid (Platanthera flava var. herbiola) & E & -- & This species occurs in forested swamps, low floo fens, seeps, and wet meadows. Threats to the pla plants, e.g., by ATV traffic, destruction (draining) when succession leads to dense shrub or tree grow \\
\hline red threeawn (Aristida longespica var. geniculata)* & E & & The pond or lake shore natural communities wher vulnerable to trampling, and tend to disappear fro moderate recreational use. They are also vulnerab hydrology. Additional habitats include sandplain \\
\hline Vertebrate species & State \({ }^{1}\) & Federal & Notes \\
\hline Blanding's Turtle (Emydoidea blandingii) & E & -- & Contact the NH Fish \& Game Dept (see below). \\
\hline Grasshopper Sparrow (Ammodramus savannarum) & T & -- & Contact the NH Fish \& Game Dept (see below). \\
\hline New England Cottontail (Sylvilagus transitionalis) & E & & Contact the NH Fish \& Game Dept (see below). \\
\hline Northern Black Racer (Coluber constrictor constrictor) & T & -- & Contact the NH Fish \& Game Dept (see below). \\
\hline Spotted Turtle (Clemmys guttata) & T & -- & Contact the NH Fish \& Game Dept (see below). \\
\hline Wood Turtle (Glyptemys insculpta) & SC & -- & Contact the NH Fish \& Game Dept (see below). \\
\hline
\end{tabular}
\({ }^{1}\) Codes: "E" = Endangered, "T" = Threatened, "SC" = Special Concern, "--" = an exemplary natural community, or a rare species tracked by NH Natural Heritage that has not yet been added to the official state list. An asterisk (*) indicates that the most recent report for that occurrence was more than 20 years ago.
Contact for all animal reviews: Kim Tuttle, NH F\&G, (603) 271-6544.
A negative result (no record in our database) does not mean that a sensitive species is not present. Our data can only tell you of known occurrences, based on information gathered by qualified biologists and reported to our office. However, many areas have never been surveyed, or have only been surveyed for certain species. An on-site survey would provide better information on what species and communities are indeed present.

\section*{NHB16-0961}


\title{
New Hampshire Natural Heritage Bureau - Plant Record \\ bird-foot violet (Viola pedata)
}

\section*{Legal Status}

Federal: Not listed
State: Listed Threatened

\section*{Conservation Status}

Global: Demonstrably widespread, abundant, and secure
State: Imperiled due to rarity or vulnerability

\section*{Description at this Location}

Conservation Rank: Fair quality, condition and/or landscape context ('C' on a scale of A-D).
Comments on Rank: Large population but site highly disturbed and likely to be developed.
Detailed Description: 2010: Area 1: A house has been built on lot and area loamed and seeded. Several clumps observed on roadsides of lot.Area 2: 630 clumps, \(60 \%\) in fruit. Seed collection for NEWFS undertaken ( \(6 / 7\) and \(6 / 9\) ). Very healthy population.2006: Area 1: About 300 clumps estimated - as abundant as in 2005. Quite vigorous, and carpeted some areas (5/22). Observed and photographed (7/25).2005: Area 1: 250-300 clumps (often 5-7 in. diameter) estimated, clumped and scattered in a 0.5 acre area.
General Area: 2006: Area 1: In vacant lot. Other species in the vicinity include: Ionactis linariifolius (stiffleaved aster), Viola sagittata (arrow-leaved violet), Euthamia graminifolia (flat-topped goldenrod), Erigeron canadensis (horseweed), Schizachyrium scoparium (little bluestem), Potentilla canadensis (running field cinquefoil), Juncus greenei (Greene's rush), Helianthemum canadense (Canadian frostweed), Deschampsia flexuosa (common hairgrass), Betula populifolia (gray birch), Oenothera biennis (biennial evening primrose), Pinus strobus (white pine), Erigeron annuus (daisy fleabane), Nuttallanthus canadensis (blue toadflax), Solidago nemoralis (northern gray goldenrod), Dichanthelium linearifolium (linear-leaved panic grass), Solidago juncea (early goldenrod), Asclepias syriaca (common milkweed), and Hypericum gentianoides (orange grass).2005: Area 1: Vacant lot in the vicinity of Pinus strobus (white pine) and Pinus resinosa (red pine) woods. Associated species include Potentilla simplex (old-field cinquefoil), Potentilla canadensis (running field cinquefoil), Houstonia caerulea (bluets), Solidago spp. (goldenrod), Ionactis linariifolius (stiff-leaved aster), and Rumex acetosella (red sorrel). Lot is heavily disturbed: all trees removed, soil disturbed as stumps dragged around, slash dumped at one side.
General Comments:
Management
2006: At one lot after some trees were taken down (year unknown) the numbers of violets Comments: increased.

\section*{Location}

Survey Site Name: Pine Street
Managed By:
County: Rockingham
Town(s): Londonderry
Size: . 4 acres Elevation:
Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 2010: Area 2: From Route 128 (Mammoth Rd.) in Londonderry, head east onto Valley Street to residence at 8 Valley St.2006: Areas 1 and 2: [From Rte. 128 in Londonderry, head east onto Valley Street. Take a left onto Loop Rd. and then merge onto Pine Street. Park at vacant lot at 17 Pine Street]. Driving around neighborhood, clumps of violets observed growing on the roadsides.2005: Area 1: Take Rte. 102 to Mammoth Rd. south. Turn left on Valley St. Bear left on Loop Rd. which turns into Pine St.

\section*{Dates documented}

First reported: 2005-06-08 Last reported: 2006-07-25

\title{
New Hampshire Natural Heritage Bureau - Plant Record butterfly milkweed (Asclepias tuberosa)
}
\begin{tabular}{ll} 
Legal Status & Conservation Status \\
\hline Federal: & Not listed \\
State: & Listed Endangered
\end{tabular} Global: Demonstrably widespread, abundant, and secure

\section*{Description at this Location}

Conservation Rank: Historical records only - current condition unknown.
Comments on Rank:
Detailed Description: 2008, 2004, 2002, 2001: Searched for but not found.No date: Specimen collected.
General Area:
General Comments:
Management 2008: Open fields in the area had been mowed with the last month or so (7/14). One
Comments: landowner unable to delay haying, second landowner not spoken to.2001: Area appeared to be regularly mowed as well as disturbed in front field.

\section*{Location}

Survey Site Name: Ezekiel Pond
Managed By:
County: Rockingham
Town(s): Derry
Size: 123.5 acres Elevation: 460 feet

Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: No Date: 0.75 mile east of Ezekiel Pond. South of Kilrea Road.

\section*{Dates documented}
First reported: No Date Last reported: No date

\title{
New Hampshire Natural Heritage Bureau - Plant Record common star-grass (Hypoxis hirsuta)
}

\section*{Legal Status \\ Federal: Not listed \\ State: Listed Threatened \\ Description at this Location \\ General Comments:}

\section*{Conservation Status}

Global: Demonstrably widespread, abundant, and secure
State: Imperiled due to rarity or vulnerability

Conservation Rank: Good quality, condition and landscape context ('B' on a scale of A-D).
Comments on Rank: Moderate population in an artificially maintained habitat.
Detailed Description: 2010: 84 flowering stems marked and counted, scattered in a \(25 \times 50\)-foot area.
General Area: 2010: Rich, wet meadow, artificially maintained by annual mowing.
Management 2010: Purple loosestrife is a problem. Plants have been pulled for a number of years and Comments: beatles were released in 2009. The area has to be mowed in the fall. Also managed for pale green orchid (Platanthera flava var. herbiola) and fringed gentian (Gentianopsis crinita).

\section*{Location}
\begin{tabular}{ll} 
Survey Site Name: & Flax Field \\
Managed By: & Flax Field (Phase II)
\end{tabular}

County: Rockingham
Town(s): Londonderry
Size: . 4 acres Elevation:

Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 2010: From the intersection of I-93 and NH Rte. 102 in Londonderry travel west on 102 to right turn on Mammoth Road at a light. Travel north to intersection with Pillsbury Road at a light. Turn left onto Pillsbury Road. Flax Field is on the right just past the driveway to Moose Hill Kindergarten. Most of the plants are in the SW portion of the field \((42.85990 \mathrm{~N}, 71.37965 \mathrm{~W})\).

\section*{Dates documented}
First reported: 2010-07-08 Last reported: 2010-07-17

\title{
New Hampshire Natural Heritage Bureau - Plant Record \\ Downy Arrowwood (Viburnum rafinesquianum)
}

\section*{Legal Status}

Federal: Not listed
State: Listed Endangered

Conservation Status
Global: Demonstrably widespread, abundant, and secure
State: Critically imperiled due to rarity or vulnerability

\section*{Description at this Location}

Conservation Rank: Historical records only - current condition unknown.
Comments on Rank: Very small population compared to Howe Hill in Derry and Hampstead.
Detailed Description: 1991: 11-50 plants, \(5 \%\) with mature fruit. Some of these shrubs were up to 6 feet tall.
General Area: 1991: Growing alongside a narrow seepage swamp. Appears to be some ecological differences in this relatively small area of the forest as indicated by different species found here.
General Comments: 1991:1 small population found. No more in vicinity, but possibly a "mother" population somewhere in surrounding woods.
Management 1991: Evidence of human disturbance nearby - some cutting and dirt roads.
Comments:

\section*{Location}

Survey Site Name: Morrison Road Seepage Swamp
Managed By:
County: Rockingham
Town(s): Windham
Size: 2.8 acres Elevation: 330 feet
Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 1991: Take Morrison Road just south of Windham Depot off Bridge Street.
Dates documented
First reported: 1991-10-18 Last reported: 1991-10-18

\title{
New Hampshire Natural Heritage Bureau - Plant Record dragon's-mouth (Arethusa bulbosa)
}
\begin{tabular}{ll} 
Legal Status & Conservation Status \\
\hline Federal: Not listed & Global: Apparently sec \\
State: Listed Endangered & State: Critically impe \\
Description at this Location & \\
\hline Conservation Rank: Historical records only - current condition unknown. \\
Comments on Rank: & \\
& \\
Detailed Description: & 1909: Specimen collected. \\
General Area: & 1909: No details. \\
General Comments: & \\
Management & \\
Comments: &
\end{tabular}

\section*{Location}

Survey Site Name: Windham Depot
Managed By: Windham Rd Holdings
County: Rockingham
Town(s): Windham
Size: 1148.0 acres Elevation: 320 feet

Precision: Within 1.5 miles of the area indicated on the map (location information is vague or uncertain).
Directions: Windham Depot.

\section*{Dates documented}

First reported: 1909-06-09 Last reported: 1909-06-09

\title{
New Hampshire Natural Heritage Bureau - Plant Record greater fringed-gentian (Gentianopsis crinita)
}
\begin{tabular}{ll} 
Legal Status & Conservation S \\
\hline Federal: Not listed & Global: Demon \\
State: Listed Threatened & State: Imperil \\
Description at this Location & \\
\hline Conservation Rank: Not ranked & \\
Comments on Rank: & \\
\begin{tabular}{ll} 
Detailed Description: & 1997: 20-30 plants. \\
General Area: & 1997: Meadow with surrounding wetlands. \\
\begin{tabular}{l} 
General Comments: \\
Management \\
Comments:
\end{tabular} & Meadow is mowed in August for town event.
\end{tabular}
\end{tabular}

\section*{Location}

Survey Site Name: Moose Hill Orchards
Managed By: Flax Field (Phase II)
County: Rockingham
Town(s): Londonderry
Size: 2.8 acres Elevation: 325 feet

Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: From Rte. 93, exit 4 onto Mammoth. Take a left on W. Pillsbury Rd. and go 0.75 mile to apple orchard on right. Walk about 15 feet North from road, proceed west into meadow. Plants are scattered throughout.

Dates documented
First reported: 1997-10 Last reported: 1997-10

\title{
New Hampshire Natural Heritage Bureau - Plant Record \\ northern tubercled bog-orchid (Platanthera flava var. herbiola)
}

\section*{Legal Status}

Federal: Not listed
State: Listed Endangered

\section*{Conservation Status}

Global: Apparently secure but with cause for concern
State: Critically imperiled due to rarity or vulnerability

\section*{Description at this Location}

Conservation Rank: Fair quality, condition and/or landscape context ('C' on a scale of A-D).
Comments on Rank: Moderate population size on conservation land being managed for multiple rare plants. 2003:
(D) Single plant.

Detailed Description: 2010: 33 flowering stems, scattered in groups. Smaller stature due to droughty conditions.2009: 44 flowering stems, normal vigor.2003: One plant, in flower.
General Area: 2010: Rich, wet meadow artificially maintained by annual mowing. Associated species include old-field cinquefoil (Potentilla simplex), purple avens (Geum rivale), large cranberry (Vaccinium macrocarpon), asters (Symphyotrichum sp.), goldenrods (Solidago sp.), and various garminoids.2003: Wet meadow, inundated in spring. Associated plants include Scirpus cyperinus (woolly bulrush), Lythrum salicaria (purple loosestrife), Salix sp. (willow), Sanguisorba canadensis (Canadian burnet), and Hypoxis hirsuta (hairy star-grass).
General Comments: 2010: American copper butterflies were pollinating the flowers.2003: Meadow mowed by accident 7-10 days after the survey. Status of the orchid unknown.
Management 2010: Area being managed by the Londonderry Conservation Commission in co-operation Comments: with the NEWFS Plant Conservation Volunteer program. There is a purple loosestrife problem. We have been pulling for a number of years and released beetles in 2009. The pale green orchid area has been kept as clear as possible, but mowing probably offers a vector for continued seed dispersal. Area has to be mowed in the fall as it is also home to hairy stargrass (Hypoxis hirsuta) and fringed gentian (Gentianopsis crinita).

\section*{Location}
\begin{tabular}{ll}
\hline Survey Site Name: & Londonderry, west of \\
Managed By: & Flax Field (Phase II)
\end{tabular}

County: Rockingham
Town(s): Londonderry
Size: 1.9 acres Elevation:
Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 2010: From the intersection of I-93 and Rte. 102 in Londonderry travel west on Rte. 102 to
Mammoth Road. There is a light. Travel north to first light, turning left on Pillsbury Road. Flax
Field is on the right just past the driveway to Moose Hill Kindergarten. Plants are in the lower portions of the SW part of the field.2003: From Rte. 128 (Mammoth Rd) in Londonderry, take Pillsbury Road west. Go ca. 0.5 miles on Pillsbury Road. Plant is on the north side of the road, just past the [driveway] to Moose Hill School. (N 42.85990 W 71.37965)

\section*{Dates documented}
First reported: 2003-07-01 Last reported: 2010-07-17

\title{
New Hampshire Natural Heritage Bureau - Plant Record red threeawn (Aristida longespica var. geniculata)
}
\begin{tabular}{ll} 
Legal Status & Conservation Status \\
\hline Federal: Not listed & Global: Demonstrably \\
State: Listed Endangered & State: Critically impe \\
& \\
Description at this Location & \\
\hline Conservation Rank: Historical records only - current condition unknown. \\
Comments on Rank: & \\
& \\
Detailed Description: & 1977: Specimen collected. \\
General Area: & 1977: Disturbed area, railroad right-of-way. \\
General Comments: & 1993: AT\&e put through in 1993. \\
Management & \\
Comments: &
\end{tabular}

\section*{Location}

Survey Site Name: Derry
Managed By: Tuckernuck Development LLC
County: Rockingham
Town(s): Derry
Size: 4592.3 acres Elevation: 235 feet
Precision: Within 1.5 miles of the area indicated on the map (location information is vague or uncertain).
Directions: Derry. Railroad right-of-way.

\section*{Dates documented}

First reported: 1977-10-15 Last reported: 1977-10-15

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ \\ Blanding's Turtle (Emydoidea blandingii)
} \\ \\ Blanding's Turtle (Emydoidea blandingii)
}

\section*{Legal Status}

Federal: Not listed
State: Listed Endangered

Conservation Status
Global: Apparently secure but with cause for concern State: Critically imperiled due to rarity or vulnerability

\section*{Description at this Location}

Conservation Rank: Good quality, condition and landscape context ('B' on a scale of A-D).
Comments on Rank:
Detailed Description: 2007: Area 11768M: Observed on May 3 and May 22.
General Area: 2007: Area 11768M: May 3: On \(\log\) with several painted turtles in wetland near Mitchell
Pond. May 22: Less than 100 feet from bike trail on logs.
General Comments:
Management
Comments:

\section*{Location}

Survey Site Name: Mitchell Pond
Managed By: Manchester-Lawrence RR Bed
County: Rockingham
Town(s): Windham
Size: 1.9 acres Elevation:
Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions:

\section*{Dates documented}
First reported: 2007-05-03 Last reported: 2007-05-22

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ Blanding's Turtle (Emydoidea blandingii)
}
\begin{tabular}{ll} 
Legal Status & Conservat \\
\hline Federal: Not listed & Global: A \\
State: Listed Endangered & State: C \\
& \\
Description at this Location & \\
\hline Conservation Rank: Not ranked & \\
Comments on Rank: \\
Detailed Description: 2006: Area 11743: 1 adult female seen. \\
General Area: & \\
General Comments: & \\
Management \\
Comments:
\end{tabular}

\section*{Location}

Survey Site Name: Nesenkeag Brook
Managed By:
County: Rockingham
Town(s): Londonderry
Size: . 4 acres Elevation:
Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 2006: Area 11743: Crossed Mayflower Drive approximately 150' from High Range Road.

\section*{Dates documented}

First reported: 2006-06-15 Last reported: 2006-06-15

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ Blanding's Turtle (Emydoidea blandingii)
}
\begin{tabular}{ll} 
Legal Status & Conservation Status \\
\hline Federal: Not listed & Global: Apparently secure but with \\
State: Listed Endangered & State: Critically imperiled due to r \\
& \\
Description at this Location & \\
\hline Conservation Rank: Not ranked & \\
Comments on Rank: & \\
Detailed Description: & 2013: Area 13428: 1 adult observed, sex unknown. \\
General Area: & 2013: Area 13428: Roadside in residential area, coniferous forest. \\
General Comments: & \\
Management & \\
Comments:
\end{tabular}

\section*{Location}

Survey Site Name: Nesenkeag Brook
Managed By:
County: Rockingham
Town(s): Londonderry
Size: 1.9 acres Elevation:

Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 2013: Area 13428: High Range Road, Londonderry. Crossing Road at intersection of High Range Road and Davis Drive.

Dates documented
First reported: 2013-06-10 Last reported: 2013-06-10

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ Blanding's Turtle (Emydoidea blandingii)
}
\begin{tabular}{ll} 
Legal Status & Conservation Status \\
\hline Federal: Not listed & Global: Apparently secure but with cause \\
State: Listed Endangered & State: Critically imperiled due to rarity \\
& \\
Description at this Location & \\
\hline Conservation Rank: Not ranked & \\
Comments on Rank: \\
Detailed Description: 2013: 2 individuals observed on 4/19. 2 individuals observed on 4/27. \\
General Area: \\
General Comments: & \\
Management \\
Comments:
\end{tabular}

\section*{Location}

Survey Site Name: Mitchell Pond
Managed By: Manchester-Lawrence RR Bed
County: Rockingham
Town(s): Windham
Size: 5.3 acres Elevation:
Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions:

\section*{Dates documented}

First reported: 2013-04-19 Last reported: 2013-04-27

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ Blanding's Turtle (Emydoidea blandingii)
}
\begin{tabular}{ll} 
Legal Status & Conservation Status \\
\hline Federal: Not listed & Global: Apparently secure but with cause \\
State: Listed Endangered & State: Critically imperiled due to rarity \\
& \\
Description at this Location & \\
\hline Conservation Rank: Not ranked & \\
Comments on Rank: \\
Detailed Description: 2013: 6 individuals observed on 4/19. 6 individuals observed on 4/27. \\
General Area: \\
General Comments: & \\
Management \\
Comments:
\end{tabular}

\section*{Location}

Survey Site Name: Mitchell Pond
Managed By: Manchester-Lawrence RR Bed
County: Rockingham
Town(s): Windham
Size: 1.1 acres Elevation:
Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions:

\section*{Dates documented}

First reported: 2013-04-19 Last reported: 2013-04-27

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ Grasshopper Sparrow (Ammodramus savannarum)
}


The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ New England Cottontail (Sylvilagus transitionalis)
}


The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ Northern Black Racer (Coluber constrictor constrictor)
}
\begin{tabular}{l} 
Legal Status \\
\hline Federal: Not listed \\
State: Listed Threatened \\
Description at this Location \\
\hline Conservation Rank: Not ranked \\
Comments on Rank:
\end{tabular}

Comments on Rank:
Detailed Description: 2014: Area 13599: 1 adult observed, sex unknown. Area 13607: 1 adult observed, sex unknown.
General Area: 2014: Area 13599: Roadside.
General Comments:
Management
Comments:

\section*{Location}

Survey Site Name: I-93, Londonderry
Managed By:
County: Rockingham
Town(s): Londonderry
Size: . 9 acres Elevation:
Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 2014: Area 13599: Side of I-93, Londonderry (42.88717, -71.34987). Area 13607: Side of I-93, Londonderry (42.88556, -71.34861).

Dates documented
First reported: 2014-07-30 Last reported: 2014-07-30

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record Spotted Turtle (Clemmys guttata)
}
\begin{tabular}{ll} 
Legal Status \\
\hline Federal: & Not listed \\
State: \(\quad\) Listed Threatened
\end{tabular}

\section*{Conservation Status}
\(\begin{array}{ll}\text { Federal: } & \text { Not listed } \\ \text { State: } & \text { Listed Threatened }\end{array}\)

Global: Demonstrably widespread, abundant, and secure
State: Imperiled due to rarity or vulnerability

\section*{Description at this Location}

Conservation Rank: Fair quality, condition and/or landscape context ('C' on a scale of A-D).
Comments on Rank:
Detailed Description: 2012: Area 13018: 1 adult observed.2005: Area 9299: 1 turtle observed.
General Area: 2012: Area 13018: Crossing road between wetland areas.2005: Area 9299: Old farm pond, wet areas, stream.
General Comments:
Management
Comments:

\section*{Location}

Survey Site Name: Robert Frost Farm, South of
Managed By:
\begin{tabular}{lll} 
County: & Rockingham & \\
Town(s): & Derry & \\
Size: & 32.8 acres & Elevation:
\end{tabular}

Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 2012: Area 13018: Culvert under road at 44 Berry Road, Derry.2005: Area 9299: Broadview Farm [From the junction of Rte. 28 and Rte. 102 take Rte. 28 southeast ca. 1.67 miles and turn right onto Gregg Road and travel ca. 0.35 miles to South Range Road. Follow South Range Road for 0.15 miles.].

Dates documented
First reported: 2005-05-09 Last reported: 2012-08-18

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ \\ Wood Turtle (Glyptemys insculpta)
} \\ \\ Wood Turtle (Glyptemys insculpta)
}
\begin{tabular}{ll} 
Legal Status & Conservation Status \\
\hline Federal: & Not listed \\
State: & Special Concern
\end{tabular} Global: Apparently secure but with cause for concern

\section*{Description at this Location}

Conservation Rank: Fair quality, condition and/or landscape context ('C' on a scale of A-D).
Comments on Rank:

Detailed Description: 2006: Area 11655: 1 adult male seen.
General Area:
General Comments:
Management
Comments:

\section*{Location}

Survey Site Name: Old Nashua Road, south of
Managed By:
County: Rockingham
Town(s): Londonderry
Size: . 4 acres Elevation:
Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: South of Old Nashua Road.

\section*{Dates documented}

First reported: 2006-09-08 Last reported: 2006-09-08

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ \\ Wood Turtle (Glyptemys insculpta)
} \\ \\ Wood Turtle (Glyptemys insculpta)
}
\begin{tabular}{ll} 
Legal Status & Conservation Status \\
\hline Federal: Not listed & Global: Apparently secure but with cause for concern \\
State: & Special Concern
\end{tabular} State: Rare or uncommon \(\quad l\)

\section*{Description at this Location}

Conservation Rank: Not ranked
Comments on Rank:

Detailed Description: 2010: Area 12813: 1 adult female observed laying eggs.
General Area: 2010: Area 12813: Laying eggs in sandy soil near Beaver Brook.
General Comments:
Management
Comments:

\section*{Location}

Survey Site Name: Beaver Brook, Londonderry
Managed By:
County: Rockingham
Town(s): Londonderry
Size: 1.9 acres Elevation:

Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 2010: Area 12813: 5 Gilcrest Road, Londonderry.

\section*{Dates documented}

First reported: 2010-05-25 Last reported: 2010-05-25

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

\title{
New Hampshire Natural Heritage Bureau - Animal Record \\ Wood Turtle (Glyptemys insculpta)
}
\begin{tabular}{ll} 
Legal Status & Conservation Status \\
\hline Federal: & Not listed \\
State: & Special Concern
\end{tabular} Global: Apparently secure but with cause for concern

\section*{Description at this Location}

Conservation Rank: Not ranked
Comments on Rank:

Detailed Description: 2014: Area 13636: 1 adult male and 1 adult female observed.
General Area: 2014: Area 13636: Slow moving stream surrounded by woods and some populated areas.
General Comments:
Management
Comments:

\section*{Location}

Survey Site Name: Beaver Brook Tributary, Londonderry
Managed By:
County: Rockingham
Town(s): Londonderry
Size: 1.9 acres Elevation:
Precision: Within (but not necessarily restricted to) the area indicated on the map.
Directions: 2014: Area 13636: Tributary of Beaver Brook behind houses on Pleasant Drive, Londonderry.

\section*{Dates documented}

First reported: 2014-05-03 Last reported: 2014-05-03

The New Hampshire Fish \& Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.


\title{
United States Department of the Interior
}

\author{
FISH AND WILDLIFE SERVICE \\ New England Ecological Services Field Office \\ 70 Commercial Street, Suite 300 \\ Concord, NH 03301-5094 \\ Phone: (603) 223-2541 Fax: (603) 223-0104 \\ http://www.fws.gov/newengland
}

In Reply Refer To:
June 20, 2018
Consultation Code: 05E1NE00-2017-SLI-0288
Event Code: 05E1NE00-2018-E-04980
Project Name: I-93 Exit 4A
Subject: Updated list of threatened and endangered species that may occur in your proposed project location, and/or may be affected by your proposed project

\section*{To Whom It May Concern:}

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 et seq.).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations ( 50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:
http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF
Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 et seq.), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/ eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http:// www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http:// www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/ comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):
- Official Species List

\section*{Official Species List}

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:
New England Ecological Services Field Office
70 Commercial Street, Suite 300
Concord, NH 03301-5094
(603) 223-2541

\section*{Project Summary}

Consultation Code: 05E1NE00-2017-SLI-0288
Event Code: \(\quad 05 \mathrm{E} 1 \mathrm{NE} 00-2018-\mathrm{E}-04980\)
Project Name: I-93 Exit 4A
Project Type: TRANSPORTATION
Project Description: The Towns of Derry and Londonderry, New Hampshire (NH), and the Federal Highway Administration (FHWA) are studying the construction of a new Interstate 93 (I-93) Interchange, known as Exit 4A, that would provide access to only areas east of I-93 along with a new roadway connecting the proposed Exit 4A with the existing roadway network.

Project Location:
Approximate location of the project can be viewed in Google Maps: https://
www.google.com/maps/place/42.8821615762781N71.34204636632049W


Counties: Rockingham, NH

\section*{Endangered Species Act Species}

There is a total of 1 threatened, endangered, or candidate species on this species list.
Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries \({ }^{\underline{1}}\), as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.
1. NOAA Fisheries, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

\section*{Mammals}

NAME STATUS
Northern Long-eared Bat Myotis septentrionalis
Threatened
No critical habitat has been designated for this species.
Species profile: https://ecos.fws.gov/ecp/species/9045

\section*{Critical habitats}

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

\author{
Patrick Bauer \\ Division Administrator \\ Federal Highway Administration \\ New Hampshire Division \\ 53 Pleasant Street, Suite 2200 \\ Concord, NH 03301 \\ \section*{Re: SDEIS for the I-93 Exit 4A Project}
}

NOV 182016

\author{
Dear Mr. Bauer:
}

On November 9, 2016, we received your letter asking if we have an interest in becoming a participating agency with FHWA for the development of your Supplemental Draft Environmental Impact Statement (SDEIS).

\section*{Endangered Species Act (ESA)}

We do not expect'any federally listed or proposed threatened or endangered species nor critical habitat under our jurisdiction to occur in the vicinity of the proposed project; therefore, no direct or indirect effects are expected. The Protected Resources Division does not intend to offer additional comments on this project. For the future, if you are looking for information relevant to ESA-listed species and critical habitat, please visit our website at: https://www.greateratlantic.fisheries.noaa.gov/protected/section7/ If you wish to discuss this further, please contact Zachary Jylkka (978-282-8467;
Zachary.Jylkka@noaa.gov).
Magnuson-Stevens Fishery Conservation and Management Act
The proposed project area does not contain areas identified as Essential Fish Habitat (EFH) under the Magnuson-Stevens Fishery Conservation and Management Act. Therefore, we do not intend to provide EFH conservation recommendations to you for this action. For a listing of EFH and further information, please go to our website at:
http://www.greateratlantic.fisheries.noaa.gov/habitat. If you wish to discuss this further, please contact Mike Johnson (978-281-9130; Mike.R.Johnson@noaa.gov) of our Habitat Conservation Division.

\begin{tabular}{ll} 
From: & \multicolumn{1}{l}{ Tidd, Leo } \\
To: & Vicki Chase (vchase@normandeau.com); Snyder, Kerri \\
Cc: & "Christopher Bean"; \(\underline{\text { I93-Exit4A-EIS (SM) }}\) \\
Subject: & FW: Derry-Londonderry 13065-NH DOT I-93 Exit 4A Project Comments \\
Date: & Tuesday, July 24, 2018 8:23:55 AM \\
Attachments: & \begin{tabular}{l} 
image001.png \\
\end{tabular}
\end{tabular}

Leo Tidd AICP
Manager

Louis Berger | +1.607 .280 .9438 | louisberger.com

From: Cota, Keith <Keith.Cota@dot.nh.gov>
Sent: Tuesday, July 24, 2018 9:17 AM
To: 'Edith Carson - NOAA Federal' <edith.carson@noaa.gov>
Cc: Mike R Johnson - NOAA Federal <mike.r.johnson@noaa.gov>; Laurin, Marc
<Marc.Laurin@dot.nh.gov>; Tidd, Leo <ltidd@louisberger.com>; Christopher Bean, CLD <chrisb@cldengineers.com>
Subject: RE:Derry-Londonderry 13065 - NH DOT I-93 Exit 4A Project Comments

\section*{External}

Ms. Carson,

Thank you for your feedback on the I-93, Exit 4A project and the upcoming Public Informational Meeting. I will pass along your information to our environmental staff as to no endangered species within the corridor and no essential fish habitat as well.

Thank you for your corridor overview.

Keith A. Cota, PE
Chief Project Manager
Bureau of Highway Design
7 Hazen Drive, PO Box 483
Room 200
Concord, NH 03302-0483
TEL (603) 271-1615
FAX (603) 271-7025
Email: Keith.Cota@dot.nh.gov



From: Edith Carson - NOAA Federal [mailto:edith.carson@noaa.gov]
Sent: Friday, July 20, 2018 9:32 AM
To: Cota, Keith
Cc: Mike R J ohnson - NOAA Federal
Subject: NH DOT I-93 Exit 4A Project Comments

Mr. Cota,
We received your letter on July 13, 2018, regarding the I-93, exit 4A project in Derry, NH. Here are our comments.

\section*{Endangered Species Act}

No federally listed or proposed threatened or endangered species under our jurisdiction are known to exist in the site of your proposed project. Based on this, we do not believe a consultation in accordance with section 7 of the Endangered Species Act is necessary. As such, no further coordination on this activity with the NMFS Protected Resources Division is necessary at this time. Should project plans change or new information become available that changes the basis for this determination, further coordination should be pursued. Please contact me (978) 282-8490 or Edith.Carson@noaa.gov), should you have any questions regarding these comments.

\section*{Magnuson-Stevens Fishery Conservation and Management Act}

The proposed project area does not contain areas identified as Essential Fish Habitat (EFH) under the Magnuson-Stevens Fishery Conservation and Management Act. Therefore, we do not intend to provide EFH conservation recommendations to you for this action. For a listing of EFH and further information, please go to our website at:
http://www.greateratlantic.fisheries.noaa.gov/habitat. If you wish to discuss this further, please contact Mike Johnson (978-281-9130; Mike.R.Johnson@noaa.gov) of our Habitat Conservation Division.

Thank you,

\section*{Edith}

Edith Carson-Supino, M.Sc.
Section 7/Shortnose Sturgeon Fish Biologist
NOAA Fisheries
U.S. Department of Commerce

Greater Atlantic Regional Fisheries Office
Phone: 978-282-8490
edith.carson@noaa.gov

For ESA Section 7 guidance please see:
https://www.greateratlantic.fisheries.noaa.gov/section7
\begin{tabular}{|c|}
\hline 2 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
From: & Gegas, Vasilios (Bill) \\
To: & Snyder, Kerri \\
Cc: & ericbodenrader@derrynh.org; sheilabodenrader@derrynh.org \\
Subject: & RE: LWCF Properties in Derry, NH \\
Date: & Tuesday, August 7, 2018 12:42:03 PM \\
Attachments: & Exit4A_doc_Parks_Conservation_Rec_bw_noborders_v4_080318 (LWCF SITES).pdf
\end{tabular}

\section*{External}

Hi Kerri,
Based on our records, there are three separate sites within this area that were funded under LWCF project \#3300166 "Derry Three Parks". Please see the attached and let me know if you anticipate any impacts to these sites. Thanks!
Bill

Bill Gegas
LWCF Program Specialist
NH Department of Natural and Cultural Resources
Division of Parks and Recreation
172 Pembroke Road
Concord, NH 03301-5767
(603) 271-3556 p
(603) 271-3553 f
bill.gegas@dncr.nh.gov
www.nhstateparks.org

From: Snyder, Kerri [mailto:KSnyder@louisberger.com]
Sent: Tuesday, August 7, 2018 11:48 AM
To: Gegas, Vasilios (Bill)
Cc: I93-Exit4A-EIS (SM); Tidd, Leo
Subject: LWCF Properties in Derry, NH

Mr. Gegas,
As we discussed, Louis Berger is conducting the Supplemental Draft EIS for the proposed I-93 Exit 4A project. As part of the evaluation, we are identifying properties near the alternative alignments that have received money from the Land and Water Conservation Fund. Attached is a map showing parks and recreation resources near the alternative alignments. From our research, we have noted that the Veteran's \& O'Hara Ball Fields appear to have received LWCF money (Parcel ID 2). Are there any other properties in the following table that have received LWCF money? Are there any other properties in proximity to the alignments that we may have missed?
\begin{tabular}{|c|l|l|c|}
\hline Parcel ID & \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Location } & LWCF Recipient? \\
\hline 1 & Hoodkroft Golf Course & NH 102 (Chester Road) & \\
\hline 2 & Veteran's \& O'Hara Ball Fields & Wilson Avenue & Yes \\
\hline 3 & MacGregor Park & Birch Street & \\
\hline 4 & Buckley Field & Hood Road & \\
\hline 5 & Pinkerton Academy Athletic Field & Crescent Street & \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline 6 & Pinkerton Academy Fields & Pinkerton Street & \\
\hline 7 & Pinkerton Academy Fields East & Pinkerton Street & \\
\hline 8 & Rider Fields & Tsienneto Road & \\
\hline 9 & Hovey Road Viewshed Easement & Pillsbury Road & \\
\hline 10 & Dumont & \begin{tabular}{l} 
North and east of Trolley Car Lane, \\
bisected by OId Trolley Line Trail
\end{tabular} & \\
\hline 11 & Rockingham Rd & Rockingham Rd & \\
\hline 12 & Woodhenge Cir & Rockingham Rd & \\
\hline- & Old Trolley Line Trail & Various west of I-93 & \\
\hline- & Londonderry Rail Trail & Various east of I-93 & \\
\hline- & Rail Trail Path & Various east of I-93 & \\
\hline- & Derry Bicycle Path & Downtown Derry & \\
\hline- & Rider Field Trail & Near Rider Field & \\
\hline
\end{tabular}

Thank you for your time and review of the enclosed materials.

Regards,
Kerri

\section*{Kerri Snyder aIcp}

Principal Environmental Planner
Louis Berger
\begin{tabular}{ll} 
mobile & +1.646 .584 .9490 \\
direct & +1.212 .612 .7908 \\
email & ksnyder@louisberger.com
\end{tabular}

This message, including any attachments hereto, may contain privileged and/or confidential information and is intended solely for the attention and use of the intended addressee(s). If you are not the intended addressee, you may neither use, copy, nor deliver to anyone this message or any of its attachments. In such case, you should immediately destroy this message and its attachments and kindly notify the sender by reply mail. Unless made by a person with actual authority conferred by Louis Berger, the information and statements herein do not constitute a binding commitment or warranty by Louis Berger. Louis Berger assumes no responsibility for any misperceptions, errors or misunderstandings. You are urged to verify any information that is confusing and report any errors/concerns to us in writing.

-93 Exit 4A
Supplemental Draft EIS

\section*{Alternatives \\ - A \\ \(C\)
\(C\)
F \\ Road \\ - \\ Local Road}

\section*{Trails and Bicycl}

\section*{- Paved Trail}
- Planned Trail
, , .' On Road Bicycle Route
Park and Conservation Land

\section*{\(\square\) Conservation Land}

\section*{\(\square\) Park}

Study Area (1000 Foot Buffer) T"'口' Town Boundaries

(2)
(
\begin{tabular}{ll} 
From: & \(\underline{\text { Gegas, Vasilios (Bill) }}\) \\
To: & Snyder, Kerri \\
Cc: & ericbodenrader@derrynh.org; sheilabodenrader@derrynh.org; Christopher Bean; Tidd, Leo; I93-Exit4A-EIS (SM) \\
Subject: & RE: LWCF Properties in Derry, NH \\
Date: & Tuesday, August 7, 2018 12:54:47 PM
\end{tabular}

\section*{External}

Based on the information provided we do not expect any impacts to any properties encumbered under the LWCF State and Local Assistance Program.
Thanks!
```

Bill Gegas
LWCF Program Specialist
NH Department of Natural and Cultural Resources
Division of Parks and Recreation
172 Pembroke Road
Concord, NH 03301-5767
(603) 271-3556 p
(603) 271-3553 f
bill.gegas@dncr.nh.gov
www.nhstateparks.org

```

From: Snyder, Kerri [mailto:KSnyder@louisberger.com]
Sent: Tuesday, August 7, 2018 1:50 PM
To: Gegas, Vasilios (Bill)
Cc: ericbodenrader@derrynh.org; sheilabodenrader@derrynh.org; Christopher Bean; Tidd, Leo; 193-Exit4A-EIS (SM)
Subject: RE: LWCF Properties in Derry, NH

Bill,
Thank you for your review and for the additional information. We will include this in the Supplemental Draft EIS. None of those parks is anticipated to be impacted. The preferred alternative has been identified as Alternative A (bright green alignment).
Regards,
Kerri

From: Gegas, Vasilios (Bill) [mailto:Bill.Gegas@dncr.nh.gov]
Sent: Tuesday, August 7, 2018 12:39 PM
To: Snyder, Kerri <KSnyder@louisberger.com>
Cc: ericbodenrader@derrynh.org; sheilabodenrader@derrynh.org
Subject: RE: LWCF Properties in Derry, NH

\section*{External}

Hi Kerri,
Based on our records, there are three separate sites within this area that were funded under LWCF project \#33-
00166 "Derry Three Parks". Please see the attached and let me know if you anticipate any impacts to these sites.
Thanks!

Bill

\section*{Bill Gegas}

LWCF Program Specialist
NH Department of Natural and Cultural Resources
Division of Parks and Recreation
172 Pembroke Road
Concord, NH 03301-5767
(603) 271-3556 p
(603) 271-3553 f
bill.gegas@dncr.nh.gov
www.nhstateparks.org

From: Snyder, Kerri [mailto:KSnyder@louisberger.com]
Sent: Tuesday, August 7, 2018 11:48 AM
To: Gegas, Vasilios (Bill)
Cc: I93-Exit4A-EIS (SM); Tidd, Leo
Subject: LWCF Properties in Derry, NH

Mr. Gegas,
As we discussed, Louis Berger is conducting the Supplemental Draft EIS for the proposed I-93 Exit 4A project. As part of the evaluation, we are identifying properties near the alternative alignments that have received money from the Land and Water Conservation Fund. Attached is a map showing parks and recreation resources near the alternative alignments. From our research, we have noted that the Veteran's \& O'Hara Ball Fields appear to have received LWCF money (Parcel ID 2). Are there any other properties in the following table that have received LWCF money? Are there any other properties in proximity to the alignments that we may have missed?
\begin{tabular}{|c|l|l|c|}
\hline Parcel ID & \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{|c|}{ Location } & LWCF Recipient? \\
\hline 1 & Hoodkroft Golf Course & NH 102 (Chester Road) & \\
\hline 2 & Veteran's \& O'Hara Ball Fields & Wilson Avenue & Yes \\
\hline 3 & MacGregor Park & Birch Street & \\
\hline 4 & Buckley Field & Hood Road & \\
\hline 5 & Pinkerton Academy Athletic Field & Crescent Street & \\
\hline 6 & Pinkerton Academy Fields & Pinkerton Street & \\
\hline 7 & Pinkerton Academy Fields East & Pinkerton Street & \\
\hline 9 & Hovey Road Viewshed Easement & Pillsbury Road & \\
\hline 10 & Dumont & \begin{tabular}{l} 
North and east of Trolley Car Lane, \\
bisected by Old Trolley Line Trail
\end{tabular} & \\
\hline 11 & Rockingham Rd & Rockingham Rd & \\
\hline 12 & Woodhenge Cir & Rockingham Rd & \\
\hline 1
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline- & Old Trolley Line Trail & Various west of I-93 & \\
\hline- & Londonderry Rail Trail & Various east of I-93 & \\
\hline- & Rail Trail Path & Various east of I-93 & \\
\hline- & Derry Rail Trail & Various east of I-93 & \\
\hline- & Derry Bicycle Path & Downtown Derry & \\
\hline- & Rider Field Trail & Near Rider Field & \\
\hline
\end{tabular}

Thank you for your time and review of the enclosed materials.

Regards,
Kerri

Kerri Snyder aIcp
Principal Environmental Planner
Louis Berger
\begin{tabular}{ll} 
mobile & +1.646 .584 .9490 \\
direct & +1.212 .612 .7908 \\
email & ksnyder@louisberger.com
\end{tabular}

This message, including any attachments hereto, may contain privileged and/or confidential information and is intended solely for the attention and use of the intended addressee(s). If you are not the intended addressee, you may neither use, copy, nor deliver to anyone this message or any of its attachments. In such case, you should immediately destroy this message and its attachments and kindly notify the sender by reply mail. Unless made by a person with actual authority conferred by Louis Berger, the information and statements herein do not constitute a binding commitment or warranty by Louis Berger. Louis Berger assumes no responsibility for any misperceptions, errors or misunderstandings. You are urged to verify any information that is confusing and report any errors/concerns to us in writing.

Victoria F. Sheehan
Commissioner

William Cass, P.E. Assistant Commissiotter

September 4, 2018
Mr. Eric Bodenrader
Parks and Recreation Director
Veterans Hall
31 West Broadway
Derry, NH 03038

Re: Derry-Londonderry 13065 I-93 Exit 4A Environmental Impact Statement FHWA Intent to Make a Section 4(f) de minimis determination

Dear Mr. Bodenrader:
This letter is in regard to Section 4(f) coordination for the I-93 Exit 4A project. Per 23 CFR 774.5, we are coordinating with you as the official with jurisdiction responsible for Section 4(f) recreational resources in the Town of Derry.

The Towns of Derry and Londonderry, the New Hampshire Department of Transportation ( NHDOT) and Federal Highway Administration (FHWA) are preparing a Supplemental Draft Environmental Impact Statement (SDEIS) under the National Environmental Policy Act (NEPA) for the proposed I-93 Exit 4A (Project). The Project includes construction of a new interchange with I-93 (known as Exit 4A) and other transportation improvements to reduce congestion and improve safety along State Route 102 (NH 102), from l-93 easterly through downtown Derry, and to promote economic vitality in the Derry/Londonderry area. The Preferred Alternative for the Project is Alternative A (Figure 1).

\section*{Parks and Recreational Resources - Rider Fields}

The Project involves the improvement of Tsienneto Road, which would require permanent acquisition of 920 square feet (0.02 acre) of the Rider Fields property adjacent to the existing roadway. The Project would result in slope and driveway impacts beyond the proposed right of way (ROW) that would require additional, temporary easements of 2,500 square feet ( 0.06 acre) on the Rider Field property (Figure 2).

Within the permanent acquisition area, the following items will be disturbed:
- Stone wall spanning between the parcel to the west ( 34 Tsienneto Rd) and this parcel
- The tree west of the driveway to the Upper Room
- The mailbox
- The sign for the Upper Room Family Resource Center
- The landscaping blocks around a landscaped area
- Stone wall between the Upper Room Family Resource Center driveway and the Rider Fields driveway
- The end of the culvert under Tsienneto Road between the driveways
- The ditch between the driveways (approximately 15 linear feet)

The impacts associated with the temporary easement are limited to the vegetation between the Upper Room driveway and the Rider Fields driveway. This vegetated area near Tsienneto Rd. is not typically used for recreational purposes by the public and is approximately 346 feet from the sports fields to the north that constitute the primary recreational area of the park.

NHDOT will coordinate with the Town of Derry to move the mailbox and sign for the Upper Room Family Resource Center and to replace the stone walls and vegetation that would be impacted by the Project. The temporary easement would not impact the usability of park and access to the park would be maintained throughout the construction period. Neither the Upper Room Family Resource Center nor the activities, features, and attributes of the Rider Fields would be adversely impacted on a permanent or temporary basis.

\section*{De Minimis Finding}

As a part of the environmental review process, the FHWA has responsibilities to comply with Section 4(f) of the Department of Transportation Act of 1966 (which has been later revised and recodified but still referred to as Section \(4(\mathrm{f})\) ). The intent of the Section \(4(\mathrm{f})\) Statute, 49 U.S.C. Section 303, and the policy of the FHWA is to avoid transportation use of historic sites and publicly owned recreational areas, parks, and wildlife and waterfowl refuges. If the FHWA determines that a transportation use of these types of properties, also known as Section 4(f) properties, results in a de minimis impact on that property, an analysis of avoidance alternatives is not required, and the Section \(4(\mathrm{f})\) evaluation process is complete. De minimis impacts on publicly owned parks, recreation areas, and wildlife and waterfowl refuges are defined as those that do not "adversely affect the activities, features and attributes" of the Section 4(f) resource.

The finding of a de minimis impact on recreational and wildlife resources can be made when:
1. The transportation use of the Section \(4(f)\) resource, together with any impact avoidance, minimization, and mitigation or enhancement measures incorporated into the project, does not adversely affect the activities, features, and attributes that qualify the resource for protection under Section 4(f);
2. The public has been afforded an opportunity to review and comment on the effects of the project on the protected activities, features, and attributes of the Section 4(f) resource; and
3. The officials) with jurisdiction over the property are informed of FHWA's intent to make the de minimis impact finding based on their written concurrence that the project will not adversely affect the activities, features, and attributes that qualify the property for protection under Section 4(f).

NHDOT respectfully requests concurrence that the Project will not "adversely affect the activities, features and attributes" that qualify the Rider Fields for protection, in order that FHWA can make a determination that the impacts to Rider Fields are de minimis. Per requirements of 23 CFR 774.5 (a)(2)(ii), the public will receive notice and an opportunity for public review and comment concerning the effects on park lands during the SDEIS public comment period.

Please contact me if you have any questions regarding this matter.

cc: Mike Fowler, Town of Derry, Director of Public Works
Jamie Sikora, FHWA
Chris Bean, Fuss \& O'Neil
Marc Laurin, NHDOT



Figure 2. Impacts to Rider Fields

\section*{Appendix L: Wildlife Species List}


\title{
United States Department of the Interior
}

\author{
FISH AND WILDLIFE SERVICE \\ New England Ecological Services Field Office \\ 70 Commercial Street, Suite 300 \\ Concord, NH 03301-5094 \\ Phone: (603) 223-2541 Fax: (603) 223-0104 \\ http://www.fws.gov/newengland
}

In Reply Refer To:
June 20, 2018
Consultation Code: 05E1NE00-2017-SLI-0288
Event Code: 05E1NE00-2018-E-04980
Project Name: I-93 Exit 4A
Subject: Updated list of threatened and endangered species that may occur in your proposed project location, and/or may be affected by your proposed project

\section*{To Whom It May Concern:}

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 et seq.).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations ( 50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:
http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF
Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 et seq.), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/ eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http:// www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http:// www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/ comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):
- Official Species List

\section*{Official Species List}

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:
New England Ecological Services Field Office
70 Commercial Street, Suite 300
Concord, NH 03301-5094
(603) 223-2541

\section*{Project Summary}

Consultation Code: 05E1NE00-2017-SLI-0288
Event Code: \(\quad 05 \mathrm{E} 1 \mathrm{NE} 00-2018-\mathrm{E}-04980\)
Project Name: I-93 Exit 4A
Project Type: TRANSPORTATION
Project Description: The Towns of Derry and Londonderry, New Hampshire (NH), and the Federal Highway Administration (FHWA) are studying the construction of a new Interstate 93 (I-93) Interchange, known as Exit 4A, that would provide access to only areas east of I-93 along with a new roadway connecting the proposed Exit 4A with the existing roadway network.

Project Location:
Approximate location of the project can be viewed in Google Maps: https://
www.google.com/maps/place/42.8821615762781N71.34204636632049W


Counties: Rockingham, NH

\section*{Endangered Species Act Species}

There is a total of 1 threatened, endangered, or candidate species on this species list.
Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries \({ }^{\underline{1}}\), as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.
1. NOAA Fisheries, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

\section*{Mammals}

NAME STATUS
Northern Long-eared Bat Myotis septentrionalis
Threatened
No critical habitat has been designated for this species.
Species profile: https://ecos.fws.gov/ecp/species/9045

\section*{Critical habitats}

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

Table D-1. Reptile Species with Ranges Likely to Overlap the Study Area \({ }^{1}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Scientific Name & Common Name & Special Habitat Requirements & Species of Greatest Conservation Need \(^{\text {a }}\) & State Status \({ }^{\text {b }}\) & Federal Status \\
\hline Chelydra serpentina & Snapping turtle & Aquatic habitat; sandy, gravely soil & & & \\
\hline Chrysemys picta & Painted turtle & Ponds with projecting or floating logs & & & \\
\hline Clemmys guttata & Spotted turtle+ & Unpolluted shallow water & \(\sqrt{ }\) & T & \\
\hline Coluber constrictor & Northern black racer+ & Wooded areas, fields, swamps, marshes & \(\checkmark\) & T & \\
\hline Diadophis punctatus & Northern ring-necked snake & Mesic areas with abundant cover & & & \\
\hline Emydoidea blandingii & Blanding's turtle+ & Wetlands with shallow water adjacent to upland fields or forests & \(\sqrt{ }\) & E & \\
\hline Glyptemys insculpta & Wood turtle+ & Wooded river or stream banks & \(\sqrt{ }\) & SC & \\
\hline Heterodon platirhinos & Eastern hognose snake+ & Sandy soils, open woodlands & \(\sqrt{ }\) & E & \\
\hline Lampropeltis triangulum & Eastern milk snake & Slash, woodpiles, debris, lose soil for laying eggs & & & \\
\hline Nerodia sipedon & Northern water snake & Branches or logs overhanging water & & & \\
\hline Opheodrys vernalis & Smooth green snake+ & Upland grassy openings & \(\sqrt{ }\) & SC & \\
\hline Sternotherus odoratus & Common musk turtle & Permanent water bodies & & & \\
\hline Storeria dekayi & Northern brown snake & Damp woods, swamps, bogs, open fields & & & \\
\hline Storeria occipitomaculata & Northern red-bellied snake & Moist woods, hillsides with surface debris & & & \\
\hline Terrapene carolina & Eastern box turtle+ & Old fields, clearings, sandy soil & \(\sqrt{ }\) & SC & \\
\hline Thamnophis sauritus & Ribbon snake+ & Mesic woods with aquatic habitat & \(\sqrt{ }\) & & \\
\hline Thamnophis sirtalis & Common garter snake & Moist areas, forest edges, stream edges, swamps & & & \\
\hline
\end{tabular}

Source: DeGraaf and Yamasaki (2001) and NHFGD (2016).
* Indicates that species distribution (known, potential, or historic) does not include Derry or Londonderry as depicted on species distribution map in NH Wildlife Action Plan
+ Indicates that species distribution (known, potential, or historic) does not include Derry or Londonderry as depicted on species distribution map in NH Wildlife Action Plan
a Species of Greatest Conservation Need are identified in the NH Wildlife Action Plan. These include all Federal and State-listed threatened and endangered species; state species with Natural Heritage Rank of S1 or S2; species of concern as identified by the Northeast Wildlife Diversity Technical Committee; and recommendations from expert panels, groups and individuals.
b \(\quad \mathrm{E}=\) Endangered; \(\mathrm{T}=\) Threatened; \(\mathrm{SC}=\) Special Concern

Table D-2. Amphibian Species with Ranges Likely to Overlap the Study Area \({ }^{1}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Scientific Name & Common Name & Special Habitat Requirements & Species of Greatest Conservation Need \({ }^{\text {a }}\) & State Status \({ }^{\text {b }}\) & Federal Status \\
\hline Ambystoma jeffersonianum & Jefferson salamander* & & \(\checkmark\) & SC & \\
\hline Ambystoma laterale & Blue-spotted salamander* & Ponds or semi-permanent water for breeding & \(\checkmark\) & SC & \\
\hline Ambystoma maculatum & Spotted salamander & Mesic woods, semi-permanent water for breeding & & & \\
\hline Ambystoma opacum & Marbled salamander* & Woodland ponds or swamps for breeding & \(\checkmark\) & E & \\
\hline Anaxyrus americanus & American toad & Moist upland woods & & & \\
\hline Anaxyrus fowleri & Fowler's toad* & Sandy soils, shallow water for breeding & \(\checkmark\) & SC & \\
\hline Desmognathus fuscus & Northern dusky salamander & Permanent woodland streams or seeps & & & \\
\hline Eurycea bislineata & Northern two-lined salamander & Streams for breeding & & & \\
\hline Gyrinophilus porphyriticus & Northern spring salamander & Streams, seeps, springs & & & \\
\hline Hemidactylium scutatum & Four-toed salamander & Wet woodlands & & & \\
\hline Hyla versicolor & Gray tree frog & Seeps, aquatic sites for breeding & & & \\
\hline Notophthalmus viridescens & Red-spotted newt & Water with aquatic vegetation for adults & & & \\
\hline Plethodon cinereus & Red-backed salamander & Logs, stumps, rocks, etc. & & & \\
\hline Pseudacris crucifer & Northern spring peeper & Pools for breeding & & & \\
\hline Lithobates catesbeiana & Bullfrog & Deep water, floating and emergent vegetation & & & \\
\hline Lithobates clamitans melanota & Green frog & Riparian habitat & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Scientific Name } & \multicolumn{1}{|c|}{ Common Name } & Special Habitat Requirements & \begin{tabular}{c} 
Species of \\
Greatest \\
Conservation \\
Need
\end{tabular} & \begin{tabular}{c} 
State \\
Status
\end{tabular} \\
\hline Lithobates palustris & Pickerel frog & \begin{tabular}{l} 
Shallow, clear water of bogs or \\
Status \\
woodland streams
\end{tabular} \\
\hline Lithobates pipiens & Northern leopard frog* & Wet meadows & & \\
\hline
\end{tabular}

Source: DeGraaf and Yamasaki (2001) and NHFGD (2016).
* Indicates that species distribution (known, potential, or historic) does not include Derry or Londonderry as depicted on species distribution map in NH Wildlife Action Plan
+ Indicates that species distribution (known, potential, or historic) does not include Derry or Londonderry as depicted on species distribution map in NH Wildlife Action Plan
a Species of Greatest Conservation Need are identified in the NH Wildlife Action Plan. These include all Federal and State-listed threatened and endangered species; state species with Natural Heritage Rank of S1 or S2; species of concern as identified by the Northeast Wildlife Diversity Technical Committee; and recommendations from expert panels, groups and individuals.
b \(\quad \mathrm{E}=\) Endangered; \(\mathrm{T}=\) Threatened; \(\mathrm{SC}=\) Special Concern

Table D-3. Bird Species with Ranges Likely to Overlap the Study Area \({ }^{1}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Scientific Name & Common Name & Special Habitat Requirements & Species of Greatest Conservation Need \(^{\text {a }}\) & State Status \({ }^{\text {b }}\) & Federal Status \\
\hline Acanthis flammea & Common redpoll & & & & \\
\hline Accipiter cooperii & Cooper's hawk & Undisturbed forests & & & \\
\hline Accipiter gentilis & Northern goshawk+ & Extensive, mature mixed woods & \(\checkmark\) & & \\
\hline Accipiter striatus & Sharp-shinned hawk & Extensive, undisturbed open mixed woodlands & & & \\
\hline Actitis macularia & Spotted sandpiper & Shorelines & & & \\
\hline Aegolius acadicus & Northern saw-whet owl & Cavity trees >12" diameter at breast height & & & \\
\hline Agelaius phoeniceus & Red-winged blackbird & & & & \\
\hline Aix sponsa & Wood duck & Trees \(>16\) " diameter at breast height with large cavities & & & \\
\hline Ammodramus savannarum & Grasshopper sparrow+ & Dry grassy areas with perches. & \(\checkmark\) & T & \\
\hline Anas platyrhynchos & Mallard & & & & \\
\hline Anas rubripes & American black duck+ & & \(\checkmark\) & & \\
\hline Antrostomus vociferus & Eastern Whip-poor-will+ & Dry, open woods, early successional forest adjacent to large clearings or brushy field edges & \(\checkmark\) & SC & \\
\hline Aquila chrysaetos & Golden eagle & Cliffs for nesting; large open areas for hunting. & \(\checkmark\) & E & \\
\hline Archilochus colubris & Ruby-throated hummingbird & Flowers, preferably red & & & \\
\hline Ardea herodias & Great blue heron & Tall trees for nesting & & & \\
\hline Asio otus & Long-eared owl & Dense conifer thickets in open country & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Scientific Name & Common Name & Special Habitat Requirements & Species of Greatest Conservation Need \(^{\text {a }}\) & State Status \({ }^{\text {b }}\) & Federal Status \\
\hline Baeolophus bicolor & Tufted titmouse & Cavity trees \(>8\) " diameter at breast height & & & \\
\hline Bartramia longicauda & Upland sandpiper* & Open habitats with low vegetation & \(\checkmark\) & E & \\
\hline Bombycilla cedrorum & Cedar waxwing & & & & \\
\hline Bonasa umbellus & Ruffed grouse+ & Fallen logs amidst dense saplings & \(\checkmark\) & & \\
\hline Botaurus lentiginosus & American bittern & Undisturbed tall marsh vegetation & & & \\
\hline Branta canadensis & Canada goose & & & & \\
\hline Bubo virginianus & Great horned owl & Large abandoned hawk nests, large tree cavities & & & \\
\hline Buteo jamaicensis & Red-tailed hawk & Mature forest-field ecotone & & & \\
\hline Buteo lagopus & Rough-legged hawk & Open country & & & \\
\hline Buteo lineatus & Red-shouldered hawk & Cool, moist, mature forests & & & \\
\hline Buteo platypterus & Broad-winged hawk & Extensive woodlands with roads or clearings & & & \\
\hline Butorides virescens & Green heron & Shrub and forested wetlands & & & \\
\hline Calcarius lapponicus & Lapland longspur & & & & \\
\hline Cardellina canadensis & Canada warbler+ & & \(\sqrt{ }\) & & \\
\hline Cardinalis cardinalis & Northern cardinal & Thickets, vines & & & \\
\hline Cathartes aura & Turkey vulture & Forest openings, fields, large dead tree trunks & & & \\
\hline Catharus fuscescens & Veery+ & Moist woodlands with understory & \(\sqrt{ }\) & & \\
\hline Catharus guttatus & Hermit thrush & Coniferous woodlands with dense understory & & & \\
\hline Certhia americana & Brown creeper & Woodland trees with sloughing or loose bark & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Scientific Name & Common Name & Special Habitat Requirements & Species of Greatest Conservation Need \(^{\text {a }}\) & State Status \({ }^{\text {b }}\) & Federal Status \\
\hline Chaetura pelagica & Chimney swift+ & Chimneys, Feeds over water & \(\checkmark\) & & \\
\hline Charadrius vociferus & Killdeer & Bare ground, sparse vegetation & & & \\
\hline Chordeiles minor & Common nighthawk* & Feeds over water & \(\checkmark\) & E & \\
\hline Cistothorus palustris & Marsh wren* & Marshes & \(\checkmark\) & & \\
\hline Cistothorus platensis & Sedge wren+ & Sedge meadows & \(\checkmark\) & E & \\
\hline Coccothraustes vespertinus & Evening grosbeak & Spruce and fir forest & & & \\
\hline Coccyzus americanus & Yellow-billed cuckoo & Low, dense thickets & & & \\
\hline Coccyzus erythropthalmus & Black-billed cuckoo+ & Low, dense thickets & \(\checkmark\) & & \\
\hline Colaptes auratus & Northern flicker & Open areas, trees with heartrot & & & \\
\hline Columba livia & Rock pigeon & & & & \\
\hline Contopus cooperi & Olive-sided flycatcher* & Tall perches adjacent to low, wet thickets & \(\checkmark\) & SC & \\
\hline Contopus virens & Eastern wood-pewee & & & & \\
\hline Corvus brachyrhynchos & American crow & & & & \\
\hline Corvus corax & Common raven & & & & \\
\hline Cyanocitta cristata & Blue jay & & & & \\
\hline Dolichonyx oryzivorus & Bobolink+ & Wide expanses of grasslands & \(\checkmark\) & & \\
\hline Dryocopus pileatus & Pileated woodpecker & Mature trees > 20" dbh with decay & & & \\
\hline Dumetella carolinensis & Gray catbird & Shrubs, thickets in open country & & & \\
\hline Empidonax alnorum & Alder flycatcher & Thickets, low shrubs, clearings & & & \\
\hline Empidonax minimus & Least flycatcher & Open deciduous or mixed forest, edges & & & \\
\hline Empidonax traillii & Willow flycatcher & Low deciduous trees and shrubs with clearings & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Scientific Name & Common Name & Special Habitat Requirements & Species of Greatest Conservation Need \({ }^{\text {a }}\) & State Status \({ }^{\text {b }}\) & Federal Status \\
\hline Eremophila alpestris & Horned lark+ & Bare, exposed soil & \(\checkmark\) & SC & \\
\hline Falco peregrinus & Peregrine falcon* & Open country, nests on cliffs & \(\checkmark\) & T & \\
\hline Falco sparverius & American kestrel+ & Tall trees with cavities, open country & \(\checkmark\) & SC & \\
\hline Gallinago delicata & Wilson's snipe & Moist, organic soils, large open spaces & & & \\
\hline Gallinula galeata & Common gallinule* & Emergent vegetation in water 1-3 feet deep & \(\checkmark\) & SC & \\
\hline Gavia immer & Common loon+ & Surface water bodies with stable water levels and limited human disturbance & \(\checkmark\) & T & \\
\hline Geothlypis philadelphia & Mourning warbler & Hardwood regeneration & & & \\
\hline Geothlypis trichas & Common yellowthroat & & & & \\
\hline Haemorhous mexicanus & House finch & Open ground with low seedproducing plants & & & \\
\hline Haemorhous purpureus & Purple finch+ & Coniferous forest & \(\checkmark\) & & \\
\hline Haliaeetus leucocephalus & Bald eagle* & Large bodies of water with fish & \(\checkmark\) & T & \\
\hline Hirundo rustica & Barn swallow & Abandoned or little used buildings & & & \\
\hline Hylocichla mustelina & Wood thrush+ & Cool, moist, mature deciduous or mixed forests & \(\checkmark\) & & \\
\hline Icteria virens & Yellow-breasted chat & Dense thickets with young trees, often near water & & & \\
\hline Icterus galbula & Baltimore oriole & Tall scattered deciduous trees & & & \\
\hline Ixobrychus exilis & Least bittern* & Deep marshes with emergent vegetation & \(\checkmark\) & SC & \\
\hline Junco hyemalis & Dark-eyed junco & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Scientific Name & Common Name & Special Habitat Requirements & Species of Greatest Conservation Need \({ }^{\text {a }}\) & State Status \({ }^{\text {b }}\) & Federal Status \\
\hline Lanius excubitor & Northern shrike & Scattered trees or shrubs in open country & & & \\
\hline Larus argentatus & Herring gull & & & & \\
\hline Lophodytes cucullatus & Hooded merganser & Wooded areas with cavity trees, clear fresh water & & & \\
\hline Megaceryle alcyon & Belted kingfisher & Perches over streams, ponds, banks for nests & & & \\
\hline Megascops asio & Eastern screech owl & Cavity trees >12" diameter at breast height & & & \\
\hline Melanerpes erythrocephalus & Red-headed woodpecker & Cavity trees in open country & & & \\
\hline Meleagris gallopavo & Wild turkey & Open, mast-producing woodlands & & & \\
\hline Melospiza georgiana & Swamp sparrow & & & & \\
\hline Melospiza melodia & Song sparrow & & & & \\
\hline Mimus polyglottos & Northern mockingbird & Low thickets, high perches, persistent fruits & & & \\
\hline Mniotilta varia & Black-and-white warbler & & & & \\
\hline Molothrus ater & Brown-headed cowbird & & & & \\
\hline Myiarchus crinitus & Great crested flycatcher & Mature cavity trees, deciduous forests, edges & & & \\
\hline Oreothlypis ruficapilla & Nashville warbler & Scattered trees interspersed with brush & & & \\
\hline Pandion haliaetus & Osprey & Clear lakes and rivers with fish & & & \\
\hline Parkesia motacilla & Louisiana waterthrush & Woodlands with flowing water & & & \\
\hline Parkesia noveboracensis & Northern waterthrush & Cool, shaded, wet ground with shallow pools & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Scientific Name & Common Name & Special Habitat Requirements & Species of Greatest Conservation Need \({ }^{\text {a }}\) & State Status \({ }^{\text {b }}\) & Federal Status \\
\hline Passer domesticus & House sparrow & & & & \\
\hline Passerculus sandwichensis & Savannah sparrow & Herbaceous cover of moderate height & & & \\
\hline Passerina cyanea & Indigo bunting & Forest-field ecotones & & & \\
\hline Petrochelidon pyrrhonota & Cliff swallow* & Open areas, mud, vertical wall with an overhang & \(\checkmark\) & SC & \\
\hline Pheucticus ludovicianus & Rose-breasted grosbeak & Forest-field ecotones, thickets, sapling stands & & & \\
\hline Picoides pubescens & Downy woodpecker & Trees, limbs with decay column >6" diameter at breast height & & & \\
\hline Picoides villosus & Hairy woodpecker & Trees, limbs with decay column >10" diameter at breast height & & & \\
\hline Pinicola enucleator & Pine grosbeak & Northern coniferous forest & & & \\
\hline Pipilo erythrophthalmus & Eastern towhee+ & Dense brushy understory, welldrained soils & \(\checkmark\) & & \\
\hline Piranga olivacea & Scarlet tanager+ & & \(\checkmark\) & & \\
\hline Plectrophenax nivalis & Snow bunting & & & & \\
\hline Podilymbus podiceps & Pied-billed grebe+ & Marshes with water and emergent vegetation & \(\checkmark\) & T & \\
\hline Poecile atricapillus & Black-capped chickadee & Cavity trees in small woodlands or clearings & & & \\
\hline Polioptila caerulea & Blue-gray gnatcatcher & & & & \\
\hline Pooecetes gramineus & Vesper sparrow* & Dry open uplands with perches & \(\checkmark\) & SC & \\
\hline Porzana carolina & Sora* & & \(\checkmark\) & SC & \\
\hline Progne subis & Purple martin* & & \(\checkmark\) & SC & \\
\hline Quiscalus quiscula & Common grackle & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Scientific Name & Common Name & Special Habitat Requirements & Species of Greatest Conservation Need \({ }^{\text {a }}\) & State Status \({ }^{\text {b }}\) & Federal Status \\
\hline Rallus limicola & Virginia rail & Wetlands with sedge and cattails & & & \\
\hline Regulus satrapa & Golden-crowned kinglet & & & & \\
\hline Riparia riparia & Bank swallow+ & Stabilized sandy or clay banks & \(\checkmark\) & SC & \\
\hline Sayornis phoebe & Eastern phoebe & Exposed perches in streamside clearings & & & \\
\hline Scolopax minor & American woodcock+ & Moist soils, small clearings and dense swales & \(\checkmark\) & & \\
\hline Seiurus aurocapillus & Ovenbird & & & & \\
\hline Setophaga caerulescens & Black-throated blue warbler & Hardwoods with well-developed understory & & & \\
\hline Setophaga coronata & Yellow-rumped warbler & Coniferous trees, bayberry thickets & & & \\
\hline Setophaga discolor & Prairie warbler+ & Coniferous cover in old fields & \(\checkmark\) & & \\
\hline Setophaga fusca & Blackburnian warbler & Coniferous forests, mixed woodlands & & & \\
\hline Setophaga magnolia & Magnolia warbler & Young stands of spruce or fir & & & \\
\hline Setophaga pensylvanica & Chestnut-sided warbler & Brush at wood margins, hardwood seedling stands & & & \\
\hline Setophaga petechia & Yellow warbler & Scattered small trees or dense brush & & & \\
\hline Setophaga pinus & Pine warbler & Pine forests & & & \\
\hline Setophaga ruticilla & American redstart & & & & \\
\hline Setophaga virens & Black-throated green warbler & Coniferous or mixed woodlands & & & \\
\hline Sialia sialis & Eastern bluebird & Low cavities, open country & & & \\
\hline Sitta canadensis & Red-breasted nuthatch & Cavity trees in mixed or coniferous woods & & & \\
\hline Sitta carolinensis & White-breasted nuthatch & Cavity trees in hardwoods or mixed woods & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Scientific Name & Common Name & Special Habitat Requirements & Species of Greatest Conservation Need \(^{\text {a }}\) & State Status \({ }^{\text {b }}\) & Federal Status \\
\hline Sphyrapicus varius & Yellow-bellied sapsucker & Trees with >10" diameter at breast height & & & \\
\hline Spinus pinus & Pine siskin & Conifers & & & \\
\hline Spinus tristis & American goldfinch & Open, weedy fields with scattered small trees & & & \\
\hline Spizella passerina & Chipping sparrow & & & & \\
\hline Spizella pusilla & Field sparrow+ & Old fields & \(\checkmark\) & & \\
\hline Spizelloides arborea & American tree sparrow & & & & \\
\hline Stelgidopteryx serripennis & Northern rough-winged swallow & Cut banks for nesting & & & \\
\hline Strix varia & Barred owl & Cool, damp lowlands, cavity trees \(>20\) " diameter at breast height & & & \\
\hline Sturnella magna & Eastern meadowlark+ & & \(\checkmark\) & SC & \\
\hline Sturnus vulgaris & European starling & Cavity trees >10" diameter at breast height & & & \\
\hline Tachycineta bicolor & Tree swallow & Cavity trees >10" diameter at breast height, open areas & & & \\
\hline Toxostoma rufum & Brown thrasher+ & Hardwood forest-field ecotone & \(\checkmark\) & & \\
\hline Troglodytes aedon & House wren & Cavity trees, shrubs & & & \\
\hline Troglodytes hiemalis & Winter wren & & & & \\
\hline Turdus migratorius & American robin & & & & \\
\hline Tyrannus tyrannus & Eastern kingbird & Clearings, fields, edges. Fallen shoreline trees & & & \\
\hline Vermivora chrysoptera & Golden-winged warbler* & Open areas with saplings in deciduous woodlands & \(\checkmark\) & SC & SOC \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Scientific Name } & \multicolumn{1}{|c|}{ Common Name } & \multicolumn{1}{|c|}{\begin{tabular}{l} 
Special Habitat Requirements
\end{tabular}} & \begin{tabular}{c} 
Species of \\
Greatest \\
Conservation \\
Need \(^{\text {a }}\)
\end{tabular} & \begin{tabular}{c} 
State \\
Status
\end{tabular} & \begin{tabular}{c} 
Federal \\
Status
\end{tabular} \\
\hline Vermivora cyanoptera & Blue-winged warbler+ & \begin{tabular}{l} 
Old fields with scatted shrubs and \\
small trees
\end{tabular} & \(V\) & & \\
\hline Vireo flavifrons & Yellow-throated vireo & Mature deciduous forest & & & \\
\hline Vireo gilvus & Warbling vireo & Scattered deciduous trees & & & \\
\hline Vireo olivaceus & Red-eyed vireo & & & & \\
\hline Vireo solitarius & Blue-headed vireo & \begin{tabular}{l} 
Mixed or predominantly coniferous \\
forests
\end{tabular} & & & \\
\hline Zenaida macroura & Mourning dove & Open land with bare ground & & & \\
\hline Zonotrichia albicollis & White-throated sparrow & & & & \\
\hline
\end{tabular}

Source: DeGraaf and Yamasaki (2001) and NHFGD (2016).
* Indicates that species distribution (known, potential, or historic) does not include Derry or Londonderry as depicted on species distribution map in NH Wildlife Action Plan
+ Indicates that species distribution (known, potential, or historic) does not include Derry or Londonderry as depicted on species distribution map in NH Wildlife Action Plan
a Species of Greatest Conservation Need are identified in the NH Wildlife Action Plan. These include all Federal and State-listed threatened and endangered species; state species with Natural Heritage Rank of S1 or S2; species of concern as identified by the Northeast Wildlife Diversity Technical Committee; and recommendations from expert panels, groups and individuals.
b \(\quad \mathrm{E}=\) Endangered; \(\mathrm{T}=\) Threatened; \(\mathrm{SC}=\) Special Concern

Table D-4. Bird Species with Ranges Likely to Overlap the Study Area \({ }^{1}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Scientific Name & Common Name & Special Habitat Requirements & Species of Greatest Conservation Need \(^{\text {a }}\) & State Status \({ }^{\text {b }}\) & Federal Status \\
\hline Alces alces & Moose+ & Wetlands in summer & \(\checkmark\) & & \\
\hline Blarina brevicauda & Northern short-tailed shrew & Low vegetation, damp, loose leaf litter & & & \\
\hline Canis latrans & Coyote & & & & \\
\hline Castor canadensis & North American beaver & Woodland streams, lack of disturbance & & & \\
\hline Myodes gapperi & Southern red-backed vole & Springs, brooks, seeps, debris or slash cover & & & \\
\hline Condylura cristata & Star-nosed mole & Wet muck, humus & & & \\
\hline Didelphis virginiana & Virginia opossum & Hollow logs or tree cavities & & & \\
\hline Eptesicus fuscus & Big brown bat+ & Cold, dry areas of caves & \(\checkmark\) & & \\
\hline Erethizon dorsatum & North American porcupine & Rock ledges or tree dens & & & \\
\hline Glaucomys sabrinus & Northern flying squirrel & Mature trees with cavities, arboreal lichens & & & \\
\hline Glaucomys volans & Southern flying squirrel & Mature woodlands with cavity trees & & & \\
\hline Lasionycteris noctivagans & Silver-haired bat+ & Dead trees with loose bark; streams & \(\checkmark\) & SC & \\
\hline Lasiurus borealis & (Eastern) Red bat+ & Deciduous trees on forest edges for roosting & \(\checkmark\) & SC & \\
\hline Lasiurus cinereus & Hoary bat+ & Edges of coniferous forests & \(\checkmark\) & SC & \\
\hline Lepus americanus & Snowshoe hare & Dense brushy or softwood cover & & & \\
\hline Lontra canadensis & River otter & Bodies of water, such as streams, ponds, lakes, rivers & & & \\
\hline Lynx rufus & Bobcat & Rock ledges, under windfalls, hollow logs & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Scientific Name & Common Name & Special Habitat Requirements & Species of Greatest Conservation Need \(^{\text {a }}\) & State Status \({ }^{\text {b }}\) & Federal Status \\
\hline Marmota monax & Woodchuck & Open land & & & \\
\hline Martes pennanti & Fisher & & & & \\
\hline Mephitis mephitis & Striped skunk & & & & \\
\hline Microtis pennsylvanicus & Meadow vole & Herbaceous vegetation, loose organic soils & & & \\
\hline Microtis pinetorum & Woodland vole & Ground cover; moist well-drained soils & & & \\
\hline Mus musculus & House mouse & Buildings in winter & & & \\
\hline Mustela erminea & Short-tailed weasel (Ermine) & Dense brushy cover & & & \\
\hline Mustela frenata & Long-tailed weasel & & & & \\
\hline Mustela vison & Mink & Hollow logs, natural crevices, riparian habitat & & & \\
\hline Myotis leibii & Eastern small-footed myotis* & Cold, dry hibernacula in winter & \(\sqrt{ }\) & E & \\
\hline Myotis lucifugus & Little brown bat+ & Dark, warm sites for maternity colonies & \(\checkmark\) & & \\
\hline Myotis septentrionalis & Northern long-eared bat* & Caves with high humidity and calm air & \(\checkmark\) & T & T \\
\hline Napaeozapus insignis & Woodland jumping mouse & Moist, cool woodland, loose soils & & & \\
\hline Odocoileus virginianus & White-tailed deer & Softwood yarding cover in winter & & & \\
\hline Ondatra zibethicus & Muskrat & Wetlands with dense emergent vegetation & & & \\
\hline Parascalops breweri & Hairy-tailed mole & Loose, moist, well-drained soil & & & \\
\hline Peromyscus leucopus & White-footed mouse & & & & \\
\hline Peromyscus maniculatus & Deer mouse & Northern hardwoods or coniferous forests & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Scientific Name & Common Name & Special Habitat Requirements & Species of Greatest Conservation Need \({ }^{\text {a }}\) & State Status \({ }^{\text {b }}\) & Federal Status \\
\hline Perimyotis subflavus & Tricolored bat+ & Warm, draft-free, damp sites for hibernation & \(\checkmark\) & SC & \\
\hline Procyon lotor & Raccoon & Hollow trees & & & \\
\hline Rattus norvegicus & Norway rat & Buildings, dumps, loose soil for burrows & & & \\
\hline Scalopus aquaticus & Eastern mole & Soft moist soil with earthworms & & & \\
\hline Sciurus carolinensis & Gray squirrel & Tall trees for dens or leafnests & & & \\
\hline Sorex cinereus & Masked shrew & Damp woodlands, ground cover & & & \\
\hline Sorex fumeus & Smokey shrew & Loose damp leaf litter & & & \\
\hline Sorex palustris & American water shrew & Herbaceous cover, cold water, wetlands & \(\checkmark\) & & \\
\hline Sylvilagus floridanus & Eastern cottontail & Brush piles, herbaceous and shrubby cover & & & \\
\hline Sylvilagus transitionalis & New England cottontail+ & Young woodlands with thick cover & \(\checkmark\) & T & \\
\hline Synaptomys cooperi & Southern bog lemming & Moist soils & \(\checkmark\) & & \\
\hline Tamias striatus & Eastern chipmunk & Forest edge or shrub cover & & & \\
\hline Tamiasciurus hudsonicus & Red squirrel & Woodlands with mature trees & & & \\
\hline Urocyon cinereoargenteus & Gray fox & Hollow logs, tree cavities, rock crevices & & & \\
\hline Ursus americanus & Black bear & Fallen trees, hollow logs, rock ledges, slash piles & & & \\
\hline Vulpes vulpes & Red fox & & & & \\
\hline Zapus hudsonius & Meadow jumping mouse & Herbaceous groundcover, loose soils & & & \\
\hline
\end{tabular}

Source: DeGraaf and Yamasaki (2001) and NHFGD (2016).
* Indicates that species distribution (known, potential, or historic) does not include Derry or Londonderry as depicted on species distribution map in NH Wildlife Action Plan
+ Indicates that species distribution (known, potential, or historic) does not include Derry or Londonderry as depicted on species distribution map in NH Wildlife Action Plan
a Species of Greatest Conservation Need are identified in the NH Wildlife Action Plan. These include all Federal and State-listed threatened and endangered species; state species with Natural Heritage Rank of S1 or S2; species of concern as identified by the Northeast Wildlife Diversity Technical Committee; and recommendations from expert panels, groups and individuals.
b \(\quad \mathrm{E}=\) Endangered; \(\mathrm{T}=\) Threatened; \(\mathrm{SC}=\) Special Concern

\section*{Appendix M: 2016 Northern Long-eared Bat Acoustic Survey}

\title{
Northern Long-eared Bat Acoustic Survey I-93 Exit 4A Interchange Project, Derry and Londonderry, NH
}

Submitted By Normandeau Associates, Inc.

25 Nashua Road
Bedford, NH 03110-5500
603.472.5191
www.normandeau.com

August 222016

\section*{TABLE OF CONTENTS}
Summary ..... 1
1.0 Project Overview ..... 1
2.0 Methods ..... 1
3.0 Results ..... 3
3.1 Overall Habitat Assessment ..... 3
3.2 Deployment Details ..... 3
3.3 Survey Results ..... 7
Appendix A Figures ..... 9
Appendix B Weather ..... 12
Appendix C Photos of Detector Set-up \& Habitat ..... 19
Resumes ..... 38

\section*{Summary}

Ultrasonic acoustic surveys were conducted to inventory the federally threatened northern long-eared bat (NLEB; Myotis septentrionalis) within the I-93 Exit 4A interchange project area, located in the towns of Derry and Londonderry, New Hampshire (NH). The project route and route alternatives primarily follow existing ROW and road networks, spanning roughly 13 kilometers in length. Twelve of these kilometers were determined to potentially provide habitat for NLEB based on on-site visual assessments. Surveys were conducted from August 8 through August 15, 2016 within 12 pre-determined 1 kilometer segments. All segments were required to be surveyed a minimum of two detector nights, achieved with one detector per kilometer for two nights. Six of the segments were surveyed from Aug 8 to Aug 10, and six were surveyed from August 10 to August 12. The detector from Segment 3 (surveyed Aug 8-Aug 10) malfunctioned, and an additional two survey nights were needed. Bat calls were recorded at eleven of the twelve Segments, none of which returned positive results for NLEB. Other species likely to be present include big brown bat, eastern red bat, hoary bat, silver-haired bat, little brown bat, and tricolored bat.

\subsection*{1.0 Project Overview}

The Project consists of constructing the on and off ramps to I-93 and a connector road, and improvements to the existing roadway that the connector will join into. Five alternatives are under consideration, four of which would require varying amounts of tree clearing. Surveys assessed potentially suitable habitat for all four tree-clearing alternatives.

The project is within the range of the federally threatened and state threatened NLEB. This treeroosting bat uses forested habitats during its active season, from April 15 - October 31. The project has the potential to affect this species via tree clearing, which could reduce roosting habitat or potentially cause direct mortality if an occupied roost tree is felled when bats are present. Therefore, a survey compliant with the USFWS' 2016 Range-wide Indiana Bat Summer Survey Guidelines (Guidelines), which are also applicable to summer survey for NLEB, was conducted to determine if NLEB are present. Results of the survey are summarized below, and these results include all the elements requested in Appendix C of the 2016 Guidelines.

\subsection*{2.0 Methods}

The survey was conducted in conformance with the methods and approach outlined in the Guidelines. The field survey and the data analysis were conducted by personnel trained and qualified to conduct their respective tasks. Staff resumes are attached at the end of this document.

\section*{Habitat Assessment}

The general suitability of the habitat on this site was assessed by examining recent aerial photography of the site (Google Earth \({ }^{\mathrm{TM}}\) ) prior to deploying the detectors. In the field, the characteristics of the habitat were examined in all locations where acoustic detectors were placed, to confirm that suitable habitat was present. The desktop assessment was conducted by Sarah Barnum, Ph.D., CWB \({ }^{\circledR}\), and the on-site observations of the surrounding vegetation within the project area were conducted by acoustic survey technician Jamie O'Brien. Their resumes are attached to the end of this document, and results of the assessment are presented in Section 3.1.

\section*{Detector Deployment}

Normandeau conducted the survey using full-spectrum ultrasonic acoustic detectors. As defined by the Guidelines, this project was categorized as linear; therefore it was surveyed as 12 1-kilometer segments, requiring a minimum of two survey nights each. Detectors placed for Segments 1, 2, 4 through 7, and 9 were placed along existing power line right-of-ways. Detectors surveying Segments 3,10, and 12 were placed along roadsides, and detectors for segments 8 and 11 were placed along a small bike/foot path and the edge of town-owned recreation fields, respectively. All acoustic detectors were left in place to collect data on sequential nights with suitable weather conditions described in the Guidelines, yielding two detector nights of data for each segment.

The sampling locations were selected based on a combination of factors including access, best site conditions to deploy the equipment so that it would not be disturbed, an open cone of detection for the microphones to sample, and apparent bat habitat quality (e.g., mature trees, snags, hollows and crevices, and wetland habitat). The detector set-up adhered to specifications detailed in the Guidelines.

To ensure that the detectors were functioning correctly during every survey period, settings were checked upon retrieval of the detectors in a similar fashion as to when they are deployed: 1) the microphones were checked for proper recording of sounds and archival of data onto the internal drive/USB; and 2) the program recording times, detector limits, and acoustic range were verified.

\section*{Call Analysis}

The entire call analysis process was managed via Normandeau's ReBAT® data management system, which tracks each acoustic recording file after upload throughout the call analysis process and stores all results in a MySQL database. Each acoustic file was processed as required by the 2016 Guidelines using Kaleidoscope Pro v 3.1.4, zero crossing, which is one of the USFWS-approved automated bat call classification software packages. The software analyzes bat calls and determines the probability (or "likelihood of presence p (probability) value") that they were made by a certain bat species. Any probability less than 0.05 is statistically interpreted to mean that the call belongs to that species. Probabilities \(<1\) but \(>0.05\) indicate that calls of certain species were identified but the probabilities were not low enough to confirm presence, or that no calls of that specie were detected. If bat call files were identified by the
software package as belonging or potentially belonging to the NLEB, they were manually examined for final determination by Stephen Lindsay, a trained bat acoustic expert and call analyst. His resume is attached at the end of this document.

\subsection*{3.0 Results}

\subsection*{3.1 Overall Habitat Assessment}

The general location of the survey site is depicted in Figure A-1, Appendix A. Overall, the Project area consists of developed roads bordered by commercial and residential lots, as well as existing right-of-ways and undeveloped forest in the southwestern corner of the project area (Segments 7 and 8). A mix of forest cover types are present, but predominantly were composed of a hardwood/softwood tree mixture. Varying wetland cover types were also present, including emergent marshes and vernal pools close to some of the detector locations. Snags were present at many of the chosen survey locations, and structures such as an old bridge, residential houses, and commercial buildings provided potential roost alternatives. The on-site trees consisted primarily of northern red oak (Quercus rubra), Eastern white pine (Pinus strobus), red maple (Acer rubrum), sugar maple (Acer saccharum), and white oak (Quercus alba).

\subsection*{3.2 Deployment Details}

The survey was conducted from August 8 through August 15, 2016 and the detectors were programed to run from 19:32 UTC (coordinated universal time) until 6:01 UTC the following morning. One acoustic detector was placed in each of the 12 1-kilometer segments for two nights to capture a total of two detector nights per segment (Figure A-1, Appendix A). Detectors are placed at least 200 m apart, as per USFWS guidelines. Photos of the detector setups are presented in Appendix C. Details of the survey for each of the recording nights are summarized in Table 1 and specifications of the detectors and microphones used are summarized in Table 2.

Hourly weather conditions from Manchester Airport (KMHT), the NOAA weather reporting station nearest to Derry and Londonderry, are presented in Appendix B for each of the survey nights. Although weather was acceptable for each of the first four survey nights (Aug 8-Aug 12), malfunctions with the IFR unit at Segment 3 (i.e. recording device) added an additional three survey nights, as one of the additional nights failed due to weather.

Table 1. Deployment Details
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Detector & Date & Lat & Long & Begin & End & Sunset & Hi Temp* & Low Temp* & Max Wind* & Weather \\
\hline \multirow[b]{2}{*}{Segment 1} & 10-Aug-16 & 42.897556 & -71.359398 & 19:32 & 6:01 & 19:55 & 80 & 75 & S 8 & A Few Clouds \\
\hline & 11-Aug-16 & 42.897556 & -71.359398 & 19:32 & 6:01 & 19:54 & 93 & 80 & W 7 & Mostly Cloudy \\
\hline \multirow[b]{2}{*}{Segment 2} & 8-Aug-16 & 42.901321 & -71.350533 & 19:32 & 6:01 & 19:58 & 84 & 68 & W 10 & Fair \\
\hline & 9-Aug-16 & 42.901321 & -71.350533 & 19:32 & 6:01 & 19:57 & 86 & 72 & SW 8 & Mostly Cloudy \\
\hline \multirow{5}{*}{Segment 3} & 8-Aug-16 & 42.898766 & -71.336708 & 19:32 & 6:01 & 19:58 & 84 & 68 & W 10 & Fair \\
\hline & 9-Aug-16 & 42.898766 & -71.336708 & 19:32 & 6:01 & 19:57 & 86 & 72 & SW 8 & Mostly Cloudy \\
\hline & 12-Aug-16 & 42.898766 & -71.336708 & 19:32 & 6:01 & 19:53 & 90 & 80 & W 12 & Mostly Cloudy \\
\hline & 13-Aug-16 & 42.898766 & -71.336708 & 19:32 & 6:01 & 19:51 & 71 & 67 & E 9 & Light Rain \\
\hline & 14-Aug-16 & 42.898766 & -71.336708 & 19:32 & 6:01 & 19:50 & 88 & 79 & W 7 & Mostly Cloudy \\
\hline \multirow[b]{2}{*}{Segment 4} & 10-Aug-16 & 42.903927 & -71.327835 & 19:32 & 6:01 & 19:55 & 80 & 75 & S 8 & A Few Clouds \\
\hline & 11-Aug-16 & 42.903927 & -71.327835 & 19:32 & 6:01 & 19:54 & 93 & 80 & W 7 & Mostly Cloudy \\
\hline \multirow{2}{*}{Segment 5} & 10-Aug-16 & 42.909554 & -71.318184 & 19:32 & 6:01 & 19:55 & 80 & 75 & S 8 & A Few Clouds \\
\hline & 11-Aug-16 & 42.909554 & -71.318184 & 19:32 & 6:01 & 19:54 & 93 & 80 & W 7 & Mostly Cloudy \\
\hline \multirow{2}{*}{Segment 6} & 10-Aug-16 & 42.912567 & -71.311035 & 19:32 & 6:01 & 19:55 & 80 & 75 & S 8 & A Few Clouds \\
\hline & 11-Aug-16 & 42.912567 & -71.311035 & 19:32 & 6:01 & 19:54 & 93 & 80 & W 7 & Mostly Cloudy \\
\hline \multirow[b]{2}{*}{Segment 7} & 8-Aug-16 & 42.887005 & -71.348640 & 19:32 & 6:01 & 19:58 & 84 & 68 & W 10 & Fair \\
\hline & 9-Aug-16 & 42.887005 & -71.348640 & 19:32 & 6:01 & 19:57 & 86 & 72 & SW 8 & Mostly Cloudy \\
\hline \multirow[b]{2}{*}{Segment 8} & 8-Aug-16 & 42.892834 & -71.337456 & 19:32 & 6:01 & 19:58 & 84 & 68 & W 10 & Fair \\
\hline & 9-Aug-16 & 42.892834 & -71.337456 & 19:32 & 6:01 & 19:57 & 86 & 72 & SW 8 & Mostly Cloudy \\
\hline \multirow[b]{2}{*}{Segment 9} & 8-Aug-16 & 42.888718 & -71.338760 & 19:32 & 6:01 & 19:58 & 84 & 68 & W 10 & Fair \\
\hline & 9-Aug-16 & 42.888718 & -71.338760 & 19:32 & 6:01 & 19:57 & 86 & 72 & SW 8 & Mostly Cloudy \\
\hline \multirow[b]{2}{*}{Segment 10} & 8-Aug-16 & 42.898724 & -71.321800 & 19:32 & 6:01 & 19:58 & 84 & 68 & W 10 & Fair \\
\hline & 9-Aug-16 & 42.898724 & -71.321800 & 19:32 & 6:01 & 19:57 & 86 & 72 & SW 8 & Mostly Cloudy \\
\hline \multirow{2}{*}{Segment 11} & 10-Aug-16 & 42.904358 & -71.317345 & 19:32 & 6:01 & 19:55 & 80 & 75 & S 8 & A Few Clouds \\
\hline & 11-Aug-16 & 42.904358 & -71.317345 & 19:32 & 6:01 & 19:54 & 93 & 80 & W 7 & Mostly Cloudy \\
\hline \multirow{2}{*}{Segment 12} & 10-Aug-16 & 42.904816 & -71.310257 & 19:32 & 6:01 & 19:55 & 80 & 75 & S 8 & A Few Clouds \\
\hline & 11-Aug-16 & 42.904816 & -71.310257 & 19:32 & 6:01 & 19:54 & 93 & 80 & W 7 & Mostly Cloudy \\
\hline
\end{tabular}
*High temp, low temp, and max wind within the first five hours after sunset.
Gray rows indicate detector nights from which data was unacceptable due to weather or detector malfunctions.
I-93 Exit 4A NLEB Survey Results

Table 2. Acoustic Monitoring Equipment Settings
\begin{tabular}{|l|c|l|l|}
\hline Detector Setting & Specification & \multicolumn{1}{|c|}{ Microphone Setting } & \multicolumn{1}{c|}{ Specification } \\
\hline Threshold & 21 & Frequency range & 1 to 125 KHz \\
\hline TE & 1 & Dynamic range & \(>90 \mathrm{~dB}\) (Full BW); > 96 dB (Audio BW) \\
\hline Dur & 1.7 & Range limits & (SPL +/-3 dB); Max: 90 dB \\
\hline Idle & 1.7 & Min & 0 dB (Full) \(/-6 \mathrm{~dB}\) (audio) Interface: USB 2.0 \\
\hline Delay & 0 & Output format & 16 -bit offset binary, 250Ksps \\
\hline Low F & 15 & & \\
\hline High F & 125 & & \\
\hline PopFilt & On & & \\
\hline PwrSave & On & & \\
\hline
\end{tabular}

Individual descriptions of the habitat in the locations where each detector was placed follow below, and pictures of the habitat are presented in Appendix C.
- Segment 1 - The detector at Segment 1 was deployed in an existing power line right-ofway facing northeast. The right-of-way had a well-established maintenance road throughout, and woody vegetation was generally less than five feet tall. Interstate 93 runs almost perpendicular to the right-of-way, approximately 330 feet west of the unit. Adjacent tree cover was a mix of hardwood and softwood trees. Species include eastern white pine (dominant), red maple, paper birch, northern red oak, and white oak. Average DBH was about 4-12" with larger trees scattered throughout.
- Segment 2 - The unit at Segment 2 was deployed in a forest patch approximately 15 feet from an existing power line right-of-way and roughly 150 feet from Rockingham Road. Along the forest edge, adjacent to the right-of-way, there was considerable slash, which prevented the detector being placed along this forest edge. The understory in the forest patch interior was mostly open with a 60-80 percent closed canopy. The detector, facing northwest, pointed toward a dry vernal pool. Tree species in the surrounding area included northern red oak (dominant), eastern white pine, white oak, red maple, and paper birch. Average DBH was about 3-10".
- Segment 3 - The unit was deployed in a small woodland patch between two commercial lots, off of Manchester Road. This forest patch was the best available survey location in this highly commercialized segment. The detector faced west away from the road and towards a more forested area approximately 200 feet from the unit. Trees were almost exclusively sugar maple, with a few eastern white pine, white ash, and northern red oak in the surrounding area. Average DBH was roughly \(8-18^{\prime \prime}\), with an open understory.
- Segment 4 - The unit at Segment 4 was placed along the edge of an existing power line right-of-way facing northeast over an emergent marsh, which was dry at the time of
survey. Surrounding forests were a mix of hardwood and softwood trees, with an average DBH of 6-12". Tree species included eastern white pine (dominant), red maple, yellow birch, and northern red oak. Snags were present at this location.
- Segment 5 - The unit at Segment 5 was placed facing northeast along an existing power line right-of-way. The adjacent forest cover was a mix of hardwood and softwood trees. A stand of snags was located approximately 100 feet southwest of the unit. Dominant tree species within the area included northern red oak, followed by eastern white pine, sugar maple, and white birch. Average DBH was approximately 8-16".
- Segment 6 - The unit was placed along an existing power line right-of-way facing east towards an emergent marsh. Roughly one half-dozen snags were located within 50 feet of the detector. Surrounding forest area was a mix of hardwood and softwood trees, with an average DBH of 6-12". Tree species included eastern white pine (dominant), ash, yellow birch, eastern hemlock, red maple, and northern red oak.
- Segment 7 - The detector at Segment 7 was placed along an existing power line right-ofway facing east in a large emergent marsh and connecting (dry) vernal pool. This location was approximately 350 feet from Interstate 93. Adjacent forest cover included a mix of hardwood and softwood trees, including eastern hemlock (dominant), yellow birch, eastern white pine, red maple, northern red oak, and paper birch. Snags were scattered throughout and average DBH was about 5-12".
- Segment 8 - The unit was deployed along a small foot/bike path facing northwest. In this direction was a wooden bridge approximately 500 feet from the detector. Habitat surrounding the unit was a mix of hardwood and softwood trees, with hardwoods being more abundant. Dominant tree species were northern red oak, followed by quaking aspen, American elm, eastern hemlock, sugar maple, and eastern white pine. Average DBH was about 8-14", with a 60-80 percent closed canopy.
- Segment 9 - The detector was placed along the west side of an existing power line right-of-way, facing southeast. Forest cover toward the south was predominantly hardwood trees with a closed canopy and moderately dense understory. Some snags were present, and a vernal pool was across the right-of-way, about 300 feet east of the detector. Tree species included northern red oak (dominant), sugar maple, eastern white pine, hickory, and sweet birch. Average DBH was roughly 8-14".
- Segment 10 - The unit was deployed off of Tsienneto Road in a small clearing surrounded by shrubs and saplings, facing south toward a stand of eastern white pine trees. The area adjacent to these softwoods was shrubby and overgrown with lots of clutter, making deployment closer to these trees unsuitable. Snags were also present near the pines. Dominant species included quaking aspen, mostly 3" DBH or less, eastern white pine ( \(10-24^{\prime \prime}\) DBH), and red maple ( \(3^{\prime \prime}\) DBH or less).
- Segment 11 - The habitat along Segment 11 was primarily residential, which limited available locations for deployment. The unit was placed on town property near recreational fields along Tsienneto Road, facing west towards mature forest. The surrounding trees were a mix of hardwoods and softwoods, including White ash (dominant), quaking aspen, northern red oak, eastern white pine, and red maple. Average DBH was 3-10".
- Segment 12 - The detector was deployed along Tsienneto Road facing north over an emergent marsh/dry storm water retention pond. The surrounding forest was a mix of hardwood and softwood trees, with snags present throughout. The dominant tree species were red maple, followed by eastern white pine, American elm, northern red oak, white oak, ash, and black birch. The average DBH was 8-12".

\subsection*{3.3 Survey Results}

The number of calls recorded by species and location are presented in Table 3. Table 4 contains corresponding likelihood values. Blue cells are those with likelihood of presence values \(<0.05\) and correspond to species considered by Kaleidoscope Pro to be present. Bat calls were recorded at all Segments except for Segment 2. Calls from six species, big brown bat (Eptesicus fuscus), eastern red bat (Lasiurus borealis), hoary bat (Lasiurus cinereus), silver-haired bat (Lasionycteris noctivagans), little brown bat (Myotis lucifugus), and tricolored bat (Perimyotis subflavus) were recorded with p-values of less than 0.05 . Although Kaleidoscope Pro software identified four NLEB calls (one each at Segments 9 and 12, and both nights at Segment 7) the P-values for these calls are not below the required threshold to confirm this identification.

Table 3. Number of Calls by Date, Segement, and Species
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & Date & EPFU & LABO & LACI & LANO & MYLE & MYLU & MYSE & PESU \\
\hline \multirow{2}{*}{Segment 1} & 10-Aug-16 & 148 & 11 & 2 & 32 & 0 & 2 & 0 & 2 \\
\hline & 11-Aug-16 & 192 & 23 & 1 & 51 & 0 & 6 & 0 & 0 \\
\hline \multirow[b]{2}{*}{Segment 2} & 8-Aug-16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & 9-Aug-16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \multirow[b]{2}{*}{Segment 3} & 12-Aug-16 & 3 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\hline & 14-Aug-16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \multirow{2}{*}{Segment 4} & 10-Aug-16 & 451 & 25 & 11 & 60 & 0 & 1 & 0 & 2 \\
\hline & 11-Aug-16 & 939 & 26 & 6 & 73 & 0 & 3 & 0 & 0 \\
\hline \multirow[b]{2}{*}{Segment 5} & 10-Aug-16 & 226 & 10 & 5 & 41 & 0 & 1 & 0 & 0 \\
\hline & 11-Aug-16 & 223 & 8 & 1 & 31 & 0 & 4 & 0 & 0 \\
\hline \multirow[b]{2}{*}{Segment 6} & 10-Aug-16 & 225 & 35 & 5 & 115 & 0 & 2 & 0 & 0 \\
\hline & 11-Aug-16 & 687 & 54 & 5 & 204 & 1 & 4 & 0 & 0 \\
\hline \multirow[b]{2}{*}{Segment 7} & 8-Aug-16 & 28 & 13 & 3 & 13 & 0 & 2 & 1 & 0 \\
\hline & 9-Aug-16 & 119 & 6 & 8 & 57 & 0 & 4 & 1 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & Date & EPFU & LABO & LACI & LANO & MYLE & MYLU & MYSE & PESU \\
\hline \multirow{2}{*}{Segment 8} & 8-Aug-16 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & 9-Aug-16 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \multirow{2}{*}{Segment 9} & 8-Aug-16 & 1734 & 52 & 56 & 881 & 1 & 7 & 0 & 1 \\
\hline & 9-Aug-16 & 1410 & 22 & 46 & 750 & 0 & 3 & 1 & 0 \\
\hline \multirow[b]{2}{*}{Segment 10} & 8-Aug-16 & 10 & 6 & 2 & 7 & 0 & 0 & 0 & 0 \\
\hline & 9-Aug-16 & 25 & 5 & 1 & 9 & 0 & 1 & 0 & 0 \\
\hline \multirow{2}{*}{Segment 11} & 10-Aug-16 & 203 & 28 & 58 & 109 & 0 & 3 & 0 & 1 \\
\hline & 11-Aug-16 & 227 & 19 & 25 & 122 & 0 & 2 & 0 & 1 \\
\hline \multirow{2}{*}{Segment 12} & 10-Aug-16 & 172 & 91 & 2 & 57 & 0 & 0 & 1 & 4 \\
\hline & 11-Aug-16 & 256 & 16 & 8 & 62 & 0 & 0 & 0 & 3 \\
\hline
\end{tabular}

Table 4. Likelihood Values by Date, Segment and Species
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & Date & EPFU & LABO & LACI & LANO & MYLE & MYLU & MYSE & PESU \\
\hline \multirow[b]{2}{*}{Segment 1} & 10-Aug-16 & 0 & 0 & 0.99916 & 0.951099 & 1 & 0.723559 & 1 & 0.134804 \\
\hline & 11-Aug-16 & 0 & 0 & 1 & 0.244045 & 1 & 0.083411 & 1 & 1 \\
\hline \multirow[b]{2}{*}{Segment 2} & 8-Aug-16 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline & 9-Aug-16 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \multirow[b]{2}{*}{Segment 3} & 12-Aug-16 & 0.004672 & 1 & 1 & 1 & 1 & 0.081101 & 1 & 1 \\
\hline & 14-Aug-16 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \multirow[t]{2}{*}{Segment 4} & 10-Aug-16 & 0 & 0 & 0.181832 & 1 & 1 & 1 & 1 & 0.420288 \\
\hline & 11-Aug-16 & 0 & 0 & 1 & 1 & 1 & 0.939572 & 1 & 1 \\
\hline \multirow[t]{2}{*}{Segment 5} & 10-Aug-16 & 0 & 0 & 0.559256 & 1 & 1 & 0.993353 & 1 & 1 \\
\hline & 11-Aug-16 & 0 & \(1.56 \mathrm{E}-05\) & 1 & 1 & 1 & 0.044483 & 1 & 1 \\
\hline \multirow[t]{2}{*}{Segment 6} & 10-Aug-16 & 0 & 0 & 0.741076 & 0 & 1 & 1 & 1 & 1 \\
\hline & 11-Aug-16 & 0 & 0 & 1 & 8.3E-06 & 1 & 1 & 1 & 1 \\
\hline \multirow[t]{2}{*}{Segment 7} & 8-Aug-16 & 0 & 0 & 0.0412 & 0.112729 & 1 & 0.731274 & 0.146266 & 1 \\
\hline & 9-Aug-16 & 0 & 0.000709 & 0.003519 & 1.53E-05 & 1 & 0.018856 & 0.274476 & 1 \\
\hline \multirow[t]{2}{*}{Segment 8} & 8-Aug-16 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline & 9-Aug-16 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \multirow[t]{2}{*}{Segment 9} & 8-Aug-16 & 0 & 0 & \(3.4 \mathrm{E}-06\) & 0 & 1 & 0.999271 & 1 & 1 \\
\hline & 9-Aug-16 & 0 & 0 & \(3.32 \mathrm{E}-05\) & 0 & 1 & 0.990892 & 0.11788 & 1 \\
\hline \multirow[t]{2}{*}{Segment 10} & 8-Aug-16 & 0.000154 & 6E-07 & 0.049901 & 0.116874 & 1 & 1 & 1 & 1 \\
\hline & 9-Aug-16 & 0 & \(3.53 \mathrm{E}-05\) & 0.683937 & 0.406323 & 1 & 0.759838 & 1 & 1 \\
\hline \multirow[t]{2}{*}{Segment 11} & 10-Aug-16 & 0 & 0 & 0 & 1E-07 & 1 & 0.969507 & 1 & 1 \\
\hline & 11-Aug-16 & 0 & 0 & 0 & 0 & 1 & 0.992172 & 1 & 1 \\
\hline \multirow[t]{2}{*}{Segment 12} & 10-Aug-16 & 0 & 0 & 1 & 0.004223 & 1 & 1 & 1 & 0.818781 \\
\hline & 11-Aug-16 & 0 & 0 & 0.109827 & 0.554516 & 1 & 1 & 1 & 0.040982 \\
\hline
\end{tabular}

EPFU \(=\) Eptesicus fuscus, LABO = Lasiurus borealis, LACI = Lasiurus cinereus, LANO = Lasionycteris noctivagans, MYLE= Myotis leibii, MYLU= Myotis lucifugus, MYSE = Myotis septentrionalis, PESU= Perimyotis subflavus.

\section*{Appendix A Figures}


Figure A-1. Locations of detector deployment sites within the project area.

Table A-1. Geographical coordinates of bat detector survey locations
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ Segments } & \multicolumn{2}{|c|}{ Coordinates } \\
\cline { 2 - 3 } & Latitude & Longitude \\
\hline Segment 1 & 42.897556 & -71.359398 \\
\hline Segment 2 & 42.901321 & -71.350533 \\
\hline Segment 3 & 42.898766 & -71.336708 \\
\hline Segment 4 & 42.903927 & -71.327835 \\
\hline Segment 5 & 42.909554 & -71.318184 \\
\hline Segment 6 & 42.912567 & -71.311035 \\
\hline Segment 7 & 42.887005 & -71.348640 \\
\hline Segment 8 & 42.892834 & -71.337456 \\
\hline Segment 9 & 42.888718 & -71.338760 \\
\hline Segment 10 & 42.898724 & -71.321800 \\
\hline Segment 11 & 42.904358 & -71.317345 \\
\hline Segment 12 & 42.904816 & -71.310257 \\
\hline
\end{tabular}

\section*{Appendix B Weather}

Table B-1. Hourly weather conditions during the survey period, as reported by the NOAA weather station in nearby Manchester, NH: Manchester Airport (KMHT).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Date} & \multirow{3}{*}{Time (edt)} & \multirow{3}{*}{Wind (mph)} & \multirow{3}{*}{Vis.
(mi.)} & \multirow{3}{*}{Weather} & \multirow{3}{*}{Sky Cond.} & \multicolumn{4}{|c|}{Temperature ( \({ }^{\circ} \mathrm{F}\) )} & \multirow{3}{*}{\begin{tabular}{l}
Relative \\
Humidity
\end{tabular}} & \multirow{3}{*}{\begin{tabular}{l}
Wind \\
Chill \\
( \({ }^{\circ} \mathrm{F}\) )
\end{tabular}} & \multirow{3}{*}{\begin{tabular}{l}
Heat \\
Index \\
( \({ }^{\circ} \mathrm{F}\) )
\end{tabular}} & \multicolumn{2}{|c|}{Pressure} & \multicolumn{3}{|l|}{Precipitation (in.)} \\
\hline & & & & & & \multirow[b]{2}{*}{Air} & \multirow[b]{2}{*}{Dwpt} & \multicolumn{2}{|r|}{6 hour} & & & & \multirow[t]{2}{*}{\begin{tabular}{l}
altimeter \\
(in)
\end{tabular}} & \multirow[t]{2}{*}{sea level (mb)} & \multirow[b]{2}{*}{1 hr} & \multirow[b]{2}{*}{3 hr} & \multirow[b]{2}{*}{\[
\begin{gathered}
6 \\
\mathrm{hr}
\end{gathered}
\]} \\
\hline & & & & & & & & Max. & Min. & & & & & & & & \\
\hline 15 & 6:53 & NW 5 & 10 & Mostly Cloudy & \[
\begin{aligned}
& \text { SCT180 } \\
& \text { BKN250 }
\end{aligned}
\] & 73 & 64 & & & 74\% & NA & NA & 30.07 & 1019.2 & & & \\
\hline 15 & 5:53 & NW 6 & 10 & Mostly Cloudy & \[
\begin{aligned}
& \text { SCT180 } \\
& \text { BKN250 }
\end{aligned}
\] & 73 & 64 & & & 74\% & NA & NA & 30.06 & 1018.7 & & & \\
\hline 15 & 4:53 & NW 9 & 10 & Partly Cloudy & SCT180 & 74 & 64 & & & 71\% & NA & NA & 30.03 & 1017.6 & & & \\
\hline 15 & 3:53 & NW 7 & 10 & Partly Cloudy & SCT180 & 76 & 65 & & & 69\% & NA & 78 & 29.99 & 1016.3 & & & \\
\hline 15 & 2:53 & W 9 & 10 & A Few Clouds & FEW250 & 76 & 66 & & & 72\% & NA & 78 & 29.98 & 1015.9 & & & \\
\hline 15 & 1:53 & W 3 & 10 & A Few Clouds & FEW250 & 77 & 67 & 86 & 77 & 71\% & NA & 79 & 29.98 & 1016 & & & \\
\hline 15 & 0:53 & W 3 & 10 & Partly Cloudy & \[
\begin{aligned}
& \text { FEW080 } \\
& \text { SCT250 }
\end{aligned}
\] & 79 & 67 & & & 67\% & NA & 81 & 29.97 & 1015.6 & & & \\
\hline 14 & 23:53 & Calm & 10 & Mostly Cloudy & FEW080 BKN250 & 80 & 67 & & & 64\% & NA & 82 & 29.96 & 1015.3 & & & \\
\hline 14 & 22:53 & Vrbl 3 & 10 & Mostly Cloudy & \begin{tabular}{l}
BKN085 \\
BKN250
\end{tabular} & 82 & 67 & & & 60\% & NA & 84 & 29.95 & 1014.9 & & & \\
\hline 14 & 21:53 & W 6 & 10 & Overcast & \[
\begin{aligned}
& \text { BKN085 } \\
& \text { OVC250 }
\end{aligned}
\] & 83 & 67 & & & 59\% & NA & 86 & 29.96 & 1015.2 & & & \\
\hline 14 & 20:53 & W 7 & 10 & Mostly Cloudy & \[
\begin{aligned}
& \text { SCT080 } \\
& \text { BKN100 } \\
& \text { BKN250 }
\end{aligned}
\] & 84 & 66 & & & 55\% & NA & 86 & 29.93 & 1014.4 & & & \\
\hline 14 & 19:53 & W 5 & 10 & Mostly Cloudy & \begin{tabular}{l}
BKN085 \\
BKN220
\end{tabular} & 86 & 67 & 94 & 86 & 53\% & NA & 89 & 29.9 & 1013.5 & & & \\
\hline 14 & 18:53 & W 5 & 10 & Mostly Cloudy & \begin{tabular}{l}
FEW060 \\
SCT085 \\
SCT200 \\
BKN250
\end{tabular} & 88 & 67 & & & 50\% & NA & 91 & 29.89 & 1013 & & & \\
\hline \multicolumn{18}{|l|}{14-August} \\
\hline 14 & 6:53 & S 6 & 10 & Mostly Cloudy & FEW003 SCT120 & 71 & 68 & & & 90\% & NA & NA & 29.85 & 1011.8 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Date} & \multirow{3}{*}{\begin{tabular}{l}
Time \\
(edt)
\end{tabular}} & \multirow{3}{*}{Wind (mph)} & \multirow{3}{*}{Vis.
(mi.)} & \multirow{3}{*}{Weather} & \multirow{3}{*}{Sky Cond.} & \multicolumn{4}{|c|}{Temperature ( \({ }^{( } \mathrm{F}\) )} & \multirow{3}{*}{\begin{tabular}{l}
Relative \\
Humidity
\end{tabular}} & \multirow{3}{*}{Wind Chill ( \({ }^{\circ} \mathrm{F}\) )} & \multirow{3}{*}{Heat Index ( \({ }^{\circ} \mathrm{F}\) )} & \multicolumn{2}{|c|}{Pressure} & \multicolumn{3}{|l|}{Precipitation (in.)} \\
\hline & & & & & & \multirow[b]{2}{*}{Air} & \multirow[b]{2}{*}{Dwpt} & \multicolumn{2}{|l|}{6 hour} & & & & \multirow[t]{2}{*}{\begin{tabular}{l}
altimeter \\
(in)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
sea \\
level \\
(mb)
\end{tabular}} & \multirow[b]{2}{*}{1 hr} & \multirow[b]{2}{*}{3 hr} & \multirow[b]{2}{*}{6
hr} \\
\hline & & & & & & & & Max. & Min. & & & & & & & & \\
\hline & & & & & BKN250 & & & & & & & & & & & & \\
\hline 14 & 5:53 & S 8 & 10 & Mostly Cloudy & FEW003 SCT080 BKN200 & 70 & 67 & & & 90\% & NA & NA & 29.85 & 1011.7 & & & \\
\hline 14 & 4:53 & S 3 & 8 & Overcast & OVC003 & 69 & 67 & & & 93\% & NA & NA & 29.83 & 1011 & & & \\
\hline 14 & 3:53 & S 5 & 9 & Overcast & OVC004 & 69 & 67 & & & 93\% & NA & NA & 29.84 & 1011.5 & & & \\
\hline 14 & 2:53 & Calm & 10 & Overcast & OVC004 & 69 & 66 & & & 90\% & NA & NA & 29.82 & 1010.6 & & & \\
\hline 14 & 1:53 & SW 5 & 10 & Mostly Cloudy & BKN003 & 69 & 66 & 70 & 66 & 90\% & NA & NA & 29.86 & 1011.9 & 0.01 & & \\
\hline 14 & 0:53 & SW 5 & 7 & Light Rain &  & 68 & 66 & & & 93\% & NA & NA & 29.89 & 1012.9 & 0.07 & & \\
\hline 13 & 23:53 & Vrbl 5 & 6 & Thunderstorm Light Rain Fog/Mist & \begin{tabular}{c} 
SCT004 \\
BKN090CB \\
OVC120 \\
\hline SCT006
\end{tabular} & 67 & 65 & & & 93\% & NA & NA & 29.9 & 1013.5 & & & \\
\hline 13 & 22:53 & S 8 & 4 & Thunderstorm Light Rain Fog/Mist & \[
\begin{gathered}
\text { SCT006 } \\
\text { BKN045CB } \\
\text { OVC110 }
\end{gathered}
\] & 67 & 64 & & & 91\% & NA & NA & 29.96 & 1015.5 & 0.05 & 0.33 & \\
\hline 13 & 21:53 & SE 3 & 3 & Thunderstorm Heavy Rain Fog/Mist & \begin{tabular}{c} 
FEW007 \\
BKN020CB \\
OVC035 \\
\hline
\end{tabular} & 67 & 64 & & & 91\% & NA & NA & 29.94 & 1014.7 & 0.28 & & \\
\hline 13 & 20:53 & E 9 & 10 & Thunderstorm Light Rain & \begin{tabular}{c} 
BKN020 \\
BKN035CB \\
OVC050 \\
\hline OVC03
\end{tabular} & 69 & 62 & & & 78\% & NA & NA & 29.93 & 1014.5 & & & \\
\hline 13 & 19:53 & E 6 & 10 & Overcast & OVC023 & 70 & 60 & 82 & 70 & 71\% & NA & NA & 29.92 & 1014.1 & & & \\
\hline 13 & 18:53 & E 9 & 10 & Overcast & OVC025 & 71 & 61 & & & 71\% & NA & NA & 29.91 & 1013.8 & & & \\
\hline \multicolumn{18}{|l|}{13-August} \\
\hline 13 & 6:53 & E 9 & 10 & Mostly Cloudy & BKN015 BKN070 & 68 & 61 & & & 78\% & NA & NA & 29.93 & 1014.3 & & & \\
\hline 13 & 5:53 & E 8 & 10 & Mostly Cloudy & BKN015 BKN065 & 69 & 62 & & & 78\% & NA & NA & 29.9 & 1013.4 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Date} & \multirow{3}{*}{\begin{tabular}{l}
Time \\
(edt)
\end{tabular}} & \multirow{3}{*}{Wind (mph)} & \multirow{3}{*}{Vis.
(mi.)} & \multirow{3}{*}{Weather} & \multirow{3}{*}{Sky Cond.} & \multicolumn{4}{|c|}{Temperature ( \({ }^{( } \mathrm{F}\) )} & \multirow{3}{*}{\begin{tabular}{l}
Relative \\
Humidity
\end{tabular}} & \multirow{3}{*}{Wind Chill ( \({ }^{\circ} \mathrm{F}\) )} & \multirow{3}{*}{\begin{tabular}{l}
Heat \\
Index \\
\(\left({ }^{\circ} \mathrm{F}\right)\)
\end{tabular}} & \multicolumn{2}{|c|}{Pressure} & \multicolumn{3}{|l|}{Precipitation (in.)} \\
\hline & & & & & & \multirow[b]{2}{*}{Air} & \multirow[b]{2}{*}{Dwpt} & \multicolumn{2}{|r|}{6 hour} & & & & altimeter & sea & & & \\
\hline & & & & & & & & Max. & Min. & & & & (in) & \[
\begin{aligned}
& \text { level } \\
& (\mathrm{mb}) \\
& \hline
\end{aligned}
\] & 1 hr & 3 hr & hr \\
\hline 13 & 4:53 & E 7 & 10 & Mostly Cloudy & BKN012 & 70 & 63 & & & 79\% & NA & NA & 29.88 & 1012.8 & & & \\
\hline 13 & 3:53 & E 6 & 10 & Partly Cloudy & SCT006 & 72 & 66 & & & 82\% & NA & NA & 29.87 & 1012.2 & & & \\
\hline 13 & 2:53 & E 8 & 10 & Mostly Cloudy & \[
\begin{aligned}
& \hline \text { SCT120 } \\
& \text { BKN200 }
\end{aligned}
\] & 74 & 69 & & & 85\% & NA & NA & 29.85 & 1011.6 & & & \\
\hline 13 & 1:53 & Calm & 10 & Mostly Cloudy & \[
\begin{aligned}
& \hline \text { SCT120 } \\
& \text { BKN200 }
\end{aligned}
\] & 77 & 70 & 88 & 77 & 79\% & NA & 79 & 29.84 & 1011.1 & & & \\
\hline 13 & 0:53 & Vrbl 3 & 10 & Overcast & \begin{tabular}{l}
BKN100 \\
OVC200
\end{tabular} & 80 & 71 & & & 74\% & NA & 83 & 29.84 & 1011.3 & & & \\
\hline 12 & 23:53 & Calm & 10 & Overcast & \begin{tabular}{l}
BKN070 \\
OVC200
\end{tabular} & 81 & 71 & & & 72\% & NA & 85 & 29.83 & 1010.9 & & & \\
\hline 12 & 22:53 & S 6 & 10 & Overcast & BKN080 OVC200 & 82 & 71 & & & 69\% & NA & 86 & 29.82 & 1010.3 & & & \\
\hline 12 & 21:53 & S 6 & 10 & Mostly Cloudy & BKN110 & 83 & 70 & & & 65\% & NA & 87 & 29.82 & 1010.6 & & & \\
\hline 12 & 20:53 & SW 6 & 10 & Mostly Cloudy & BKN250 & 85 & 70 & & & 61\% & NA & 90 & 29.8 & 1009.7 & & & \\
\hline 12 & 19:53 & SW 9 & 10 & Overcast & FEW045 BKN110 OVC250 & 88 & 72 & 96 & 88 & 59\% & NA & 95 & 29.78 & 1009.2 & & & \\
\hline 12 & 18:53 & W 12 & 10 & Mostly Cloudy & FEW045 BKN140 BKN250 & 90 & 72 & & & 56\% & NA & 98 & 29.77 & 1008.7 & & & \\
\hline \multicolumn{18}{|l|}{12-August} \\
\hline 12 & 6:53 & S 7 & 10 & Mostly Cloudy & \begin{tabular}{l}
SCT090 BKN180 \\
BKN250
\end{tabular} & 77 & 71 & & & 82\% & NA & 79 & 29.84 & 1011.3 & & & \\
\hline 12 & 5:53 & S3 & 10 & Mostly Cloudy &  & 78 & 71 & & & 79\% & NA & 80 & 29.84 & 1011.2 & & & \\
\hline 12 & 4:53 & S 5 & 10 & Mostly Cloudy & FEW060 BKN100 BKN200 & 78 & 71 & & & 79\% & NA & 80 & 29.85 & 1011.4 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Date} & \multirow{3}{*}{\begin{tabular}{l}
Time \\
(edt)
\end{tabular}} & \multirow{3}{*}{Wind (mph)} & \multirow{3}{*}{Vis.
(mi.)} & \multirow{3}{*}{Weather} & \multirow{3}{*}{Sky Cond.} & \multicolumn{4}{|c|}{Temperature ( \({ }^{( } \mathrm{F}\) )} & \multirow{3}{*}{\begin{tabular}{l}
Relative \\
Humidity
\end{tabular}} & \multirow{3}{*}{Wind Chill \(\left({ }^{\circ} \mathrm{F}\right)\)} & \multirow{3}{*}{\begin{tabular}{l}
Heat \\
Index \\
\(\left({ }^{\circ} \mathrm{F}\right)\)
\end{tabular}} & \multicolumn{2}{|c|}{Pressure} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Precipitation \\
(in.)
\end{tabular}} \\
\hline & & & & & & \multirow[b]{2}{*}{Air} & \multirow[b]{2}{*}{Dwpt} & \multicolumn{2}{|c|}{6 hour} & & & & \multirow[t]{2}{*}{\begin{tabular}{l}
altimeter \\
(in)
\end{tabular}} & \multirow[t]{2}{*}{sea level (mb)} & \multirow[b]{2}{*}{1 hr} & \multirow[b]{2}{*}{3 hr} & \multirow[t]{2}{*}{6
\(h r\)} \\
\hline & & & & & & & & Max. & Min. & & & & & & & & \\
\hline 12 & 3:53 & Calm & 10 & Mostly Cloudy & \[
\begin{aligned}
& \hline \text { SCT180 } \\
& \text { BKN200 }
\end{aligned}
\] & 78 & 71 & & & 79\% & NA & 80 & 29.85 & 1011.5 & & & \\
\hline 12 & 2:53 & S 6 & 10 & Partly Cloudy & SCT250 & 79 & 71 & & & 77\% & NA & 82 & 29.86 & 1011.9 & & & \\
\hline 12 & 1:53 & S 5 & 10 & Partly Cloudy & \[
\begin{aligned}
& \hline \text { FEW080 } \\
& \text { SCT250 }
\end{aligned}
\] & 79 & 71 & 90 & 79 & 77\% & NA & 82 & 29.87 & 1012.1 & & & \\
\hline 12 & 0:53 & Vrbl 3 & 10 & Mostly Cloudy & \[
\begin{aligned}
& \hline \text { BKN080 } \\
& \text { BKN250 }
\end{aligned}
\] & 80 & 71 & & & 74\% & NA & 83 & 29.9 & 1013.1 & & & \\
\hline 11 & 23:53 & S 6 & 10 & Partly Cloudy & SCT250 & 81 & 71 & & & 72\% & NA & 85 & 29.91 & 1013.5 & & & \\
\hline 11 & 22:53 & S 6 & 10 & A Few Clouds & FEW250 & 83 & 71 & & & 67\% & NA & 88 & 29.92 & 1014 & & & \\
\hline 11 & 21:53 & S 6 & 10 & A Few Clouds & FEW250 & 84 & 70 & & & 63\% & NA & 88 & 29.92 & 1014.1 & & & \\
\hline 11 & 20:53 & SW 5 & 10 & Partly Cloudy & SCT250 & 87 & 69 & & & 55\% & NA & 91 & 29.92 & 1014.1 & & & \\
\hline 11 & 19:53 & SW 6 & 10 & Mostly Cloudy & BKN250 & 90 & 68 & 97 & 90 & 48\% & NA & 94 & 29.91 & 1013.7 & & & \\
\hline 11 & 18:53 & W 7 & 10 & Mostly Cloudy & \[
\begin{aligned}
& \text { FEW065 } \\
& \text { RKNO50 }
\end{aligned}
\] & 93 & 67 & & & 42\% & NA & 96 & 29.93 & 1014.2 & & & \\
\hline \multicolumn{18}{|l|}{11-August} \\
\hline 11 & 6:53 & Calm & 0.5 & Fog & VV002 & 71 & 69 & & & 94\% & NA & NA & 30.05 & 1018.6 & & & \\
\hline 11 & 5:53 & Calm & 0.06 & Fog & VV002 & 71 & 69 & & & 94\% & NA & NA & 30.05 & 1018.5 & & & \\
\hline 11 & 4:53 & S 3 & 0.06 & Fog & VV002 & 72 & 70 & & & 94\% & NA & NA & 30.04 & 1018.1 & & & \\
\hline 11 & 3:53 & N 5 & 0 & Fog & VV002 & 72 & 71 & & & 97\% & NA & NA & 30.04 & 1018.1 & & & \\
\hline 11 & 2:53 & Calm & 0.5 & Fog & BKN001 & 73 & 71 & & & 94\% & NA & NA & 30.03 & 1018 & & & \\
\hline 11 & 1:53 & Calm & 3 & Fog/Mist & FEW002 & 75 & 72 & 79 & 75 & 90\% & NA & NA & 30.04 & 1018.1 & & & \\
\hline 11 & 0:53 & S3 & 3 & Fog/Mist & \begin{tabular}{l}
FEW002 \\
SCT015
\end{tabular} & 75 & 72 & & & 90\% & NA & NA & 30.05 & 1018.4 & & & \\
\hline 10 & 23:53 & S3 & 10 & Fair & CLR & 76 & 73 & & & 91\% & NA & 76 & 30.05 & 1018.7 & & & \\
\hline 10 & 22:53 & S 5 & 10 & Fair & CLR & 76 & 73 & & & 91\% & NA & 76 & 30.06 & 1018.9 & & & \\
\hline 10 & 21:53 & S 5 & 10 & A Few Clouds & FEW020 & 77 & 73 & & & 88\% & NA & 78 & 30.07 & 1019.2 & & & \\
\hline 10 & 20:53 & S 5 & 10 & A Few Clouds & FEW070 FEW250 & 78 & 73 & & & 85\% & NA & 80 & 30.06 & 1019 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Date} & \multirow{3}{*}{\begin{tabular}{l}
Time \\
(edt)
\end{tabular}} & \multirow{3}{*}{Wind (mph)} & \multirow{3}{*}{Vis.
(mi.)} & \multirow{3}{*}{Weather} & \multirow{3}{*}{Sky Cond.} & \multicolumn{4}{|c|}{Temperature ( \({ }^{( } \mathrm{F}\) )} & \multirow{3}{*}{\begin{tabular}{l}
Relative \\
Humidity
\end{tabular}} & \multirow{3}{*}{Wind Chill \(\left({ }^{\circ} \mathrm{F}\right)\)} & \multirow{3}{*}{Heat Index ( \({ }^{\circ} \mathrm{F}\) )} & \multicolumn{2}{|c|}{Pressure} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Precipitation \\
(in.)
\end{tabular}} \\
\hline & & & & & & \multirow[b]{2}{*}{Air} & \multirow[b]{2}{*}{Dwpt} & \multicolumn{2}{|r|}{6 hour} & & & & \multirow[t]{2}{*}{\begin{tabular}{l}
altimeter \\
(in)
\end{tabular}} & \multirow[t]{2}{*}{sea level (mb)} & \multirow[b]{2}{*}{1 hr} & \multirow[b]{2}{*}{3 hr} & \multirow[t]{2}{*}{6
hr} \\
\hline & & & & & & & & Max. & Min. & & & & & & & & \\
\hline 10 & 19:53 & S 5 & 10 & Mostly Cloudy & \begin{tabular}{l}
FEW020 \\
FEW055 \\
BKN070 \\
BKN250
\end{tabular} & 79 & 73 & 81 & 76 & 82\% & NA & 82 & 30.05 & 1018.6 & & & \\
\hline 10 & 18:53 & S 8 & 10 & Mostly Cloudy & \begin{tabular}{l}
FEW015 \\
FEW035 \\
BKN070 \\
BKN250
\end{tabular} & 80 & 73 & & & 79\% & NA & 84 & 30.05 & 1018.6 & & & \\
\hline \multicolumn{18}{|l|}{10-August} \\
\hline 10 & 6:53 & S 7 & 10 & Overcast & BKN070 OVC090 & 72 & 57 & & & 59\% & NA & NA & 30.16 & 1022.2 & & & \\
\hline 10 & 5:53 & S 7 & 10 & Mostly Cloudy & \[
\begin{aligned}
& \text { BKN050 } \\
& \text { BKN080 }
\end{aligned}
\] & 72 & 55 & & & 55\% & NA & NA & 30.16 & 1022.2 & & & \\
\hline 10 & 4:53 & S 6 & 10 & Mostly Cloudy & BKN080 & 72 & 54 & & & 53\% & NA & NA & 30.17 & 1022.3 & & & \\
\hline 10 & 3:53 & S3 & 10 & Mostly Cloudy & \[
\begin{aligned}
& \hline \text { BKN065 } \\
& \text { BKN250 }
\end{aligned}
\] & 71 & 54 & & & 55\% & NA & NA & 30.17 & 1022.6 & & & \\
\hline 10 & 2:53 & S 3 & 10 & A Few Clouds & FEW270 & 71 & 56 & & & 59\% & NA & NA & 30.18 & 1022.7 & & & \\
\hline 10 & 1:53 & S 3 & 10 & Partly Cloudy & SCT270 & 71 & 56 & 84 & 70 & 59\% & NA & NA & 30.18 & 1023 & & & \\
\hline 10 & 0:53 & SW 3 & 10 & Partly Cloudy & SCT270 & 72 & 56 & & & 57\% & NA & NA & 30.19 & 1023 & & & \\
\hline 9 & 23:53 & S 6 & 10 & Mostly Cloudy & BKN270 & 72 & 55 & & & 55\% & NA & NA & 30.18 & 1022.8 & & & \\
\hline 9 & 22:53 & S 6 & 10 & Partly Cloudy & SCT270 & 75 & 55 & & & 50\% & NA & NA & 30.17 & 1022.6 & & & \\
\hline 9 & 21:53 & SE 6 & 10 & Mostly Cloudy & BKN250 & 75 & 57 & & & 54\% & NA & NA & 30.16 & 1022.3 & & & \\
\hline 9 & 20:53 & Calm & 10 & Partly Cloudy & SCT250 & 77 & 57 & & & 50\% & NA & 79 & 30.15 & 1022 & & & \\
\hline 9 & 19:53 & Calm & 10 & Mostly Cloudy & BKN250 & 84 & 47 & 91 & 84 & 27\% & NA & 82 & 30.13 & 1021.3 & & & \\
\hline 9 & 18:53 & SW 8 & 10 & Mostly Cloudy & BKN250 & 86 & 49 & & & 28\% & NA & 84 & 30.13 & 1021.3 & & & \\
\hline \multicolumn{18}{|l|}{9-August} \\
\hline 9 & 6:53 & N 3 & 10 & Fair & CLR & 64 & 54 & & & 70\% & NA & NA & 30.19 & 1023.2 & & & \\
\hline 9 & 5:53 & Calm & 10 & Fair & CLR & 61 & 54 & & & 78\% & NA & NA & 30.16 & 1022.4 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & Temper & ture ( \({ }^{\circ}\) & & & Wind & Heat & Pres & & & \begin{tabular}{l}
pitati \\
(in.)
\end{tabular} & \\
\hline Date & (edt) & \[
(\mathrm{mph})
\] & (mi.) & Weather & Sky Cond. & & & & & Humidity & Chill ( \({ }^{\circ} \mathrm{F}\) ) & Index ( \({ }^{\circ} \mathrm{F}\) ) & altimeter & sea & & & \\
\hline & & & & & & Air & Dwpt & Max. & Min. & & & & (in) & \[
(\mathrm{mb})
\] & 1 hr & 3 hr & hr \\
\hline 9 & 4:53 & Calm & 10 & Fair & CLR & 62 & 54 & & & 75\% & NA & NA & 30.15 & 1021.8 & & & \\
\hline 9 & 3:53 & Calm & 10 & Fair & CLR & 63 & 52 & & & 68\% & NA & NA & 30.13 & 1021.2 & & & \\
\hline 9 & 2:53 & Calm & 10 & Fair & CLR & 64 & 52 & & & 65\% & NA & NA & 30.12 & 1020.7 & & & \\
\hline 9 & 1:53 & SE 3 & 10 & Fair & CLR & 66 & 52 & 80 & 65 & 61\% & NA & NA & 30.09 & 1019.9 & & & \\
\hline 9 & 0:53 & SE 3 & 10 & Fair & CLR & 68 & 52 & & & 57\% & NA & NA & 30.08 & 1019.5 & & & \\
\hline 8 & 23:53 & S3 & 10 & Fair & CLR & 71 & 51 & & & 49\% & NA & NA & 30.07 & 1019.2 & & & \\
\hline 8 & 22:53 & Calm & 10 & Fair & CLR & 73 & 51 & & & 46\% & NA & NA & 30.06 & 1018.8 & & & \\
\hline 8 & 21:53 & Calm & 10 & Fair & CLR & 75 & 50 & & & 42\% & NA & NA & 30.05 & 1018.5 & & & \\
\hline 8 & 20:53 & Calm & 10 & Fair & CLR & 78 & 49 & & & 36\% & NA & 78 & 30.03 & 1017.7 & & & \\
\hline 8 & 19:53 & W 5 & 10 & Fair & CLR & 80 & 48 & 86 & 80 & 33\% & NA & 79 & 30.01 & 1017 & & & \\
\hline 8 & 18:53 & W 10 & 10 & A Few Clouds & \begin{tabular}{l}
FEW090 \\
FEW250
\end{tabular} & 84 & 46 & & & 27\% & NA & 82 & 29.99 & 1016.6 & & & \\
\hline \multicolumn{18}{|l|}{8-August} \\
\hline
\end{tabular}

\section*{Appendix C Photos of Detector Set-up \& Habitat}


Figure C-1. Segment 1 - overview of set-up.


Figure C-3. Segment 1 - facing north.


Figure C-2. Segment 1 - cone of detection.


Figure C-4. Segment 1 - facing east.


Figure C-5. Segment 1 - facing south.


Figure C-7. Segment 2 - overview of set-up.


Figure C-6. Segment 1 - facing west.


Figure C-8. Segment 2 - cone of detection.


Figure C-5. Segment 9 - facing north.


Figure C-11. Segment 2 - facing south.


Figure C-10. Segment 2 - facing east.


Figure C-12. Segment 2 - facing west.


Figure C-63. Segment 3 - overview of set-up.


Figure C-15. Segment 3 - facing north.


Figure C-14. Segment 3 - cone of detection.


Figure C-16. Segment 3 - facing east.


Figure C-17. Segment 3 - facing south.


Figure C-79. Segment 4 - overview of set-up.


Figure C-18. Segment 3 - facing west.


Figure C-80. Segment 4 - cone of detection.


Figure C-21. Segment 4 - facing north.


Figure C-23. Segment 4 - facing south.


Figure C-22. Segment 4 - facing east.


Figure C-24. Segment 4 - facing west.


Figure C-25. Segment 5 - overview of set-up.


Figure C-27. Segment 5 - facing north.


Figure C-96. Segment 5 - cone of detection.


Figure C-28. Segment 5 - facing east.


Figure C-29. Segment 5 - facing south.


Figure C-310. Segment 6 - overview of set-up.


Figure C-30. Segment 5 - facing west.


Figure C-311. Segment 6 - cone of detection.


Figure C-123. Segment 6 - facing north.


Figure C-35. Segment 6 - facing south.


Figure C-313. Segment 6 - facing east.


Figure C-36. Segment 6 - facing west.


Figure C-37. Segment 7 - overview of set-up.


Figure C-149. Segment 7 - facing north.


Figure C-38. Segment 7 - cone of detection.


Figure C-150. Segment 7 - facing east.


Figure C-41. Segment 7 - facing south.


Figure C-43. Segment 8 - overview of set-up.


Figure C-42. Segment 7 - facing west.


Figure C-44. Segment 8 - cone of detection.


Figure C-45. Segment 8 - facing north.


Figure C-47. Segment 8 - facing south.


Figure C-166. Segment 8 - facing east.


Figure C-48. Segment 8 - facing west.


Figure C-49. Segment 9 - overview of set-up.


Figure C-51. Segment 9 - facing north.


Figure C-50. Segment 9 - cone of detection.


Figure C-52. Segment 9 - facing east.


Figure C-53. Segment 9 - facing south.


Figure C-55. Segment 10 - overview of set-up.


Figure C-54. Segment 9 - facing west.


Figure C-56. Segment 10 - cone of detection.


Figure C-57. Segment 10 - facing north.


Figure C-59. Segment 10 - facing south.


Figure C-58. Segment 10 - facing east.


Figure C-60. Segment 10 - facing west.


Figure C-617. Segment 11 - overview of set-up.


Figure C-619. Segment 11 - facing north.


Figure C-618. Segment 11 - cone of detection.


Figure C-620. Segment 11 - facing east.


Figure C-65. Segment 11 - facing south.


Figure C-67. Segment 12 - overview of set-up.


Figure C-66. Segment 11 - facing west.


Figure C-68. Segment 12 - cone of detection.


Figure C-69. Segment 12 - facing north.


Figure C-71. Segment 12 - facing south.


Figure C-70. Segment 12 - facing east.


Figure C-72. Segment 12 - facing west.

\section*{Resumes}

\section*{SARAH A. BARNUM, CWB \({ }^{\circledR}\) Senior Wildlife Ecologist}

Dr. Barnum is a Senior Wildlife Ecologist at Normandeau with over 20 years of professional experience. Her background includes providing expertise to the transportation and energy sectors, as well as a variety of general development projects. She has hands-on experience with a wide range of species including forest birds, waterfowl, raptors, small mammals, large mammals, amphibians, and reptiles. Dr. Barnum's projects have emphasized examining habitat relationships, impact assessment for threatened and endangered species, mitigation planning, and Federal Endangered Species Act (ESA) compliance. Dr. Barnum also has extensive experience in project planning, project management, experimental design, and data analysis.

\section*{REPRESENTATIVE PROJECT EXPERIENCE}

\section*{Northeast Energy Direct Pipeline, Kinder Morgan, New} Hampshire, Massachusetts, Connecticut, New York (2015-
Present). Planning and coordination of surveys and reporting for state and federally listed wildlife to support state and federal permitting for installation of a new, 400 -mile long natural gas pipeline. Focal species include New England cottontail, songbirds, marsh birds, raptors, turtles, snakes, and lepidopterans. All tasks conducted to meet the Federal Energy Regulatory Commission (FERC) permitting requirements. Wildlife Task Manager.

\section*{Northern Pass Transmission Project, Eversource Energy,} Canadian Border to Deerfield, New Hampshire (2010-Present). Conducting wildlife assessments, impact analysis, and mitigation planning in support of state and federal permitting

\section*{EDUCATION}

Ph.D., Conservation Planning, University of Colorado
M.S., Wildlife Biology, Utah State University
B.S., (cum laude) Wildlife Biology, University of Vermont
PROFESSIONAL EXPERIENCE
2007-Present Normandeau Associates
2005-2007 New Hampshire Audubon
2004-2005 Baystate Environmental Consultants
2001-2003 Environmental Planning and Policy Unit, Colorado DOT
1998-2000 Office of Environmental Services, Colorado DOT
1996-1998 Dames \& Moore1993-1994 Bio-Resources, Inc.

\section*{PROFESSIONAL CERTIFICATIONS}
- Certified Wildlife Biologist
- AAE's Airport Wildlife Manager's Course and Wildlife Management Techniques Course
- Cyber Tracker Level III Tracking Certification

\section*{PROFESSIONAL AFFILIATIONS}
- The Wildlife Society
- New Hampshire Association of Natural Resource Scientists
- Epsom, NH Conservation Commission
- Bear-Paw Regional Greenways Land Conservation Committee for installation of a new, 200-mile long HVDC line in New Hampshire. Tasks include consultation with state and federal agencies (ESA, NEPA), desktop analysis, design and coordination of field surveys, writing the wildlife section of the SEC Natural Resources Report, and providing expert testimony. Focal species include Canada lynx, American marten, bats, raptors, song birds, turtles, snakes, and Karner blue butterfly. Wildlife Task Manager.

The Balsams Grand Resort, Dixville LLC, New Hampshire (2014 - Present). Planned and coordinated surveys and reporting for general wildlife issues and northern long-eared bat acoustic surveys. Wildlife Task Manager.

Boston Convention and Events Center Gull Dissuasion Study, Massachusetts Convention Center Authority, Boston, Massachusetts (2014-2016). Designed and oversaw field surveys of gull activities on

Environmental Consultants
the BCEC roof, and assisted in identification and evaluation of dissuasion strategies. Project Manager and Avian Biologist.

Post-Construction Mortality Monitoring, Pheasant Run Wind LLC, Huron County, Michigan (2014-2015). Conducted bird and bat post-construction fatality monitoring, coordinated data analysis and report writing. Project Manager.

Loon Pond Dam Reconstruction, Town of Lincoln, Lincoln, New Hampshire (2015-2016). Conducted habitat suitability assessment for Canada lynx and forest roosting bats for project located on Forest Service Land; coordinated rare plant surveys and wrote the Biological Evaluation. Project Manager and Wildlife Biologist.

Acoustic Northern Long-eared Bat Surveys, MassDOT, Massachusetts (2015). Planned and coordinated USFWS-compliant surveys and reporting for 20 separate MassDOT projects across MA. Project Manager.

Habitat Assessment and Acoustic Northern Long-eared Bat Surveys, Various, New Hampshire (2015). Planned and coordinated USFWS compliant surveys and reporting for four separate development projects in southern NH. Project Manager.

Northern Long-eared Bat Habitat Assessment, Horizons Engineering, Loudon, New Hampshire (2015). Conducted USFWS compliant habitat assessment and reporting for the proposed Liberty Pipeline. Project Manager and Bat Biologist

Fowler's Toad Study for Hydro Dam Relicensing, TransCanada, Connecticut River, New Hampshire and Vermont (2013-2014). Designed and conducted habitat suitability evaluation and toad survey; reporting. All tasks conducted to meet the FERC permitting requirements. Task Manager and Amphibian Biologist.

Loon Mountain Ski Area Expansion Biological Evaluation, US Forest Service, White Mountain National Forest, New Hampshire (2013-2014). Conducted habitat suitability assessment for Canada lynx, forest roosting bats, and black bear and wrote the Biological Evaluation. Wildlife Task Manager and Mammal Biologist.

New England Cottontail Permitting, Tidewater Landing, LLC, Wells, Maine (2013). Wrote the New England cottontail related permitting documents for the Tidewater Landing sub-division. Assessed habitat suitability and negotiated with MDIFW. Wrote the Habitat Management Plan and Incidental Take Plan required for the project permit. Project Manager and NEC Biologist.
Waterville Valley Ski Area Expansion Biological Evaluation, US Forest Service, White Mountain National Forest, New Hampshire (2012-2013). Conducted habitat suitability assessment for Canada lynx, forest roosting bats, and black bear, and wrote the Biological Evaluation. Wildlife Task Manager and Mammal Biologist.

Rare Species Surveys, Tennessee Gas Pipeline Co., various locations in Massachusetts and Connecticut (2012-2013). Rare species surveys in support of pipeline repair activities. Various surveys for rare turtles and rare plants prior to pipeline repair projects. Project Manager and Turtle Biologist.

Environmental Consultants
Winthrop Beach Piping Plover Management Plan, MA Department of Conservation and Recreation, Winthrop, Massachusetts (2012). Designed and wrote the piping plover management plan required as part of the permitting effort for the Winthrop Beach re-nourishment project. Project Manager and Avian Biologist.

Roseate Tern Expert Testimony, Entergy Nuclear Generation Company, Plymouth, Massachusetts (2012). Provided expert testimony summarizing potential impacts of relicensing of Pilgrim Nuclear Power Station in Plymouth, MA on roseate terns. Avian Biologist.

The Effect of Roadside Mowing Practices on Deer-Vehicle Collision Rates, Federal Highway Administration (2009-2012) Nationwide. Conducted literature review and interviews with State DOT personnel to summarize any known effects of roadside mowing regimes on DVC rates, followed by a quantitative analysis of DVC rates as a function of mowing regime. Project responsibilities include acquiring data from State DOTs, data management and analysis, and report writing. Data Analysis Task Manager.

Madaket Wind Permitting Assessment, Town of Nantucket, Nantucket, Massachusetts (20102011). Assessed avian and T\&E resources in the proposed project area to determine potential impacts and permitting requirements for 1-3 utility scale wind turbines on Nantucket DPW lands. Focal species included long-tailed duck, northern harrier, and night migrants (birds and bats). Work includes both desktop and field assessment. Project Manager, Wildlife Biologist.

Post-Construction Mortality Monitoring, First Wind, Stetson Wind Power Facility, Washington County, Maine (2010-2011). Managed personnel to search turbines for bird and bat fatalities, spring through fall and estimate fatality rates. Coordinated searcher efficiency trials and scavenger trials to estimate true number of fatalities; supervised and quality-checked fatality estimation and report writing. Project Manager.

Analysis of Methods to Identify Deer-Vehicle Collision Hotspot, Federal Highway Administration (2009-2011) Nationwide. Compared qualitative and quantitative methods to identify DVC hotspots, based on data needs, ease of implementation, expertise required, and relevancy to solving safety and ecological issues. Project responsibilities included review of methods through literature review and interviews with DOT staff, creating and implementing comparison protocols, staff management and report writing. Principle Investigator and Project Manager.

Brimfield Wind Avian and Bat Surveys, First Wind, Brimfield, Massachusetts (2009-2010). Avian and acoustic bat surveys to support environmental permitting for a proposed 20 MW project in southwestern MA. Avian surveys include raptor surveys and breeding bird surveys. Project Manager and Avian Biologist.

Avian Impact Assessment, Town of Saugus, Saugus, Massachusetts (2009-2010). Desktop analysis of biological and permitting issues associated with a proposed municipal, utility-scale wind development on the abandoned I-95 road bed Saugus, MA. Species of interest include neotropical migrants, wintering ducks, terns, and other shore birds. Project Manager and Avian Biologist.

Mitigation Wetland Functional Assessment, Federal Highway Administration, various nationwide locations (2008-2010). Wetlands constructed to mitigate for highway project-related

\section*{Environmental Consultants}
impacts and reference wetlands were surveyed, and levels of invasive cover and wildlife functions compared. Project responsibilities included interviewing state DOT staff to identify and select study sites, conducting surveys, semi-quantitative analysis, report writing, and managing staff. Project Manager.

Seabrook Nuclear Facility Relicensing, Florida Power and Light, Seabrook, New Hampshire (2008-2010). Reviewed and summarized all terrestrial ecology issues associates with facility construction and operations with a focus on threatened and endangered species, and impact assessment; results presented in a NRC compliant Environmental Report format to support relicensing. Task Manager.

Nine Mile Point Nuclear Facility Expansion, Constellation Energy, Scriba, New York (2007-2010). Wildlife studies to support expansion of an energy facility in Oswego NY. Tasks included field review of the site, evaluation of the habitat's ability to support potential threatened and endangered species, and impact assessment; results presented in a NRC compliant Environmental Report format to support licensing. Wildlife Task Manager.

Mount Snow Resort Snow Making Upgrade Biological Evaluation, US Forest Service, Green Mountain National Forest, Vermont (2008). Review all threatened and endangered species issues associated with a snow making upgrade; analyzed impacts and summarize results in a Forest Service Biological Assessment and a NEPA Environmental Assessment. Senior Wildlife Ecologist.

Casco Bay Fuel Line Removal, U.S. Navy, in Brunswick and Harpswell, Maine (2008). Wildlife studies to support Corps 404 and Maine NRPA permitting. Conducted habitat survey of project area, mapped wildlife habitat, and assessed impacts, with a focus suitable habitat for and presence of species listed by the State of Maine and /or USFWS. Compiled results in a report to support all local and federal permitting efforts. Senior Wildlife Ecologist.

Canada Lynx and American Marten Habitat Assessment, Mount Washington Resort, Bretton Woods, New Hampshire (2007-2008). Provided expert opinion regarding the suitability of the resort's property for Canada lynx and American marten. Tasks included field assessment of the property, review of current literature, producing a written report detailing analysis approach and findings, and ongoing consultation with regulating agencies. Senior Wildlife Ecologist.

NH Route 2 Wildlife Crossing Investigation, New Hampshire Audubon, Jefferson and Randolph, New Hampshire (2005-2007). Designed, implement and managed a tracking study to identify the locations where wildlife crossed the highway, and to determine the characteristics of preferred crossing locations. Tasks included extensive quantitative and qualitative analysis of GIS based data sets. Principle Investigator and Project Manager.

Runway Expansion Feasibility Study, Town of Montague Airport Commission, Montague, Massachusetts (2004-2005). Analyses of potential impacts to birds, sensitive habitats, and special status species including grasshopper sparrows, box turtles, rare plants, and pine-barrens associated insects present in the project area Tasks included field surveys, literature reviews, report writing and general project management. Project Manager.

Environmental Consultants
Runway Expansion Feasibility Study, Martha's Vineyard Airport Commission, West Tisbury, Massachusetts (2004-2005). Conducted analyses and mitigation planning for potential impacts to birds, sensitive habitats, and special status species, including grasshopper sparrows, rare plants, and pinebarrens associated insects. Tasks included consultations with the MA Natural heritage and Endangered Species Program, field surveys, impact assessments, mitigation planning, literature reviews, report writing and general project management. Project Manager.

Programmatic Section 7 Consultation Regarding Impacts to Canada Lynx, Colorado Department of Transportation (2001-2002). Researched and wrote the document that served as the basis for a programmatic agreement between the USFWS and CDOT. Tasks included analysis of habitat and highway conflicts, analysis of likely impacts to lynx resulting from highway projects, development of a formalized impact assessment procedure, and literature review. Environmental Planner.

US 40 Rabbit Ears Pass Upgrade, Colorado Department of Transportation, Grand and Jackson Counties, Colorado (2001). Assessed project area for wildlife corridors and use by Canada lynx and large ungulates. Worked with project engineers and USFS to develop design recommendations, including locations for potential under passes, to improve motorist safety, reduce wildlife mortality and provides habitat connectivity. Environmental Planner.

US 9 Upgrade, Colorado Department of Transportation, Silverthorne, Colorado (1999-2000). Assessed project area for wildlife corridors and use by Canada lynx and large ungulates. Developed recommendation to improve motorist safety, reduce wildlife mortality and provides habitat connectivity. Worked with project engineers and designers to design and locate two wildlife underpasses. Endangered Species Specialist.

US 40 Berthoud Pass Upgrade, Colorado Department of Transportation, Clear Creek and Grand Counties, Colorado (1997-1998). Habitat assessment at the local and landscape scale to determine the best locations for wildlife underpasses to benefit mule deer, elk, Canada lynx and other species. Coordinated with project planners and designers to design underpasses that were appropriate for the target species and that provided engineering feasibility. Endangered Species Specialist.

\section*{REPRESENTATIVE PRESENTATIONS}

Barnum, S. A., Alt, G. 2013. The effect of reduced mowing on rate of deer-vehicle collisions. 2013 Transportation Research Board Annual Meeting. Washington, D.C.

Barnum, S. A., Gray, M. 2011. A comparison of methods to identify deer-vehicle crash hotspots. 2011 Transportation Research Board Annual Meeting. Washington, D.C.

Barnum, S. A. 2008. Habitat, highway features, and animal-vehicle collision locations as indicators of wildlife crossing hotspots in Proceedings of the 2007 International Conference on Ecology and Transportation. Center for Transportation and the Environment, North Carolina State University.

Barnum, S. A. 2007. Habitat, highway features, and animal-vehicle collision locations as indicators of wildlife crossing hotspots. 2007 International Conference on Ecology and Transportation. Little Rock, AR.

Environmental Consultants
Barnum, S. A. 2003. Identifying the best locations to provide safe highway crossing opportunities for wildlife. Society for Conservation Biology 17th Annual Meeting. Duluth, MN.

Barnum, S. A. 2001. Preliminary analysis of locations where wildlife crosses highways in the Southern Rocky Mountains 2001 International Conference on Ecology and Transportation. Keystone, CO.

Barnum, S. A. 2001. Preliminary analysis of locations where wildlife crosses highways in the Southern Rocky Mountains in Proceedings of the 2001 International Conference on Ecology and Transportation. Center for Transportation and the Environment, North Carolina State University.

Barnum, S. A. 1999. A programmatic approach to minimize highway project impacts on Canada Lynx (Lynx canadensis) in Colorado. Third International Conference on Wildlife Ecology and Transportation. Missoula, MT.

\section*{PEER-REVIEWED ARTICLES AND PUBLICATIONS}

Barnum, S. A. 2003. Identifying the best locations along highways for wildlife under- and overpasses: a handbook for highway planners and designers. Colorado Department of Transportation Research Report 2003-9.

Barnum, S. A., C. J. Mannville, J. R. Tester, and W. J. Carmen. 1992. Path selection by Peromyscus leucopus novaboracensis in the presence and absence of vegetative cover. J. Mammal. 74:797-801.

\section*{Biologist/Data Analyst}

Ms. O'Brien is a biologist with six years of professional experience in wildlife research, conservation, and natural resource management throughout New England. Her projects have emphasized protecting and managing threatened and endangered species, assessing environmental impacts, regulating and managing natural resources and wildlife, and ensuring Federal Endangered Species Act compliance. Her diverse wildlife background includes experience with forest, wetlands, and marsh birds, shorebirds, waterfowl, songbirds, raptors, amphibians, and small mammals, including bats. In addition to her field skills, Ms. O'Brien possesses a strong foundation in project planning and implementation, project management and organization, and data analysis and quality control.

Additionally, Ms. O'Brien is a SAS programmer in the Technical Data Processing group. In this capacity she is responsible for the integrity and quality of data and for the generation of final data deliverables.

\section*{REPRESENTATIVE PROJECT EXPERIENCE}

Balsams Ski Resort Expansion, Northern Long-eared Bat Surveys Dixville LLC, Dixville, NH (2015-Present). Dixville

\section*{EDUCATION}
M.S.E.S., Applied Ecology, Indiana University, Bloomington
M.P.A., Environmental Policy and Natural Resource Management, Indiana University, Bloomington
B.A., (cum laude) Biology, Saint Anselm College
PROFESSIONAL EXPERIENCE
2013-Present Normandeau Associates
2011-2013 U.S. Fish \& Wildlife Service, Umbagog National Wildlife Refuge
2012 Ducks Unlimited, Inc. U.S. Great Lakes Region

2009-2011 Office of Sustainability, Indiana University, Bloomington
2008 Dickinson College Biodiesel Shop

PROFESSIONAL AFFILIATIONS
- New Hampshire Audubon
- Loon Preservation Committee
- New Hampshire Association of Natural Resource Scientists LLC is proposing to revive and expand the deteriorated Balsams Grand Resort and Wilderness Ski Area into a year-round resort. The project includes restoring the original resort and facilities, constructing new facilities, and increasing the ski terrain from approximately 100 acres to 1200 acres. Normandeau was retained to undertake natural resources data collection efforts and to assist with environmental State and Federal permitting. Ms. O'Brien played a large role in the 2015 Northern long-eared bat surveys, where, in addition to deployment and retrieval of detectors, she coordinated site access and field crew schedules, and was responsible for data reporting, and habitat assessments. Biologist.

Pike Industries Northern Long-eared Bat Surveys, Hooksett, New Hampshire (2015). Normandeau is conducting Northern long-eared bat survey work for a proposed quarry expansion. Ms. O'Brien conducted the Northern long-eared bat surveys, which involved deployment and retrieval of acoustic detectors and habitat analysis of detector sites. Biologist.

\section*{Socha Companies Northern Long-eared Bat Surveys, Hooksett, New Hampshire (2015).}

Normandeau is providing delineation and natural resource survey work for a proposed apartment complex. Ms. O'Brien participated in Northern long-eared bat surveys, which involved the deployment and retrieval of acoustic detectors. Biologist.

Northern Pass Transmission Line Project Northern Long-eared Bat Surveys, Northeast Utilities, NH (2014-present). Northeast Utilities is proposing the Northern Pass Transmission Line, a 180-mile HVDC and AC Transmission project to bring hydropower from Quebec into New Hampshire and the New England region. Ms. O'Brien is involved with various aspects of this project, including wetland mitigation research and permit preparation for NH Department of Environmental Services Shorelands, Wetlands, and Alteration of Terrain Permits. Ms. O'Brien is also providing GPS support for delineated wetland boundaries, and participating in natural resource surveys including rare plants, vernal pools, and bats. Ms. O'Brien was especially involved with Northern Long-eared Bat surveys, where she managed scheduling for up to five people, conducted habitat analysis, deployed and retrieved detectors, and wrote code to filter call data for target species identification. Biologist.

Confidential Client, (2014-2015). This is a confidential energy project. Ms. O'Brien was involved with various aspects of this project, including wetlands and mitigation in a fatal flaw analysis, map revisions in ArcGIS for presentation at state and local meetings, wetland compensatory mitigation research and ARM fund numbers. Ms. O'Brien is also providing GPS support for delineated wetland boundaries, and participating in natural resource surveys including vernal pools, turtles, snakes, Northern Harriers, and bat hibernacula. Additionally, Ms. O'Brien helped with the creation of public outreach documents involving tourism in associated project areas. Biologist.

Bat Monitoring, U.S. Fish \& Wildlife Service, Umbagog National Wildlife Refuge, NH/ME (20112013). Ms. O'Brien evaluated resident bat populations adjacent to Lake Umbagog. Monitoring activities included conducting maternity roost emergence surveys and acoustic driving transect surveys. Coordinating volunteer efforts, completing required documentation following each survey, maintaining and preserving accurate records, and updating database records was also practiced. Biological Technician.

\section*{SPECIAL TRAINING}

Motor Boat Operator Certification (Department of the Interior), valid through 06/2016
Defensive Driving (Department of the Interior), valid through 06/2016
CPR/AED (American Red Cross), valid through 02/2017
SAS System programming
ArcGIS 9.2-10.3
Normandeau's 1 week Bat Acoustic Training course

Environmental Consultants

\section*{Stephen R. Lindsay Wildlife Biologist, Bat Specialist}

Stephen Lindsay is a wildlife biologist with special expertise in bats, raptors, grassland birds, and endangered species, particularly in the northeastern United States. His experience working with and studying bats includes mist netting, harp trapping, affixing transmitters and pit tags, banding and handling, performing hibernacula surveys, using acoustic monitoring devises, and analyzing acoustic results. He is also experienced in radio telemetry and GIS.

While working for the New York State Department of Environmental Conservation

\section*{EDUCATION}
B.S. 2011, Wildlife Management, Paul Smith's College
A.S 2007, Individual Studies

PROFESSIONAL EXPERIENCE
2015-Present Normandeau Associates
2013-2015 New York State Department of Environmental Conservation Vesper Environmental New Jersey Audubon Penn State University (NYSDEC), Stephen handled hundreds of bats, identifying them to species, assessing reproductive status, determining sex and age, and banding and attaching pit tags. He also monitored Indiana and northern long-eared bats, deploying acoustic devices and analyzing results to identify species using full spectrum programs.

\section*{SELECTED PROJECT EXPERIENCE}

Reassessing Summer Range of Indiana Bats (Myotis sodalis) in the Hudson Valley, New York, NYSDEC (2013-2015) - Assess previous summer range use of Indiana bats using previously collected data. Used GIS and areal mapping to determine detector location and gain access to private and public location for detector deployment. Deployed acoustic detectors at sites throughout the Hudson Valley to detect Indiana bats. Collected, sorted, and filter collected data. Ran data through call analysis software and verified that the species determinations were correct for Myotis species. Set and monitored triple high mist nets at high priority sites. Determined species, sex, and age of captured bats and attached radio transmitters to captured Indiana bats. Perform exit counts at discovered maternity colonies. Wildlife Technician.

Monitor Cave Ecosystems and White-Nose Fungus Presence in Bat Hibernacula, New York, NYSDEC (2013-2015) - Accessed known hibernacula of Indiana bats and determined the number present. Used caving gear, including caving suits and ropes/harnesses, to enter natural cave formations and abandoned mining sites. Took swabs from the ceiling of the cave at various locations using climbing and ladders. Took soil samples from the floor at various locations. Retrieved temperature and humidity monitoring buttons and collected data from them. Replaced and reported missing detectors. Wildlife Technician.

Bi-yearly Winter Survey of Indiana Bat (Myotis sodalis) Hibernacula, New York, NYSDEC (2013-2015) - Accessed known hibernacula of Indiana bats and determined the number present. Used caving gear, including caving suits and ropes/harnesses, to enter natural

Environmental Consultants
cave formations and abandoned mining sites. Navigated through complex tunnel systems and used caving maps. Photographed and visually counted the number of Indiana bats and other species present. Wildlife Technician.

Determining Range of Wintering Raptors Throughout the Hudson Valley, New York, NYSDEC (2013-2015) - Performed wintering raptor surveys in areas of the Hudson Valley known and suspected to be occupied to determine roost locations and sites used by wintering raptors. Used bi-weekly surveys to determine presence of winter raptors with special interest in Short-eared Owl (Asio flammeus) and Northern Harriers (Circus cyaneus). Used bow nets and live bait to lure and capture both species near roost locations. Handled, banded, collected biological data, and affixed tail-mount radio transmitters to captured birds. Performed radio telemetry on birds to determine roost locations and foraging data. Wildlife Technician.

Aeolas Cave Winter Mortality Survey, Vermont, Vesper Environmental (Summer 2014) Helped determine the survival rate of hibernating bats at Aeolas cave using pit tags and mark and capture. Deployed harp traps at cave mouth and nearby. Assessed species, age, sex, and reproductive status of captured bats. Affixed pit tags and wing bands. Bat Technician.

Assessment of Grassland Bird Nesting Success and Survival at PAX Naval Air Station, Maryland, New Jersey Audubon (Summer 2012) - Located and monitored grassland birds, with emphasis on eastern meadowlarks and grasshopper sparrows, on grassland plots at air bases to determine effects of mowing on productivity and survival. Performed nest searches using roping and sticking, nest monitoring, band resighting, nestling banding, and vegetation surveys. Maintained a professional working relationship with Patuxent Air Naval Station base officials. Field Technician.

\section*{Assessment of Grassland Bird Community response to Habitat Manipulation at} Reclaimed Strip Mine Mountains, Pennsylvania State University (Summer 2011) - Assisted with PhD research on grassland bird community response to habitat manipulation on reclaimed surface mine grasslands in west-central Pennsylvania. Assessedchanges in survival, apparent return rates, and population sizes for these areas following vegetation removal. Assisted with capturing (via playback) and banding adult and nestling Grasshopper, Henslows, Savannah, and Vesper Sparrows. Performed nest searches and monitoring, and re-sighted color-banded birds to estimate population sizes. Research Assistant.

\section*{SPECIAL TRAINING}
- Chemical Immobilization Training, Safe Capture International

\section*{Appendix N: Cultural Resources}

\title{
Cultural Resource Memorandum of Effect
}
(Municipally Managed Projects)
Project Name: Derry-Londonderry Exit 4A - Alternative A Date: June 7, 2007 State No.: 13065 Federal No.(as applicable): IM-93-1(201)12

Pursuant to meetings on_8/20/1998, 8/4/2005, 3/2/2006, 3/9/2006, 6/8/2006, 10/5/2006, \(4 / 5 / 2007\), and for the purpose of compliance with the regulations of the National Historic Preservation Act and the Advisory Council on Historic Preservation's Procedures for the Protection of Historic Properties (36 CFR 800), the NH Division of Historical Resources and, when applicable, the NH Division of the Federal Highway Administration or the US Army Corps of Engineers have coordinated on the identification and evaluation of cultural resources relative to providing transportation improvements, including construction of a new interchange with Interstate 93 (I-93) (known as Exit 4A), to address existing traffic congestion and safety issues on NH Route 102 and to promote economic vitality in the Derry/Londonderry area. The project extensively reviewed different alternatives through the preparation of an environmental impact statement (EIS).

Alternative A would construct a new interchange on I-93 located approximately one mile north of the existing Exit 4. The interchange would have north and southbound on- and off-ramps, with access only to the east. An access road would connect the interchange with Folsom Road. The Alternative would require land and building acquisitions along the north side of Folsom Road then continue along Tsienneto Road to its intersection with NH Route 102.

\section*{HISTORIC RESOURCES}

Along the corridor, two residential properties were determined to be eligible for the National Register of Historic Places (NRHP). These properties are located in Derry and identified as:
\begin{tabular}{|l|l|l|l|}
\multicolumn{1}{c}{ Number } & \multicolumn{1}{c}{ Address } & \multicolumn{1}{c}{ Description } & \multicolumn{1}{c|}{ Eligibility/Criteria } \\
\hline DER0134 & 76 Tsienneto Road & Palmer Homestead & Eligible (C) \\
\hline DER0135 & 72 Tsienneto Road & E.F. Adams House & Eligible (C) \\
\hline
\end{tabular}

It was determined that Alternative A would have no effect on these NRHP-eligible properties.

\section*{ARCHAEOLOGICAL RESOURCES}

There are no known archaeological sites that will be affected by Alternative A. However, there is one area of pre-contact Native American archaeological sensitivity along this Alternative corridor. This sensitive area is located across the eastern extent of Tsienneto Road, in the vicinity of Jeff Lane. The expected impacts on this potentially sensitive area associated with the roadway improvements could reach 0.7 acre. FHWA and NHDHR agree that the preliminary Phase I-A archaeological review and report preparation provided an acceptable level of data for determining potential impacts to archaeological resources and proceeding to a public hearing. However, additional studies and identification of mitigation will be required as the project progresses.

\section*{MITIGATION}

Historic Resources
As no historic resources will be effected by this Alternative, no mitigation is proposed.

\section*{Archaeological Resources}

Once an alternative has been chosen and the public hearing has been held, a Phase IB field verification and report preparation by a professional archaeologist will be completed for the Selected Alternative. Based on the findings in the Phase \(\operatorname{IB}\) report, additional, more intense field work may be required under a Phase II site survey.

A Phase II survey would be completed once the final design stage of the project has been reached. The Phase II work would include additional field investigation and research to help determine site integrity, establish a period of occupation, function, cultural affiliation, and associated context, and to more closely define site boundaries within the project area. Field examination would involve a combined strategy of excavation using 0.5 -meter by 0.5 -meter tests with 1 -meter by 1 -meter units and trenches, as well as mapping visible features. A report would be completed to help explain the site(s) and how it compares to similar sites in the region, if they exist.

Any resources found will be reviewed by NHDHR and FHWA to determine if they are eligible for the NRHP. If the resource is found to be eligible, the project's effect on the resource will be determined. If the project is found to adversely affect an eligible resource, then a determination will be made as to whether the resource should be preserved in-place or recovered.

If after reviewing the reports and data provided in the Phase II level study, and considering the footprint of the proposed design plans, it is determined by NHDHR and FHWA that recovery of a resource is required, then a Phase III data recovery plan will be implemented.

Although excavation of resources will need to be accomplished before construction of the project is complete, monitoring may be required during construction. Depending on the sensitivity of any findings, information or actual artifacts collected within the project area may be either displayed or presented to the public via numerous public outlets, such as museums, schools, informational brochures, internet websites, and other readily available and appropriate means.

Based on a review of the project, as presented on this date, it has been determined that:
图 No Historic or Archaeological Properties will be Effected
There will be No Adverse Effect on Historic or Archaeological Properties Describe any outstanding commitments: Not applicable.
\(\square\) There will be an Adverse Effect on Historic or Archaeological Properties or Resources Describe the effect, measures to minimize harm and proposed mitigation: Not applicable.

In accordance with the Advisory council's regulations, we will continue to consult, as appropriate, as this project proceeds.

Wide Ray lite DSHPO NH Division of Historical Resources


Propjet Manager
CC: FHWA, NHDHR, FHWA, ACOE ( \(\uparrow\) as applicable \(\uparrow\) )

\section*{Cultural Resource Memorandum of Effect}
(Municipally Managed Projects)
Project Name: Derry-Londonderry Exit 4A - Alternative B Date: June 7, 2007
State No.: 13065 Federal No.(as applicable): IM-93-1(201)12
Pursuant to meetings on 8/20/1998, 8/4/2005, 3/2/2006, 3/9/2006, 6/8/2006, 10/5/2006, 4/5/2007, and for the purpose of compliance with the regulations of the National Historic Preservation Act and the Advisory Council on Historic Preservation's Procedures for the Protection of Historic Properties (36 CFR 800), the NH Division of Historical Resources and, when applicable, the NH Division of the Federal Highway Administration or the US Army Corps of Engineers have coordinated on the identification and evaluation of cultural resources relative to providing transportation improvements, including construction of a new interchange with Interstate 93 (I-93) (known as Exit 4A), to address existing traffic congestion and safety issues on NH Route 102 and to promote economic vitality in the Derry/Londonderry area. The project extensively reviewed different alternatives through the preparation of an environmental impact statement (EIS).

Alternative B would construct a new interchange on I-93 located approximately one mile north of the existing Exit 4. The interchange would have north and southbound on- and off-ramps, with access only to the east. An access road would travel from the interchange cross country through the Derry Business Park located near A and B Streets, cross over NH Route 28 and connect with Ashleigh Drive. The Alternative would then continue traversing cross country, requiring land and building acquisitions along the north side of London Court, cross over NH Route 28 Bypass, acquiring several residences near Scenic Drive, then continue towards Tsienneto Road to its intersection with NH Route 102.

\section*{HISTORIC RESOURCES}

Along the Alternative B corridor, there are no National Register of Historic Places (NRHP)eligible properties. Therefore, it was determined that Alternative B would have no effect on any historic properties.

\section*{ARCHAEOLOGICAL RESOURCES}

Alternative B will affect no known archaeological sites. However, it could impact 1.2 acres of potentially sensitive pre-contact Native American sensitive area. This sensitive area is located across the eastern extent of Tsienneto Road, in the vicinity of Jeff Lane. FHWA and NHDHR agree that the preliminary Phase I-A archaeological review and report preparation provided an acceptable level of data for determining potential impacts to archaeological resources and proceeding to a public hearing. However, additional studies and identification of mitigation will be required as the project progresses.

\section*{MITIGATION}

Historic Resources
As no historic resources will be effected by this Alternative, no mitigation is proposed.

\section*{Archaeological Resources}

Once an alternative has been chosen and the public hearing has been held, a Phase IB field verification and report preparation by a professional archaeologist will be completed for the Selected Alternative. Based on the findings in the Phase IB report, additional, more intense field work may be required under a Phase II site survey.

A Phase II survey would be completed once the final design stage of the project has been reached. The Phase II work would include additional field investigation and research to help determine site integrity, establish a period of occupation, function, cultural affiliation, and associated context, and to more closely define site boundaries within the project area. Field examination would involve a combined strategy of excavation using 0.5 -meter by 0.5 -meter tests with 1 -meter by 1 -meter units and trenches, as well as mapping visible features. A report would be completed to help explain the site(s) and how it compares to similar sites in the region, if they exist.

Any resources found will be reviewed by NHDHR and FHWA to determine if they are eligible for the NRHP. If the resource is found to be eligible, the project's effect on the resource will be determined. If the project is found to adversely affect an eligible resource, then a determination will be made as to whether the resource should be preserved in-place or recovered.

If after reviewing the reports and data provided in the Phase II level study, and considering the footprint of the proposed design plans, it is determined by NHDHR and FHWA that recovery of a resource is required, then a Phase III data recovery plan will be implemented.

Although excavation of resources will need to be accomplished before construction of the project is complete, monitoring may be required during construction. Depending on the sensitivity of any findings, information or actual artifacts collected within the project area may be either displayed or presented to the public via numerous public outlets, such as museums, schools, informational brochures, internet websites, and other readily available and appropriate means.

\section*{Based on a review of the project, as presented on this date, it has been determined that:}

\section*{图 No Historic or Archaeological Properties will be Effected}

There will be No Adverse Effect on Historic or Archaeological Properties Describe any outstanding commitments: Not applicable.

There will be an Adverse Effect on Historic or Archaeological Properties or Resources Describe the effect, measures to minimize harm and proposed mitigation: Not applicable.

In accordance with the Advisory council's regulations, we will continue to consult, as appropriate, as this project proceeds.

\section*{Wide Ray Film DSHPO}

NH Division of Historical Resources


\(o_{n}\) Federal Highway Administration

CC: FHWA, NHDHR, FHWA, ACOE ( \(\curvearrowleft\) as applicable \(\uparrow\) )

\title{
Cultural Resource Memorandum of Effect
}
(Municipally Managed Projects)
Project Name: Derry-Londonderry Exit 4A - Alternative C Date: June 7, 2007
State No.:_13065 Federal No.(as applicable):_IM-93-1(201)12
Pursuant to meetings on \(8 / 20 / 1998,8 / 4 / 2005,3 / 2 / 2006,3 / 9 / 2006,6 / 8 / 2006,10 / 5 / 2006\), 4/5/2007, and for the purpose of compliance with the regulations of the National Historic Preservation Act and the Advisory Council on Historic Preservation's Procedures for the Protection of Historic Properties (36 CFR 800), the NH Division of Historical Resources and, when applicable, the NH Division of the Federal Highway Administration or the US Army Corps of Engineers have coordinated on the identification and evaluation of cultural resources relative to providing transportation improvements, including construction of a new interchange with Interstate 93 (I-93) (known as Exit 4A), to address existing traffic congestion and safety issues on NH Route 102 and to promote economic vitality in the Derry/Londonderry area. The project extensively reviewed different alternatives through the preparation of an environmental impact statement (EIS).

Alternative C would construct a new interchange on I-93 located approximately one mile south of the existing Exit 5 . The interchange would have north and southbound on- and off-ramps, with access only to the east. An access road would travel from the interchange cross country to NH Route 28. The Alternative would continue south on NH Route 28 and connect with Ashleigh Drive. The Alternative would then traverse cross country, requiring land and building acquisitions along the north side of London Court, cross over NH Route 28 Bypass, acquiring several residences near Scenic Drive, then continue towards Tsienneto Road to its intersection with NH Route 102.

\section*{HISTORIC RESOURCES}

There is one National Register of Historic Places (NRHP)-eligible property located along the Alternative C corridor. This property is located in Londonderry and identified as:
\begin{tabular}{|l|l|l|l|}
\multicolumn{1}{c}{ Number } & \multicolumn{1}{c}{ Address } & \multicolumn{1}{c}{ Description } & \multicolumn{1}{c}{ Eligibility/Criteria } \\
\hline LON0114 & 79 Stonehenge Road & \begin{tabular}{l} 
Reed Paige Clark \\
Homestead
\end{tabular} & Eligible (A\&C) \\
\hline
\end{tabular}

It was determined that Alternative C would have an adverse effect on this NRHP-eligible property. There would be negative visual impacts on the farmstead complex and its historic rural agricultural setting. In addition, land takings would be required on the property to accommodate the proposed interchange.

\section*{ARCHAEOLOGICAL RESOURCES}

Alternative C will not affect any known archaeological resources. However, this alternative has the potential to impact two acres of pre-contact Native American sensitive areas in two separate locations. These locations include NH Route 28 at the Shields Brook crossing, and along Tsienneto Road in the vicinity of Jeff Lane. FHWA and NHDHR agree that the preliminary Phase I-A archaeological review and report preparation provided an acceptable level of data for determining potential impacts to archaeological resources and proceeding to a
public hearing. However, additional studies and identification of mitigation will be required as the project progresses.

\section*{MITIGATION}

\section*{Historic Resources}

Avoid using Alternative C and select one of the other alternatives that would not have impacts on the Reed Paige Clark Homestead.

\section*{Archaeological Resources}

Once an alternative has been chosen and the public hearing has been held, a Phase IB field verification and report preparation by a professional archaeologist will be completed for the Selected Alternative. Based on the findings in the Phase IB report, additional, more intense field work may be required under a Phase II site survey.

A Phase II survey would be completed once the final design stage of the project has been reached. The Phase II work would include additional field investigation and research to help determine site integrity, establish a period of occupation, function, cultural affiliation, and associated context, and to more closely define site boundaries within the project area. Field examination would involve a combined strategy of excavation using 0.5 -meter by 0.5 -meter tests with 1 -meter by 1 -meter units and trenches, as well as mapping visible features. A report would be completed to help explain the site(s) and how it compares to similar sites in the region, if they exist.

Any resources found will be reviewed by NHDHR and FHWA to determine if they are eligible for the NRHP. If the resource is found to be eligible, the project's effect on the resource will be determined. If the project is found to adversely affect an eligible resource, then a determination will be made as to whether the resource should be preserved in-place or recovered.

If after reviewing the reports and data provided in the Phase II level study, and considering the footprint of the proposed design plans, it is determined by NHDHR and FHWA that recovery of a resource is required, then a Phase III data recovery plan will be implemented.

Although excavation of resources will need to be accomplished before construction of the project is complete, monitoring may be required during construction. Depending on the sensitivity of any findings, information or actual artifacts collected within the project area may be either displayed or presented to the public via numerous public outlets, such as museums, schools, informational brochures, internet websites, and other readily available and appropriate means.

Based on a review of the project, as presented on this date, it has been determined that:
I No Historic or Archaeological Properties will be Effected
There will be No Adverse Effect on Historic or Archaeological Properties Describe any outstanding commitments: Not applicable.

\section*{There will be an Adverse Effect on Historic or Archaeological Properties or Resources Describe the effect, measures to minimize harm and proposed mitigation: See items listed above under Mitigation.}

In accordance with the Advisory council's regulations, we will continue to consult, as appropriate, as this project proceeds.

Wiuha Ray him DSHPO
NH Division of Historical Resources


Project Manager
CC: FHWA, NHDHR, FHWA, ACOE ( \(\downarrow\) as applicable \(\uparrow\) )

\section*{Cultural Resource Memorandum of Effect}
(Municipally Managed Projects)
Project Name: Derry-Londonderry Exit 4A - Alternative D Date: June 7, 2007
State No.: 13065 Federal No.(as applicable):_IM-93-1(201)12
Pursuant to meetings on \(8 / 20 / 1998,8 / 4 / 2005,3 / 2 / 2006,3 / 9 / 2006,6 / 8 / 2006,10 / 5 / 2006\), 4/5/2007, and for the purpose of compliance with the regulations of the National Historic Preservation Act and the Advisory Council on Historic Preservation's Procedures for the Protection of Historic Properties (36 CFR 800), the NH Division of Historical Resources and, when applicable, the NH Division of the Federal Highway Administration or the US Army Corps of Engineers have coordinated on the identification and evaluation of cultural resources relative to providing transportation improvements, including construction of a new interchange with Interstate 93 (I-93) (known as Exit 4A), to address existing traffic congestion and safety issues on NH Route 102 and to promote economic vitality in the Derry/Londonderry area. The project extensively reviewed different alternatives through the preparation of an environmental impact statement (EIS).

Alternative D would construct a new interchange on I-93 located approximately one mile south of the existing Exit 5. The interchange would have north and southbound on- and off-ramps, with access only to the east. An access road would travel from the interchange cross country to NH Route 28. The Alternative would continue south on NH Route 28 and connect with Tsienneto Road. The Alternative would then continue along Tsienneto Road to its intersection with NH Route 102.

\section*{HISTORIC RESOURCES}

There are three National Register of Historic Places (NRHP)-eligible properties located along the Alternative D corridor. These properties are located in both Londonderry and Derry and identified as:
\begin{tabular}{|l|l|l|l|}
\multicolumn{1}{c}{ Number } & \multicolumn{1}{c}{ Address } & \multicolumn{1}{c}{ Description } & \multicolumn{1}{c|}{ Eligibility/Criteria } \\
\hline LON0114 & 79 Stonehenge Road & \begin{tabular}{l} 
Reed Paige Clark \\
Homestead
\end{tabular} & Eligible (A\&C) \\
\hline DER0134 & 76 Tsienneto Road & Palmer Homestead & Eligible (C) \\
\hline DER0135 & 72 Tsienneto Road & E.F. Adams House & Eligible (C) \\
\hline
\end{tabular}

Reed Paige Clark Homestead: It was determined that Alternative D would have an adverse effect on the Reed Paige Clark Homestead. There would be negative visual impacts on the farmstead complex and its historic rural agricultural setting. In addition, land takings would be required on the property to accommodate the proposed interchange.

Palmer Homestead: It was determined that Alternative D would have no effect on the Palmer Homestead.
E.F. Adams House: It was also determined that Alternative D would have no effect on the E.F. Adams House.

\section*{ARCHAEOLOGICAL RESOURCES}

Alternative D will not affect any known archaeological resources. However, this alternative has the potential to impact 1.5 acres of pre-contact Native American sensitive areas in two separate locations. These locations include NH Route 28 at the Shields Brook crossing, and along Tsienneto Road in the vicinity of Jeff Lane. FHWA and NHDHR agree that the preliminary Phase I-A archaeological review and report preparation provided an acceptable level of data for determining potential impacts to archaeological resources and proceeding to a public hearing. However, additional studies and identification of mitigation will be required as the project progresses.

\section*{MITIGATION}

Historic Resources
Avoid using Alternative D and select one of the other alternatives that would not have impacts on the Reed Paige Clark Homestead.

\section*{Archaeological Resources}

Once an alternative has been chosen and the public hearing has been held, a Phase IB field verification and report preparation by a professional archaeologist will be completed for the Selected Alternative. Based on the findings in the Phase IB report, additional, more intense field work may be required under a Phase II site survey.

A Phase II survey would be completed once the final design stage of the project has been reached. The Phase II work would include additional field investigation and research to help determine site integrity, establish a period of occupation, function, cultural affiliation, and associated context, and to more closely define site boundaries within the project area. Field examination would involve a combined strategy of excavation using 0.5 -meter by 0.5 -meter tests with 1 -meter by 1 -meter units and trenches, as well as mapping visible features. A report would be completed to help explain the site(s) and how it compares to similar sites in the region, if they exist.

Any resources found will be reviewed by NHDHR and FHWA to determine if they are eligible for the NRHP. If the resource is found to be eligible, the project's effect on the resource will be determined. If the project is found to adversely affect an eligible resource, then a determination will be made as to whether the resource should be preserved in-place or recovered.

If after reviewing the reports and data provided in the Phase II level study, and considering the footprint of the proposed design plans, it is determined by NHDHR and FHWA that recovery of a resource is required, then a Phase III data recovery plan will be implemented.

Although excavation of resources will need to be accomplished before construction of the project is complete, monitoring may be required during construction. Depending on the sensitivity of any findings, information or actual artifacts collected within the project area may be either displayed or presented to the public via numerous public outlets, such as museums, schools, informational brochures, internet websites, and other readily available and appropriate means.

Based on a review of the project, as presented on this date, it has been determined that:
I No Historic or Archaeological Properties will be Effected
- There will be No Adverse Effect on Historic or Archaeological Properties Describe any outstanding commitments: Not applicable.

图 There will be an Adverse Effect on Historic or Archaeological Properties or Resources Describe the effect, measures to minimize harm and proposed mitigation: See items listed above under Mitigation.

In accordance with the Advisory council's regulations, we will continue to consult, as appropriate, as this project proceeds.
\(\frac{\text { Wide Ray Film DSHPO }}{\text { NH Division of Historical Resources }}\)
NH Division of Historical Resources


CC: FHWA, NHDHR, FHWA, ACOE ( \(\hookleftarrow\) as applicable \(\uparrow\) )

\title{
Cultural Resource Memorandum of Effect
}
(Municipally Managed Projects)
Project Name: Derry-Londonderry Exit 4A - Alternative F Date: June 7, 2007
State No.: 13065 Federal No.(as applicable):_IM-93-1(201)12

Pursuant to meetings on_8/20/1998, 8/4/2005, 3/2/2006, 3/9/2006, 6/8/2006, 10/5/2006, 4/5/2007, and for the purpose of compliance with the regulations of the National Historic Preservation Act and the Advisory Council on Historic Preservation's Procedures for the Protection of Historic Properties (36 CFR 800), the NH Division of Historical Resources and, when applicable, the NH Division of the Federal Highway Administration or the US Army Corps of Engineers have coordinated on the identification and evaluation of cultural resources relative to providing transportation improvements, including construction of a new interchange with Interstate 93 (I-93) (known as Exit 4A), to address existing traffic congestion and safety issues on NH Route 102 and to promote economic vitality in the Derry/Londonderry area. The project extensively reviewed different alternatives through the preparation of an environmental impact statement (EIS).

Alternative F involves a minor upgrade of NH Route 102 between Londonderry Road and NH Route 28 Bypass to include a two-way center left-turn lane between Londonderry Road and NH Route 28, as well as sidewalk and roadway improvements between NH Route 28 and NH Route 28 Bypass. The entire corridor consists of roadway reconstruction (i.e., there is no portion on new alignment). This Alternative would require the removal of a majority of onstreet parking from the downtown area along NH Route 102.

\section*{HISTORIC RESOURCES}

There are three National Register of Historic Places (NRHP)-eligible districts and one individually-eligible property located along the Alternative F corridor. These properties are located in Derry and identified as:
\begin{tabular}{|l|l|l|l|}
\multicolumn{1}{c}{ Number } & \multicolumn{1}{c}{ Address } & \multicolumn{1}{c|}{ Description } & \multicolumn{1}{c|}{ Eligibility/Criteria } \\
\hline Area B & \begin{tabular}{l} 
NH Route 102/ \\
Broadway
\end{tabular} & \begin{tabular}{l} 
Broadway Historic \\
District
\end{tabular} & Eligible (A)* \\
\hline Area BI & Birch Street & \begin{tabular}{l} 
Birch Street \\
Historic District
\end{tabular} & Eligible (C)* \\
\hline Area DV & \begin{tabular}{l} 
NH Route 28 \\
Bypass, NH Route \\
102, and associated \\
side roads
\end{tabular} & \begin{tabular}{l} 
Derry Village \\
Historic District
\end{tabular} & Eligible (A) \\
\hline DER0102 & 116 East Broadway & \begin{tabular}{l} 
Gilbert and Helen \\
Hood House
\end{tabular} & Eligible (A\&B) \\
\hline
\end{tabular}
* This is a preliminary determination, if the districts were to be impacted, further investigations would be needed.

Broadway Historic District: It was determined that Alternative F would have an adverse effect on the Broadway Historic District. Intensifying east-west through traffic in the historic district could damage its historical and architectural character. It would disrupt its traditional
functions and values as a downtown business center, which requires convenient on-street shortterm parking, low traffic speeds and a pedestrian-friendly environment, to continue its role as a focal point for economic development and heritage tourism.

Derry Village Historic District: Alternative F was determined to have no adverse effect upon the Derry Village Historic District. Potential adverse effects have been mitigated by design through the planning process.

Birch Street Historic District: The Alternative was determined to have no adverse effect upon the Birch Street Historic District. Alternative F is unlikely to introduce more intense uses or heavier traffic into the district, nor to interfere significantly with its traditional functions and values as a pedestrian mixed use neighborhood in the town center.

Gilbert and Helen Hood House: It was also determined that Alternative F would have no effect on the Hood House.

\section*{ARCHAEOLOGICAL RESOURCES}

Alternative F will not affect any known archaeological resources. However, this alternative crosses an area of pre-contact Native American sensitivity along the south side of NH Route 102 between Hood Road and the limits of the corridor at the Derry Village traffic circle. It is estimated that a potential impact of 2.2 acres could occur to this sensitive area. FHWA and NHDHR agree that the preliminary Phase I-A archaeological review and report preparation provided an acceptable level of data for determining potential impacts to archaeological resources and proceeding to a public hearing. However, additional studies and identification of mitigation will be required as the project progresses.

\section*{MITIGATION}

\section*{Historic Resources}

Avoid using Alternative F and select one of the other alternatives that would not have impacts on historic properties.

\section*{Archaeological Resources}

Once an alternative has been chosen and the public hearing has been held, a Phase IB field verification and report preparation by a professional archaeologist will be completed for the Selected Alternative. Based on the findings in the Phase IB report, additional, more intense field work may be required under a Phase II site survey.

A Phase II survey would be completed once the final design stage of the project has been reached. The Phase II work would include additional field investigation and research to help determine site integrity, establish a period of occupation, function, cultural affiliation, and associated context, and to more closely define site boundaries within the project area. Field examination would involve a combined strategy of excavation using 0.5 -meter by 0.5 -meter tests with 1 -meter by 1 -meter units and trenches, as well as mapping visible features. A report would be completed to help explain the site(s) and how it compares to similar sites in the region, if they exist.

Any resources found will be reviewed by NHDHR and FHWA to determine if they are eligible for the NRHP. If the resource is found to be eligible, the project's effect on the resource will be determined. If the project is found to adversely affect an eligible resource, then a determination will be made as to whether the resource should be preserved in-place or recovered.

If after reviewing the reports and data provided in the Phase II level study, and considering the footprint of the proposed design plans, it is determined by NHDHR and FHWA that recovery of a resource is required, then a Phase III data recovery plan will be implemented.

Although excavation of resources will need to be accomplished before construction of the project is complete, monitoring may be required during construction. Depending on the sensitivity of any findings, information or actual artifacts collected within the project area may be either displayed or presented to the public via numerous public outlets, such as museums, schools, informational brochures, internet websites, and other readily available and appropriate means.

\section*{Based on a review of the project, as presented on this date, it has been determined that:}

\section*{No Historic or Archaeological Properties will be Effected}

There will be No Adverse Effect on Historic or Archaeological Properties
Describe any outstanding commitments: Not applicable.
图 There will be an Adverse Effect on Historic or Archaeological Properties or Resources Describe the effect, measures to minimize harm and proposed mitigation: See items listed above under Mitigation.

In accordance with the Advisory council's regulations, we will continue to consult, as appropriate, as this project proceeds.


CC: FHWA, NHDHR, FHWA, ACOE ( \(\hookleftarrow\) as applicable \(\uparrow\) )
\(\qquad\) Return Prior to:

Project: Derry-Londonderry 13065 - NHDHR Bibliography Form \& Short Report. Summary of Phase AR Archaeological Survey Caras Parcels Exit 4A Environmental Impact Statement Update, Derry, New, Hampshire. By VBI, January 3, 2017.

\section*{Other Parties}

\section*{COMMENTS: Concur with consultant findings.}

This request is forwarded to the NH DIVISION OF HISTORICAL RESOURCES for review and comment. NEPA and Sec. 106 of the NHPA require consultation with the SHPO to ensure the review of all actions covered by these acts relative to historical and cultural properties. The review should focus on the project's impacts pertinent to this act.
FOR MORE INFORMATION CONTACT:
Stack Charles
Sheila Charles, Cultural Resources Program Specialist scharles@dot.state.nh.us 603-271-4049

COMMENTS: Please check one. Additional comments should be included below or on a separate sheet. CONCUR with recommendations - if sensitive area carnot be avoidesl, then there IB is recormmeaded

\section*{CONCUR WITH CONDITION}
(Indicate major reservations about the project and the specific substantive changes or modifications desired.)

\section*{TECHNICAL COMMENTS} (No formal position, technical comments may be attached.)

\section*{NO COMMENTS}

\section*{** NON-RECEIPT OF THIS REVIEW IMPLIES CONSENT}


Project: Derry-Londonderry 13065 - NHDHR Bibliography Form and Short Report, Phase IA Archaeological Survey (update), I-93 Supplemental Draft EIS, Alternatives A through F, Londonderry and Derry, New Hampshire. By VBI, December 19, 2016. RPS 2772

\section*{Other Parties}

\section*{COMMENTS: Concur with consultant findings.}

This request is forwarded to the NH DIVISION OF HISTORICAL RESOURCES for review and comment. NEPA and Sec. 106 of the NHPA require consultation with the SHPO to ensure the review of all actions covered by these acts relative to historical and cultural properties. The review should focus on the project's impacts pertinent to this act.

Sheila Chaveco
Sheila Charles, Cultural Resources Program Specialist scharles@dot.state.nh.us 603-271-4049

COMMENTS: Please check one. Additional comments should be included below or on a separate sheet.


\section*{CONCUR WITH CONDITION}
(Indicate major reservations about the project and the specific substantive changes or modifications desired.)

TECHNICAL COMMENTS (No formal position, technical comments may be attached.)

\section*{NO COMMENTS}


BUREAU OF ENVIRONMENT, NHDOT

\section*{REVIEW REQUEST TO THE NH DIVISION OF HISTORICAL RESOURCES}

Date:
January 3, 2017
Return Prior to:
Project:
Derry-Londonderry 13065 - Summary of Phase IA Archaeological Survey Caras Parcels Exit 4A Environmental Impact Statement Update, Derry, New Hampshire. By VBI, December 19, 2016. RPRZ772

\section*{Other Parties}

COMMENTS: Concur with consultant findings.
This request is forwarded to the NH DIVISION OF HISTORICAL RESOURCES for review and comment. NEPA and Sec. 106 of the NHPA require consultation with the SHPO to ensure the review of all actions covered by these acts relative to historical and cultural properties. The review should focus on the project's impacts pertinent to this act.

FOR MORE INFORMATION CONTACT:

Sheila Charles, Cultural Resources Program Specialist scharles@dot.state.nh.us 603-271-4049

COMMENTS: Please check one. Additional comments should be included below or on a separate sheet.


\section*{CONCUR WITH CONDITION}
(Indicate major reservations about the project and the specific substantive changes or modifications desired.)

TECHNICAL COMMENTS (No formal position, technical comments may be attached.)

\section*{NO COMMENTS}

\section*{** NON-RECEIPT OF THIS REVIEW IMPLIES CONSENT}

\section*{PLEASE COPY AND RETURN THIS SHEET}

1. Type of Area Form

Town-wide:
Historic District
Project Area: \(\boxtimes\)
2. Name of area: Derry, I-93 Exit 4A Interchange Study
3. Location: West Derry, Derry Village, Beaver Lake, Folsam Road, Tsienneto Road, Chester Road
4. City or town: Derry
5. County: Rockingham
6. USGS quadrangle name(s): Derry, NH; Windham, NH
7. Dataset: SP Feet, NAD83
8. SP Feet: \(X: 1,084,828.40 \mathrm{Y}: 153,656.91 ; \mathrm{X}:\) 1,086,007.29 Y: 148,706.42; X: 1,079,437.18 Y: 133,957.72; X: 1,072,944.73 Y: 136,545.44; X: 1,072,065.45 Y: 144,382.69
9. Inventory numbers in this area: DER0004DER0165, Area DV
10. Setting: rural, built-up village centers
11. Acreage: 24.5 acres
12. Preparer(s): Lynne Monroe, Reagan Ruedig
13. Organization: Preservation Company
14. Date(s) of field survey: August 2016

\section*{Area Form}

NHDHR Number: DER

\section*{15: Location Map:}

Photo Key Areas 1-3 are Properties Dating 1958-1968 in Preferred Alternative (Photos D01-D23)
Photo Key Areas 4-7 are Previously Determined Eligible Properties in Impact Area (Photos U01-U30)


Location Map showing areas revisited for this update/addenda.
Street addresses of resources are listed in the Tables on pages:
C7 (Properties Dating 1958-1968 in Preferred Alternative)
C25-C26 (Previously Determined Eligible Properties in Impact Area)
Detail Maps/Photo Keys 1-3 begin on page C10, Detail Maps/Photo Keys 4-7 on page C27.

\section*{Area Form}

\section*{17. Methods and Purpose (Continuation)}

The scope of work for this current phase of the project was specified at a joint meeting of FHWA, NHDOT and NHDHR on March 1, 2016.

This update was completed for the I-93 Exit 4A Interchange Study, Derry-Londonderry, NHDOT Project Number: 13065. The initial historic resources survey for the project took place from 19992002. Five alternative routes (see Project Map) were studied. Identification of Historic Resources included field survey of individual properties and historic districts that were done in 1999-2000. Products of that effort included 155 Individual Forms, one District Form, and a Derry Townwide Area Form. These were evaluated by the NHDHR DOE Committee in 2001 and 2002. These efforts focused on the areas potentially affected by all five alternatives. Note that no overall Project Area Form was prepared since the entire Project Area was included in, and therefore addressed fully by, the Townwide Area Form for Derry.

The project was put on hold from 2003 to 2005, after which the survey of historic properties needed to be updated to reflect current conditions. This effort was completed in 2005. The 2005 effort was intended to update the integrity and eligibility of all of the individuals and districts in Derry that had been determined eligible for the National Register in 2002 that were along the impact areas. All of these resources were field checked and assessed for integrity changes. The Derry Townwide Form was only updated relative to areas within the project area. The update to the Townwide Form was presented on Area continuation sheets and titled "Project Area Form" and included a table and updated photographs (Preservation Company 2005).
After the 2005 re-evaluation, NHDHR concluded that four of the 26 eligible properties in Derry were found to have changed to such a degree that they were no longer eligible for the National Register (see Table 1).
In 2006, Alternative A (see Project Map) was chosen as the preferred route. In 2007 a Draft EIS (DEIS) was submitted. The Final EIS (FEIS) was begun in 2009, and after funding delays the review process resumed in 2015. This necessitated yet another re-evaluation of the historic resources.

\section*{Current Work}

The 2016 survey update focused on the area of Alternative A, the Preferred Alternative. The Preferred Alternative impacts Madden Road, Folsom Road, Tsienneto Road, and the intersections of Manchester and Tsienneto Roads, North Main Street and Tsienneto Road, and Chester and Tsienneto Roads (see Project Map).

Preservation Company again reviewed the survey work done in 1999-2002 and 2005 in Derry to update and complete the Section 106 evaluation for Historic Resources and complete the FEIS. The individual resources and historic districts that were determined eligible in 2002 and 2005 were reviewed in 2016 with fieldwork and research to determine if any changes had been made to compromise eligibility.

Preservation Company conducted a windshield survey to assess these eligible properties, shown in Table 1, and noted any changes in integrity. Digital photographs were taken of all of the eligible properties, and a photographic record was created and presented on the appended photo pages (U01U30). The photographs are keyed to base maps provided by CLD Consulting Engineers.
Based on this work, NHDHR concluded that three properties in Derry (DER0036, DER0073, DER0083) were found to no longer retain sufficient integrity to meet the standards of eligibility for the National Register. For the Individual Survey Forms for these resources, black-and-white prints were made and attached to continuation sheets with scans of the 1999 or 2005 photographs provided
for comparison. A narrative re-assessment of the integrity and significance comparison was also given on the continuation sheets.
The current study of historic resources also required an evaluation of any previously unevaluated resources that had reached sufficient age to be considered for National Register eligibility (now 50 years or older, i.e., constructed between 1955 and 1968). The results of this effort are shown in Table 2. Seventeen properties in this area were found to now be of sufficient age to be considered for further study. Photographs were taken of these resources (D1-D23) and are keyed to a series of Photo Keys on base maps provided by CLD Consulting Engineers. A narrative updating the Derry Townwide Area Form (presented on Area Form continuation sheets) follows.
As per the scope outlined in a joint meeting between NHDOT and NHDHR in March 2016, attention was also given to the Wetland Mitigation Site (the "Caras Parcels" between Windham Road and Frost Road, see Caras Parcels Map) in Derry for any possible impact to historic resources. These parcels are surrounded by late twentieth century development along Berry Road to the north, Willow Street and Lilac Court to the west, Frost Street to the southeast, and Craven Terrace to the northeast. South Range Road to the east contains three parcels that were once part of a historic farm and still retain the outlines of some of the open areas that were once farmed. This land has been subdivided, and the earlier farmhouse is located at 7 South Range Road, whose parcel abuts the "Northern Caras Parcel." Historic stone walls that were used as historic property boundaries (no longer in use) can been seen in current satellite aerial photographs within the Caras Parcels.

\section*{Area Form}

\section*{19. Historical Background (Continuation)}

\section*{1950-present Highways, Commuting, Residential Development}

Residential development along Folsom Road and Tsienneto Road followed a general pattern of infill amongst earlier farmhouses and lightly populated intersections. The population growth of Derry following the construction of Interstate 93 in 1963 and the demand for housing increased dramatically as Derry became a "bedroom community" for Boston. This, along with the decline of farming in the area, led to the redevelopment of the rural farmland in this area.
Already lightly populated by the early twentieth century with a mix of farms and worker housing for nearby shoe factories, construction in the Hood's Pond area to the west of Crystal Avenue increased as neighborhoods were cut into former open land starting in the early twentieth century. "Franklin Terrace" was the name of a proposed development by Edmund M. Warren in the area bounded by Franklin Street, Folsom Road, and Crystal Avenue, and was laid out in a plan dated to 1908 (Rockingham County Registry of Deeds, Plan \#251). This proposed a dense development of approximately 156 lots and the construction of 6 streets in a grid parallel to Franklin Street. The first roads constructed were Exeter Street, Concord Avenue and Manchester Avenue, with Claremont Avenue and Laconia Avenue added in the 1950s. The lots were developed gradually over time from the 1920s through the 1980s.

The development of Barkland Acres, on the north side of Tsienneto Road, was proposed in 1965 (Plans \#546, 761, 689, and 744) and accepted by the town of Derry in 1966 (Deed 1836: 67). The designed subdivision initially consisted of approximately 170 lots and included the construction of Barkland Drive, Horseshoe Drive, Birchwood Drive, and Brookview Drive. By the early 1969, lots along Scenic Road had been laid out (Plan \#1537). The neighborhood developed quickly between 1965 and 1975, when most of the lots were purchased and new homes were constructed in similar sizes and styles.
Commercial development along Tsiennetto Road during the mid-twentieth century was tied to the creation of the Hood Shopping Plaza and several residential areas out of the former H.P. Hood Company farmland in the late 1960s. Previously mostly rural farmland and scattered residences, Tsienneto Road between the intersections of Manchester Road and Main Street saw gradual development in the second half of the twentieth century beginning with the construction of the Knapp Brothers shoe factory at the north corner of Manchester Road and Tsienneto Road (3 Manchester Road, photos 12, 13) in 1960, near the Klev-Bro Shoe company's new building at 22 Manchester Road constructed at the same time. Only a couple of years later, a car dealership was constructed on the southern corner of Tsienneto Road and North Main Street. By the 1970s an apartment complex to the north (Derry Country Club Estates) and the Hood Shopping Plaza commercial development to the south had been constructed; by the 1980s Sunview Condominiums had been developed next to Hood Plaza. By this time commercial development had fully encompassed the routes between Tsienneto Road and Derry Village: Crystal Avenue, Pinkerton Road, and North Main Street. The significant amount of development during this period reflects the more than tripling of the population of Derry from 1950 to 1980 (census.gov).

The area around Beaver Lake saw an increase in cabin and summer home construction during the mid-twentieth century, as well as a rise in year-round residency. The northwest corner of the lake, along Chester Road, small homes and cabins were placed on small parcels fitting in between and behind earlier lakefront properties. This area and others around the shoreline continue to be more densely developed through the early twenty-first century with the addition of more homes on subdivided parcels or new homes replacing older structures.

\section*{21. Architectural Description and Comparative Evaluation (Continuation)}

\section*{1950-present Ranches and Split Levels, Modern Commercial Development}

The area along Folsom Road west of Crystal Avenue and east of Franklin Street was where a dense development of farmland was proposed in 1908. However, the development was not all constructed at once, and lots were independently developed slowly over time, often on the combination of two or more of the small lots originally drawn in the 1908 plan, allowing for a variety of forms, density, and styles (photos 3,4, 8-11). Several houses were added on the north side of Folsom Road, independent of "Franklin Terrace," infilling open land near earlier houses. The houses in this area were generally modest homes constructed in contemporary vernacular styles, such as Ranch houses, Raised Ranches, and Cape-style homes (photos 2, 5-7).

The development of Barkland Acres, on the north side of the eastern end of Tsienneto Road, was proposed in 1965 and built out quickly in the following ten years. The neighborhood consists of mostly two-story houses with attached garages in styles and forms typical of this time period: Raised Ranches, Split Levels, and Garrisons, all on lots of approximately one-half to one acre in size. Roads cut for the development are slightly curved and take advantage of the natural topography, and most areas between the houses and lawns are naturally landscaped with trees and shrubs (photos 15-18).
Modern commercial development began in this area with the construction of two shoe factories on Manchester Road. Both constructed around 1960, they represent the more modern, low-rise industrial structures common in the mid-twentieth century and reflecting the downsizing of the shoe manufacturing industry. The former Knapp Brothers Shoe Corporation manufacturing building at 3 Manchester Road (photos 12,13) is now the home to a fire safety and control firm, but still retains the same general design and building footprint.
An early car dealership constructed ca. 1962 at the corner of Tsienneto and North Main Street (50 North Main Street, photo 14) was one of the earliest commercial additions to the area north of Derry Village along Tsienneto Road. Aerial photographs show a substantial expansion of the building ca. 1990 and the building was again fully renovated in the early 2000s.
Commercial and residential development continues along the main thoroughfares in Derry. Both major commercial construction and large housing developments have filled in all the former open farmland along Tsienneto Road. Large commercial development continues into the early 21st century especially along Manchester Road, near the town boundary with Londonderry, where a shopping mall, movie theater, and Wal-Mart have been recently constructed.

\section*{22. Statement of Significance (Continuation)}

No additions to the National Register of Historic Places have been made in Derry since the 2002 Area Form for Derry was completed.

The areas of Derry under consideration dating from 1958 to 1968 include residential subdivisions and planned neighborhoods, commercial development along main routes, and residential infill that is consistent with the trends of the growth of the suburbs in the mid-twentieth century. The residential area south of Folsom Road, "Franklin Terrace," is a vernacular neighborhood that evolved over a significant amount of time and is not cohesive enough of a development to be recommended for a district survey. However, Barkland Acres, the residential development on the north side of Tsienneto Road, was seemingly laid out with a particular design intent for the plan of the roads and lots, and the properties were developed in a condensed time period and share a fairly consistent style of house
and lot. Many of the homes may have been designed by the same architectural firm or firms, though more research is necessary. This is an area that might be surveyed as a potentially eligible district once the period of significance, likely 1965-1975, reaches the 50-year mark to be considered for the National Register.

The former shoe factory at 3 Manchester Road, constructed ca. 1960, seems to have retained integrity, though more research is necessary to confirm the original design. It was one of the last remaining shoe manufacturing companies in Derry, and is therefore potentially of historic interest at the local level. An individual survey is recommended for this property, as it may be eligible under Criterion A as having significance tied to the shoe manufacturing industry in Derry. It may also be eligible under Criterion C for architectural style.

\section*{24. Statement of Integrity (Continuation)}

Mid-twentieth century development in the areas along Folsom Road and Tsienneto Road has added to the loss of integrity in Derry as an overall historic community, as the resources added were part of infill and subdivisions covering old farm land and within earlier neighborhoods. The early and midtwentieth century designed developments in the area retain varying degrees of integrity, as many houses have been renovated over time and have synthetic exterior materials or additions and alterations to the original structure.

\section*{48. Bibliography and/or References}

\section*{Preservation Company}

2002 "Project Area Form (Area DER), Derry, NH" filed at New Hampshire Department of Historical Resources, Concord, NH

2005 "Continuation Sheets for Project Area Form (Area DER), Derry, NH" filed at New Hampshire Department of Historical Resources, Concord, NH
U.S. Census Bureau
"Census of Population and Housing". www.census.gov.
Rockingham County Registry of Deeds
Deeds and Plans available through www.nhdeeds.com.

New Hampshire Division of Historical Resources
Area Form

Page C8 of C45
NHDHR NUMBER: DER

Table 1: List of Properties Dating 1958-1968
\begin{tabular}{|l|l|l|l|l|}
\hline \begin{tabular}{l} 
Street \\
Address
\end{tabular} & Map-Lot & \begin{tabular}{l} 
Est. \\
Construction \\
Date
\end{tabular} & Description/ Notes on Integrity & Photo Nos. \\
\hline 11 Madden Road & \(31 / 12\) & 1958 & Ranch, vinyl siding and shutters & D1 \\
\hline 2.5 Folsom Road & \(35 / 08 /\) A & 1967 & Mobile home in rear of 4 Folsom Rd & D2 \\
\hline 7 Folsom Road & \(35 / 49\) & 1959 & Ranch, vinyl siding and shutters & D3 \\
\hline 9 Folsom Road & \(35 / 41\) & 1957 & \begin{tabular}{l} 
Ranch, front portico a later addition, vinyl \\
siding and shutters
\end{tabular} & D4 \\
\hline 12 Folsom Road & \(35 / 12\) & 1959 & \begin{tabular}{l} 
Raised Ranch with underground garage, vinyl \\
siding and shutters
\end{tabular} & D5 \\
\hline \begin{tabular}{l} 
16 Folsom Road
\end{tabular} & \(35 / 13\) & 1961 & \begin{tabular}{l} 
Garrison (2nd story recently added) with \\
cabin/bathhouse, recent freestanding garage in \\
rear, vinyl siding and shutters
\end{tabular} & D6, D7 \\
\hline \begin{tabular}{l} 
20 Manchester \\
Avenue
\end{tabular} & \(35 / 48\) & 1966 & \begin{tabular}{l} 
Midcentury Cape with attached garage, vinyl \\
siding and shutters
\end{tabular} & D8 \\
\hline \begin{tabular}{l} 
3 Manchester \\
Road
\end{tabular} & \(08 / 269\) & 1960 & \begin{tabular}{l} 
Large industrial building, former shoe factory, \\
currently Fireye, Inc.
\end{tabular} & D12, D13 \\
\hline \begin{tabular}{l} 
50 No. Main \\
Street
\end{tabular} & \(08 / 73 / 1\) & ca. 1962 & \begin{tabular}{l} 
Car dealership, dramatically renovated and \\
enlarged ca. 1990 and 2000.
\end{tabular} & D14 \\
\hline \begin{tabular}{l} 
1 Horseshoe \\
Drive
\end{tabular} & \(54 / 94\) & 1965 & \begin{tabular}{l} 
Raised Ranch with underground garage, vinyl \\
siding and windows
\end{tabular} & D15 \\
\hline \begin{tabular}{l} 
60 Tsienneto \\
Road
\end{tabular} & \(54 / 95\) & 1966 & \begin{tabular}{l} 
Ranch with full dormer on façade, underground \\
garage
\end{tabular} & D16 \\
\hline \begin{tabular}{l} 
64 Tsienneto \\
Road
\end{tabular} & \(54 / 97\) & 1966 & Raised Ranch with underground garage & D17 \\
\hline \begin{tabular}{l} 
66 Tsienneto \\
Road
\end{tabular} & \(54 / 98\) & 1965 & \begin{tabular}{l} 
Raised Ranch with underground garage, vinyl \\
siding and shutters
\end{tabular} & D18 \\
\hline \begin{tabular}{l} 
83 Tsienneto \\
Road
\end{tabular} & \(55 / 13\) & 1960 & Ranch, vinyl siding, pool added ca. 1970 & D19, D20 \\
\hline \begin{tabular}{l} 
84 Tsienneto \\
Road
\end{tabular} & \(08 / 42 / 1\) & 1960 & \begin{tabular}{l} 
Ranch, garage added ca. 1980, vinyl siding
\end{tabular} & D21 \\
\hline 91 Chester Road & \(55 / 44\) & 1959 & Mobile home & D22 \\
\hline G0 Chester Road & \(55 / 11 / 1\) & ca. 1968 & Garage/auto repair shop \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Survey \# & \begin{tabular}{l}
Street \\
Address
\end{tabular} & Map-Lot & Acreage & \begin{tabular}{l}
2002 \\
Determined Eligible
\end{tabular} & \begin{tabular}{l}
\[
2005
\] \\
Retained Integrity/ Eligibility?
\end{tabular} & \begin{tabular}{l}
2016 \\
Retained Integrity/ Eligibility?
\end{tabular} & 2016 Changes Noted in Windshield Survey & \begin{tabular}{l}
2016 \\
Photo Nos.
\end{tabular} \\
\hline DER0025 & 80 West Broadway & 26-042 & 0.44 & Eligible Individually (C) & No & -- & Synthetic siding, replacement windows and doors, change to commercial use (2005) & -- \\
\hline DER0029 & 49 West Broadway & 26-114 & 0.50 & Eligible Individually (C) & Yes & Yes & No changes & U01 \\
\hline DER0036 & 60-62 West Broadway & 26-146 & 1.64 & Eligible Individually (C) & Yes & No & Vinyl siding has been added to the exterior, windows have been replaced with vinyl replacement windows in a different configuration (3/1 instead of 2/1). No other changes. & U02 \\
\hline DER0038 & 52-54 West Broadway & 26-145 & 0.25 & Eligible Individually (C) & No & -- & Synthetic siding, replacement windows and doors (2005) & -- \\
\hline DER0044 & 31 West Broadway & 29-141 & 0.26 & Eligible Individually (A, C) & Yes & Yes & Windows have been replaced with combination of fixed and awning, changing the earlier double-hung style. No other changes. & U03 \\
\hline DER0047 & 32 West Broadway & 29-195 & 0.26 & Eligible Individually (A) & Yes & Yes & Use has changed to a restaurant, windows and garage doors have been replaced, awning installed. Retains sufficient form and integrity to remain eligible. & U04, U05 \\
\hline DER0048 & 29 West Broadway & 29-189 & 0.47 & NR listed (A) & Yes & Yes & No changes & U06 \\
\hline DER0052 & Manning Street & 30-051 & 0.72 & More Information Requested & -- & -- & Out of impact area; more information needed if it is to be impacted. & \\
\hline DER0054 & 1 East Broadway & 30-022 & 0.19 & Eligible Individually (A) & Yes & Yes & No changes & U07 \\
\hline DER0055 & 8 East Broadway & 30-053 & 0.06 & Eligible Individually (C) & Yes & Yes & No changes & U08 \\
\hline DER0062 & 20 East Broadway & 30-059 & 1.26 & Eligible Individually (A, C) & Yes & Yes & No changes; more information needed if the area is impacted. & U09 \\
\hline DER0070 & 44 East Broadway & 30-075 & 0.69 & Eligible Individually (C) & Yes & Yes & Vinyl siding added to the exterior, accessibility ramp added to front entrance. No other changes. & U10 \\
\hline DER0073 & 48 East Broadway & 30-101 & 1.18 & Eligible Individually (A, C) & Yes & No & Building was demolished 2005, replaced by a pharmacy. & U11 \\
\hline DER0075 & 52 East Broadway & 30-103 & 0.59 & More Information Requested & -- & -- & Out of impact area; more information needed if it is to be impacted. & \\
\hline DER0078 & 58 East Broadway & 30-105 & 0.31 & Eligible Individually (A, C) & Yes & Yes & Entry doors and sidelights have been replaced. No other changes. & U12 \\
\hline DER0080 & 63 East Broadway & 30-206 & 0.55 & Eligible Individually (A, C) & Yes & Yes & No changes & U13 \\
\hline DER0083 & 69 East Broadway & 30-210 & 0.39 & Eligible Individually (C) & Yes & No & Vinyl siding added to the exterior, wood brackets and details removed, new vinyl replacement windows, new front porch constructed. & U14 \\
\hline DER0084 & 71 East Broadway & 30-209 & 0.47 & More Information Requested & -- & -- & Out of impact area; more information needed if it is to be impacted. & \\
\hline DER0085 & 72 East Broadway & 32-105 & 0.88 & Eligible Individually (C) & Yes & Yes & No changes & U15 \\
\hline DER0089 & 80 East Broadway & 32-099 & 0.43 & More Information Requested & -- & -- & Out of impact area; more information needed if it is to be impacted. & \\
\hline DER0090 & 81 East Broadway & 32-079 & 0.40 & Eligible Individually (C) & Yes & Yes & Vinyl replacement windows have been added. No other changes. & U16 \\
\hline DER0099 & 98 East Broadway & 32-065 & 0.38 & Eligible Individually (C) & Yes & Yes & New metal picket fence with granite posts has replaced wood fence. No other changes. & U17 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Survey \# & \begin{tabular}{l}
Street \\
Address
\end{tabular} & Map-Lot & Acreage & \begin{tabular}{l}
2002 \\
Determined Eligible
\end{tabular} & \begin{tabular}{l}
2005 \\
Retained Integrity/ Eligibility?
\end{tabular} & \begin{tabular}{l}
2016 \\
Retained Integrity/ Eligibility?
\end{tabular} & 2016 Changes Noted in Windshield Survey & \begin{tabular}{l}
2016 \\
Photo Nos.
\end{tabular} \\
\hline DER0100 & 102 East Broadway & 32-063 & 0.53 & Eligible Individually (C) & Yes & Yes & Upper story windows replaced. No other changes. & U18, U19 \\
\hline DER0102 & 116 East Broadway & 33-014 & 1.16 & Eligible Individually (B) & Yes & Yes & Attached garage in rear has been redesigned, new construction Carriage House style building added in rear. No longer single family use. No other changes. & U20 \\
\hline DER0114 & 70 Chester Road & 55-018 & 0.42 & Eligible Individually (C) & No & -- & Synthetic siding, change in windows and exterior details (2005) & -- \\
\hline DER0121 & 101 English Range Road & 08-045 & 2.0 & More Information Requested & -- & -- & Fieldwork needed to obtain information requested. & -- \\
\hline DER0129 & 102 Chester Road & 12-014 & 3.0 & More Information Requested & -- & -- & Out of impact area; more information needed if it is to be impacted. & \\
\hline DER0132 & 120 Chester Road & 12-023 & 13.77 & Eligible Individually (A) & Yes & Yes & No changes & U21 \\
\hline DER0134 & 76 Tsienneto Road & \[
\begin{array}{|l|}
\hline 08-041- \\
001 \\
\hline
\end{array}
\] & 1.52 & Eligible Individually (C) & Yes & Yes & Metal roof added to main house. No other changes. & U22, U23 \\
\hline DER0135 & 72 Tsienneto Road & 55-008 & 1.05 & Eligible Individually (C) & Yes & Yes & No changes & U24 \\
\hline DER0141 & 104 East Broadway & 32-064 & 0.42 & Eligible Individually (C) & Yes & Yes & Bay window has been modified and replaced. No other changes. & U25 \\
\hline DER0150 & 55 Route 28 Bypass & 08-096 & 2.2 & Eligible Individually (C) & No & -- & Building demolished (2005) & -- \\
\hline DER0161 & North High Street and Franklin Street Ext. & 31-014 & 12.5 & More Information Requested & -- & -- & Building Demolished (ca. 2002) & -- \\
\hline DER0164 & 131 Chester Road & 12-022 & 4.62 & More Information Requested & -- & -- & Out of impact area; more information needed if it is to be impacted. & -- \\
\hline DER0165 & 124 Chester Road & 12-024 & 19.0 & More Information Requested & -- & -- & Out of impact area; more information needed if it is to be impacted. & -- \\
\hline Area DV & 126 East Broadway & 37-009 & 0.96 & Contributing to NR-eligible district & Yes & Yes & Vinyl siding has been added, vinyl replacement windows on upper floor, gutters added. & U26 \\
\hline Area DV & 128 East Broadway & 37-010 & 0.49 & Contributing to NR-eligible district & Yes & Yes & New driveway in front, new front porch with accessibility ramp, gutter added to first floor roofline. & U27 \\
\hline Area DV & 130 East Broadway & 37-030 & 0.24 & Contributing to NR-eligible district & Yes & Yes & Vinyl replacement windows have been added to the second floor. No other changes. & U28 \\
\hline Area DV & 1301⁄2 East Broadway & 37-031 & 0.21 & Contributing to NR-eligible district & Yes & Yes & No changes & U29 \\
\hline Area DV & 132 East Broadway & 37-032 & 0.55 & Contributing to NR-eligible district & Yes & Yes & Synthetic shutters added to more of the windows. & U30 \\
\hline Area B & NH Route 102/Broadway & -- & -- & More Information Requested & -- & -- & District may be eligible; more information needed if it is to be impacted. & \\
\hline Area BI & Birch Street & -- & -- & No determination made & -- & -- & District may be eligible; more information needed if it is to be impacted. & \\
\hline None yet & 7 South Range Road & 02-146 & 16.16 & Survey to be completed & -- & -- & Surveyed may be required for Wetland Mitigation Site & \\
\hline
\end{tabular}

\section*{New Hampshire Division of Historical Resources}

\section*{Digital Photography Statement}

I, the undersigned, confirm that the photos in this inventory form have not been digitally manipulated and that they conform to the standards set forth in the NHDHR Photo Policy. My camera was set to the following specifications: "fine" image quality (compression ratio 1:4) and "large" image size ( \(3008 \times 2000\) pixels). These photos were printed using the following: Epson SureColor P600 photo printer on Epson Ultra Premium Photo Paper, glossy. The digital files are housed with Preservation Company in Kensington, NH.


Lynne Emerson Monroe, Preservation Company

\section*{Digital Photo Log}

The photography files for this project are named: Derry2016_D01-Derry2016_D23 and Derry2016_U01- Derry2016_U30 where the photos are numbers D01-D23 (Properties Dating 19581968) and U01-U30 (updates to Previously Determined Eligible Properties).

\section*{New Hampshire Division of Historical Resources}

Project Area Form

\section*{Index to Photo Keys}

Photo Keys 1-3 are 2016 Photos of Properties Dating 1958-1968 in Preferred Alternative (Photos D01D23)

Photo Keys 4-7 are 2016 Photos of Previously Determined Eligible Properties in Impact Area (Photos U01-U30)


New Hampshire Division of Historical Resources
Project Area Form

Page C10 of C45
NHDHR Number: DER

\section*{Photo Keys - Properties Dating 1958-1968 in Preferred Alternative (Photos D01-D23)}


Photo Key 1 - Photos D01-D13


Photo Key 2 - Photo D14

\section*{New Hampshire Division of Historical Resources}


Photo Key 3 - Photos D15-D23

Photographs of Properties Dating 1958-1968 in Preferred Alternative (Photos D01-D23)
Date of Photography: August 2016


Photo D01: 11 Madden Road, facade
File Name: Derry2016_01
Direction: NW


Photo D02: 2.5 Folsom Road, mobile home in rear of 4 Folsom Road.
File Name: Derry2016_D02


Photo D03: 7 Folsom Road, façade and side elevation.
File Name: Derry2016_D03
Direction: E


Photo D04: 9 Folsom Road, façade and southwest elevation.
File Name: Derry2016_D04
Direction: E


Photo D05: 12 Folsom Road, facade
File Name: Derry2016_D05
Direction: NW


Photo D06: 16 Folsom Road, façade
File Name: Derry2016_D06


Photo D07: 16 Folsom Road, façade and northeast elevation File Name: Derry2016_D07

Direction: NW


Photo D08: 20 Manchester Avenue, façade
File Name: Derry2016_D08
Direction: W


Photo D09: (Left to right) 4 Exeter Street (ca. 1975) and 6 Exeter Street (ca. 1929), representative examples of the "Franklin Terrace" neighborhood
File Name: Derry2016_D09


Photo D10: 17 Manchester Avenue (ca. 1976), representative example of the "Franklin Terrace" neighborhood


Photo D11: 11 Manchester Avenue (ca. 1960), representative example of the "Franklin Terrace" neighborhood
File Name: Derry2016_D11


Photo D12: 3 Manchester Road at the corner of Tsienneto Road, façade and northeast elevation and parking lot


Photo D13: 3 Manchester Road at the corner of Tsienneto Road, façade on Tsienneto Road File Name: Derry2016_D13

Direction: N


Photo D14: 50 North Main Street at the corner of Tsienneto Road, façade File Name: Derry2016_D14

Direction: S


Photo D15: 1 Horseshoe Drive, façade File Name: Derry2016_D15


Photo D16: 60 Tsienneto Road, façade
File Name: Derry2016_D16
Direction: NW


Photo D17: 64 Tsienneto Road, façade
File Name: Derry2016_D17
Direction: NW


Photo D18: 66 Tsienneto Road, façade
File Name: Derry2016_D18


Photo D19: 83 Tsienneto Road, southwest elevation (façade not accessible) File Name: Derry2016_D19

Direction: NE


Photo D20: 83 Tsienneto Road, storage shed, pool and screen house
File Name: Derry2016_D20


Photo D21: 84 Tsienneto Road, façade
File Name: Derry2016_D21
Direction: NW


Photo D22: 91 Chester Road, façade
File Name: Derry2016_22
Direction: NE


Photo D23: 80 Chester Road
File Name: Derry2016_D23
Direction: W

Table 2: Previously Determined Eligible Properties In Impacted Areas
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Survey \# & \begin{tabular}{l}
Street \\
Address
\end{tabular} & Map-Lot & Acreage & 2016 Photo Nos. & 2002 DOE & Retained Integrity/ Eligibility 2016 & Notes on Integrity \\
\hline DER0029 & 49 West Broadway & 26-114 & 0.50 & U01 & Eligible Individually (C) & Yes & No changes \\
\hline DER0036 & 60-62 West Broadway & 26-146 & 1.64 & U02 & Eligible Individually (C) & No & Vinyl siding has been added to the exterior, windows have been replaced with vinyl replacement windows in a different configuration (3/1 instead of 2/1). No other changes. \\
\hline DER0044 & 31 West Broadway & 29-141 & 0.26 & U03 & Eligible Individually (A, C) & Yes & Windows have been replaced with combination of fixed and awning, changing the earlier double-hung style. No other changes. \\
\hline DER0047 & 32 West Broadway & 29-195 & 0.26 & U04, U05 & Eligible Individually (A) & No & Use has changed to a restaurant, windows and garage doors have been replaced, awning installed. \\
\hline DER0048 & 29 West Broadway & 29-189 & 0.47 & U06 & NR listed (A) & Yes & No changes \\
\hline DER0054 & 1 East Broadway & 30-022 & 0.19 & U07 & Eligible Individually (A) & Yes & No changes \\
\hline DER0055 & 8 East Broadway & 30-053 & 0.06 & U08 & Eligible Individually (C) & Yes & No changes \\
\hline DER0062 & 20 East Broadway & 30-059 & 1.26 & U09 & Eligible Individually (A, C) & Yes & No changes \\
\hline DER0070 & 44 East Broadway & 30-075 & 0.69 & U10 & Eligible Individually (C) & Yes & Vinyl siding added to the exterior, accessibility ramp added to front entrance. No other changes. \\
\hline DER0073 & 48 East Broadway & 30-101 & 1.18 & U11 & Eligible Individually (A, C) & No & Building was demolished 2005, replaced by a pharmacy. \\
\hline DER0078 & 58 East Broadway & 30-105 & 0.31 & U12 & Eligible Individually (A, C) & Yes & Entry doors and sidelights have been replaced. No other changes. \\
\hline DER0080 & 63 East Broadway & 30-206 & 0.55 & U13 & Eligible Individually (A, C) & Yes & No changes \\
\hline DER0083 & 69 East Broadway & 30-210 & 0.39 & U14 & Eligible Individually (C) & No & Vinyl siding added to the exterior, wood brackets and details removed, new vinyl replacement windows, new front porch constructed. \\
\hline DER0085 & 72 East Broadway & 32-105 & 0.88 & U15 & Eligible Individually (C) & Yes & No changes \\
\hline DER0090 & 81 East Broadway & 32-079 & 0.40 & U16 & Eligible Individually (C) & Yes & Vinyl replacement windows have been added. No other changes. \\
\hline DER0099 & 98 East Broadway & 32-065 & 0.38 & U17 & Eligible Individually (C) & Yes & New metal picket fence with granite posts has replaced wood fence. No other changes. \\
\hline DER0100 & 102 East Broadway & 32-063 & 0.53 & U18, U19 & Eligible Individually (C) & Yes & Upper story windows replaced. No other changes. \\
\hline DER0102 & 116 East Broadway & 33-014 & 1.16 & U20 & Eligible Individually (B) & Yes & Attached garage in rear has been redesigned, new construction Carriage House style building added in rear. No longer single family use. No other changes. \\
\hline DER0132 & 120 Chester Road & 12-023 & 13.77 & U21 & Eligible Individually (A) & Yes & No changes \\
\hline DER0134 & 76 Tsienneto Road & 08-041-001 & 1.52 & U22, U23 & Eligible Individually (C) & Yes & Metal roof added to main house. No other changes. \\
\hline DER0135 & 72 Tsienneto Road & 55-008 & 1.05 & U24 & Eligible Individually (C) & Yes & No changes \\
\hline
\end{tabular}

\section*{Project Area Form}

NHDHR Number: DER
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Survey \# & \begin{tabular}{l}
Street \\
Address
\end{tabular} & Map-Lot & Acreage & 2016 Photo Nos. & 2002 DOE & Retained Integrity/ Eligibility 2016 & Notes on Integrity \\
\hline DER0141 & 104 East Broadway & 32-064 & 0.42 & U25 & Eligible Individually (C) & Yes & Bay window has been modified and replaced. No other changes. \\
\hline Area DV & 126 East Broadway & 37-009 & 0.96 & U26 & Contributing to NReligible district & Yes & Vinyl siding has been added, vinyl replacement windows on upper floor, gutters added. \\
\hline Area DV & 128 East Broadway & 37-010 & 0.49 & U27 & Contributing to NReligible district & Yes & New driveway in front, new front porch with accessibility ramp, gutter added to first floor roofline. \\
\hline Area DV & 130 East Broadway & 37-030 & 0.24 & U28 & Contributing to NReligible district & Yes & Vinyl replacement windows have been added to the second floor. No other changes. \\
\hline Area DV & 1301⁄2 East Broadway & 37-031 & 0.21 & U29 & Contributing to NReligible district & Yes & No changes \\
\hline Area DV & 132 East Broadway & 37-032 & 0.55 & U30 & Contributing to NReligible district & Yes & Synthetic shutters added to more of the windows. \\
\hline
\end{tabular}

Photo Keys - Previously Determined Eligible Properties, 2016 (Photos U01-U30)


Photo Key 4 - Photos U01-U14

\section*{New Hampshire Division of Historical Resources}

Page C28 of C45
Project Area Form
NHDHR Number: DER


Photo Key 5 - Photos U15- U20, U25- U30

\section*{New Hampshire Division of Historical Resources}

Page C29 of C45
Project Area Form
NHDHR NUMBER: DER


Photo Key 6 - Photo U21


Photo Key 7 - Photos U22-U24

Photographs of Properties Previously Determined Eligible (Photos U01-U30)
Date of Photography: August 2016


Photo U01: 49 West Broadway (DER0029). Façade and east elevations of the Benson/Warren House and garage. Windows and door of garage are boarded up, no other changes noted.
File Name: Derry2016_U01
Direction: NW


Photo U02: 60-62 West Broadway (DER0036). Façade and west elevation. Vinyl siding and replacement windows.


Photo U03: 31 West Broadway (DER0044). Façade and east elevation of the Veterans Memorial Building. Windows have been replaced, no other changes noted.
File Name: Derry2016_U03


Photo U04: 32West Broadway (DER0047). Façade of the Central Fire Station. Building use changed to a restaurant, windows and garage doors have been replaced and/or infilled.
File Name: Derry2016_U04
Direction: SW


Photo U05: 32West Broadway (DER0047). East elevation of the Central Fire Station. Building use changed to a restaurant, windows have been replaced and new awning installed.
File Name: Derry2016_U05
Direction: SW


Photo U06: 29 West Broadway (DER0048). Façade and west elevation of the Adams Memorial Building. No changes noted.
File Name: Derry2016_U06
Direction: NE


Photo U07: 1 East Broadway (DER0054). Façade and northwest elevation. No changes noted. File Name: Derry2016_U07

Direction: S


Photo U08: 8 East Broadway (DER0055). Façade of the 8 East Broadway commercial blcok. No changes noted.
File Name: Derry2016_U08
Direction: N


Photo U09: 20 East Broadway (DER0062). Façade and east elevation of the First National Bank. No changes noted.
File Name: Derry2016_U09


Photo U10: 44 East Broadway (DER0070). Façade and east elevation of the First Baptist Church. Vinyl siding has been installed, accessibility ramp added to the front door.
File Name: Derry2016_U10
Direction: NW


Photo U11: 48 East Broadway (DER0073). Site of former Derry Town Hall, demolished in 2005, now a pharmacy.
File Name: Derry2016_U11
Direction: NE


Photo U12: 58 East Broadway (DER0078). Façade and east elevation of the Mason Temple (former Newell House). Front door and sidelights have been replaced, no other changes noted.


Photo U13: 63 East Broadway (DER0080). Façade and west elevation of St. Luke's Methodist Episcopal Church. No changes noted.
File Name: Derry2016_U13
Direction: NE


Photo U14: 69 East Broadway (DER0083). Façade and west elevation the Wheeler House. Vinyl siding and replacement windows have been added, wood trim details and brackets have been removed, new front porch constructed.


Photo U15: 72 East Broadway (DER0085). Façade of the Greenough House and granite block fencing. No changes noted.
File Name: Derry2016_U15
Direction: NE


Photo U16: 81 East Broadway (DER0090). Façade and southwest elevation of the Abbott/Cutlip House. Vinyl replacement windows have been added, no other changes noted.
File Name: Derry2016_U16
Direction: E


Photo U17: 98 East Broadway (DER0099). Façade and east elevation of the Arthur Green House. New metal fence with granite posts installed, no other changes noted.
File Name: Derry2016_U17
Direction: W


Photo U18: 102 East Broadway (DER0100). Façade and west elevation of the Proctor House. Upper story windows have been replaced, no other changes noted.


Photo U19: 102 East Broadway (DER0100). Façade and southeast elevation of the Proctor House carriage barn. No changes noted.
File Name: Derry2016_U19
Direction: W


Photo U20: 116 East Broadway (DER0102). Façade and additions of the Gilbert and Helen Hood House. Attached garage has been renovated, new construction house added in 2006 to rear of property. File Name: Derry2016_U20

Direction: NW


Photo U21: 120 Chester Road (DER0132). Façade and southwest elevation of J \& F Farms building with ell additions. Vinyl siding installed and several replacement windows noted. No other changes. File Name: Derry2016_U21

Direction: N


Photo U22: 76 Tsienneto Road (DER0134). Façade and barn of the Palmer Homestead. Metal standingseam roof installed on the house. No other changes noted.


Photo U23: 76 Tsienneto Road (DER0134). Northeast elevation of the Palmer Homestead and carriage barn. Metal standing-seam roof installed on the house. No other changes noted.
File Name: Derry2016_U23
Direction: SW


Photo U24: 72 Tsienneto Road (DER0135). Façade of E. F. Adams House. Row of Hemlock trees removed in front, no other changes noted.


Photo U25: 104 East Broadway (DER0141). Façade of the Amadee Cote House. Bay window has been replaced, no other changes noted.
File Name: Derry2016_U25
Direction: NW


Photo U26: 126 East Broadway (Area DV). Façade and northeast elevation of the Wilson House. Vinyl siding and gutters added, vinyl replacement windows on upper floor. No other changes noted. File Name: Derry2016_U26


Photo U27: 128 East Broadway (Area DV). Façade and northeast elevation of the Doctor Thomas Wallace House. Parking lot to the northeast enlarged, accessibility ramp added to front entry, gutter added to first floor roofline. No other changes noted.
File Name: Derry2016_U27
Direction: NW


Photo U28: 130 East Broadway (Area DV). Façade of the B. F. Kincaid House. Vinyl replacement windows have been added to the second floor. No other changes noted.
File Name: Derry2016_U28


Photo U29: 130 \(1 / 2\) East Broadway (Area DV). Façade and northeast elevation of the \(1301 / 2\) East Broadway. No changes noted.
File Name: Derry2016_U29
Direction: NW


Photo U30: 132 East Broadway (Area DV). Façade and southwest elevation of the Joseph Bradbury Bartlett House. Vinyl shutters added to façade windows. No other changes noted.
File Name: Derry2016_U30
1. Type of Area Form

2. Name of area: Londonderry, I-93 Exit 4A Interchange Study
3. Location: Pillsbury Road, Appletree Lane, Route 28/Rockingham Road (from town line to Perkins Road), Perkins Road, Stonehenge Road (abutting I-93)
4. City or town: Londonderry
5. County: Rockingham
6. USGS quadrangle name(s): Derry, NH; Manchester South, NH
7. Dataset: SP Feet, NAD83
8. SP Feet: \(\underline{X}: 1,064,044.92 \mathrm{Y}: 154,879.72 ; \mathrm{X}:\)

1,072,020.91 Y: 145,919.59; X: 1,072,978.32
Y: 137,814.10; X: \(1,068,20.41 \mathrm{Y}: 137,814.10\);
X: 1,068,207.41 Y: 134,374.51; X: 1,060,464.32 Y: 153,561.35
9. Inventory numbers in this area: Area LONWO, Area PS, LON0094-LON0100, LON0103LON0109, LON0114, LON0116, LON0117
10. Setting: Rural
11. Acreage: approximately 400 acres
12. Preparer(s): Lynne Monroe, Reagan Ruedig
13. Organization: Preservation Company
14. Date(s) of field survey: August 2016

\section*{New Hampshire Division of Historical Resources}

\section*{15. Location Map}


Location Map showing areas revisited for this update.
Street addresses of resources are listed in the Table on page A4.
Detail Maps/Photo Keys 1-4 begin on page A7.

\section*{17. Methods and Purpose (Continuation)}

The scope of work for this current phase of the project was specified at a joint meeting of FHWA, NHDOT and NHDHR on March 1, 2016. This update was completed for the I-93 Exit 4A Interchange Study, Derry-Londonderry, NHDOT Project Number: 13065. The objective is to review the work done in 1999-2002, and make it current to complete the Section 106 evaluation for Historic Resources. A Townwide Area Form for Londonderry was completed in 1995 for the Bedford-Manchester-Londonderry Project DPR-F-0047-(001), 11512. Six Individual Survey Forms were completed in 1999-2000 for this project (LON0094-LON0099). Survey was completed in 2001 for the I-93 Improvement Project: Salem-Manchester 10418c that included areas and individual properties that fall within the Exit 4A Project's Area of Potential Effects (as stated in the 2007 Draft Environmental Impact Statement, Section 3.8.4.2).

In August 2016, Preservation Company conducted a windshield survey of the project area to assess the changes to the properties that had retained eligibility as of 2002. The survey focused on the eligible properties in potential impact areas located on Rockingham Road, Stonehenge Road, and Pillsbury Road; this included the Woodmont Orchard Historic District. The Ash Street Bridge (Prowse Memorial Bridge) over Interstate 93 was also surveyed. Changes in integrity are noted in the following table. Of these resources, only one property ( 99 Rockingham Road) was found to no longer be individually eligible for the National Register. Continuation sheets were made for this property to be appended to form \#LON0103. They include current black-and-white prints with scans of the 2002 photographs provided for comparison as well as a narrative re-assessment of the integrity and significance comparison.

Digital photographs were taken of all of the eligible properties, and a photographic record was created for properties that were unchanged. This effort is presented on continuation sheets to the original Townwide Area Form and photographs are keyed to a base map taken from the Town of Londonderry MapGeo website (https://londonderrynh.mapgeo.io).
A table of eligible properties was prepared that shows the following information: Survey Number, Address, Map/parcel \#, Acreage, 2002 DOE, 2016 Integrity/Eligibility, Notes on Integrity, and 2016 photo number.

List of Eligible Properties In Impacted Areas
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Survey \# & \begin{tabular}{l}
Street \\
Address
\end{tabular} & Map-Lot & Acreage & \begin{tabular}{l}
2002 \\
Determined Eligible
\end{tabular} & \begin{tabular}{l}
2016 \\
Retained \\
Integrity/ \\
Eligibility?
\end{tabular} & 2016 Changes Noted in Windshield Survey & \begin{tabular}{l}
2016 \\
Photo Nos.
\end{tabular} \\
\hline Area LON-WO & Pillsbury Road & Map 10 & 196.003 & Eligible as a District ( \(A, B\) ) & Yes & Buildings have been mostly abandoned and are dilapidated, the sites are overgrown, but none had been demolished as of August 2016. & 1-10 \\
\hline LON0100 & 15 Appletree Lane & 10/41-1 & 5.0 & Contributing to NR-eligible district (A) & Yes & Building uninhabited and overgrown, no changes. & 5 \\
\hline LON0103 & 99 Rockingham Road & 13/43 & 8.26 & Eligible Individually (C) & No & Queen Anne style turned posts added to overhanging eave on façade, changing feeling and design. & 15 \\
\hline LON0105 & 117 Rockingham Road & 16/88 & 1.50 & Eligible Individually (C as of 2005) & Yes & No changes noted. & 16 \\
\hline LON0107 & 118 Rockingham Road & 16/82 & 1.84 & Not Eligible (Age) & Yes & No changes noted, should be re-evaluated if there are potential impacts now that the age threshold has been reached. & 17 \\
\hline LON0114 & 79 Stonehenge Road (corner of Perkins Rd) & 13/21, 22 & 114.39 & Eligible Individually
\[
(A, C)
\] & Yes & New storm doors added, no other changes. & 11-13 \\
\hline LON0116 & Ash Street over l-93 & 10/00 & Bridge footprint/ approaches & Eligible Individually
\[
(2003)(C, E)
\] & Yes & No changes. & 14 \\
\hline LON0117 & 113 Rockingham Road & 16/93 & 1.40 & \begin{tabular}{l}
Eligible Individually \\
(C)
\end{tabular} & Yes & No changes noted. & 18 \\
\hline
\end{tabular}

\section*{New Hampshire Division of Historical Resources}

Area Form

\section*{Digital Photo Log}

The photo reference (file name) for this project is named LON_2016_01 through LON_2016_18 where the last two digits are the photo number.

\section*{Digital Photography Statement}

I, the undersigned, confirm that the photos in this inventory form have not been digitally manipulated and that they conform to the standards set forth in the NHDHR Photo Policy. These photos were printed using the following: Epson SureColor P600 printer on Epson Ultra Premium Photo Paper, glossy. The digital files are housed with Preservation Company in Kensington, NH.


Lynne Emerson Monroe, Preservation Company

\section*{New Hampshire Division of Historical Resources \\ Area Form}

\section*{Photo Keys}


Photo Key 1 - Photos 1-10
\begin{tabular}{|lr|}
\hline New Hampshire Division of Historical Resources & Page A7 of A18 \\
AREA FORM & NHDHR NUMBER: LON \\
\hline
\end{tabular}


Photo Key 2 - Photos 11-13

\section*{New Hampshire Division of Historical Resources}


Photo Key 3 - Photo 14


Photo Key 4 - Photos 15-18

Date of Photography: \(\underline{\text { August } 2016}\)


Photo 01: Rosencrans Pillsbury House, 22 Pillsbury Rd., abandoned and overgrown (LON-WO, Woodmont Orchard Historic District)
File Name: LON_2016_01
Direction: SW


Photo 02: Garage, 22 Pillsbury Rd., abandoned and overgrown (LON-WO, Woodmont Orchard Historic District)
File Name: LON_2016_02


Photo 03: Equipment Shed, 22 Pillsbury Rd., roof collapsed (LON-WO, Woodmont Orchard Historic District)
File Name: LON_2016_03 Direction: WSW


Photo 04: Woodmont House \#1, 1 Pillsbury Rd., abandoned and overgrown (LON-WO, Woodmont Orchard Historic District)
File Name: LON_2016_04


Photo 05: Hawkes-Lievens House, 15 Appletree Ln., abandoned and overgrown (LON-WO, Woodmont Orchard Historic District and LON0100)
File Name: LON_2016_05
Direction: NE


Photo 06: Woodmont House \#3, 1 Pillsbury Rd., no changes (LON-WO, Woodmont Orchard Historic District)
File Name: LON_2016_06


Photo 07: Woodmont Packing/Equipment Shed, 1 Pillsbury Rd., no changes (LON-WO, Woodmont Orchard Historic District)
File Name: LON_2016_07
Direction: S


Photo 08: Woodmont Packing/Equipment Shed, 1 Pillsbury Rd., no changes (LON-WO, Woodmont Orchard Historic District)
File Name: LON_2016_08
Direction: SE


Photo 09: Woodmont Packing/Equipment Shed, 1 Pillsbury Rd., no changes (LON-WO, Woodmont Orchard Historic District)

File Name: LON_2016_09
Direction: NW


Photo 10: Landscape, off Pillsbury Rd., no changes (LON-WO, Woodmont Orchard Historic District) File Name: LON_2016_10


Photo: 11: Reed Paige Clark Homestead, Stonehenge House, 79 Stonehenge Road (LON0114) File Name: LON_2016_11

Direction: NW


Photo 12: Reed Paige Clark Homestead, Stonehenge House, 79 Stonehenge Road (LON0114)
File Name: LON_2016_12
Direction: SSE


Photo: 13: Reed Paige Clark Homestead, Stonehenge House, 79 Stonehenge Road (LON0114) File Name: LON_2016_13


Photo 14: Ash Street Bridge (Robert J. Prowse Memorial Bridge) over Interstate 93 (LON0116) File Name: LON_2016_14

Direction: N


Photo 15: 99 Rockingham Road, turned columns and frieze added to overhanging eave on façade, no other changes noted (LON0103)
File Name: LON_2016_19
Direction: SW


Photo 16: 117 Rockingham Road, no changes (LON0105)
File Name: LON_2016_21


Photo 17: 118 Rockingham Road, landscaping has been removed, no other changes (LON0107) File Name: LON_2016_23


Photo 18: 113 Rockingham Road, no changes (LON0117)
File Name: LON_2016_26

THE STATE OF NEW HAMPSHIRE DEPARTMENT OF TRANSPORTATION

Victoria F. Sheehan
Commissioner

\title{
William Tass, P.E. \\ Assistant Commissioner
}

\section*{LETTER OF TRANSMITTAL}

TO: Megan Rupnik
NH Division of Historical Resources 19 Pillsbury Street Concord, NH 03301

WE ARE SENDING YOU
\(\boxtimes\) Attached

Date: July 2, 2018
Bureau: Environment
Project: Derry-Londonderry
Project No: 13065
IM-0931(201)
RR
2772
\(\square\) Under separate cover via the following items:
\begin{tabular}{|l|l|c|}
\hline COPIES & \multicolumn{1}{|c|}{ DATE } & DESCRIPTION \\
\hline & & Individual Inventory Forms: \\
\hline 1 & 2018 & DER0193 - 11 Madden Road, Derry \\
\hline 1 & 2018 & DER0194 - 2 Ferland Drive, Derry \\
\hline 1 & 2018 & DER0195 - 12 Folsom Road, Derry \\
\hline 1 & 2018 & DER0196 - 3 Manchester Road, Derry \\
\hline 1 & 2018 & DER0197 - 80 Chester Road, Derry \\
\hline 1 & 2018 & Franklin Terrace Historic Area Form, Derry \\
\hline
\end{tabular}

THESE ARE TRANSMITTED as checked below:For approvalApproved as submitted
For your use
As requestedApproved as noted

For review

\section*{REMARKS: Megan, please find enclosed the above area form updates for review at the next DOE meeting.}

Please let me know if you have any questions.


Jill Edelmann
Cultural Resources Manager
Bureau of Environment
Room 160 - Tel. 271-7968
cc. Jamie Sikora, FHWA

S:IEnvironment|PROJECTSIDERRY\13065\CulturallArchitectural|2018 UpdatesltrDHR NewInventories 7.3.2018.docx

\section*{Individual Inventory Form}

Name, Location, Ownership
1. Historic name: None
2. District or area: None
3. Street and number: 11 Madden Road
4. City or town: Derry
5. County: Rockingham
6. Current owner: Marcia Abbott Function or Use
7. Current use(s): Single dwelling
8. Historic use(s): Single dwelling

\section*{Architectural Information}
9. Style: Ranch style
10. Architect/builder: Unknown
11. Source: None
12. Construction date: ca. 1955
13. Source: Research, Inspection
14. Alterations, with dates: Vinyl siding, date unknown
15. Moved? no \(\boxtimes\) yes \(\square\) date: \(\underline{\text { N/A }}\)

\section*{Exterior Features}
16. Foundation: concrete
17. Cladding: vinyl
18. Roof material: asphalt shingles
19. Chimney material: concrete block
20. Type of roof: cross gable
21. Chimney location: rear wall
22. Number of stories: 1
23. Entry location: Façade, off-center
24. Windows: Casement, \(1 / 1\) double-hung, 2/2 double-hung Replacement? no \(\boxtimes\) yes \(\square\) date: \(\underline{\text { N/A }}\)

\section*{Site Features}
25. Setting: Mixed use neighborhood
26. Outbuildings: Shed, storage
27. Landscape features: Garden, flower; mature trees
28. Acreage: 2.01 acres
29. Tax map/parcel: \(\underline{31 / 12}\)

35. Photo 1: Façade and gravel drive Direction: WNW
36. Date: June 2018
37. Reference (file name): Photo_June2018_164

30 State Plane Feet (NAD83): X: 1072995.949621 ; Y: 141803.708127
31. USGS quadrangle and scale: Derry, NH, \(\underline{1: 24000}\)

\section*{Form prepared by}
32. Name: Reagan Ruedig, Lynne Monroe
33. Organization: Preservation Company, Kensington, NH
34. Date of survey: June 2018
39. Location Map

© OpenStreetMap contributors
40. Property Map

\(z\)

\section*{41. Historical Background and Role in the Town or City's Development}

The house at 11 Madden Road was constructed in 1955 behind the older Madden farmhouse that was demolished at about the same time. The 1892 Hurd Atlas shows "J. Madden" at this location, and USGS maps and historic aerial photographs show a house fronting Madden Road until at least 1952 (see below). James Madden (ca. 1819-1896), a farmer from Ireland, lived in the old house from 1854 on land that straddled the Derry/Londonderry border (Deed 359:356). The road known as Old Folsom Road had become Madden Road by the early twentieth century.
James Madden's son, William F. Madden (1871-1959), began to subdivide the Madden property in the 1950s. The first lot subdivided was his father's house on a lot of approximately two acres, which he sold to Nellie B. Kimball in 1952 (Deed 1241: 297). Two years later, in 1954, the Tinkham family purchased that lot (Deed 1331: 163). Wendell W. and Sylvia I. Tinkham were from Derry. Wendell was in the U.S. Navy during World War II. According to the current owner, Marcia Abbott, the Tinkhams demolished the old Madden farmhouse and constructed the smaller, 1-story house being surveyed.
In 1961, the Tinkhams sold the house to William E. and Kathleen L. Mahoney of Everett, MA (Deed 1602: 491). Their ownership was brief, as they sold it to Millard C. and Marcia E. Abbott in 1963 (Deed 1695: 86). Millard Abbott died in 1981, and Marcia Abbott is the current owner and resident.
This area of Derry lies between the tracks of the Manchester and Lawrence railroad and the Londonderry town line; it was remote farmland for much of the nineteenth and early twentieth centuries. A couple of small houses were constructed on the south side of the road in the mid-twentieth century. Development along North High Street and Folsom Road increased in the second half of the twentieth century, and by 2000 large areas of woods had been cleared for industrial warehouses located on the north and east sides of the house, though dense trees and vegetation help to screen Madden Road and maintain the earlier rural feel of the area.

\section*{42. Applicable NHDHR Historic Contexts (please list names from appendix C)}
131. Suburban/bedroom community growth in New Hampshire, c. 1850-present

\section*{43. Architectural Description and Comparative Evaluation}

The house at 11 Madden Road is a minimal Ranch style house with a cross-gabled roof, set back approximately 90 feet from the road. The house is clad in yellow vinyl siding, with brown asphalt shingles on the roof, and rests on a concrete foundation. The main entrance is in the front gable, set on the west side of the house, with a secondary entrance in a smaller wing addition on the west side. Adjacent to the main entry door is a row of five, six-light wooden casement windows. Elsewhere the house has \(1 / 1\) (on the façade) and \(2 / 2\) horizontal-light (on the rear) wooden double-hung windows covered with aluminum storm windows. Both doorways have modern, steel storm doors. A concrete block flue was added to the rear wall on the east end.

What trim detail might have existed originally has been thoroughly covered or removed by the addition of vinyl siding, likely installed in the 1990s. The eaves and fascia boards are squared and simple, and the doors and windows are framed with flat-stock trim. Simple window boxes are hung beneath the four double-hung windows to the east of the door on the façade. A pathway of modern brick pavers leads from the semicircular gravel driveway to the front door, and there is a concrete patio area in front of the secondary doorway on the west side of the front gable.

Two large silver maples, which were planted in the early 1960s, are sited at the front corners of the house. There are flower gardens in the front of the house, and a small vegetable garden to the west. There is a small wood, gabled storage shed (likely constructed at the same time as the house) northwest of the house and a modern, plastic shed to the east. The rear of the parcel is thickly wooded, and there are trees along the east edge of the property that provide a buffer from the surrounding industrial buildings.
This minimal Ranch is not typical or exemplary of the Ranch style and is not similar to any buildings in the immediate area. Derry experienced a period of major growth in the mid-twentieth century, and there are many other examples of buildings that better represent the Ranch style, such as the houses along Newell Drive and Kingsbury Road in Derry Village.

\section*{44. National or State Register Criteria Statement of Significance}

Criterion A: This property is not eligible under Criterion A because it is not associated with any event that has made a significant contribution to broad patterns in history. This house was constructed during a major building boom in Derry, but it is not part of a planned development or part of that trend in the mid-twentieth century.
Criterion B: This property is not associated with a historically significant person. It is the site of the farm of James Madden, an Irish immigrant who became a local farmer in Derry in 1854, but the buildings associated with his residency are gone. It is not eligible under Criterion B.

Criterion C: This house does not represent a distinctive type of architecture or work of a master. The Ranch house is a common house type in Derry, and this house neither exhibits a fully articulated expression of the Ranch style nor does it retain sufficient integrity to communicate its original design. Therefore it is not eligible for the National Register under Criterion C.

\section*{45. Period of Significance}

None

\section*{46. Statement of Integrity}

The property at 11 Madden Road retains its integrity of location and setting. However, the house has lost its integrity of design, materials, and workmanship due to the addition of vinyl siding, which covers any trim details that might have existed originally. The footprint of the building has not changed and there are some original windows. Even though development has encroached on the area in the north and east, the thick buffer of trees and vegetation maintains the character of the setting of the small house on a grassy lot with mature trees surrounded by woods.

\section*{47. Boundary Discussion}

The tax parcel (Map 31, lot 12) was used as the boundary of the area surveyed for this form. This property is not eligible for the National Register, so an eligible boundary discussion is not necessary.

\section*{48. Bibliography and/or References}

Pettis, Emily et al.
2012 NCHRP Report 723: A Model for Identifying and Evaluating the Historic Significance of PostWorld War II Housing. Transportation Research Board: Washington, D.C.

Deeds
Rockingham County Registry of Deeds
Book 359, page 356 5/31/1854
Book 1241, page 297 3/24/1952
Book 1331, page 163 7/30/1954
Book 1602, page \(491 \quad 10 / 11 / 1961\)
Book 1695, page 86 10/24/1963
Book 2932, page 2232 7/2/1992
Historic Maps
Hurd, D. H. \& Co.
1892 Town and City Atlas of the State of New Hampshire. Boston: Hurd \& Co.
United States Geological Service
1968 Derry, NH quadrangle (www.usgs.com)
Electronic Resources
Ancestry.com: www.Ancestry.com
NETRonline: www.historicaerials.com


\section*{Historic Maps}


Detail of 1892 D.H. Hurd Atlas of Derry, arrow showing the location of J. Madden on what is now Madden Road


Historic aerial photograph from 1952 showing Madden Road (the earlier James Madden farmhouse circled)


Historic aerial photograph from 1965 showing Madden Road (11 Madden Road circled)


New Hampshire Division of Historical Resources
last update 06.20.2015

\section*{Individual Inventory Form}

\section*{Digital Photography Statement}

I, the undersigned, confirm that the photos in this inventory form have not been digitally manipulated and that they conform to the standards set forth in the NHDHR Photo Policy. These photos were printed using the following: Epson SureColor P600 printer on Epson Ultra Premium Photo Paper, glossy. The digital files are housed with Preservation Company in Kensington, NH.


Lynhe Emerson Monroe, Preservation Company

\section*{Photo Key}


New Hampshire Division of Historical Resources
last update 06.20.2015
IndIVIDUAL INVENTORY FORM

\section*{Current Photographs}

Date taken: June 2018


Photo 2) Front door on façade
Reference (file name): Photo_June2018_175


Photo 3) Façade and east elevation


Photo 4) West elevation
Direction: NE
Reference (file name): Photo_June2018_168


Photo 5) North (rear) and west elevations


Photo 6) Shed in rear of house
Direction: N
Reference (file name): Photo_June2018_167


Photo 7) Side yard looking west
Reference (file name): Photo_June2018_165

Name, Location, Ownership
1. Historic name: None
2. District or area: \(\mathrm{N} / \mathrm{A}\)
3. Street and number: 2 Ferland Drive
4. City or town: Derry
5. County: Rockingham
6. Current owner: Ronald S. and Christine M. Randall

\section*{Function or Use}
7. Current use(s): Single dwelling
8. Historic use(s): Single dwelling

\section*{Architectural Information}
9. Style: Ranch style
10. Architect/builder: Unknown
11. Source: N/A
12. Construction date: \(\underline{1967}\)
13. Source: Research, Inspection
14. Alterations, with dates: Vinyl siding and replacement windows, dates unknown
15. Moved? no \(\boxtimes\) yes \(\square\) date: \(\underline{\text { N/A }}\)

\section*{Exterior Features}
16. Foundation: concrete, poured
17. Cladding: vinyl
18. Roof material: asphalt shingles
19. Chimney material: brick
20. Type of roof: gable
21. Chimney location: rear wall
22. Number of stories: \(1 \frac{1}{2}\)
23. Entry location: façade, off-center
24. Windows: \(6 / 6\) double-hung, \(2 / 2\) doublehung, casement, picture
Replacement? no \(\boxtimes\) yes \(\boxtimes\) date: unknown

\section*{Site Features}
25. Setting: City/town neighborhood
26. Outbuildings: Shed, storage
27. Landscape features: Stream
28. Acreage: 0.56 acres
29. Tax map/parcel: \(31 / 15\)

35. Photo 1: Façade and north elevation

Direction: SE
36. Date: April 2018
37. Reference (file name): Photo_April2018_717

30 State Plane Feet (NAD83): X: 1073982.172922; Y: 142095.274250
31. USGS quadrangle and scale: Derry, NH, \(\underline{1: 24000}\)

\section*{Form prepared by}
32. Name: Reagan Ruedig, Lynne Monroe
33. Organization: Preservation Company, Kensington, NH
34. Date of survey: June 2018
39. Location Map

© OpenStreetMap contributors
40. Property Map


Property map showing all buildings, setting and tax map/parcel (dashed line)

\section*{41. Historical Background and Role in the Town or City's Development}

The house at 2 Ferland Drive was constructed in 1967 by a local builder, Roland Ferland, who subdivided and developed Ferland Drive.
Roland J. Ferland (1929-2004) and his wife, Pauline, moved to Derry from Sanford, Maine, in 1955 and purchased 97 North High Street (Deed 1353: 224, Photo 13). \({ }^{1}\) Ferland became a builder in the region, his company was called the Roland Ferland Construction Company. In the mid-twentieth century, Derry experienced a rapid rise in population, and Ferland took advantage of the associated building boom. His company built utilitarian homes, duplexes, and multifamily units primarily in Derry but also in Windham and Hudson (David J. Ferland interview, 2018). Research indicates that he was most active in the 1970's building primarily individual homes and duplexes or clusters of two or three as infill, rather than full neighborhoods. Although he was not a prominent builder, he served as president of the New Hampshire Home Builders Association in 1976 (Lambert Funeral Home Obituary 2004).
In 1962 Ferland purchased the three-acre lot adjoining his property at 97 North High Street and shortly thereafter filed plans for a road and four lots (Deed 1621: 302, Plan 852, see below). The subdivision plan includes the old house where he lived at 97 North High Street as Lot 1, lots 2 and 3 on Ferland Drive, and a fourth lot (not numbered) south of Lot 1. Over time, his family and business located on Ferland Drive.

In 1967-68 Ferland built houses at 1 Ferland Drive, (on the fourth, unnumbered lot, Photo 7) and 2 Ferland Drive (on Lot 2, Photos 1-6). The Ferland family, including three young children, moved into the new house at 1 Ferland Drive, and Roland Ferland's mother in law, Elise Barrieau, lived in 2 Ferland Drive. Roland and Pauline maintained ownership of this house until his daughter and son-in-law, Jacqueline and Paul Kramer, bought it in 1996 (Deed 3152: 1505; David J. Ferland interview, 2018). Eventually the family moved across the street into the larger house at 4 Ferland Drive (Photos 8, 9). In 1974, the lots further south on Ferland Drive were subdivided and developed (Plan 4523), creating 3 and 6 Ferland Drive (Photos 10, 11), which were constructed as apartment buildings. In 2004, the Kramers sold the house at 2 Ferland Drive to Ronald and Christine Randall, the current owners (Deed 4351: 2662). 5 Ferland Drive was constructed much later, in 2014, after the Ferland family had left the area (Photo 12).

In the late 1970s and early 1980s, Roland Ferland also purchased and developed lots nearby on Franklin Street, where there is now a row of multi-unit buildings named "Brookview Manor Court" (76-90 Franklin Street, 99 North High Street, see plan D-9948). These are split/bi-level buildings, a common type of the era seen throughout Derry and southern New Hampshire (Photos 14, 15). In 2001 Roland Ferland and his son, David, developed "Water View Estates" at 71 North High Street along Hood Pond (Plan 29779). Deeds indicate that Ferland had developed or renovated single or double lots in various other places in Derry, but most of his development was concentrated in the area near Ferland Drive. He built similar buildings in the nearby towns of Windham and Hudson (David J. Ferland interview, 2018).

\section*{42. Applicable NHDHR Historic Contexts (please list names from appendix C)}
131. Suburban/bedroom community growth in New Hampshire, c. 1850-present

\footnotetext{
\({ }^{1}\) The Ferlands lived at 97 North High Street for thirteen years. It is a \(11 / 2\) story sidehall, ca. 1888, that was surveyed in 1999 and found not eligible in 2002, DER0160.
}

\section*{43. Architectural Description and Comparative Evaluation}

The house at 2 Ferland Drive is a Ranch in the minimal Traditional style. It is sited facing west, with the façade on the long side facing Ferland Drive; the land drops to the rear allowing a full story facing Beaver Brook. The house rests on a poured concrete foundation and is clad in white vinyl siding with a gabled, asphalt shingle roof. Green vinyl shutters flank the windows on three elevations excepting the rear, and there is a wide brick chimney on the south end of the east, (rear) wall. There is a smaller wing enclosing a porch on the north elevation; with a low gabled roof that shares the western slope of the main roof. The eave line on the façade projects over the porch and bay window and recesses over the remaining bay.
The windows display a combination of vinyl double-hung windows (date unknown) on the first floor level and original \(2 / 2\) horizontal-light double-hung sash protected by storm windows on the rear, basement level. The façade has a central bay window with \(6 / 6\) windows supported by two brackets and a single \(6 / 6\) window to the south. The north elevation contains a large, vinyl picture window with simulated divided lights. There is single casement window on the rear, first floor level. The porch has a series of \(1 / 1\) storm windows on three sides.

The main entrance is through the enclosed porch on the north side, with a second door into the living space and another accessing a wood deck. The basement door on the rear elevation is located at ground level.
The paved driveway runs directly from the street to the face of the enclosed porch with a gravel parking area just to the north. A modern storage shed, added ca. 2010, is located to the north of the house, facing the gravel parking area.

\section*{Other Houses on Ferland Drive}

The other houses on Ferland Drive that were built by Roland Ferland are different types, forms, and styles. They are now all multi-unit residences, though 1 and 4 Ferland Drive were originally singlefamily houses.
- 1 Ferland Drive, built in 1967, (Photo 7) is a simple, Twentieth-century Cape with no Colonial Revival detail. It has vinyl siding and shutters and the eaves extend. The attached garage now has a basement apartment.
- 4 Ferland Drive, built in 1968 (Photos 8, 9) has the form of a ranch but with a cross-gable and integrated two-car garage but an above ground level under the rear pile. The gambrel roof of the cross-gable section on the north end extends to the ground, like a barn. The integral two-bay garage on the south end has applied cross-battens mimicking barn doors. It is sided with a combination of vertical wood siding and wood shingles. \({ }^{2}\) There are two driveway areas: an asphalt drive at street level connecting directly to the garage doors, and another concrete driveway on the south side that is sloped steeply to the lower ground level at the rear of the house, a full story in height. The concrete area extends to 6 Ferland Drive, and substantial concrete retaining walls were built to support the yards at each side. This wide drive was for the purpose of parking the trucks and machinery associated with Roland Ferland Construction Company.

\footnotetext{
\({ }^{2}\) According to Roland Ferland's son, 4 Ferland Drive was named the "Home of the Year", year unknown, by the Nashua Local Group of the NH Homebuilders Association. The NHHA didn't become a statewide organization until 1973 (Sharon Wayman interview, 2018). The unusual design was created by Roland Ferland (David J. Ferland interview, 2018).
}
- 3 and 6 Ferland Drive added after 1973 were constructed as apartment buildings. 6 Ferland Drive, built in 1974 (Photo 10), is a cross-gabled Ranch clad in green aluminum siding, white shutters and replacement windows. The driveways on each side slope to the above grade basement level, and there are concrete retaining walls lining the edges to support the front yard.
- 3 Ferland Drive (Photo 11) built in ca. 1975 combines a number of forms common to housing of the period: bi-level split-level ranch with a "wounded dove" shallow cross-gable, garrison overhang between the stories. It is clad in red aluminum siding with white shutters and replacement windows. Both 3 and 6 Ferland Drive are under ownership and management of Brookview Manor Court, Inc., which also owns the apartment buildings developed by Ferland at 76-90 Franklin Street.
- 5 Ferland Drive (Photo 12) is a two-story, two-family building with a lower garage level constructed in 2014. It sits on a large, irregular parcel that contains wetlands behind the apartment buildings along Franklin Street. There was previously a circular turnaround at the end of Ferland Drive on this lot as well as a mobile home or storage containers (see 2008 satellite photograph).

Ferland's development of apartment buildings along Franklin Street, Brookview Manor Court, is a series of split-level or two-story, multi-family buildings with brick lower and a vinyl-sided upper stories. Each has a central entrance in a shallow projection on the façade (Photos 14, 15).

\section*{44. National or State Register Criteria Statement of Significance}

2 Ferland Drive is not eligible for the National Register because it does not retain integrity necessary for eligibility status, nor does it individually meet any of the Criteria. Because it was constructed on a lot that was originally a family subdivision, the surrounding properties were also identified and considered as a possible district. However, the development of the Ferland land does not demonstrate a particular aspect of the historic context or theme for Derry, nor does the group as a whole represent a cohesive neighborhood that exemplifies local patterns or architectural distinction.
Criterion A: The house at 2 Ferland Drive was built by a local homebuilder and was one of the first houses he constructed as part of his own land development. This house was built for his family, not as part of his later subdivisions. He developed several lots in the immediate area between 1967 and 1975, and while they are of local interest, they are not collectively of sufficient age to interpret the trend in Derry. There are several more notable subdivisions and neighborhoods in Derry from this era that more clearly exemplify the post-World War II building boom. Therefore, 2 Ferland Drive is not eligible for the National Register under this Criterion as an example of this trend of home construction at the end of the twentieth century in Derry, New Hampshire.
Criterion B: The house at 2 Ferland Drive is not eligible under this Criterion as it is not associated with a historically significant person. Roland J. Ferland was a local homebuilder who developed a number of lots on the area between North High Street and Franklin Street. He also built a number of houses and multi-family dwellings in the region that are not significant architecturally. Although he served as president of the New Hampshire Home Builders Association for one year, his work is not distinctive as a whole.

Criterion C: The house at 2 Ferland Drive does not represent a distinctive style of architecture or work of a master. The Ranch form house is a common house type in Derry, and this
house neither exhibits a fully articulated expression of the Ranch style nor does it retain sufficient integrity to communicate its original design. Therefore, this property is not eligible for the National Register under Criterion C.

\section*{45. Period of Significance}

None

\section*{46. Statement of Integrity}

The house at 2 Ferland Drive retains integrity of location and setting. However, its integrity of materials and workmanship has been lost by the installation of vinyl siding, shutters, and replacement windows as well as the enclosure of the porch. Any original design details have been removed or covered, and only four original windows remain on the rear. The integrity of design remains in that the footprint and general massing of the building has not changed. The property retains integrity of feeling as it remains residential, but the association with the Ferlands is now gone as the property was sold out of the family in 2004.

\section*{47. Boundary Discussion}

The tax parcel (Map 31, lot 15) was used as the boundary of the area surveyed for this form (see Property Map). This property is not eligible for the National Register, so an eligible boundary discussion is not necessary.

\section*{48. Bibliography and/or References}

Ferland, David J.
2018 Telephone interview, June 28
Lambert Funeral Home
2004 Obituary of Roland J. Ferland (http://lambertfuneralhome.tributes.com/obituary/show/Roland-J.-Ferland-570612)

Pettis, Emily et al.
2012 NCHRP Report 723: A Model for Identifying and Evaluating the Historic Significance of PostWorld War II Housing. Transportation Research Board: Washington, D.C.

Sharon Wayman, New Hampshire Builders Association
2018 Telephone interview, July 2
Deeds
Rockingham County Registry of Deeds
Book 1075, page 337 4/18/1947
Book 1353, page 224
Book 1621, page 302
5/7/1955
Plan 852
Book 1850, page 132
3/26/1962

Book 2212, page \(1869 \quad 10 / 25 / 1973\)
Plan D-4523 12/1973
Plan D-9948
Book 3152, page 1505
Plan 29779
Book 4351, page 2662
10/1980
04/30/1996
09/2001
08/25/2004

Historic Maps
United States Geological Service
1968, 1985 Derry, NH quadrangle (www.usgs.com)
Electronic Resources
Ancestry.com: www.Ancestry.com
NETRonline: www.historicaerials.com
Google Earth: www.google.com/earth

\section*{Surveyor's Evaluation}


Plans


Rockingham County Registry of Deeds, Plan 852 (1966) showing the subdivision of lots and the creation of Ferland Drive. Lot 1 is 97 North High Street, Lot 2 is 2 Ferland Drive, Lot 3 is 4 Ferland Drive, and the fourth unnumbered lot is 1 Ferland Drive.


Rockingham County Registry of Deeds, Plan 4523 (1973) showing the subdivision of lots on the southern end of Ferland Drive.


Rockingham County Registry of Deeds, Plan 9948 (1980) showing subdivision of lots along Franklin Street that are now part of Brookview Manor Court.

\section*{Historic Maps}


1968 USGS map, Derry NH quadrangle



Google Earth satellite photograph dated 2008, showing houses along Ferland Drive, the circular turnaround at the south end (arrow), and apartment buildings along Franklin Street (circled).


Google Earth satellite photograph dated 9/2017, showing houses along Ferland Drive, the 2014 duplex building at 5 Ferland Drive (arrow), and apartment buildings along Franklin Street (circled).

\section*{Digital Photography Statement}

I, the undersigned, confirm that the photos in this inventory form have not been digitally manipulated and that they conform to the standards set forth in the NHDHR Photo Policy. These photos were printed using the following: Epson SureColor P600 printer on Epson Ultra Premium Photo Paper, glossy. The digital files are housed with Preservation Company in Kensington, NH.


Lynne Emerson Monroe, Preservation Company

Photo Key - 2 Ferland Drive


Photos 1-6 of 2 Ferland Drive

Photo Key - Neighboring Properties


Photos 7-13 of neighboring properties

New Hampshire Division of Historical Resources
last update 06.20.2015
Individual Inventory Form
NHDHR Inventory DER0194

\section*{Current Photographs - 2 Ferland Drive}

Date taken: June 2018


Photo 2) Façade and south elevation with street frontage; shed in background Direction: NE Reference (file name): Photo_June2018_176


Photo 3) Façade and south elevation
Direction: NE
Reference (file name): Photo_June2018_182


Photo 4) North elevation
Direction: S
Reference (file name): Photo_June2018_179


Photo 5) West (rear) elevation


Photo 6) North and west elevation

New Hampshire Division of Historical Resources
last update 06.20.2015

\section*{Current Photographs - Neighboring Properties}

Date taken: June 2018


Photo 7) 1 Ferland Drive, façade
Direction: SW Reference (file name): Photo_June2018_394



Photo 9) 4 Ferland Drive, garage and driveway
Direction: NE Reference (file name): Photo_June2018_386


Photo 10) 6 Ferland Drive, façade and driveway
Direction: NE Reference (file name): Photo_June2018_387


Photo 11) 3 Ferland Drive, façade and north elevation
Direction: NW Reference (file name): Photo_June2018_393


Photo 12) 5 Ferland Drive, façade
Direction: WSW
Reference (file name): Photo_June2018_391


Photo 13) 97 North High Street, façade and west elevation
Direction: SW Reference (file name): Photo_June2018_397


Photo 14) 90 Franklin Street, façade
Direction: SW
Reference (file name): Photo_June2018_406


Photo 15) 80-84 Franklin Street
Direction: S
Reference (file name): Photo_June2018_405

\section*{Name, Location, Ownership}
1. Historic name: Donald Ross House
2. District or area: N/A
3. Street and number: 12 Folsom Road
4. City or town: Derry
5. County: Rockingham
6. Current owner: Charles J Goddard, Jr. Function or Use
7. Current use(s): Single dwelling
8. Historic use(s): Single dwelling

\section*{Architectural Information}
9. Style: Raised Ranch
10. Architect/builder: Unknown
11. Source: N/A
12. Construction date: ca. 1964
13. Source: Research, Inspection
14. Alterations, with dates: Exterior renovation \(\underline{2013}\)
15. Moved? no \(\boxtimes\) yes \(\square\) date: \(\underline{\text { N/A }}\)

\section*{Exterior Features}
16. Foundation: concrete block, plain
17. Cladding: vinyl
18. Roof material: asphalt shingles
19. Chimney material: brick
20. Type of roof: gable
21. Chimney location: one end, single exterior
22. Number of stories: \(1 \underline{1} 2\)
23. Entry location: Façade, center
24. Windows: \(6 / 6\) double-hung, bay Replacement? no \(\square\) yes \(\boxtimes\) date: \(\underline{2013}\)

\section*{Site Features}
25. Setting: Developing mixed-use road
26. Outbuildings: None
27. Landscape features: Garden, flower; Pool
28. Acreage: \(\underline{0.63 \text { acres }}\)
29. Tax map/parcel: \(\underline{35 / 12}\)

35. Photo 1 Façade and west elevation
36. Date: June 2018
37. Reference (file name): Photo_June2018_185

30 State Plane Feet (NAD83): X: 1074585.702306; Y: 142842.979311
31. USGS quadrangle and scale: Derry, NH, \(\underline{1: 24000}\)

\section*{Form prepared by}
32. Name: Reagan Ruedig, Lynne Monroe
33. Organization: Preservation Company, Kensington, NH
34. Date of survey: June 2018

\section*{Individual Inventory Form}

NHDHR InVENTORY DER0195
39. Location Map

40. Property Map


Sketch map showing all buildings, landscape features, and tax map/parcel (dashed line)

\section*{41. Historical Background and Role in the Town or City's Development}

The house at 12 Folsom Road was constructed in 1964 on land that was developed by the Ross family. Eugene W. Ross (1860-1943) and his son, Bert E. Ross (1882-1957) moved to Derry from Cambridge, MA in 1907 to work in the dairy business. They had been employed by the H.P. Hood Dairy Co. in Boston, and moved to Derry, (the home of H.P. Hood), to start their own dairy business. In 1909 they rented (and purchased ten years later) the John Folsom farm at the corner of Folsom and Manchester Roads, and established the E.W. Ross \& Son dairy business, bottling and delivering milk (Holmes 2012).
The five-point intersection of Folsom Road, Manchester Road, Crystal Avenue, Tsienneto Road, and Pinkerton Street became known as Ross's Corner. The Ross family dairy business was very successful in the early twentieth century and was one of six commercial dairy farms in Derry. By the time Eugene Ross died in 1943, however, local dairy businesses were beginning to decline due to competition from larger regional and national companies (Holmes 2012). Bert died in 1957, and his son Herbert W. Ross (1911-1993) took on the family business, then known as Ross Corner Dairy.
Herbert took the land and farms that the family owned and subdivided part of the former Folsom farm field on the north side of Folsom Road. The first lot, now 16 Folsom Road, was sold to Earl and Viola Pelletier, Herbert's daughter, in 1962 (Deed 1637: 370). In 1963 Herbert's son, Donald W. Ross (1936-2015), purchased a subdivided lot on the western edge of the property (Deed 1669: 116, see Plan 1656). Donald and his wife, Joanne, had their house, 12 Folsom Road, constructed the following year. The house at 18 Folsom Road was the residence of Herbert Ross and his wife, Katherine and was constructed in 1970.

Herbert Ross attempted to streamline the operations of the dairy business, but it continued to decline. Ross Corner Dairy Company auctioned off the farm buildings, land, and operation equipment in 1970 (Nashua Telegraph, 18 June 1970). Reduced production continued with packaging by Turner Dairy in Salem. Products were still distributed at a warehouse on Folsom Road (Holmes 2012). Donald Ross took over the business in 1973 but could not keep up with commercial competition. Ross Corner Dairy went out of business in 1981.
The land formerly associated with the Ross dairy farm (and the Folsom farm before that) was fully subdivided and sold off in the 1970s and 1980s. The town of Derry owns the lot that once had the farm buildings on the northwest corner of Folsom and Manchester Roads (Map/lot 35/14-2), and the police station was constructed there in 1985. The car wash at 20 Folsom Road (Map/lot 35/14-5) was constructed in ca. 1975. The three Ross family houses along Folsom Road have sold out of the family. Herbert's house at 18 Folsom was sold in 1997 (Deed 3199: 891) after Herbert's death in 1993 and is now home to an office for the Salvation Army. 16 Folsom was sold by the Pelletier family in 2002 (Deed 3768: 2729) and has been renovated with the addition of a full second floor. 12 Folsom Road, the property being surveyed, was recently sold in 2015 following Donald Ross's death (Deed 5602: 1757).

\section*{42. Applicable NHDHR Historic Contexts (please list names from appendix C)}
56. Local-scale dairy farming, 1800-present
131. Suburban/bedroom community growth in New Hampshire, c. 1850-present

\section*{43. Architectural Description and Comparative Evaluation}

The house at 12 Folsom Road, constructed ca.1964, is a Raised Ranch with one and a half stories above grade and an integrated garage at the lower level. The lower level is constructed of brickfaced concrete block, while the upper level is clad in vinyl siding, installed in 2013. The lowpitched gable roof has asphalt shingles, and a wide exterior chimney is placed on the east end gable wall. The main entry door is centered on the façade at the upper level, reached by a flight of brick stairs with cast-concrete treads and black iron handrails. A secondary entry at the basement level is located just to the west of the brick stairs, and the single garage door is adjacent on the west side. The front door, as well as the overhead garage door, are original to the house. The lower-level entry door is a vinyl replacement with a fan light.

The windows were replaced with vinyl 6/6 replacement windows in 2013-2014 (see Google Streetview image below). Red vinyl shutters were added to the facade at the same time. The façade has a paired set of double-hung windows and a single double-hung window on the western half, and a bay picture window with paired double-hung windows below at ground level on the eastern half. The west elevation has two double-hung windows symmetrically placed with two awning windows below at the top of the concrete block basement wall. The rear, north elevation has a sliding glass door at the east end and two double-hung windows in the center of the elevation, with two awning windows at the lower level. The east elevation has no openings other than a small vent window just underneath the peak of the gable, same on the west elevation.
The house is sited approximately 40 feet from the road, with a row of four maple trees at the edge of the front yard. The wide, paved driveway is angled from the road to the garage door, with a gravel parking area off of it on the west side. A low, cast concrete block retaining wall edges the curve of the driveway on the east edge of the drive, leading to low brick steps and a taller brick-faced concrete block retaining wall attached to the house by the door at the lower level. A small flower garden bed is planted along the front of the house on the eastern half. The back yard has two large maple trees and an above-ground swimming pool.
Previous to the exterior renovations, the house had wide wood clapboards, original wood 6/6 doublehung windows, and white shutters. The front stairs had no handrails, and the lower-level door was a 9 -light wood door.

This house is fairly typical of Ranch style homes built in the mid-twentieth century in the area, but it is not a distinctive example and has lost integrity of original materials. Derry experienced a period of major growth in the mid-twentieth century, and there are many other examples of buildings that better represent the Ranch style, such as the houses along Newell Drive and Kingsbury Road in Derry Village.

\section*{44. National or State Register Criteria Statement of Significance}

Criterion A: This house was constructed during a major building boom in postwar Derry, but it is not part of a planned development, nor does it singularly represent a significant aspect of the broad pattern of history in Derry or the greater region. There are many other developments in the town of Derry that more are more representative of population growth starting in the mid-twentieth century. Therefore, it is not eligible under Criterion A.

Criterion B: This property is associated with the Ross family, which owned and operated a successful dairy operation at nearby Ross's Corner. It was built by Donald Ross, a

New Hampshire Division of Historical Resources
last update 06.20.2015
Individual Inventory Form
great-grandson, who was head of family dairy business in its final days. His significance to the family business does not rise to a level to grant individual eligibility to this house for its association with him.

Criterion C: This house does not represent a distinctive type of architecture or work of a master. The Raised Ranch house is a common house type in Derry, and this house neither exhibits a fully articulated expression of the Ranch style nor does it retain sufficient integrity to be eligible for the National Register under Criterion C.

\section*{45. Period of Significance}

None

\section*{46. Statement of Integrity}

This property retains integrity of location and setting, as it has not been moved and the setting of Folsom Road and the surrounding neighborhood has not substantially changed since 1964. However, the house has lost integrity of workmanship and materials with the loss of the original wide-lap clapboard and its replacement with narrow vinyl siding and trim boards, as well as the loss of original windows and their replacement with vinyl windows. Because of this, it has diminished integrity of design, though there have been no major additions or changes to the form of the house itself or the property. The property retains integrity of feeling as a residence, but its association has been diminished as it and the neighboring properties have been sold out of the family.

\section*{47. Boundary Discussion}

The tax parcel (Map 35, lot 12) was used as the boundary of the area surveyed for this form. This property is not eligible for the National Register, so an eligible boundary discussion is not necessary.

\section*{48. Bibliography and/or References}

Holmes, Rick
2012 "Gone are the days when milk came right to your door," Derry News, Derry, NH: 6 December 2012. [www.derrynews.com, accessed 28 June 2018]

Obituary: Donald Ross
2015 "Donald's Story," Derry News, Derry, NH: 20 August 2015. [www.derrynews.com, accessed 28 June 2018]

Pettis, Emily et al.
2012 NCHRP Report 723: A Model for Identifying and Evaluating the Historic Significance of PostWorld War II Housing. Transportation Research Board: Washington, D.C.

Deeds
Rockingham County Registry of Deeds
Book 739, page \(54 \quad 6 / 26 / 1919\)
Book 1448, page \(62 \quad 10 / 11 / 1957\)
Book 1637, page \(370 \quad 8 / 14 / 1962\)

New Hampshire Division of Historical Resources
last update 06.20.2015
\begin{tabular}{ll} 
Book 1669, page 116 & \(5 / 6 / 1963\) \\
Book 1961, page 18 & \(3 / 19 / 1968\) \\
Plan 1656 & \(11 / 1969\) \\
Plan 1931 & \(08 / 1970\) \\
Plan 9524 & \(04 / 1980\) \\
Book 2710, page 2604 & \(10 / 28 / 1987\) \\
Book 2384, page 1133 & \(12 / 9 / 1987\) \\
Book 4184, page 456 & \(09 / 22 / 1993\) \\
Book 3199, page 891 & \(2 / 12 / 1997\) \\
Book 3768, page 2729 & \(5 / 7 / 2002\) \\
Book 5602, page 1757 & \(03 / 19 / 2015\) \\
Book 5607, page 1489 & \(04 / 07 / 2015\) \\
Book 5642, page 1074 & \(08 / 03 / 2015\)
\end{tabular}

\section*{Surveyor's Evaluation}

NR listed: individual
within district
Integrity: yes
no
\begin{tabular}{ll} 
NR eligible: \\
\begin{tabular}{ll} 
individual \\
within district \\
not eligible \\
more info needed
\end{tabular} & \(\square\) \\
& \(\square\)
\end{tabular}

NR Criteria: A



Plan 1656 (11/1969)



Plan 1931 (8/1970)


Plan 9524 (04/1980)


Google Streetview image dated September 2013, showing original siding on the façade and vinyl replacement siding on the west elevation.

New Hampshire Division of Historical Resources
last update 06.20.2015
Individual Inventory Form

\section*{Digital Photography Statement}

I, the undersigned, confirm that the photos in this inventory form have not been digitally manipulated and that they conform to the standards set forth in the NHDHR Photo Policy. These photos were printed using the following: Epson SureColor P600 printer on Epson Ultra Premium Photo Paper, glossy. The digital files are housed with Preservation Company in Kensington, NH.


Lynne Emerson Monroe, Preservation Company

\section*{Photo Key}


New Hampshire Division of Historical Resources
last update 06.20.2015
Individual Inventory Form

\section*{Current Photographs}

Date taken: June 2018


Photo 2) Façade and east elevation
Reference (file name): Photo_June2018_190


Photo 3) West and north (rear) elevations
Direction: ESE Reference (file name): Photo_June2018_187


Photo 4) Rear yard
Direction: N
Reference (file name): Photo_June2018_186

\section*{Name, Location, Ownership}
1. Historic name: Knapp Brothers Shoe Manufacturing
2. District or area: None
3. Street and number: \(\mathbf{3}\) Manchester Road
4. City or town: Derry
5. County: Rockingham
6. Current owner: Fireye Inc.

\section*{Function or Use}
7. Current use(s): Office, manufacturing facility
8. Historic use(s): Office, Manufacturing facility

\section*{Architectural Information}
9. Style: Modern Movement
10. Architect/builder: Fletcher-Thompson, Inc.
11. Source: newspaper article 5 May 1960
12. Construction date: \(\underline{1960}\)
13. Source: newspaper article 5 May 1960
14. Alterations, with dates: enclose loading/ garage bays, NE elevation ca. 2000
15. Moved? no \(\boxtimes\) yes \(\square\) date: \(\underline{\text { N/A }}\)

\section*{Exterior Features}
16. Foundation: concrete, poured
17. Cladding: Other-pre-cast concrete
18. Roof material: unknown
19. Chimney material: does not apply
20. Type of roof: flat
21. Chimney location: does not apply
22. Number of stories: 1
23. Entry location: facade, off-center
24. Windows: other

Replacement? no \(\boxtimes\) yes \(\square\) date: N/A

\section*{Site Features}
25. Setting: Other
26. Outbuildings: does not apply
27. Landscape features: mature trees, other
28. Acreage: 8.97 acres

35. Photo 1

Direction: \(\underline{W}\)
36. Date: June 2018
37. Reference (file name): Photo_June2018_287
29. Tax map/parcel: \(\underline{08 / 269}\)

30 State Plane Feet (NAD83): X: 1075490.394874; Y: 144051.444189
31. USGS quadrangle and scale: Derry, NH, \(\underline{1: 24000}\)

\section*{Form prepared by}
32. Name: Laura B. Driemeyer
33. Organization: Preservation Company, Kensington, NH
34. Date of survey: June 2018
39. Location Map


\footnotetext{
© OpenStreetMap contributors
}
40. Property Map


\section*{41. Historical Background and Role in the Town or City's Development}

3 Manchester Road was built in 1960 by the Derry Realty Corporation on land they had acquired the previous year (Deed 1959; Nashua Telegraph 5 May 1960). The new building with a "clean modernistic appearance" was constructed as a new shoe factory that would be occupied by the Knapp Brothers Shoe Manufacturing Corporation, manufacturers and sellers of men's shoes. The building consisted of a one-story front office wing roughly centered on a large rectangular manufacturing section, all erected using tilt-up construction. The building remained in use as a shoe factory until 1983, under several different entities, who continued to manufacture Knapp shoes. In 1983 the building was acquired by the Electronics Corporation of America (ECA), a Cambridge, Massachusetts, manufacturers of products that managed power systems in an industrial setting (Deed 1983; Cambridge Historical Commission). In 1988 Fireye Inc., originally a part of ECA, and a manufacturer of flame safeguard controls and burner management systems, acquired the property and continues to occupy it largely as first designed with office and manufacturing uses (Deed 1988).
Derry, New Hampshire, had a long association of shoe manufacturing, dating back to the midnineteenth century when the railroad came through the town. Shoe manufacturing remained a major part of the local economy into the 1980s though the method of manufacture changed significantly over that period. In the second half of the nineteenth century shoe manufacturing transitioned from predominantly outwork from factories (in nearby Massachusetts cities in the case of Derry), with much of the work done by Derry residents in their homes throughout the village. By 1850 the town had a large number of small shoe shops, with twenty-nine employing just one man. By the end of the nineteenth century, shoe manufacturing was centralized in large manufacturing facilities with steam power. In Derry, several shoe factories were erected or existing buildings were converted to that use. Several more were erected in the first quarter of the twentieth century, during the height of Derry's shoe industry. They were occupied by a series of companies whose financial successes appear to have been short lived (Preservation Company 2002, 36). As of 1915, however, the five big shops employed a total of 1,800 people, making more than 20,000 pairs of shoes a day (Preservation Company 2002, 37; Hazlett 1915, 283). The shoe industry in Derry recovered partially in the post-World War II period, but was limited due to competition from southern mills that had access to cheaper labor and power (Preservation Company 2002, 43).

In 1959, the Derry Realty Corporation acquired a parcel on Route 28 at what was then known as Ross’ Corner, upon which they erected the new office and manufacturing facility that would be occupied by the Knapp Brothers Shoe Manufacturing Company. \({ }^{1}\) The Bridgeport, Connecticut, architectural firm Fletcher-Thompson, Inc. designed the building. William C. Pahl Construction Company of Syracuse, New York, was the builder (Nashua Telegraph 5 May 1960). A 1960 Nashua Telegraph article indicated the building would be of "a clean modernistic appearance." Shoe making machinery was to be installed beginning in September 1960 with manufacturing to begin the following month (Nashua Telegraph 5 May 1960).
The Knapp Brothers Shoe Manufacturing Corporation had been established in Brockton, Massachusetts, by two Knapp brothers, Clarence E. (ca. 1892-1972) and Elwin D. (died 1969). Clarence E. had founded a shoe business in 1920 in the Pacific Northwest, with the then novel idea of selling directly to the consumer. In 1939, he and his brother moved east to establish a shoe manufacturing company, the Knapp Brothers Shoe Manufacturing Company. In the initial years, they occupied a former factory in Brockton, Massachusetts. During World War II they acquired the Barker

\footnotetext{
\({ }^{1}\) The Realty Company had acquired the land from Herbert W. Ross at which time the land included a barn where he housed his cattle, likely dairy cows (Deed 1959).
}

Shoe Company of Lewiston, Maine, and also operated a large factory there, manufacturing civilian and military shoes. They subsequently added the Derry factory and an additional one in Brockton (Boston Globe 4 October 1972). According to Clarence E. Knapp's obituary, the company became one of the ten largest shoe manufacturers and largest direct shoe sales companies in the world (Boston Globe 4 October 1972). \({ }^{2}\) In Derry it remained an important employer through the 1970s.
In 1970, two shoe manufacturing businesses owned by New York University (Knapp Brothers Shoe Manufacturing Corp. of Brockton and the King-Size Co.) were sold to a management group which established a new corporation, known as Knapp King-Size Corp. As of 1970, Knapp was the "world’s largest direct selling shoe firm." It distributed its shoes through 12,000 salesmen and thirty-eight retail shoe stores. It was a major manufacturer of safety footwear of industrial locations. King-Size, a major mail-order firm, specialized in footwear and apparel for tall and big men (Boston Globe 6 June 1970). It remained in operation in Derry at the Manchester Road facility until the end of 1981 (www.upi.com/Archives/1981/12/01/The-Derry-Shoe-Co-will-gradually-shut-down-this/ 4339376030800/).
The construction of the Knapp facility coincided with the construction of at least one other new factory, just to the northwest, the new Klev-Bro Shoe Factory (built ca. 1958) also on Manchester Road. Like the Knapp factory, that facility closed in the 1980s, essentially ending the long history of shoe manufacturing in Derry. But in the case of the Knapp factory, a new type of business moved into the building, one that became a part of the local economy but on a much smaller scale than shoe manufacturing.
Since 1983 the building has been the site of the manufacture of burner management systems. In that year, Electronics Corporation of American (ECA) acquired the property. The company, which originated in Waltham, Massachusetts, subsequently established new research headquarters in Cambridge, Massachusetts, in 1955 where they remained for many years. As of 1986, Electronics Corp of America was the third largest local employer in Derry with 110 employees (Preservation Company 2002). In 1991, the property was sold to a new entity, Fireye Inc. (originally a part of ECA) and they continue to manufacture the same type of burner management system products that had been produced in the building since its acquisition by ECA. Since that time some alterations have been made to the northeast end of the manufacturing space, most notably the enclosure of four loading bays/garages and the addition of an employee's entrance. Other electronics manufacturing facilities in Derry in this period included Hadco Printed Circuit (built 1969, demolished early 2000s), on the property just north of 3 Manchester Road.

Fletcher-Thompson, Inc. of Bridgeport, Connecticut, the architectural firm that designed the building, was established in 1907 by E. Leslie Fletcher. Two years later, Charles L. Thompson joined the practice and in early 1910 it was incorporated as the Fletcher Thompson Engineering Company, changing its name to Fletcher Thompson Inc. four years later. For many decades the practice specialized in industrial engineering. Beginning in 1916 two generations of the Phelan family played instrumental roles in guiding the expansion of the firm, up to the present day, that also included the acquisition of several other firms. The firm has increased its breadth of services for a range of mostly large private and public clients such as major commercial developers, colleges and universities, healthcare institutions, leading corporations, and local, county, and state governments.

\footnotetext{
\({ }^{2}\) The brothers had actually sold the company to New York University in the late 1940s though they had a ten-year employment contract as part of the sale and remained secured creditors. The ownership transfer was intended to benefit New York University ("Knapp Brothers Shoe Mfg. Corp. v. United States," Case No. 321-52, United States Court of Claims, 12 July 1956 (www.leagle.com/decision/19561041142fsupp8991873).
}
(www.fletcherthompson.com/about_history.aspx). Engineering remains an important component of their design work. They are known to have used tilt-up construction in other buildings contemporary with 3 Manchester Road, such as a 50,000 square-foot plant in Glens Falls, New York, for the Union Bag-Camp Paper Corporation in 1958-1959 and a warehouse addition in Montville, Connecticut, in 1961 (New York Times 15 September 1958; 5 February 1961).
The William C. Pahl Construction Company of Syracuse, New York, is known mostly for their large concrete construction projects in western New York. Other known work contemporary with 3 Manchester Road includes the Imperial Gardens Apartments in Syracuse (a twelve-story high-rise apartment building, built 1960), and Sadler Hall at Syracuse University (a brick-faced multistory student housing with dining hall, completed 1960).

\section*{42. Applicable NHDHR Historic Contexts (please list names from appendix C)}

Mid-twentieth-century shoe manufacturing
Late twentieth-century electronics manufacturing

\section*{43. Architectural Description and Comparative Evaluation}

3 Manchester Road is a large, rectangular, one-story building located on a flat 8.97-acre parcel. The flat-roofed building consists of two parts, the front office section and a larger, higher height manufacturing section to the rear (Photos 1-3). The six-bay office section is the more decorative of the two sections and includes four bays with curtain walls, a bay with the modified glass entry screened by an original concrete canopy, and a multi-colored masonry-faced bay with the name of the company. The masonry continues along the easterly elevation of the office section to either side of some additional curtain wall sections.

The construction method of multiple tilt-up concrete panels separated by concrete piers is particularly evident on the large industrial space to the northwest of the office section (Photos 5-7). Pedestrian and loading openings are in scattered locations on the southwesterly and northwesterly elevations and include a raised delivery doorway, large ground level garage door, and pedestrian doors including one accessed by concrete steps. The greatest number of alterations have occurred on the northeast elevation. At present an added pedestrian entrance is located in the second bay, providing access to the employee parking lot (Photo 1). The double-leaf metal doors are screened by a metal canopy. Historically this elevation included loading dock/garage door openings in four of the five bays. Evidence of them can be seen on the panels. The exterior of all the concrete panels is now covered with a painted cementitious material.

The building is notable for its tilt-up construction, a method that consists of large pre-cast concrete wall sections. The wall components were cast on site and then lifted into place with a crane. After placement of the walls they were then braced and tied in with the roof structure (www.tiltup.org/construction).
Though this building method was first "conceptualized" in the early 1900s, its use did not become common place until the development of the mobile crane in the late 1940s (Concrete Contractor).

Since that time the method has seen some innovations and refinements and remains in use for a variety of building types (Concrete Contractor; www.tilt-up.org/construction). \({ }^{3}\)
On the interior, the office space has been updated with the addition of new three-quarter height cubicle walls and drop ceilings with integrated overhead lighting. \({ }^{4}\) Original features include the regularly spaced piers and banks of full-height interior glass windows along the wall of individual offices that span the northwesterly wall of the office space (Photo 8). The large, open manufacturing space has been updated with new lighting and flooring but retains its historic interior steel framing comprised of posts, I-beams supporting the roof, in addition to exposed piping (Photo 9).
A possibly original square masonry signage base is located just south of the southerly corner of the building (Photo 4). Modern signage sits atop it with the name of the company. It is located within a landscaped, slightly elevated piece of ground that includes some mature shrubs and a smaller shade tree. Additional landscaping along much of the front side of the building includes large expanses of lawn and some mature shrubs and conifers. The other three sides of the building are flanked by asphalt paving used for parking and access to the loading and garage bays. Beyond the paved areas to the northwest and northeast are areas of a mix of shrubs and trees with some cut grass in places.
The property is located on the northeast corner of Tsienneto and Manchester roads, a heavily trafficked intersection. In the vicinity is a mix of commercial and small-scale industrial development, mostly dating to the last quarter of the twentieth century, along with a variety attached multifamily housing of the same period.

\section*{Comparative Evaluation}

The most direct comparable in Derry is the former Klev-Bro shoe factory built just before the Knapp factory, located just to the northwest at 22 Manchester Road (see comparable photograph on page 17). Like the Knapp factory, this modern, low-rise building is one story with office space on the front (though not nearly centered but rather located towards the southerly end) and the former manufacturing space to the rear. Though the building is no longer in manufacturing use as it has been subdivided for occupancy by multiple small business it retains its historic footprint, exterior materials, and much of its historic fenestration that distinguishes the two sections: large window openings for the former industrial space and regular three-part windows on the office section.

\section*{44. National or State Register Criteria Statement of Significance}

The Knapp Brothers Shoe Factory, 3 Manchester Road (constructed 1960), is eligible for listing in the National Register of Historic Places under Criterion A for its associations with shoe manufacturing in Derry and under Criterion C for its Architecture.

Criterion A: The Knapp Brothers Shoe Factory, 3 Manchester Road (constructed 1960), is eligible for listing in the National Register of Historic Places under Criterion A for its associations with shoe manufacturing in Derry. Its construction in 1960 represents the final stage of shoe manufacturing in Derry and its importance in the local economy. Shoe manufacturing in Derry dates to at least the mid-nineteenth century and it evolved over time as the manufacture moved from small one-person shops or outwork in people's

\footnotetext{
\({ }^{3}\) Well-known early examples are the houses constructed by Thomas Edison in 1908 in the newly created village of Union, New Jersey (Concrete Contractor).
\({ }^{4}\) According to the Assessor Records, the industrial area totals approximately 57, 630 square feet while the office area totals nearly 9,000 square feet.
}
homes to large factories powered by steam and/or water. 3 Manchester Road illustrates the final phase, incorporating manufacturing and office space within a single building as the company not only manufactured shoes but also sold the shoes directly to customers. The facility is representative of the scale and method of shoe manufacturing in New England in the mid-twentieth century.
Though not of sufficient age at this time for its association with electronics manufacturing once it becomes of sufficient age, that association would likely contribute to its significance as that became an important component of the local economy in Derry beginning in the 1980s, though at a considerably small scale. The property remains in use for manufacturing purposes with associated office space up to the present. Its transition to an electronics manufacturing space is representative of changes in the local economy beginning in the late twentieth century.
Criterion B: The Knapp Brothers Shoe Factory, 3 Manchester Road (constructed 1960), is not eligible for listing in the National Register of Historic Places under this criterion as it does not convey associations with individual persons that make it eligible under this criterion.
Criterion C: The Knapp Brothers Shoe Factory, 3 Manchester Road (constructed 1960), is eligible for listing in the National Register of Historic Places under Criterion C for its Architecture as a representative example of a mid-twentieth century manufacturing and office building in the modernist style that employs tilt-up construction, a common construction method of the period for industrial buildings. Stylistically, the building embodies a number of characteristic modernistic elements particular on the office section such as a low profile and contrasting building materials such as the curtain walls and masonry facing.
The building also embodies a distinctive method of construction, tilt-up construction. Though developed in the early twentieth-century, this construction method was first popularized in the post-war period with the development of mobile cranes. This method entails casting large concrete panels on site that are then lifted into place on the existing foundation and tied in with the roof framing and other structural members. This method of construction remains readily visible on the exterior and interior of the building.

\section*{45. Period of Significance}

1960-1968: The Period of Significance under Criterion A extends from the building's construction in 1960 to the fifty-year cutoff date for eligibility. The building was in continuous use as a shoe factory until 1983 and since that time has remained in continuous industrial and office use up to the present time.
1960: The Period of Significance under Criterion C is 1960 for its construction method and design.

\section*{46. Statement of Integrity}

3 Manchester Road retains integrity of design, materials, and workmanship. With the exception of the northeast elevation where the loading/garage bays were enclosed ca. 2000, the fenestration pattern, including the curtain wall windows on the office section is otherwise intact, as is the historic footprint. The main entrance appears to have been modified but this does not significantly alter the integrity of design and materials. The original tilt-up construction method is readily apparent and intact on the
manufacturing section. The building retains integrity of feeling and association as a mid-twentiethcentury manufacturing space with attached office space. The building retains integrity of location. The immediate setting of the building of the building has evolved considerably since its initial construction but this does not diminish the building's significance. At the time of its completion in 1960 only one other similar industrial and office building was present, located to the northwest on Manchester Road (see comparable). Otherwise the setting was rural, with a few scattered farmsteads. Though the Hoods Commons was developed on the former Hood Dairy Farm on the just southeast of 3 Manchester Road in 1969, the most extensive amount of commercial, residential, and small-scale industrial occurred by 1974 and 1992.

\section*{47. Boundary Discussion}

\section*{Part A}

The boundary of the area surveyed for this form was the tax parcel Map 8, Lot 269 as shown on the map below (dashed line).


Part B
The property's eligible boundary would include the entire tax parcel as it is the remaining portion of the original approximately 9.38 -acre parcel acquired by the Derry Realty Corporation in 1959 and developed with the current building, occupied initially by the Knapp Brothers Shoe Manufacturing Corporation. The entire parcel contributes to the property's significance as a shoe factory and office. A small portion of the original parcel was acquired by the NHDOT in 1982 in connection with road expansion along the easterly side of NH Route 28 and northerly side of Tsienneto (Plan of Derry MG-M-5119(001)-C-2422-A on file with NH Dept of Public Works and Highways).

New Hampshire Division of Historical Resources
last update 06.20.2015
Individual Inventory Form

\section*{48. Bibliography and/or References}

Preservation Company
2002 "Townwide Area Form (Area DER), Derry, NH" filed at New Hampshire Division of Historical Resources, Concord, NH

2005 "Continuation Sheets for Project Area Form (Area DER), Derry, NH" filed at New Hampshire Division of Historical Resources, Concord, NH

\section*{Newspapers}
"New Plant Going Up," New York Times, 15 September 1958
Nashua Telegraph 5 May 1960, p. 28
"Building Cost Cut by Not Using Fill," New York Times, 5 February 1961
"N.Y.U. sells Knapp, King-Size," Boston Globe, 6 June 1970, p. 11
Clarence E. Knapp, obituary, Boston Globe, 4 October 1972, p. 42
Websites
Cambridge Historical Commission, "The Electronics Corporation of America Collection," (CHC006)
[https://www.cambridgema.gov/~/media/Files/historicalcommission/pdf/findingaids/fa_eca.pdf?la=e n] Accessed June 2018.

Concrete Contractor, "Tilt-up Construction: History and Uses"
[http://www.concretecontractor.com/tilt-up-concrete/construction-history/]. Accessed June 2018.
"Knapp Brothers Shoe Mfg. Corp. v. United States," Case No. 321-52, United States Court of Claims, 12 July 1956 [www.leagle.com/decision/19561041142fsupp8991873]. Accessed June 2018.

Tilt-Up Concrete Association [http://www.tilt-up.org/]. Accessed June 2018.
Rockingham County Registry of Deeds (online)
Deeds
1959 Book 1532, Page 57
1970 Book 2018, Page 72
1970 Book 2018, Page 78
1983 Book 2451, Page 1502
1991 Book 2896, Page 600

\section*{Plans}

1959
1983
"Plan of Land in Derry, N.H. Showing Land of Herbert W Ross", Plan No. 02818 "Improvements, Plan of Land, Knapp King-Size Corp., Derry, N.N. Prepared for Electronics Corporation of America", Plan No. D-11754
\begin{tabular}{|llll|}
\hline \begin{tabular}{l} 
New Hampshire Division of Historical Resources \\
last update 06.20.2015 \\
INDIVIDUAL INVENTORY FORM
\end{tabular} & & Page 11 of 17 \\
NHDHR INVENTORY DER0196
\end{tabular}

New Hampshire Division of Historical Resources
last update 06.20.2015

\section*{Individual Inventory Form}

\section*{Digital Photography Statement}

I, the undersigned, confirm that the photos in this inventory form have not been digitally manipulated and that they conform to the standards set forth in the NHDHR Photo Policy. These photos were printed using the following: Epson SureColor P600 printer on Epson Ultra Premium Photo Paper, glossy. The digital files are housed with Preservation Company in Kensington, NH.


Lynne Emerson Monroe, Preservation Company

\section*{Photo Key}


New Hampshire Division of Historical Resources
last update 06.20.2015
Individual Inventory Form
NHDHR Inventory DER0196

\section*{Current Photographs}

Date taken: June 2018


Photo 2) Façade, office section
Direction: N
Reference (file name): Photo_June2018_285


Photo 3) Façade (south east elevation) of manufacturing and office sections
Direction: N Reference (file name): Photo_June2018_284

New Hampshire Division of Historical Resources
last update 06.20.2015
Individual Inventory Form


Photo 4) Sign
Direction: NNW
Reference (file name): Photo_June2018_280


Photo 5) Southwest elevation of manufacturing section
Direction: NNE Reference (file name): Photo_June2018_281


Photo 6) Northwest and southwest elevations of southwesterly part of manufacturing section
Direction: E
Reference (file name): Photo_June2018_282


Photo 7) Northwesterly elevation of manufacturing section
Direction: NE


Photo 8) Interior, office section
Reference (file name): Photo_June2018_274


Photo 9) Interior, industrial section
Direction: SW
Reference (file name): Photo_June2018_276

Comparable Property


Klev Bros. shoe factory at 22 Manchester Road, built ca. 1958

\section*{Name, Location, Ownership}
1. Historic name: Jake's Auto Body
2. District or area: None
3. Street and number: 80 Chester Road (Route 102)
4. City or town: Derry
5. County: Rockingham
6. Current owner: John G. DeGroot Function or Use
7. Current use(s): Other: auto repair
8. Historic use(s): Other: auto repair

\section*{Architectural Information}
9. Style: Other
10. Architect/builder: Jacob DeGroot (builder)
11. Source: DeGroot 2018
12. Construction date: \(\underline{1961}\)
13. Source: Research, Inspection
14. Alterations, with dates: 1968/9,1981,1989
15. Moved? no \(\boxtimes\) yes \(\square\) date: \(\underline{\text { N/A }}\)

\section*{Exterior Features}
16. Foundation: concrete, poured \& block
17. Cladding: vinyl
18. Roof material: asphalt shingles
19. Chimney material: block
20. Type of roof: gable
21. Chimney location: exterior
22. Number of stories: \(\underline{1}\)
23. Entry location: façade, off-center
24. Windows: \(1 / 1\) double-hung

Replacement? no \(\boxtimes\) yes \(\square\) date: N/A

\section*{Site Features}
25. Setting: Developing mixed use road
26. Outbuildings: None
27. Landscape features: Stream with bridge
28. Acreage: 1.15 acres
29. Tax map/parcel: \(\underline{55 / 011 / 001}\)

35. Photo 1: Façade and footbridge Direction: \(\underline{W}\)
36. Date: June 2018
37. Reference (file name): Photo_June2018_342

30 State Plane Feet (NAD83): X: 1081670.291262; Y: 149153.456948
31. USGS quadrangle and scale: Derry, NH, \(\underline{1: 24000}\)

\section*{Form prepared by}
32. Name: Carol Hooper, Reagan Ruedig, Lynne Monroe
33. Organization: Preservation Company, Kensington, NH
34. Date of survey: June 2018
39. Location Map

\begin{tabular}{|lr|}
\hline \begin{tabular}{l} 
New Hampshire Division of Historical Resources \\
lastupdate 682020215
\end{tabular} \\
INDIVIDUAL INVENTORY FORM & Page 3 of 12 \\
\hline
\end{tabular}
40. Property Map


\section*{41. Historical Background and Role in the Town or City's Development}

Jake's Auto Body ( 80 Chester Road), is located in central Derry on the west side of Chester Road (NH Route 102) just west of Beaver Lake. A small part of the existing building was constructed ca. 1961 by Jacob (Jake) DeGroot Sr. (1919-2010) \({ }^{1}\), and the building with its subsequent (1968-1989) additions has been in continuous use as an auto repair shop run by the DeGroot family (DeGroot 2018; Nashua Telegraph 1967).

The 1.15 -acre lot upon which the garage is located was part of a larger lot purchased by Jacob DeGroot's father, Garrit DeGroot (1889-1976) in 1946. \({ }^{2}\) That lot ran from Route 102 north to Tsienneto Road. According to family sources Jacob sent the money to buy at least a portion of the property to his father while he was still in the service in Germany (DeGroot 2018). Garrit transferred part of the land he had acquired in 1946 (the part on Tsienneto Road) to Jacob in 1947 after he returned from Germany and soon thereafter Jacob constructed the house at 91 Tsienneto Road. (It remains in the family today.)
Jacob DeGroot had been a wrecker driver during World War II and did similar work when he returned for a variety of automobile dealers in the Derry area (DeGroot 2018). In 1953, Jacob purchased the remaining eastern part of the lot his father had acquired in 1946 and in 1961 he received a permit to build on what was to become the site of the garage (Nashua Telegraph 1967). The first part of Jake's Auto Body was small - a roughly \(32^{\prime} \times 20^{\prime}\) building with a single vehicle bay. During the early years of the business, Jacob continued to work for automobile dealers during nights and weekends to supplement his income (DeGroot 2018). As the business grew, in 1968/9 DeGroot added on the long, three-vehicle-bay center section of the building, which roughly tripled its size. \({ }^{3}\) The concrete block foundations of this part of the building were salvaged from the garage on the Robert Frost Farm, which DeGroot demolished before the property was sold to the state in 1965 (DeGroot 2018). The end section of the garage toward Tsienneto Road was added in 1981, and an office addition was added onto the front (i.e., toward Chester Road/Route 102) in 1989 (DeGroot 2018).

Since 1987 the property has been owned by Jacob DeGroot's son, John G. DeGroot, who took over the business when his father retired. The use of the building, however, has remained unchanged over the years (DeGroot 2018). The business continues to do car repair/mechanical services, auto body repair and paint, and also sells used cars as it did in the 1960s (DeGroot 2018; Nashua Telegraph). Jake's Auto Body prospered in Derry's growth period after the completion of Interstate 93 in 1963, generally benefiting from the increase in population and vehicles/commuters in the town. However, for the most part, over time the garage remained a smaller local operation with nearby Derry clients. Because of its location in a residential neighborhood, it generally did not attract passing traffic.

\section*{42. Applicable NHDHR Historic Contexts (please list names from appendix C)}
88. Automobile highways and culture, 1900-present

\footnotetext{
\({ }^{1}\) According to his obituary, Jacob Degroot was involved with veteran's issues and helped found the Boys Club of Greater Derry. He was also a fire warden with the East Derry fire department.
\({ }^{2}\) Garrit DeGroot, as well as his wife Teuntje (1891-1975), were natives of the Netherlands. Garrit immigrated to the U.S. in 1915 and worked as an engineer and later fireman for the railroad in Massachusetts. The family moved to Derry in the late 1930s or early 1940s when they purchased property on Tsienneto. Garrit apparently farmed his land (DeGroot 2018).
\({ }^{3}\) The building permit for the addition dates to August 1968, so it is possible the construction continued into the next year.
}

\section*{43. Architectural Description and Comparative Evaluation}

Jake's Auto Body, is located in central Derry on the west side of Chester Road (NH Route 102) just west of Beaver Lake. The building is set back roughly \(100^{\prime}\) from the road to accommodate a stream that runs diagonally through the lot; at the southern lot line the stream crosses the road and empties into Beaver Lake. The small part of the lot on the east side of the stream along Chester Road is used for parking. Although there is a footbridge over the stream from Chester Road, vehicle access to the garage is from Tsienneto Road, over an access easement on the 91 Tsienneto Road lot to the west. The garage lot is partially wooded with much of the open space used for parked cars. The area on the south side of the garage is heavily vegetated with a mixture of trees and bushes and is largely inaccessible.

Jake's Auto Body is a single story rectangular wood frame building. Roughly 100' long by 30 ' wide, the building has a generally east/west orientation, with entrances on the north side of the building. Garage doors - all replacements of a recent vintage - are rolling metal overhead doors with three fixed rectangular windows in the center of the door. The building has vinyl siding which replaced T111 siding on the earlier portions of the building. Foundations are a combination of poured concrete and concrete block.

As mentioned above, the building has four sections (three additions date from between 1968/9 and 1989). Going from east to west, the easternmost (i.e., closest to Route 102) section of the building is a shed-roofed office that was a 1989 addition to the original section of the building. The office addition has two double-hung \(1 / 1\) vinyl windows on the east (road) elevation and one on the north elevation. A concrete block exterior chimney is located in this section. The main entrance to the building is in this section on the north elevation; it has a vinyl single door of recent vintage. The small gabled roof original (1961) section of the building (second section in from the east/Chester Road side) consists of a single garage bay. This section of the building has a north/south orientation with the gabled entrance to the north. A sign ("Jake’s Auto Body Sales \& Service Towing") is located on the gable. The next section, the long 1968/9 three-vehicle-bay extension, also has a gabled roof, however with an east/west orientation. Vehicle bays on this section are higher than that on the original section. The westernmost (1981) section of the building is roughly square and continues the roof orientation of the center section (although slightly lower). There are no vehicle bays on this section.

\section*{Comparative Property}

A comparable property to Jake's Auto Body in Derry is the Space Town Auto Body at 66 Scobie Pond Road which was built ca. 1958 (photo). This large (approximately 70' by \(80^{\prime}\) ) gable roofed garage has pre-fabricated wood walls, a metal roof and three early or original overhead bay doors. The building's one minor addition for handicapped access does not detract significantly from integrity. Overall the building displays a significantly higher level of integrity than Jake's Auto Body.

\section*{44. National or State Register Criteria Statement of Significance}

Criterion A: Jake's Auto Body did generally benefit from mid-twentieth century changes in Derry tied to suburban growth and improvements in transportation, such as nearby I-93. However it remained largely a local operation and it does not in particular exemplify these themes. There are other Derry garages/auto body businesses that better illustrate
the contexts. It is of some interest as a long-standing business in the community but does not rise to the level of significance required for the National Register under this Criterion.

Criterion B: Jake's Auto Body is not eligible under this Criterion as it is not associated with a person of historical significance.
Criterion C: Jake's Auto Body does not embody the distinctive characteristics of a type, period, or method of construction, nor is it the work of a master. In a general sense, with a series of automotive bays the building does conform to the service garage or automotive repair building type, but due to its later additions and alterations it does not clearly demonstrate the type and it does not retain sufficient integrity to communicate its original design. There are other Derry garages/auto body businesses that retain integrity and better illustrate the type. Therefore, this property is not eligible for the National Register under Criterion C.

\section*{45. Period of Significance}

1961-1989

\section*{46. Statement of Integrity}

The property retains integrity of location, setting, and association. However, the building was constructed in four stages over the period from 1961 to 1989 so the majority of the fabric of the building actually dates from after 1968/9, as does the massing. Thus significant elements of the building's integrity have been compromised. In particular, the replacement of original siding with vinyl siding and the newer vinyl replacement garage/bay doors compromise the building's integrity of materials.

\section*{47. Boundary Discussion}

The boundary of the area surveyed corresponds to Derry lot \(55 / 011 / 001\) shown on the Property Map on page 3 .

\section*{48. Bibliography and/or References}

DeGroot, John
2018 Interviews with Lynne Monroe and Carol Hooper 6/2018.
Nashua Telegraph
1967 "Derry News from Town Hall" 12/21/1967 p.6.
1968 "Derry Zoning Board Grants Requests." 8/12/1968 p. 12
Peabody Funeral Homes Website
Accessed 2018 Obituary for Jacob "Jake" De Groot Sr.
http://www.currentobituary.com/member/obit/87395

\section*{Deeds}

Rockingham County Registry of Deeds
4/29/1987 2675/2602
5/2/1953 1280/206
5/15/1946 1053/380
\begin{tabular}{|c|c|c|}
\hline Surveyor's Evaluation & & \\
\hline \begin{tabular}{ll} 
NR listed: individual & \(\square\) \\
& within district \\
\(\square\)
\end{tabular} & \begin{tabular}{l}
NR eligible: \\
individual within district not eligible more info needed \(\square\)
\end{tabular} & NR Criteria: \begin{tabular}{ccc} 
A & \(\square\) \\
& B & \(\square\) \\
& C & \(\square\) \\
& D & \(\square\) \\
& E & \(\square\)
\end{tabular} \\
\hline
\end{tabular}

Other Images


Google Earth satellite photograph, dated April 2016, showing access road from Tsienneto Road and parked cars on property

Comparative Property


Space Town Auto Body, 66 Scobie Pond Road, Derry (1958)
Town of Derry tax card/GIS photo
http://gis.vgsi.com/derrynh/Parcel.aspx?Pid=10323

\title{
New Hampshire Division of Historical Resources \\ last update 06.20.2015
}

\section*{Individual Inventory Form}

\section*{Digital Photography Statement}

I, the undersigned, confirm that the photos in this inventory form have not been digitally manipulated and that they conform to the standards set forth in the NHDHR Photo Policy. These photos were printed using the following: Epson SureColor P600 printer on Epson Ultra Premium Photo Paper, glossy. The digital files are housed with Preservation Company in Kensington, NH.


Lynne Emerson Monroe, Preservation Company

\section*{New Hampshire Division of Historical Resources}


\section*{Current Photographs}

Date taken: June 2018


Photo 2) Garage bays on façade. Original section of building (with sign) and office addition to left, 1968/69 addition to right. (1981 addition not in view.)

Direction: SE Reference (file name): Photo_June2018_327

> New Hampshire Division of Historical Resources
> last update 06.20.2015

Area Form

\section*{Franklin Terrace Historic Area}
1. Type of Area Form

Town-wide: \(\quad \square\)
Historic District: \(\boxtimes\)
Project Area: \(\quad \square\)
2. Name of area: Franklin Terrace Historic Area
3. Location: Between Folsom Road, Franklin Street and Crystal Avenue
4. City or town: Derry
5. County: Rockingham
6. USGS quadrangle name(s): Manchester, NH
7. Dataset: SP Feet, NAD83
8. SP Feet: (shown on location map)

A: X: 1074370.309378; Y: 142440.614174
B: \(\underline{X}: 1075082.602857 ; Y: 143345.893529\)
\(\mathrm{C}: \underline{\mathrm{X}: 1075074.425043 ; \mathrm{Y}: 141504.987565}\)
9. Inventory numbers in this area:

DER0152-19 Folsom Road
10. Setting: Densely settled residential area of four blocks adjacent to modern commercial strip
11. Acreage: approximately 15 acres
12. Preparer(s): Kari Laprey, Reagan Ruedig
13. Organization: Preservation Company
14. Date(s) of field survey: June 2018
15. Location Map


\section*{16. Sketch Map}

See large-format Sketch Map included

\section*{17. Methods and Purpose}

This area form was prepared for the Exit 4A Project, 2018, for which properties built prior to ca. 1968 were inventoried. Franklin Terrace is a residential neighborhood built over nearly a century on a subdivision platted in 1908. Properties at the northern end of the area are potentially impacted by the proposed project (specifically 19 Folsom Road, 11 Folsom Road and 8 Laconia Avenue). A single house in the area, 19 Folsom Road, was previously documented for the New Hampshire Division of Historic Resources (NHDHR) as DER0152. The Franklin Terrace subdivision is a definable area, identified as a possible historic district. However, the neighborhood does not have integrity for a specific historic period, because it developed gradually, with nearly a third of the construction taking place in the past fifty years and most of the older homes substantially remodeled. The area contains a total of forty-five residential properties. Twenty-six of the properties that are more than fifty years old retain some integrity, i.e. the original form and type is evident. All but one or two of those have been remodeled with new siding, windows, doors, etc. Six other pre-1968 houses have large additions obscuring their original form and thirteen houses were built in the past fifty years.
All residential buildings within the Franklin Terrace subdivision plan were photographed with photo locations keyed to the sketch map. The district maps are based on Town of Derry GIS mapping. Estimated construction dates are based on Derry tax assessments, adjusted in some cases based on research. Properties are identified by street address, with tax parcel numbers cross referenced in the text and property table. Properties are arranged roughly geographically. Streets are presented from west to east, with addresses in order from south to north. All the residential buildings in the area platted in 1908 are included. Lots on the eastern edge of the subdivision, fronting on Crystal Avenue/NH 28, developed separately from the neighborhood with commercial buildings on larger parcels. The adjacent residential streets bordering Franklin Terrace on the west and south were subdivided independently, though they were built up during the same time frame. The mid-twentieth century houses on the northwest side of the Folsom Road were not part of the Franklin Terrace subdivision plan and those in the project area are surveyed individually. Only one property fronting on Franklin Street was part of the subdivision. Other homes on either side of Franklin Street date from the early 1900s through the 1980s.
Historic background research sources were historic maps, local histories, population, census and birth and death records. Limited deed research was carried out for a few properties to determine construction dates of the earliest homes and identify basic patterns of ownership and development. The deed references are given in the text to aid future researchers. Due to the limited potential for eligibility and for effects by the current project, the architectural descriptions of each resource are presented in a table of properties, with detailed discussion only of those few impacted resources.

\section*{18. Geographical Context}

Franklin Terrace is in western Derry, about a half-mile north of the village of West Derry and threequarters of a mile west of Derry Village. Interstate-93 is a mile to the west, just over the Londonderry line. The neighborhood is about 1.5 miles from Exit 4, the I-93/NH 102 interchange, and under three miles from Exit 5. Downtown Manchester is roughly a twelve-mile drive.
The grid of streets occupies relatively flat land on the eastern side of Shields Brook, which flows northsouth towards Beaver Brook. Shields Brook is dammed to create Hood's Pond, which has a small public park on the north edge of West Derry village. Derry's topography is uneven but gently rolling at an overall low elevation of only about 200-300 feet above sea level.

The Franklin Terrace subdivision fills a triangular area between converging main roads. Crystal Avenue/NH 28, which borders the neighborhood on the east, runs north-south on the direct route between Manchester and West Derry. Franklin Street runs north-northwest to south-southeast parallel to Shields Brook, about 0.1 to 0.2 of a mile west of Crystal Avenue. Folsom Road across the northwest edge of the historic area runs southwest from the junction of Crystal/NH 28, Rockingham Road/NH 28 and Tsienneto Road. Folsom Road connects to the upper end of High Street on the far side of Shields Brook and continues as Madden Road in Londonderry where it dead-ends at I-93. Four parallel residential streets, called Concord, Manchester Claremont and Laconia avenues, run southeast from Folsom Road toward Crystal Ave, roughly parallel to Franklin Street. A cross street, Exeter Street, connects Franklin Street, Concord Manchester and Claremont. A shorter cross street, Berlin Avenue, bounds the area on the southeast.

\section*{19. Historical Background}

The Franklin Terrace subdivision was laid out in 1908 with streets named for New Hampshire cities and towns. The sale of lots to investors began immediately, but construction took place very slowly from the 1920s through the 1960s and beyond. The development of the neighborhood relates to the growth of West Derry, formerly Derry Depot, in the early 1900s and the population boom of the 1950s60s period. During the same periods, adjacent lots along the older roads, Franklin Street and Folsom Road, were developed and Crystal Avenue/NH 28 became a commercial strip.
1720-1908 Farmland on Folsom Road, Crystal Avenue and Franklin Street
Until the early twentieth century this was a rural area with scattered farmhouses and large tracts of open land. The overall pattern of property lines and roads in the vicinity relates to the original land divisions. The roads developed as part of the local and regional transportation routes. Folsom Road/Madden Road dates from the 1720 's when Londonderry, including Derry was settled and it was the road to the first meetinghouse. The four-way intersection with Tsienneto Road, the early route to Chester, and Pinkerton Street and Manchester Road, which formed the main route through Londonderry to Manchester, was known as Folsom's Corner and then Ross' Corner for the owners of the farmhouse that stood in the western quadrant of the junction until the 1980s. A district schoolhouse was located on the southeast corner of the intersection (Chace 1857). The primary north-south road through town was the Londonderry Turnpike (now Bypass 28 and NH 28) established in the early 1800s through the small mill hamlet of Derry Village.
After the Manchester and Lawrence Railroad was built through the southwest corner of town in 1849, Derry Depot or West Derry grew up around the station to become the primary town center. A commercial downtown developed along East and West Broadway and large shoe factories were built near the railroad. Industry resulted in population growth and Derry became the third largest community in Rockingham County in the late nineteenth century. Between 1890 and 1900 the town saw an increase of nearly a thousand people to over 3,500. New residential streets were laid out. Crystal Avenue was built as a more direct route between West Derry and the road to Manchester (Norris 1887). It became the location of St. Thomas Aquinas Roman Catholic Church completed in 1888. A parallel north-south road, Franklin Street, connected Folsom Road and West Broadway in the 1890s (Hurd 1892; USGS 1903). At the end of the century, a few isolated homes were located in the area, with open land surrounding them (Bailey 1898). Around 1900, a series of short residential cross streets were platted between the lower ends of Franklin Street and Crystal Avenue. Lincoln,

Howard and Laurel streets were developed during a relatively short time with over a dozen \(11 / 2\)-story gable fronts and other small houses (USGS 1905; Sanborn 1921).
Derry experienced a population boom of over forty percent in the first decade of the 1900s. A prophetic statement in a 1902 article about the town declared, "The topography of Derry is such that it can and does grow in all directions, with practically its whole surface available for building purposes" (Cheney 1902:3 73). As street railways brought the first suburban development to the region, West Derry was connected to Manchester via the electric railway completed in 1907.

\section*{1908Edmund M. Warren Subdivision}

In 1908, a 21.2-acre tract of land between Crystal Avenue and a highway (Folsom Road) was acquired by George Barnes of Providence, RI, who mortgaged some of it to George Knowles (1850-1933) of Boxford, MA (Deed 630:447). It was sold in the spring of 1908 to real estate developer Edmund M. Warren of Providence, RI, who laid out a subdivision of 156 lots in April 1908 (Plan 521). This was one of two Derry subdivisions in which he was involved that year; plans for Hillside Park were drawn up in May. Edmund M. Warren (1869-1936) was a farmer's son from Island Falls, Aroostook County, Maine. He and his wife Mary A. White lived in East Providence, RI, until they divorced in 1911 and he moved to West Springfield, MA, according to censuses and directories. The Edmund M. Warren Realty Company, owners, developers and managers of real estate, did business in the New England states and New York.

The individual lots in the subdivision were roughly 0.1 acre. Most were combined in twos or threes for about 0.23 or 0.34 acre house lots. Deeds included restrictions including a ten-foot setback, no dwelling less than \(11 / 2\) stories or costing less than \(\$ 1,000\). Warren sold the first lots in 1908 , but deed research of selected properties suggests that the first construction did not take more than a dozen years after the lots were platted and, in many cases, they were not developed for decades. The value and return on these investments is unknown because these and subsequent deeds were recorded for \(\$ 1\) and "other valuable considerations." Examples of the first lot owners included Mrs. Stella Madden, a stitcher in the shoe factory who lived on Central and purchased four lots on Crystal Avenue in 1908, which she owned until 1946, then there were still no buildings on them (Deed 638:438; Deed 1060:294). Another shoe stitcher, Elisabeth Tanner, bought two lots on Concord that were not developed until 1998 (Deed 637:243). Thomas Cote, a machinist who lived on East Broadway, acquired lots on Concord Street where no house was built until after his estate sold the lots in 1957 (Deed 638:427).

\section*{1909-1944 New England Land Company (Otis Perry)}

In 1909, Warren transferred all his real estate holdings to New England Land Company, including land in Derry, Goffstown, Manchester and elsewhere (Deed 641:172). New England Land Company was based in Portland, ME. The main shareholder was real estate agent Otis Perry (1872-1944) who was from the same town as Warren in Aroostook County, ME. Perry lived on Commonwealth Avenue in Boston during the 1910s and later in Lexington, MA, according to directories and census. Otis Perry also became the assignee of the mortgage held by George Knowles (Deed 679:424).
Lots were sold off gradually in the 1910s and 20s. The first few houses were built at the southern end of the area closest to the downtown and existing residential streets. Development remained slow, as Derry's population growth came to an end. North of Exeter Street, there was no construction through the 1940s. However, increased mobility soon brought potential builders to outlying areas as automobiles superseded the railroad and streetcar. The street railway ceased to operate in 1926. NH Route 28 was established as a state road ca. 1915 following a series of older roads including Birch

Street, Crystal Avenue and Manchester Road through West Derry. Crystal Ave. north of the Catholic Church had several filling stations and shops, none of which are extant (Preservation Company 2002).
The 1931 Sanborn map shows five houses in this area. The recently remodeled one-story house at 2 Concord is said to date from 1920. 4 Berlin Ave. was a one-story house built after 1928 when lot 46 was purchased by Myer Miller (1880-1946) a cigar maker from New York City. A house on the site of 6 Concord Ave. was built in the 1920s on lots (6-7) purchased by Ida Chase from New England Land Company in 1920 (Deed 794:193). Her husband Asa Chase was a laborer and her son worked in the shoe factory (Census 1930). A one-story house also stood on the site of 5 Concord Street in the 1930s-50s (Sanborn 1950). 9 Concord (lots 38-39) was originally built ca. 1920. From 1935, a house on the site of 6 Concord was owned by widow Mary Joyce who worked in the shoe factory, as did her eldest children (Deed 906:246; Census 1940). Truck driver Earl Geer was the owner of a bungalow at 8 Concord (lots 8-9 and 10) built ca. 1939.
Many parcels were purchased but remained undeveloped. Lots on Claremont Ave. and Folsom Road were bought from New England Land Company by Agnes Dors in 1912 (Deed 668:336). She and her husband were Polish immigrants who lived in Manchester where he was a machinist in a shoe factory. It wasn't until 1947 that she sold the lots to her son who built a house at 19 Folsom Road (Deed 1080:231). John A. Wall (1855-1922) who worked in the shoe factory purchased lots in 1912, which he owned until 1921 while renting elsewhere in town (Deed 668:168). Louis P. Laronde who lived elsewhere on Franklin Street acquired multiple lots in the area in 1940 that he owned for nearly a decade (Deed 1144:291).
The whole area was listed as Franklin Terrace in the 1940 census and there were nine houses. Nearly all were owner-occupied, single-family homes. Several residents worked in shoe factories. Men were employed at the time in road construction, probably in WPA projects and as truck driver, sign painter and bookkeeper (Census 1940).

1944-1969 New England Land Company (Albert and Margaret Perry)
The New England Land Company holdings passed to Albert O. Perry (1900-1952) who lived in Exeter. During the 1940s, more lots were sold, mainly in pairs. All deeds were recorded for \(\$ 1\) and other valuable considerations. Margaret Perry (1903-2007), became president of New England Land Company in the 1950s and continued to sell off several groups of two or three lots each year as Derry's population grew again. By 1957, all lots had been sold. Margaret Perry, the sole surviving stockholder, president and director, dissolved the New England Land Company, which had no remaining liabilities or assets. Subsequent deeds of 1979 and 1986 confirmed transfer of any remaining right she might have (Deed 2346:566; Deed 2649:1141).

Robert Fortier (1897-1972) and his wife Catherine, who lived on Crystal Avenue where he had an automobile business, acquired multiple lots from New England Land Company and other interim owners in the 1940s-50s and sold them again in subsequent years. Automobile ownership allowed some residents to commute farther for work. A small ranch was built at 11 Folsom ca. 1947 for Oscar Warren who worked on a Londonderry poultry farm according to the census (Deed 1060:94). The altered house at 8 Laconia dates from ca. 1948, built for Alden and Dorothy Whitney on two lots bought in 1947 (Deed 1153:188). They owned it for nearly ten years. 19 Folsom Road (DER0152) was built ca. 1950 and was the home of George and Celia Dors for many years (Chase 1965). He worked for the telephone company as an installer according to city directories. Area residents continued to work in the shoe factories, such as Raymond Sweezy (1913-1972) who lived at 2 Concord Ave from 1957. The original part of 89 Franklin was built ca. 1951 for George and Anne Devine (Deed 1231:303). He was employed at the shoe factory and rented a house in West Derry previously (Census
1940). The historic shoe factories closed and burned, but in 1960, a new modern shoe factory was built on Manchester Road just north of this neighborhood.
Growth in the region was influenced by the construction of Interstate-93 between Massachusetts, Manchester, Concord and points north in the early 1960s. The interstate passes through the southwestern-most corner of Derry with an interchange at Route 102 just over the Londonderry line at edge of West Derry village. Between 1960 and 1970, Derry's population boomed by sixty-seven percent. Ten new homes were built in the neighborhood during that period.

\section*{1969-present Construction on Remaining Lots in Last Fifty Years,}

By the end of the 20th century, much of the land that had once been pasture and field, which had reforested during the first half of the 20th century, was the location of tracts of houses. According to the master plan, there were over 9,000 dwelling units in town in 1985. Some 3,251 units had been built between 1970 and 1980, many in multi-family buildings (Preservation Company 2002).
The last undeveloped farmland was east and north of this neighborhood where there is recent largescale commercial and industrial activity. Hood Plaza was built on the corner of Crystal Ave. and Pinkerton Street at the end of the 1960s. Multiple free-standing stores and restaurants were constructed on Crystal Avenue beginning in the 1980s, filling in vacant land and replacing older business. Only a couple of mid-twentieth century buildings remain extant.
New home construction in Derry took place primarily in new subdivisions, but infill of older neighborhoods continued until maximum density was reached. In Franklin Terrace over a dozen houses were built in the 1970s-90s period. A few houses were converted to two-family use. Most properties have changed hands multiple times in the last fifty years. Tax records indicate the area is now a mix of owner-occupied and rental properties.

\section*{20. Applicable NHDHR Historic Context(s)}
131. Suburban/bedroom community growth in New Hampshire, c.1850-present.

\section*{21. Architectural Description and Comparative Evaluation}

The Franklin Terrace subdivision is a grid of short parallel streets with forty-five residential properties on small lots. Homes date from the 1920s to the 1990s and are a mix of small capes, cottages and bungalow-type houses, many small, minimal ranch houses and more recent raised ranches and twostory houses. All have been updated in the past few decades with new siding and windows. Of the thirty-two homes in the area that are greater than fifty years old, five houses date from the 1910s-30s, three were built in the 1940s, fourteen in the 1950s and ten in the 1960s. Thirteen houses were built within the past fifty years.
The four parallel streets of varying lengths fill a roughly triangular area. Franklin Terrace was laid out in a total of 156 lots, which were typically about 0.1 acre. When sold, most lots were grouped in twos or threes, so when the area reached its fully-built state, the forty-five homes were about evenly spaced along the streets, with three to five properties in each block. Fronting on Crystal Avenue at the east edge of the subdivision, lots were irregularly shaped and when developed in the late twentieth century, were combined into triangular parcels creating a jagged edge along the border between the residential neighborhood and backs of the commercial properties.

\section*{Franklin Terrace Historic Area}

This is predominantly a single-family area, with small houses of two or three bedrooms. Three of the houses were built as duplex/two families and two or more of the older homes have been converted for two family use. Nearly all of the buildings are one or \(1 \frac{1}{2}\) stories except for some of the newest ones. Roofs are gable or hip. All buildings are wood frame construction, on concrete block and poured concrete foundations. Vinyl siding and \(1 / 1\) windows are nearly ubiquitous, and roofs are asphalt shingled. The homes have few stylistic architectural details. Three-part picture windows are the only common feature, but most have been replaced. The front entries are unadorned. Most have new doors and new small wooden decks or concrete steps. There are few outbuildings including new sheds and detached garages, only one of which appears to be original. The rectangular, flat lots include front lawns, back yards, short paved driveways and some mature trees. Foundation plantings are popular. Some houses have modern retaining walls of concrete or stone or new fencing.
The five oldest houses in the neighborhood date from the 1920s-30s, but all have been remodeled. Three have large additions that obscure the appearance of the original building. The Bungalow was a common local house type from the 1910s. 6 Exeter (Photos 26-27) is an example of a small Bungalow with hip roof and dormers, though it lacks the characteristic front porch. 8 Concord (Photo 7) has a clipped gable roof and front porch, so the original Bungalow form is evident despite additions on both sides. 9 Concord (Photo 8 ) began as a one-story house, enlarged into a two-family home with a twostory addition in the mid-twentieth century. The original form of the 1930s house at 2 Concord Ave. (Photo3) is not evident due to expansion and remodeling. The small house at 4 Berlin Ave. (Photo 2) was enlarged by the addition of a second story. Other early twentieth century, one-story houses stood on the sites of 6 Concord and 5 Concord (Sanborn 1950).
There was construction of only about three more homes during the 1940s according to the tax card dates. The post-WWII, a population boom began and about fourteen houses were built in this area in the 1950 s and ten in the 1960 s . All were small one and \(11 / 2\)-story houses with little architectural detailing or ornament.

Several \(1 \frac{1}{2}\)-story capes characterized by a center entry and a three or five-bay façade include 5 Folsom (Photos 20-21) and 12 Claremont (Photo 48), as well as 20 Manchester Ave. (Photo 35) which has brand new siding. A more altered version is at 8 Laconia, which has added dormers, oriel windows and new front entry (Photos 51-52). The least altered house in Franklin Terrace is a \(11 / 2\)-story cottage, with a gable front and side entry at 19 Folsom (Photos 53-54). It retains wooden clapboards and the original \(6 / 1\) windows. One house has a gambrel roof suggesting the Dutch Colonial style, but no other features (Photo 11).

About twenty of the houses in the area are classified as ranches due to their one-story rectangular form. The most common small ranch type in the area is the side-gabled form with low-pitched gable roof. Three or four-bay facades are asymmetrical with a three-part picture window but no other details or ornament. Examples of this type are 1, 2, 3 and 4 Exeter Street (Photos 12-15), 7, 9, 11 and 13 Folsom Road (Photos 22, 36-37, 38-39 and 41-42), 12, 13 and 18 Manchester Ave. (Photos 25, 28-29,33) and 4 Laconia Ave. (Photo 49). Two slightly larger ranches have hip roofs. 3 Claremont (Photo 42) has all new siding and windows, while 7 Claremont (Photo 46) retains "form stone" siding, which was popular in Derry during the \(1950 \mathrm{~s}-60 \mathrm{~s}\), a stone chimney and picture windows. 6 Claremont (Photo 45) and 10 Manchester (Photo 23) are ranches with low shed roofs and overhanging eaves. Other ranch houses have been altered by large additions, including 16 Manchester Ave. (Photo 31) and 89 Franklin Street (Photo 1). Garages were fairly common in the mid-twentieth century; six of the ranches have attached garages, three have car ports.

Late twentieth century houses are a mix of types, all on small parcels like the earlier homes. The raised ranch form with entry at ground level, living space above and finished basement below was popular in Derry and this area has four raised ranches built in the 1970s (12 and 15 Concord, 17 and 19 Manchester, Photos 10, 16, 32, 34). Other houses built in recent decades are a duplex with Mansard roof (Photo 6), two-story houses at 5 and 6 Concord Ave. (Photo 4, 7) and capes at 4 Claremont and 17 Concord (Photos 17 and 43).

\section*{Property Descriptions}

Three properties with potential effects under the Exit 4A Project are described below.
11 Folsom Road (35-40) ca. 1947 ranch with ell, Photos 38-39
A small ranch is located on the corner of Folsom Road and Claremont Ave. The house faces Folsom with ell and driveway on Claremont. The one-story house has low-pitched gable roofs. The windows are \(1 / 1\) replacements and the walls, trim and shutters are vinyl. The four-bay façade has new casement windows. A concrete block chimney is inset in the gable end wall. The ell may be an addition. It has board and batten siding. The windows and doors of the back entry and garage are modern. Added to the end of the ell is a smaller one-story section with overhanging roofs on both sides. The side and back yard is enclosed by palisade fence. There is an inground pool. The small front yard is flat lawn with a mature tree near the corner.
8 Laconia Avenue (35-27) ca. 1948 remodeled cape, Photos 51-52
This house is oriented toward Laconia Ave. with driveway and parking along Folsom Road and a small home business in the back ell. The \(11 / 2\)-story cape has a center entry and 3-bay façade. There are large shed dormers on the front roof slopes that appear to be a modern addition. The entry is sheltered by a gable hood. The entry trim and oriel windows on the façade are new. All other windows have \(1 / 1\) replacement sashes. The siding, trim and shutters are vinyl. The foundation is concrete. An asphalt walk leads to the front door, which has new concrete steps. A side entry is through a gabled portico. The one-story ell has sliding glass doors and a new deck. A modern shed stands beside the parking lot near Folsom Road. There is a sign for the home business on the corner and front lawn along Laconia Ave.
19 Folsom Road, DER0152, (32-20) ca. 1950 cottage, Photos 53-54
The Dors House, inventoried in 2000, is a small Colonial Revival cottage, built c. 1950 on the southeast side of Folsom Road. The \(11 / 2\)-story house is oriented laterally to the street, with a gable wall dormer and central entry pavilion on the facade. The wood frame structure is supported by a concrete block foundation. The walls are sheathed in clapboards and the roof in asphalt shingles. The eaves are close cropped with a molded raking cornice. Windows have flat trim and contain double-hung \(6 / 1\) sash. The entry, into the small enclosed pavilion, is framed by channeled boards with corner blocks. The front of the house is blocked from view by large cedars. Open lawn surrounds the house, shaded by tall pines in the rear. The 0.8 acre parcel is located on the comer of Folsom and Laconia Street. The driveway and a two car garage with novelty siding and overhead doors on its front gable, are located on Laconia Street. The property is located at the upper end of Folsom Road at the edge of the commercial area around the intersection of Crystal Avenue.

\section*{Franklin Terrace Historic Area}

\section*{List of Properties}

All properties in the area are listed with descriptions in the following table. Address, photo and tax numbers are cross-referenced. The integrity assessment is based on whether the house retains its original form and massing. Nearly all properties have been remodeled to some degree.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Street Address & Tax MapLot & Estimated Date & Description & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { 50+ years } \\
& \text { with } \\
& \text { some } \\
& \text { Integrity } \\
& \text { Yes/No } \\
& \hline
\end{aligned}
\]} & Photo Nos. \\
\hline 89 Franklin St & 35-58 & 1951 & Ranch, 3 bays, with large addition of equal size, with basement garage bays, new siding and windows, new front deck & & X & 1 \\
\hline 4 Berlin Ave & 31-51 & 1930 & Small two-story house with porch, saltbox roof, second story added (per Sanborn map), new siding and windows & & X & 2 \\
\hline 2 Concord Ave & 31-53 & \[
\begin{aligned}
& 1920 / \\
& 2017
\end{aligned}
\] & One-story house with large new brand-new addition, original form unknown, new siding, windows, doors & & X & 3 \\
\hline 5 Concord Ave & 31-50 & 2000 & Two-story gable front with porch. Site of earlier house & & X & 4 \\
\hline 6 Concord Ave & 31-55 & 1992 & Two-story, side gable. Site of ca. 1920s house, shed & & X & 5 \\
\hline 7 Concord Ave & 31-49 & 1973 & Duplex with mansard roof, brick veneer, carports & & X & 6 \\
\hline 8 Concord Ave & 31-56 & 1939 & Bungalow with clipped gable, enclosed front porch - original form still evident despite side additions, new siding and windows & X & & 7 \\
\hline 9 Concord Ave & 31-48 & 1920 & \(11 / 2\)-story gable front Bungalow/cottage, now a twofamily. Large mid \(-20^{\text {th }} \mathrm{c}\). twostory addition envelops back of house. Asbestos siding, new windows. Attached garage has original windows. & & X & 8 \\
\hline 10 Concord Ave & 31-56-1 & 1986 & Duplex, two-story garrison form & & X & 9 \\
\hline 12 Concord Ave & 31-57 & 1979 & Raised ranch, new siding and windows & & X & 10 \\
\hline 14 Concord Ave & 31-58 & 1953 & \(11 / 2\)-story gambrel, shed dormers, enclosed porch, new siding and windows, detached garage (modern) & X & & 11 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Street Address & Tax MapLot & \[
\begin{aligned}
& \text { Estimated } \\
& \text { Date }
\end{aligned}
\] & Description & \multicolumn{2}{|l|}{\begin{tabular}{l}
50+ years \\
with \\
some \\
Integrity \\
Yes/No
\end{tabular}} & Photo Nos. \\
\hline 1 Exeter St & 31-59 & 1958 & Ranch, 4 bays and carport, new siding, windows, doors & X & & 12 \\
\hline 2 Exeter St & 35-52 & 1967 & Ranch 3 bays, and basement garage, sun room, new siding, windows & X & & 13 \\
\hline 3 Exeter St & 31-47 & 1964 & Ranch, 4 bays plus attached garage, new siding and windows, "form stone" & X & & 14 \\
\hline 4 Exeter St & 35-45-1 & 1975 & Ranch, 4 bays, new siding and windows & & X & 15 \\
\hline 15 Concord Ave & 35-51 & 1976 & Raised Ranch, new siding, windows and doors & & X & 16 \\
\hline 17 Concord Ave & 35-50 & 1998 & Cape, 3 bays, dormers & & X & 17 \\
\hline 20 Concord Ave & 35-53 & 1964 & Ranch with cross gable, brick chimneys, new siding, windows, detached garage & X & & 18-19 \\
\hline 5 Folsom Rd & 35-54 & 1949 & Cape with breezeway and garage, aluminum siding, picture window, old windows & X & & 20-21 \\
\hline 7 Folsom Rd & 35-49 & 1959 & Ranch, 4 bays, new vinyl siding and windows, new bay window, small modern shed & X & & 22 \\
\hline 10 Manchester Ave & 31-45 & 1961 & Ranch, two units, flat roof, stone chimney, new siding and windows, setting includes parking, access to business to southeast & X & & 23 \\
\hline 11 Manchester Ave & 35-43 & 1960 & Small Ranch, one story, 4 bays, picture window, new door and windows & X & & 24 \\
\hline 12 Manchester Ave & 31-46 & 1945 & Ranch, 4 bays with extension, new windows & X & & 25 \\
\hline 6 Exeter St & 35-45 & 1929 & Bungalow, hip roof and dormers, stone foundation, detached garage & X & & 26-27 \\
\hline 13 Manchester Ave & 35-42-1 & 1955 & Cabin/ranch, 1 story, wood clapboards, picture window, side addition, new shed & X & & 28-29 \\
\hline 15 Manchester Ave & 35-42 & 1955 & Two family, two-stories with two-story porch, carport & X & & 29-30 \\
\hline 16 Manchester Ave & 35-46 & 1959 & Ranch, 4 bays, attached garage converted/enclosed, new siding, windows and doors & & X & 31 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Street Address & \begin{tabular}{l}
Tax Map- \\
Lot
\end{tabular} & Estimated Date & Description & \multicolumn{2}{|l|}{\(50+\) years with some Integrity Yes/No} & Photo Nos. \\
\hline 17 Manchester Ave & 35-38-1 & 1976 & Raised ranch with basement garage, new siding, windows and front entry & & X & 32 \\
\hline 18 Manchester Ave & 35-47 & 1954 & Ranch, 4 bays, with carport, concrete block foundation, new siding, windows, doors & X & & 33 \\
\hline 19 Manchester Ave & 35-41-1 & 1976 & Raised ranch, basement garage new siding, windows, front entry & & X & 34 \\
\hline 20 Manchester Ave & 35-48 & 1966 & Cape with attached garage, added bay window, new vinyl siding, windows, shed, pool, split-rail fence & & X & 35 \\
\hline 9 Folsom Rd & 35-41 & 1957 & Ranch, 4+ bays, brick chimneys, new front entry, new siding and windows, new retaining wall & X & & 36-37 \\
\hline 11 Folsom Rd & 35-40 & 1947 & \begin{tabular}{l}
Project impacts. \\
Ranch, 4 bays, new siding, windows and doors, attached garage in added ell, in-ground pool
\end{tabular} & X & & 38-39 \\
\hline 13 Folsom Rd & 35-28 & 1955 & Ranch, 3 bays with breezeway and attached converted garage, new siding and windows, older front steps with wrought iron railing, metal awning, small shed & X & & 40-41 \\
\hline 3 Claremont Ave & 35-39 & 1965 & Ranch, hip roof, 4 bays plus garage, new siding and windows, new front deck & X & & 42 \\
\hline 4 Claremont Ave & 35-29 & 1987 & Cape, 5 bays, new siding, windows and door & & X & 43 \\
\hline 5 Claremont Ave & 35-38 & 1964 & Ranch, gable front, mixed siding and windows, new front door and deck, detached 2-car garage & X & & 44 \\
\hline 6 Claremont Ave & 35-30 & 1970 & Ranch/Modern with shed roof, chimney, attached garage plus carport, new siding, windows front entry and deck & & X & 45 \\
\hline 7 Claremont Ave & 35-37 & 1965 & Ranch, hip roof, stone chimney, original picture windows, "form stone" siding & X & & 46 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Street Address & Tax MapLot & Estimated Date & Description & \multicolumn{2}{|l|}{\begin{tabular}{l}
50+ years \\
with \\
some \\
Integrity \\
Yes/No
\end{tabular}} & Photo Nos. \\
\hline 10 Claremont Ave & 35-31-1 & 1954 & Small one-story cottage with front porch, new siding, windows and doors & X & & 47 \\
\hline 12 Claremont Ave & 35-31 & 1965 & Cape with rear shed dormer, 3 bays, picture window, new siding, windows and doors, new decks & X & & 48 \\
\hline 4 Laconia Ave & 35-25 & 1956 & Ranch, 3 bay, new siding, windows and door & X & & 49 \\
\hline 6 Laconia Ave & 35-26 & 1969 & Ranch, 4 bays plus carport, brick chimney - top removed, new siding, windows and doors & X & & 50 \\
\hline 8 Laconia Ave & 35-27 & 1948 & \begin{tabular}{l}
Project impacts. \\
Cape remodeled with full shed dormers, new siding, windows, new front entry, added oriel windows, business in ell, modern outbuilding
\end{tabular} & & X & 51-52 \\
\hline 19 Folsom Rd & 35-20 & 1950 & \begin{tabular}{l}
Project impacts. \\
Previously surveyed - DER0152 \\
Cape/cottage, Colonial Revival, retains integrity - original clapboards, \(6 / 1\) windows, detached 2-car garage with novelty siding
\end{tabular} & X & & 53-54 \\
\hline
\end{tabular}

\section*{Comparative Evaluation}

Derry has extensive areas of residential subdivisions on all sides of the village of West Derry. There are grids of short side streets for several blocks north and south of Broadway with a mix of late nineteenth and early twentieth century homes. The outer edges of the village were divided in the early 1900s. Residential streets immediately south of Franklin Terrace between Franklin Street and Crystal Avenue, Lincoln, Howard and Laurel streets, date from around 1900 and have a more consistent collection of small early 1900s homes, including \(11 / 2\)-story side halls and bungalows and houses with clipped gable and gambrel roofs. The Highlands, laid out in 1902 off Hillside Ave. on the western edge of West Derry, developed over a long period like Franklin Terrace. Another 1908 subdivision by the same developer as Franklin Terrace, Hillside Park, is located on both sides of Hillside Avenue near the Londonderry line. It too has a mix of old and new homes and lacks integrity for the early twentieth century period.

\section*{22. Statement of Significance}

In 2000, a single house in Franklin Terrace, DER0152 at 19 Folsom Road, was determined not to be individually eligible for the National Register of Historic Places. There has been no other historic resources survey in the area.
The Franklin Terrace Historic Area does not meet the criteria for listing in the National Register or NH State Register as a historic district, because it is not a significant and distinguishable entity. The subdivision plan is the unifying element that defines the area. The neighborhood does not retain integrity for a specific historic trend or period due to the ongoing development. The houses were built over time, with substantial new construction within the last fifty years. The neighborhood is not significant as a collection of small homes for representing the evolution of building types or construction techniques, due to the universal remodeling of all but the newest buildings with modern siding, windows and doors. Forty-five percent of the forty-five houses in the Franklin Terrace subdivision are less than fifty years old or lack integrity due to additions altering their form and massing. While twenty-five houses retain some degree of integrity, the cumulative changes have resulted in a loss of nearly all character-defining features.

\section*{23. Periods(s) of Significance}

N/A

\section*{24. Statement of Integrity}

The 1908 subdivision retains integrity of location and the design of the parallel streets and grid of small house lots. However, the area does not have the spatial organization it acquired during the historic period due to subsequent construction. The area did not achieve its current density until the 1980s-90s. The buildings do not represent a specific period and the feeling is that of a mixed age neighborhood. Nearly a third of the houses are less than fifty years old.

Most houses retain their basic original form and overall design, but half a dozen houses, including several of the oldest ones, have large-scale additions that alter the overall massing. A very small percentage retain any visible historic materials or features. The materials and workmanship of nearly all of the houses over fifty years old have been lost to vinyl siding and trim and replacement of windows and doors. Even the buildings of the 1970s have replacement siding and windows. Front entries have been reconfigured and picture windows replaced. The cumulative changes result in an overall lack of integrity of design.

The setting within the neighborhood changed gradually as more homes were built and the relationship between the older buildings was changed by recent infill. Several of the earlier homes were replaced. The surrounding setting was altered in the late twentieth century by the large-scale commercial development of Crystal Avenue on one edge of the area. The streets themselves are the only historic landscape characteristics. All built features such as walls and fencing are modern. There are some mature trees, but most of the foundation plantings, gardens and outbuildings are not old.

\section*{25. Boundary Justification}

\section*{26. Boundary Description}

The surveyed area is defined by the residential neighborhood within the subdivision known as Franklin Terrace. The area is shown on the 1908 plat plan. The northwest bound of the subdivision is Folsom Road. On the southwest, the boundary is the back of properties on the east side of Franklin Street, except for 89 Franklin located on lots platted in the 1908 subdivision. The neighborhood includes residential streets, Concord, Manchester, Claremont and Laconia avenues Commercial properties at the end of those streets and fronting on Crystal Avenue/NH 28 are not included. Although part of the subdivision plan, they developed as part of a growing commercial strip on Route 28, with larger groups of lots and larger commercial buildings, most from the late twentieth century. See boundary on both Location Map and Sketch Map.

\section*{27. Bibliography and/or References}

Cheney. G.A.
1902 "Derry: Its Interesting Past and Prosperous Present," The Granite Monthly, vol. XXXIII, December, 1902.

Derry Historical Research Committee
1977 From Turnpike to Interstate. Canaan. NH: Phoenix Publishing.
Newell, Harriett Chase
1965 Outlying Districts of Derry, New Hampshire. Littleton, N.H.: The Courier Printing Company, Inc.

Preservation Company (Lynne Monroe, T. Kirker Hill, Kari Laprey)
2000 DER0152 Individual Inventory Form on file at New Hampshire Division of Historical Resources, Concord, NH.

Preservation Company
2002 "Townwide Area Form (Area DER), Derry, NH" filed at New Hampshire Division of Historical Resources, Concord, NH.

Preservation Company
2005 "Continuation Sheets for Project Area Form (Area DER), Derry, NH" filed at New Hampshire Division of Historical Resources, Concord, NH.

Public Member Trees, Ancestry.com (http://search.ancestry.com/search/db.aspx?dbid=1030).
U.S. City Directories, Ancestry.com (http://search.ancestry.com/search/db.aspx?dbid=2469).
U.S. Federal Census Collection, Ancestry.com (http://search.ancestry.com/search/group/usfedcen).

\title{
Franklin Terrace Historic Area
}

\section*{Historic Maps}

Bailey, O.H.
1898 Derry, New Hampshire. Derry, NH: Charles Bartlett (https://collections.leventhalmap.org/search/commonwealth:4m90f426h).

Chace, J. Jr.
1857 Rockingham County, New Hampshire. Philadelphia: Smith and Coffin (https://www.loc.gov/item/2012593011/).

Hurd, D. H. \& Co.
1892 Town and City Atlas of the State of New Hampshire. Boston: Hurd \& Co. (http://www.davidrumsey.com).

Norris, George E.
1887 Derry Depot, N.H: Rockingham County. Brockton, MA: G.E. Norris (https://collections.leventhalmap.org/search/commonwealth:cj82m044r).

Sanborn maps
1931, 1950 Derry, NH (http://sanborn.umi.com/)
USGS
1903? Manchester, NH Quadrangle (http://docs.unh.edu/NH/mnch05se.jpg)
1953 Manchester, NH Quadrangle (http://docs.unh.edu/NH/mnch53ne.jpg)

\section*{Rockingham County Registry of Deeds}
(http://www.nhdeeds.com/rockingham/RoHome.html)
\begin{tabular}{llll}
1908 & Book 630, Page 447 & 1939 & Book 956, Page 18 \\
1908 & Plan 251 & 1940 & Book 963, Page 371 \\
1908 & Book 637, Page 243 & 1943 & Book 1004, Page 403 \\
1908 & Book 638, Page 427 & 1946 & Book 1060, Page 94 \\
1908 & Book 638, Page 438 & 1946 & Book 1060, Page 294 \\
1909 & Book 641, Page 172 & 1947 & Book 1080, Page 231 \\
1909 & Book 641, Page 322 & 1947 & Book 1153, Page 188 \\
1910 & Book 652, Page 10 & 1948 & Book 1096, Page 424 \\
1912 & Book 668, Page 131 & 1949 & Book 1144, Page 291 \\
1912 & Book 668, Page 168 & 1949 & Book 1152, Page 483 \\
1912 & Book 669, Page 45 & 1951 & Book 1221, Page 142 \\
1914 & Book 679, Page 424 & 1951 & Book 1231, Page 303 \\
1920 & Book 794, Page 193 & 1955 & Book 1357, Page 341 \\
1925 & Book 794, Page 192 & 1957 & Book 1432, Page 442 \\
1927 & Book 822, Page 245 & 1961 & Book 1589, Page 387 \\
1929 & Book 480, Page 279 & 1972 & Book 2157, Page 297 \\
1929 & Book 851, Page 78 & 1979 & Book 2344, Page 1085 \\
1932 & Book 873, Page 307 & 1983 & Book 2446, Page 1713 \\
1932 & Book 883, Page 65 & 1986 & Book 2649, Page 1141 \\
1935 & Book 906, Page 246 & 1998 & Book 3351, Page 199. \\
1939 & Book 952, Page 207 & &
\end{tabular}

New Hampshire Division of Historical Resources
last update 06.20.2015
Area Form
Franklin Terrace Historic Area

\section*{28. Surveyor's Evaluation}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline NR listed: district & \(\square\) & NR eligible: & & NR Criteria: & A & \\
\hline individuals & & district & \(\square\) & & B & \\
\hline within district & \(\square\) & not eligible & 区 & & C & \\
\hline Integrity: yes & & & & & D & \\
\hline no & 区 & more info needed & \(\square\) & & E & \\
\hline
\end{tabular}

If this Area Form is for a Historic District: \# of contributing resources:
\# of noncontributing resources: \(\qquad\)

\section*{Franklin Terrace Historic Area}

\section*{Historic Maps and Images}


Detail of 1892 D.H. Hurd atlas of Derry shows Folsom Road and Crystal Ave. in vicinity of future subdivision


Detail of Birdseye View of Derry, 1898 inn vicinity of future subdivision shows Franklin Street, Folsom Road and Crystal Ave.


1905 USGS map shows West Derry shows streets between Franklin Street and Crystal Avenue south of future site of Franklin Terrace subdivision


Franklin Terrace subdivision of northern streets and lots, Rockingham County Registry of Deeds, Plan 251, page 2


Franklin Terrace subdivision plan of southern streets and lots - Rockingham County Registry of Deeds, Plan 251, page 1

\section*{EDMUND M. WARREN REALTY CO.}

IF YOU OWN REAL ESTATE that you would like converted into cash, send full description and price of the property you wish to dispose of. If you wish to purchase any kind of property anywhere, tell us what you want and where you want it. Probably we can save you time and money.
We transact business in thirty cities and towns in the New England States and N. Y. State. Bank reference upon application. Write today.
No Charge for Information.

Owners, Managers and Developers of Real Estate
87 Weybosset Street, Rooms 38 and 39
PROVIDENCE, R. I.
Telephone Connection
BRANCH OFFICES : \(\left\{\begin{array}{l}\text { No. } 1 \text { Beacon Street, Boston, Mass. } \\ \text { Burnside Building, Worcester, Mass. } \\ \text { Atkinson Building, Lewiston, Me. } \\ \text { Arcade Building, Utica, N. Y. }\end{array}\right.\) CHOICE BUILDING LOTS IN EDGEWOOD FOR SALE Terms to Suit You

Advertisement from the Providence, RI Directory, 1904


\section*{Franklin Terrace Historic Area}


Detail of 1931, revised 1950 Sanborn Fire Insurance Company Map, Derry showing southern end of Concord Avenue between Franklin and Crystal

Franklin Terrace Historic Area


1953 USGS map shows Concord Ave., the lower end of Manchester Ave. and Laconia Ave.


1965 aerial photograph of Franklin Terrace and surrounding area (NETRonline)

\section*{Franklin Terrace Historic Area}

\section*{Digital Photography Statement}

I, the undersigned, confirm that the photos in this inventory form have not been digitally manipulated and that they conform to the standards set forth in the NHDHR Photo Policy. My camera was set to the following specifications: "fine" image quality (compression ratio 1:4) and "large" image size (3008 x 2000 pixels). These photos were printed using the following: Epson SureColor P600 photo printer on Epson Ultra Premium Photo Paper, glossy. The digital files are housed with Preservation Company in Kensington, NH.


Lynne Emerson Monroe, Preservation Company

\section*{Photo Key}


New Hampshire Division of Historical Resources last update 06.20.2015

\section*{Area Form}

\section*{Current Photographs}

Date taken: June 2018


Photo 1) 89 Franklin Street (map-lot 35-58)
Direction: N Reference (file name): Photo_June2018_214


Photo 2) 4 Berlin Avenue (map-lot 31-51)
Direction: N


Photo 3) 2 Concord Avenue (map-lot 31-53)
Direction: S
Reference (file name): Photo_June2018_237


Photo 4) 5 Concord Avenue (map-lot 31-50)
Direction: N Reference (file name): Photo_June2018_235


Photo 5) 6 Concord Avenue (map-lot 31-55)
Direction: SW
Reference (file name): Photo_June2018_238



Photo 7) 8 Concord Avenue (map-lot 31-56)
Direction: W Reference (file name): Photo_June2018_239



Photo 9) 10 Concord Avenue (map-lot 31-56-1)
Direction: S
Reference (file name): Photo_June2018_241


Photo 10) 12 Concord Avenue (map-lot 31-57)
Direction: S Reference (file name): Photo_June2018_242


Photo 11) 14 Concord Avenue (map-lot 31-58)
Direction: W
Reference (file name): Photo_June2018_243


Photo 12) 1 Exeter Street (map-lot 31-59)
Direction: S
Reference (file name): Photo_June2018_229


Photo 13) 2 Exeter Street (map-lot 35-52)
Direction: N Reference (file name): Photo_June2018_223


Photo 14) 3 Exeter Street (map-lot 31-47)
Direction: SE
Reference (file name): Photo_June2018_228


Photo 15) 4 Exeter Street (map-lot 35-45-1)
Direction: N Reference (file name): Photo_June2018_224


Photo 16) 15 Concord Avenue (map-lot 35-51)
Direction: NE
Reference (file name): Photo_June2018_232


Photo 17) 17 Concord Avenue (map-lot 35-50)
Reference (file name): Photo_June2018_231


Photo 18) 20 Concord Avenue (map-lot 35-53)
Direction: S Reference (file name): Photo_June2018_244


Photo 19) 20 Concord Avenue, outbuildings


Photo 20) 5 Folsom Road (map-lot 35-54)
Direction: S
Reference (file name): Photo_June2018_210


Photo 21) 5 Folsom Road, rear
Reference (file name): Photo_June2018_246


Photo 22) 7 Folsom Road (map-lot 35-49)
Direction: S
Reference (file name): Photo_June2018_209


Photo 23) 10 Manchester Avenue (map-lot 31-45)
Direction: S
Reference (file name): Photo_June2018_256


Photo 24) 11 Manchester Avenue (map-lot 35-43)
Direction: E Reference (file name): Photo_June2018_255


Photo 25) 12 Manchester Avenue (map-lot 31-46)
Direction: S
Reference (file name): Photo_June2018_227


Photo 26) 6 Exeter Street (map-lot 35-45)
Direction: W
Reference (file name): Photo_June2018_226


Photo 27) 6 Exeter Street
Direction: N
Reference (file name): Photo_June2018_225


Photo 28) 13 Manchester Avenue (map-lot 35-42-1)
Direction: E
Reference (file name): Photo_June2018_253


Photo 29) 13-15 Manchester Avenue (map-lots 35-42-1 and 35-42)
Direction: N Reference (file name): Photo_June2018_254


Photo 30) 15 Manchester Avenue (map-lot 35-42)
Direction: N Reference (file name): Photo_June2018_252


Photo 31) 16 Manchester Avenue (map-lot 35-46)
Direction: W Reference (file name): Photo_June2018_257


Photo 32) 17 Manchester Avenue (map-lot 35-38-1)
Direction: E
Reference (file name): Photo_June2018_250

New Hampshire Division of Historical Resources last update 06.20.2015


Photo 33) 18 Manchester Avenue (map-lot 35-47)
Direction: S Reference (file name): Photo_June2018_258


Photo 34) 19 Manchester Avenue (map-lot 35-41-1)
Direction: E
Reference (file name): Photo_June2018_249


Photo 35) 20 Manchester Avenue (map-lot 35-48)
Direction: S
Reference (file name): Photo_June2018_191


Photo 36) 9 Folsom Road (map-lot 35-41)
Direction: S
Reference (file name): Photo_June2018_208


Photo 37) 9 Folsom Road
Direction: E
Reference (file name): Photo_June2018_193


Photo 38) 11 Folsom Road (map-lot 35-40)
Direction: E
Reference (file name): Photo_June2018_206


Photo 39) 11 Folsom Road
Direction: S
Reference (file name): Photo_June2018_204


Photo 40) 13 Folsom Road (map-lot 35-28)
Direction: S
Reference (file name): Photo_June2018_203


Photo 41) 13 Folsom Road
Direction: E
Reference (file name): Photo_June2018_205


Photo 42) 3 Claremont Avenue (map-lot 35-39)
Direction: W
Reference (file name): Photo_June2018_266


Photo 43) 4 Claremont Avenue (map-lot 35-29)
Direction: E
Reference (file name): Photo_June2018_259


Photo 44) 5 Claremont Avenue (map-lot 35-38)
Direction: S
Reference (file name): Photo_June2018_265


Photo 45) 6 Claremont Avenue (map-lot 35-30)
Direction: N Reference (file name): Photo_June2018_260


Photo 46) 7 Claremont Avenue (map-lot 35-37)


Photo 47) 10 Claremont Avenue (map-lot 35-31-1)
Direction: E
Reference (file name): Photo_June2018_262


Photo 48) 12 Claremont Avenue (map-lot 35-31)
Direction: E
Reference (file name): Photo_June2018_263


Photo 49) 4 Laconia Avenue (map-lot 35-25)
Reference (file name): Photo_June2018_269


Photo 50) 6 Laconia Avenue (map-lot 35-26)
Direction: SW
Reference (file name): Photo_June2018_271


Photo 51) 8 Laconia Avenue, façade (map-lot 35-27)
Direction: W
Reference (file name): Photo_June2018_272


Photo 52) 8 Laconia Avenue, side elevation facing Folsom Road
Direction: SE
Reference (file name): Photo_June2018_202


Photo 53) 19 Folsom Road, side elevation (map-lot 35-20)
Direction: NE Reference (file name): Photo_June2018_267


Photo 54) 19 Folsom Road, garage
Direction: ESE
Reference (file name): Photo_June2018_268
```


[^0]: Figure 16-2040 No-Build PM Peak Hour Base Volumes - Locations 1-4

[^1]: Percetage adjusted manually to add to 100% on approach
 Existing percentages or volumes carried forward

[^2]: Percetage adjusted manually to add to 100\% on approach
 Existing percentages or volumes carried forward

[^3]: Percetage adjusted manually to add to 100% on approach

[^4]: Percetage adjusted manually to add to 100% on approach

[^5]: Intersection Summary

